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Abstract—The use of multiple transmit/receive antennas
forming a multiple-input multiple-output (MIMO) system can
significantly enhance channel capacity. This paper considers a
V-BLAST-type combination of orthogonal frequency-division
multiplexing (OFDM) with MIMO (MIMO-OFDM) for en-
hanced spectral efficiency and multiuser downlink throughput.
A new joint data detection and channel estimation algorithm
for MIMO-OFDM is proposed which combines the QRD-M
algorithm and Kalman filter. The individual channels between
antenna elements are tracked using a Kalman filter, and the
QRD-M algorithm uses a limited tree search to approximate the
maximum-likelihood detector. A closed-form symbol-error rate,
conditioned on a static channel realization, is presented for the

= 1 case with QPSK modulation. An adaptive complexity
QRD-M algorithm (AC-QRD-M) is also considered which assigns
different values of to each subcarrier according to its estimated
received power. A rule for choosing using subcarrier powers
is obtained using a kernel density estimate combined with the
Lloyd-Max algorithm.

Index Terms—Frequency-division multiplexing (FDM), Kalman
filtering (KF), maximum likelihood (ML), sequential detection.

I. INTRODUCTION

VARIOUS multiple antenna systems have been intro-
duced to increase wireless network capacity and spectral

efficiency. Examples include space–time coding [1], [2] and
V-BLAST [3], [4]. The focus in this paper is on a combination of
V-BLAST modulation with orthogonal frequency-division mul-
tiplexing (OFDM), leading to a multiple-input multiple-output
(MIMO)-OFDM system. In conventional V-BLAST, a serial
data stream is converted to parallel, with each data symbol
transmitted on a separate antenna. The MIMO-OFDM system
considered here transmits an independent -subcarrier OFDM
signal on each of antenna elements for symbols
transmitted per symbol duration.

Previous combinations of MIMO with OFDM include
Vector OFDM [2] and the space–time coded system in [5].

Manuscript received July 31, 2003; revised January 18, 2004; accepted Jan-
uary 20, 2004. The editor coordinating the review of this paper and approving
it for publication is X. Wang. This work was supported in part by NSG Grant
CCF-0429596. This paper was presented in part at the 2002 Asilomar Confer-
ence on Signals, Systems and Computers.

K. J. Kim is with the Nokia Research Center, Irving, TX 75039 USA (e-mail:
kyeong.j.kim@nokia.com).

J. Yue is with the Department of Electrical Engineering, Southern Methodist
University, Dallas, TX 75275 USA (e-mail: jyue@mail.smu.edu).

R. A. Iltis and J. D. Gibson are with the Department of Electrical and Com-
puter Engineering, University of California, Santa Barbara, CA 93106-9560
USA (e-mail: iltis@ece.ucsb.edu; gibson@mat.ucsb.edu).

Digital Object Identifier 10.1109/TWC.2004.842951

Here, the emphasis is on a spatially uncoded system motivated
by V-BLAST, which allows for simpler detection and channel
estimation methods. Note that the individual data streams
in the proposed MIMO-OFDM system can nevertheless be
temporally coded. The advantage of OFDM [6]–[8] in the
MIMO application is that a frequency-selective fading channel
is converted to parallel flat-fading channels, and intersymbol
interference (ISI) is eliminated via use of a suitable time-guard
band. The Bell Labs Layered Space–Time System (BLAST)
[3], [9], [10] was originally developed for non-OFDM systems
and allows for increased aggregate data rates by simultaneous
transmission of independent data streams on multiple antennas.
V-BLAST combines beamforming and successive interference
cancellation (SIC) techniques [11], [12] in order to separate the
parallel data streams.

