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Abstract— In this paper, we consider a collaborative human-
robot Traveling Salesman Problem (TSP), where a robot is
tasked with site inspection and target classification, under a
limited motion energy budget and with a limited access to a
human operator. More specifically, a robotic field operation is
considered where a robot has to co-optimize seeking human
assistance (via asking questions) and selective TSP tour design
(for a closer inspection) based on an initial remote sensing. The
robot has a limited budget for both communication with the
human operator and site inspection motion consumption. By
utilizing our past work on the target classification performance
of humans and robots, we show how the collaborative human-
robot TSP can be solved under limited resources. We fur-
ther theoretically characterize the average correct classification
probability as a function of the given number of questions to the
human operator and the given motion energy budget. Extensive
simulation results confirm our theoretical derivations.

I. INTRODUCTION

In recent years, the subject of human-robot collaboration
has attracted attention from researchers. Although techno-
logical advances have allowed robots to be capable of more
complicated tasks, there still exist a large number of tasks
for which robots cannot provide a satisfactory performance
when compared to humans. Thus, it is of great importance
to properly include humans in certain robotic operations
and research efforts have been conducted towards this goal.
In control and robotics, researchers extensively utilize Drift
Diffusion Model from cognitive psychology to model human
decision making dynamics [1]. Studies have been conducted
on incorporating human inputs into control schemes, such
as model predictive control systems and vehicle routing
algorithms [2], [3]. Utilizing machine learning, researchers
have looked into how robots can master certain skills with
humans’ assistance [4], [5]. Branson et al. proposes a human-
computer interface that resembles the 20-question game for
collaborative object classification [6] and Srivastava et al.
proposes a Decision Support interface that facilitates human
operators’ decision making [7]. Bechar et al. probabilistically
studies a human-machine interface for object classification
[8]. Cai et al. proposes a new paradigm for optimizing
human-robot collaboration in terms of when the robot should
ask for human’s help [9]. Experimental studies have also
been conducted to bring more insights into human-robot
collaborations [10], [11]. The subject of robotic surveillance
and site visit has also been extensively explored without
human help [12]–[15].
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Fig. 1: An example of a human-robot collaborative Traveling
Salesman Problem considered in this paper.

In this paper, we are interested in a human-robot collabo-
rative Traveling Salesman Problem (collaborative TSP), i.e.,
a collaborative site inspection and target classification task
where the strengths of both humans and robots are properly
combined. Consider a number of sites of interest over a
field, where there is a target to be classified at each site, an
example of which is shown in Fig. 1. A robot (for instance
the aerial vehicle of Fig. 1) is tasked with the initial sensing
(in the form of images) and classification of all the sites.
Since the initial classification may not be satisfactory, the
robot may either ask a remote human operator to classify
some of the images or perform a close site inspection for
better sensing. The closer inspection can be performed either
by the robot itself or by another vehicle, such as the ground
robot of Fig. 1. When communicating to the human operator,
the robot only has limited chances to ask for help (due to
limited bandwidth or human overload for instance). The site
inspecting robot also has a limited motion energy budget
for field exploration and has to design a TSP tour to visit
a few selected sites. We then have the following question:
for which sites should the robot seek human help, for which
sites should it rely on its initial sensing and for which sites
a TSP tour should be designed for a closer inspection? This
paper addresses this question under limited human assistance
and motion energy budget.

In [16], a selective TSP problem was solved where a robot
can only visit a subset of sites and an optimization of which
sites to visit was performed. As compared to our past work
[9] where human-robot collaboration was optimized in the
case of a possible one-time site visit, this paper considers the
co-optimization of human collaboration and selective TSP
tour design, resulting in different formulation and analysis, as
we address. Since we are interested in collaborative human-
robot TSP, our problem requires a new treatment and cannot
be solved by separately optimizing human assistance and
selective TSP.