The use of the QR decomposition (QRD)-M algorithm for
MIMO-OFDM is motivated by previous work on joint data de-
tection and channel estimation for DS-code-division mulitple
access (CDMA) in [13]. In QRD-M, the QRD [14] is applied
to the antenna outputs after the fast Fourier transform (FFT)
operation. It is further shown that data detection can be per-
formed independently on each of OFDM carriers. The ef-
fective channel for receive and transmit antennas then
reduces to independent upper triangular matrices.
The maximum-likelihood (ML) decision rule based on the QRD
corresponds to a full tree search [15]. However, the number of
branch metrics in the tree grows exponentially with the number
of transmit antennas and the size of the symbol alphabet. The

algorithm [15]–[17] combined with the QRD can greatly re-
duce the computational complexity of the tree search [13]. The
resulting combination of QRD with MIMO was also proposed
by [10] for a non-OFDM V-BLAST system. However, the ap-
proach of [10] was restricted to the case. It is shown
here that the more flexible search in the QRD-M algorithm will
give better performance than the SIC approaches in
previous V-BLAST detection algorithms [3], [9], [10].

Channel estimation is required for accurate demodulation in
the proposed MIMO-OFDM system. Here, the effective
channels are modeled by finite-impulse response (FIR) filters.
The Kalman filter (KF) is then employed in the sequel for joint
estimation of channel coefficients in a manner similar to [18].
Note that to obtain a practical joint detection/estimation algo-
rithm, the QRD-M step uses the channel estimate computed
during the previous symbol interval.

An adaptive complexity QRD-M algorithm is proposed in
which weaker subcarriers are assigned larger values of in the
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approximate tree search. An empirical density (KDE) [19] of
subcarrier estimated powers is first computed. The KDE is then
quantized into regions using the Lloyd-Max algorithm, where

is the maximum number of paths to search in the tree. The
resulting look-up table (LUT) is used to assign appropriate values
of on the basis of subsequent subcarrier power estimates.

The remainder of this paper is organized as follows. In Sec-
tion II, the signal and channel models are described. The joint
data detection and channel estimation algorithms are described
in Section III. Simulation results are provided in Section IV,
and conclusions follow in Section V. The analytic SER for the

QRD-M algorithm is derived in Appendix A.

II. SIGNAL AND CHANNEL MODELS

A low-pass equivalent model for a received MIMO OFDM
signal is considered which incorporates a quasi-static multipath
fading channel, in which the channel is time varying but constant
over a symbol duration. Throughout this paper, denotes the
number of subcarriers, the number of transmit antennas,
the number of receive antennas, is the th column of the
matrix , is the element of the matrix , and
is the th element of the vector . The indexes and denote
transmit and receive antenna, respectively, with ,

. The subcarriers are indexed by .
It is assumed that , which is a necessary condition for
the QR decomposition to yield an upper triangular matrix and
hence for implementation of the algorithm.

During OFDM symbol epoch , a -point in-
verse FFT (IFFT) is computed using QPSK or quadrature ampli-
tude modulation (QAM) data symbols .
The IFFT sequence corresponding to is then transmitted
by antenna . A set of symbols is assumed independent
in indexes , , and . The independence assumption is valid for
either an uncoded system or in a temporally coded system with
ideal interleaving. Note that we use the same signal constella-
tion for all subcarriers and antennas. The IFFT output of the th
transmit element in the interval with
guard time interval is

(1)

In (1), is the OFDM symbol interval in-
cluding the guard time interval, is the sampling time, and

is the number of samples in the guard interval.
The OFDM subcarrier spacing is Hz with , and

is a pulse with support . The channel between the th
transmit and th receive antenna is modeled by a tapped delay
line (TDL) with th coefficient and tap spacing of

s. [20, Ch. 7]. It is assumed that coarse OFDM symbol syn-
chronization has been achieved. The residual timing error can
then be approximately represented by the TDL channel model,
using the interpolation formula arguments in [21].

The received signal at the th receive antenna based on the
TDL channel model is

(2)

for , where is the number of multipaths.
The total multipath spread satisfies in order for the
time guard band to eliminate ISI. The coefficients are
assumed to be constant over one OFDM symbol duration but
vary from symbol to symbol [22]. The additive noise is
circular white Gaussian with spectral density .

The received signal sampled at instances
is given by

(3)

Note that the transmitter and receiver filters are modeled as ideal
low pass, with passband . The pulse is approxi-
mated as ideal rectangular, since its bandwidth is much smaller
than Hz.