The paper is organized as follows. We summarize our
past work on the probabilistic modeling of human and
robot classification performance in Section II. In Section
III, we propose our approach for jointly optimizing the
TSP tour design and human assistance. In Section IV, we
mathematically characterize the average correct classification
performance of the proposed scheme. We then conclude in
Section V.

II. HUMAN AND ROBOT PERFORMANCE IN TARGET
CLASSIFICATION

In this section, we briefly describe our previous study
[9] on the target classification performance of humans and
robots under noise/uncertainty, which will provide the basis
for optimizing the human-robot collaborative TSP problem in
later sections. Consider the case where the robot has acquired
a noisy image of an object that is known to belong to a pre-
defined set of objects. The robot needs to classify the image.
For example, Fig. 2 (left) shows four target possibilities
shown to the robot before the operation and Fig. 2 (right)
shows a sample noisy image taken by the robot during the
operation.

Fig. 2: (left) Gray-scale test images of lion, leopard, cat and tiger
used in our study [9]. (right) A sample corrupted image (lion) with
noise variance of 3.

In [9], we have probabilistically modeled target classifica-
tion performance of humans and robots for the case where
each image is corrupted by AWGN noise with a known
variance but an unknown mean to the robot. The image pixels
are further truncated but this is unknown to the detector of
the robot. Fig. 3 shows human and robot performance curves
with respect to the noise variance of the image. Human’s
performance is derived by using several data points from
Amazon Mechanical Turks (Mturk).
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Fig. 3: Performance of human and robot in target classification.
The human data is acquired using Amazon MTurk [9].

Curves like this will provide the base for the optimization
of our collaborative TSP problem in the next sections.

III. HUMAN-ROBOT COLLABORATIVE TSP

In this section, we propose our optimization framework for
human-robot collaborative site inspection and target classifi-
cation.

A. Motion Energy Model

Based on [17], the robot’s motion power associated with
DC motors can be modeled by PM = κ1u2 + κ2u+ κ3, for
|u| ≤ umax, where u and umax are the robot’s velocity and
maximum velocity respectively. Assuming a constant veloc-
ity, the energy consumption is then given by EM = κ1ul +
κ2l + κ3l/u, where κ1,κ2, and κ3 are positive constants
related to the robot’s mechanical system. It can be seen
that the motion energy consumption is a linear function
of the distance traveled in this model: EM = κl, where
κ = κ1u+κ2 +κ3/u.

B. Problem Formulation

Consider a total of N sites in the field, whose locations
are known. At each site, there is one of T a priori known
targets (see Fig. 2 (left) for an example with 4 targets).
The robot’s task is to correctly classify these targets. It
can achieve this by deciding which sites need a closer
inspection through a minimum-distance TSP tour design,
which sites can be correctly classified based on the remote
initial sensing, and which sites would need human assistance.
At the beginning of the operation, the robot has an initial
remote sensing of all the sites (in the form of images) and
can assess the noise variance of each image. Based on the
assessed noise variances, the robot predicts its own and
human’s correct classification probabilities utilizing human
and robot performance curves (such as those in Fig. 3). The
correct classification probabilities of site i, for i ∈ {1, ...,N},
are denoted by pr,i and ph,i for the robot and the human
respectively. The robot is allowed M chances to ask the
human operator for help with the classification. It can further
rely on itself for target classification based on the initial
sensing. For some sites, however, a closer inspection is
needed, for which a robotic tour needs to be designed under
a given motion energy budget E . When a site is visited,
the predicted correct classification probability increases to a
high value of p̃. Thus, we do not allow visiting a site that has
already been assessed by the human, in order not to waste
resources. Let pc denote the average correct classification
probability of a site. We have,

pc =
1
N
(

N

∑
i=1

γi(ph,i− pr,i)+
N

∑
i=1

ηi(p̃− pr,i)+
N

∑
i=1

pr,i), (1)

where γi is 1 if the robot asks for human’s help with the ith
site and 0 otherwise. ηi = 1 indicates that a robot will visit
the ith site and ηi = 0 denotes otherwise.