The received baseband OFDM signal vector for the th
symbol interval is written using (3) as

(4)
where

(5)

In (5), represents a circular Gaussian density with
mean vector and covariance matrix , and is defined by

(6)
The received signal vector in (4) can be alternatively ex-

pressed as

(7)

where

(8)
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Note that is a sufficient statistic, is the DFT matrix
satisfying , and is the truncated FFT vector.
The demodulator output (a -point FFT) is now given by

(9)

where .
The overall goal of this paper is to find an effective strategy to

detect and estimate from the received samples.
It is observed that conditioned on the channel vectors ,
the detection of the data symbols in (9) is separable in the
subcarriers, since the components of the additive noise
are independent. This will result in a greatly simplified QRD-M
algorithm.

The following equation for the th received subcarrier is ob-
tained using the definition of the matrix in (8)

...
...

...

(10)

In the definition (10), represents frequency responses of
all channels at FFT frequency .

The ML data detection for the th subcarrier is performed
using channel one-step predictions obtained from a KF

(11)
where is the one-step KF prediction of
the effective MIMO channel frequency response matrix and is
the symbol alphabet. The ML decision for the data (11) is
separable in the subcarriers when conditioned on the channel
estimate. The separability follows from (8), where is
diagonal.

As is well known, the computational complexity of (11)
grows exponentially with the number of transmit antennas

and the cardinality of the subcarrier modulation. To reduce
this prohibitive complexity, the suboptimal algorithm for
detection is employed next.

III. NEW JOINT DETECTION AND CHANNEL

ESTIMATION ALGORITHMS

A. Joint Detection Algorithm

The QR decomposition [14] approach proposed in [13] for
DS-CDMA systems is applied here to the estimated channel ma-
trix , and the algorithm is used to
efficiently approximate the ML decisions on . Given the
channel one-step prediction, the received signal power of the th
data symbol is defined by , where the

norm is .
Next, rearrange the channel estimates using the order statis-

tics of the estimated powers as follows:

(12)

such that . The corresponding data
vector is also reordered in terms of the corresponding

powers as . Note
that in the interference cancellation structure, the detection order
is crucial to the performance of the system [12], [23], and the
estimated channel matrix is thus rearranged so that data
will be detected first. In [4], a similar detection order strategy
is motivated by minimizing the bit-error rate (BER) of the data
associated with the weakest vector channel.

The following modified ML cost function is obtained by ap-
plying the QRD in (11). Let be the unique unitary matrix
such that , such that is upper tri-
angular. The detailed structure of is

(13)

Define . Then

(14)

where . Note that the statistics of the
noise vector are invariant under the unitary transforma-
tion . In particular, the components of are
independent identically distributed (i.i.d.) Gaussian, which will
facilitate the closed-form BER analysis for the case
in Appendix A. Then, the ML decision (11) becomes (15), as
shown at the bottom of the page. Recall that in (15).

(15)
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The ML cost function can be simplified by deleting the terms
in (15) that do not depend on the data . The cost function
is then written in terms of states and branch metrics as follows:

(16)

where the metric and the state are,
respectively, defined by

(17)

(18)

Note that at stage , the state and the metric are determined by
a set of data symbols corresponding to antenna
through .

Using these states and metrics, the ML detector can be equiv-
alently represented as a tree search beginning at level (1) and
concluding at level . A state in the tree is specified by

(19)

However, the complexity of the tree search at the final stage
is , which is impractical for even moderate values of

. The algorithm simply retains only the paths through the
tree with the smallest accumulated metrics [15]–[17]. It is
worthwhile to note that the structure of the QRD-M algorithm
with is very similar to an interference canceler or a deci-
sion feedback detector. Furthermore, the structure of the QR de-
composition permits a closed-form BER computation for QPSK
signaling in the case, as shown in Appendix A.

The authors in [13] show that the QRD-M algorithm has
a better BER performance than an interference cancellation

method for the case of DS-CDMA. Similar results
will be shown in Section IV for the MIMO-OFDM system. An
example of the QRD-M algorithm is presented as follows to
clarify the approach.

Example: Fig. 1 shows the tree for transmit an-
tennas and QPSK modulation on all subcarriers. The data
associated with the strongest channel corresponds
to the root node in the tree diagram, and there are four
branches denoted by with four met-
rics from the root
node. For the next strongest data, four metrics exist for each
branch. That is, and
the metrics

. We can readily modify these functions to accommo-
date higher order constellations such as -QAM.

Fig. 1. Tree diagram showingM = 1 algorithm decisions with N = 2 and
QPSK modulation.

Consider the case with QPSK modulation. The
QPSK constellation is rotated by to simplify the notation.
Since we retain only one accumulated distance metric at each
level of the tree, for the strongest data , only the metric

and the state are retained for
the next data detection. This path corresponds to the signal point

in the signal constellation. For the next strongest data
, first compute all possible accumulated branch met-

rics adding both the previous metric
and the current metric, resulting in the sums

and then sort these accumulated distance metrics.
Suppose that

is the minimum in
Fig. 1, then we can extend the survivor path at this stage.
This survivor path specifies the decision and

.
The computational efficiency of the QRD-M algorithm com-

pared with ML is illustrated in Table I for 16-QAM. For ex-
ample, the number of complex multiplies for is only
11% of the number required for the full ML search, and similar
savings are evident for the remaining arithmetic operations.

B. Channel Estimation

The nominal Doppler spread normalized to the OFDM
symbol rate considered here is . Hence, it is
reasonable to model the channel coefficient vectors as
slowly varying autoregressive processes. A decision-directed
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TABLE I
COMPARISON OF THE NUMBER OF FUNDAMENTAL OPERATIONS OF THE

QRD-M AND THE ML ON A SINGLE SUBCARRIER FOR THE 16-QAM
MODULATION WITH N = 4, N = 4

KF channel estimator is proposed here based on the following
representation of the received signal at antenna :

(20)

where is the truncated FFT vector defined in (8). The un-
known data are replaced by decisions from the algo-
rithm . At time , the algorithm uses predicted channel
values from the KF to compute .

The channel estimation problem is separable in the re-
ceive antennas, since the are assumed to evolve inde-
pendently, and the thermal noises at the antennas are in-
dependent white Gaussian processes. However, all subcarrier
measurements , depend on the same
set of channel variables ; hence, separate KFs are ap-
plied to the composite measurement vectors . These
vectors are then approximated using -algorithm decisions by

where the state vector is defined by
, and the measure-

ment function is defined by

(21)

In (21), is the truncated FFT matrix defined by
. Also

(22)

To derive the KF, an autoregressive model (AR) for the
channel coefficients is assumed. The multipath coefficient
vectors are assumed to be independent AR processes following

where is typically diagonal with nonzero ele-
ments computed according to a nominal Doppler spread [18].
The noise is independent circular Gaussian with vari-
ances . In terms of the state vector, the AR model is then

(23)

TABLE II
QRD-M-KF CHANNEL ESTIMATION ALGORITHM

where the one-step transition matrix and process noise
covariance, , , are

(24)

The complete QRD-M-KF algorithm is given in Table II. In
practice, only one initial OFDM training symbol com-
prising QAM symbols was found to be required for con-
vergence of the KF. The initial channel state vector was
set to 2 , where is the all-ones vector, and the covariance
was initialized to for all .

C. Adaptive Complexity AC-QRD-M Algorithm

Due to frequency-selective fading, subcarriers in the OFDM
system will have widely varying signal-to-noise ratios (SNRs).
Recall that a separate QRD-M algorithm runs independently on
each subcarrier. Thus, it is intuitively reasonable to use large
values of for those subcarriers with low SNR and small
values, e.g., , for those with high SNR. This observation
leads us to the AC-QRD-M algorithm which maps estimated
channel power to . Since detector performance at the first
stage of the algorithm depends directly on , it
is reasonable to use the metric for se-
lecting . Alternatively, the norm
will also be used to determine .

It is not clear at first how to set given a single observed
value of or . The approach taken here is to use multiple
observations of to estimate the probability density function
of this metric. The Lloyd-Max algorithm is then used to parti-
tion the pdf into regions. Specifically, corresponds to the
maximum value of which will be employed, determined for
example by available computational resources.

For a set of training symbol sequences, the QRD is applied
to the channel matrix, and then the KDE [19] forms the pdf for
either or . Let be the th observation for

and the total number of observations. The KDE is given by

(25)

where . The optimum width parameter
in terms of minimizing asymptotic mean squared error is
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Fig. 2. Comparison between the analytic and simulated SER with N = 2, N = 2, K = 64, known N = 5 length channel, f (n) =
[0:749; 0:502;0:3365;0:2256;0:1512] , 8 p; q, QPSK subcarrier modulation.

[19]. The parameter is
the sample variance defined as

(26)
and IQR is the distance between the upper quartile, 75th per-
centile, and the lower quartile, 25th percentile.

In order to assign values of based on the observed ,
a partitioning strategy for the pdf is required. The Lloyd-Max
optimization procedure [24] selects thresholds to minimize
the following quantization variance:

(27)

for and centroids
. The centroids are defined by [24]

. The LUT

is then defined by the following mappings of observed
to

In all simulations, training composite OFDM sym-
bols were used to form the KDE.

IV. SIMULATION RESULTS

To verify the overall simulation approach and analytic SER
for , the case of QPSK with antennas

was considered. Note that the analytic SER is conditioned on a
time-invariant channel realization. Fig. 2 shows that the analytic
SER computed using Appendix A closely matches the simulated
SER, for the case of a time-invariant tap channel and

subcarriers.
In subsequent simulations, QPSK or 16-QAM was used

as the subcarrier modulation. The number of antennas in
the transmitter and the receiver was set to .
The number of multipaths is , with equal power
strength. The packet size is one OFDM symbol, consisting
of subcarriers. The nominal Doppler spreads are

, that is, , and

. We consider two cases.
[Case 1] Clairvoyant QRD-M (Known Channel): In this

case, Fig. 3 shows the BER and packet-error rate (PER) perfor-
mance for 16-QAM subcarrier modulation and different values
of . In the clairvoyant algorithm, only the QRD-M is run, that
is, the channel is time varying but the true channel coefficients

are used in place of KF estimates. When ,
the BER performance of the clairvoyant QRD-M system is
slightly worse than that of the BLAST system. However, as the
value of increases, the BER becomes significantly lower
than that of BLAST. For example, at a BER of 2 10 , the
QRD-M system yields 5-dB gain over the BLAST
system. QRD-M with yields performance very close
to that of the ML algorithm. The advantage of QRD-M is quite
clear in that optimum ML detection for 16-QAM,
requires computation of 65 536 metrics. In contrast, QRD-M
with requires a total of 784 branch metric computa-
tions in the level tree. The PER performance is also
significantly improved compared with the BLAST system.
Fig. 3 suggests that the advantage of QRD-M over BLAST
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Fig. 3. BER/PER performances of the QRD-M algorithm [16-QAM, one OFDM symbols, N = 4,N = 4,N = 2, f T = 0:001].

Fig. 4. BER/PER performances of the QRD-M system versus AC-QRD-M system [16-QAM, one OFDM symbols,N = 4,N = 4,N = 2, f T = 0:0032].

becomes very significant for higher order modulations and
larger numbers of antennas.

The comparative performance of AC-QRD-M and QRD-M
is shown in Fig. 4. These versions of the algorithms are again
clairvoyant with time-varying coefficients known for all

. The normalized Doppler spread is . The values

of (maximum number of paths used for each carrier) are
4/8/16. The corresponding average values of , denoted by

, from the AC-QRD-M algorithm are 3.09/5.81/11.8. The im-
provement over BLAST at a 10 BER is 1 dB for AC-QRD-M
with . Furthermore, the performance of AC-QRD-M
with , is almost identical to that of the
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Fig. 5. BER/PER performances of the QRD-M-KF system versus QRD-M system [QPSK, one OFDM symbols, N = 4,N = 4,N = 2, f T = 0:001].

QRD-M system with fixed complexity . Thus, the
average complexity of AC-QRD-M in terms of the number of
branch metrics computed is significantly less than that of the
fixed complexity QRD-M algorithm.

[Case 2] KF Based Channel Estimation: The impact
on BER/PER performances for varying Doppler spread is
evaluated using QRD-M with KF channel estimation. The
nominal Doppler spreads considered are ,

, and , . Also,

. Fig. 5 is the result for the
QRD-M system combined with the KF-based channel estimator
at .Comparedwiththeaprioriknownchannelcase,
a clear performance degradation occurs as shown in Fig. 5. For
example, at 10 BER, QPSK subcarrier modulation, ,
and one OFDM symbol, there is about a 1-dB loss compared with
a clairvoyant (i.e., known channel) QRD-M algorithm-based
receiver.

Fig. 6 compares QRD-M-KF for the unknown channel with
clairvoyant QRD-M for 16-QAM. The channel is time varying
with . From this figure, we observe the same trends
as in Fig. 3 with approximately a 1-dB loss in BER performance
using the Kalman channel estimator.

In Figs. 7 and 8, the performance of the QRD-M-KF with
16-QAM subcarrier modulation is evaluated at

and compared with clairvoyant QRD-M. As
expected, the larger Doppler spread leads to a performance
degradation. However, the performance degradation from .001
to .0032 Doppler spread is still less than 1 dB for the QRD-M-KF.

V. CONCLUSION

A new computationally efficient joint detection and channel
estimation algorithm for MIMO-OFDM system was proposed,

which combines the QRD-M algorithm with Kalman channel
estimator. The performance was evaluated by analysis for

and by simulation for larger values of . It was shown that the
QRD-M and QRD-M-KF significantly outperform the BLAST
system except for the case. Furthermore, significantly
less computation is incurred by the algorithm for higher order
signal constellations and larger numbers of transmit antennas.
Computational efficiency was also improved by using an adap-
tive complexity AC-QRD-M algorithm, which assigns different
values of to subcarriers depending on their estimated channel
power. The QRD-M-KF algorithm appears to be robust even at
large normalized Doppler spreads and hence may be a good can-
didate for implementation in MIMO-OFDM systems.

APPENDIX

ANALYTIC CONDITIONAL SER FOR

The analytic SER is derived for conditioned on a
static channel realization. For convenience, reorder the indexes
in the QRD-M algorithm and represent the th element of the
vector as

(A.1)

where are i.i.d. circular Gaussian, zero mean, and with
variance .

Consider first the case of BPSK, with , where the
are assumed i.i.d. either through uncoded modulation or

perfect interleaving. Although is real valued, there is
a rad. phase ambiguity unless training data is used to estimate
the channel. Thus for known channels, or when training is fea-
sible, it is assumed that the decision variable is premultiplied
to yield . For the case , the
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Fig. 6. BER/PER performances of the QRD-M-KF system [16-QAM, one OFDM symbols, N = 4,N = 4,N = 2, f T = 0:001].

Fig. 7. BER performance of the QRD-M-KF system versus QRD-M system [16-QAM, one OFDM symbols,N = 4,N = 4,N = 2,f T = 0:001=0:0032].

phase-corrected branch metric (17) can then be written in sim-
plified form as

(A.2)

where and .

Define an error sequence and
a conditional probability mass function .
Note that the noise terms are i.i.d. Gaussian with variance

, and thus the branch metric is conditionally Gaussian
given and from (A.2). The conditional error
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Fig. 8. PER performance of the QRD-M-KF system versus QRD-M system [16-QAM, one OFDM symbols,N = 4,N = 4,N = 2, f T = 0:001=0:0032].

sequence probability is then

(A.3)

The conditional pmf for is finally written as

(A.4)

where is the Kronecker delta. The unconditional probability
of error for is then found according to

(A.5)

The BPSK error rate (A.5) can be extended to higher order
modulations by determining the appropriate conditional error
sequence pmfs. For example, for QPSK, takes on the nine
values . The unconditional SER
becomes

(A.6)

Furthermore, since the real and imaginary parts of are inde-
pendent, the real and imaginary parts of are likewise indepen-
dent when conditioned on . The conditional SER
factors as

(A.7)
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The pmf of is found in a manner similar to (A.4) as

(A.8)

The pmf of is identical to (A.8) with operators re-
placing .
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