In order to maximize the average correct classification
probability, the robot needs to co-optimize the TSP tour
design and human assistance. More specifically, it needs to



decide on the sites that have to be part of the tour for a
closer inspection, the sites that need human help and the
sites that can be classified based on the initial remote sensing.
The overall optimization problem can then be formulated as
follows:

max.
γ,η ,z,u

γ
T (ph− pr)+η

T (p̃1− pr)

s.t. (1) κ

N

∑
i=1

N

∑
j=1, j 6=i

zi, jdi, j ≤ E ,

(2)
N

∑
j=1,i 6= j

zi, j =
N

∑
j=1,i 6= j

z j,i = ηi, ∀i = 1, ...,N,

(3) ui−u j +1≤ (N−1)(1− zi, j), ∀i, j = 2, ...,N,

(4) 2≤ ui ≤ |V |, ∀i = 2, ...,N,

(5) 1T
γ ≤M, (6) γ +η � 1,

(7) γ,η ∈ {0,1}N , z ∈ {0,1}N×(N−1), u ∈ {0,1}N−1

(2)

where ph = [ph,1, ..., ph,N ]
T , pr = [pr,1, ..., pr,N ]

T , γ =
[γ1, ...,γN ]

T , η = [η1, ...,ηN ]
T and 1 = [1, ...,1]T .

Constraints (1)-(4) are related to the robot’s path planning.
Constraint (1) limits the motion energy usage by E . di, j de-
notes the distance between sites i and j, zi, j ∈ {0,1} indicates
whether to include edge (i, j) in the tour, and κ is a positive
constant mapping the travel distance to the motion energy
usage, as defined in Section III-A. Constraint (2) restricts that
a site can only be entered and departed from once should it
be visited (if ηi = 1). Constraints (3) and (4) are the Miller-
Tucker-Zemlin (MTZ) constraints that eliminate sub-tours
[18]. Constraint (5) limits the total number of inquiries to
the human by M. Constraint (6) prohibits the robot from
both asking about a site and inspecting it. The last set of
constraints enforce that all the variables be binary.

Remark 1: If the inspecting robot needs to start from a
base and return to it, this can be easily incorporated by
adding a virtual node.

C. Properties of the Human-Robot Collaborative TSP

Next we discuss two special cases where problem (2) re-
duces to simpler forms. We then present a property associated
with robot’s optimal querying.

1) Case of Zero Questions: Suppose that the robot is
not allowed to ask for human’s help: M = 0. Problem (2)
then becomes the traditional selective TSP [16]. On the
other hand, for M > 0, the two parts of optimizing human
assistance and selecting the sites for the TSP tour are tightly
coupled, requiring a new treatment as done in this paper.

2) Case of Zero Energy: Suppose that the robot has zero
motion energy. Problem (2) reduces to an easy case where the
robot needs to decide between asking the human and relying
on the initial classification. It is easy to show that γi = 1
for the M sites with the largest ph,i− pr,i in the optimum
solution.

Proposition 1: Consider the general optimization problem
shown in problem (2). Consider two sites i and j. Let γ?

and η? denote the optimal decision vectors. If γ?i = 1,η?
i =

0,γ?j = 0 and η?
j = 0, then ph,i− pr,i ≥ ph, j− pr, j.

Proof: Suppose that in the optimal solution, we have
two sites i and j such that γ?i = 1,η?

i = 0,γ?j = 0, η?
j = 0, and

ph,i− pr,i < ph, j− pr, j. By letting γi = 0,ηi = 0,γ j = 1, η j = 0,
we can obtain a strictly better solution, which contradicts that
the current solution is optimum.

This proposition says that if the robot asks the human to
help classify one site and rely on its initial sensing for the
other, then there should be a greater benefit by asking the
human about the first site.

D. Simulation Results

In this part, we show the performance of the collaborative
human-robot TSP approach of (2). We consider a case with
a total of 10 sites and 3 allowed queries. The motion energy
budget is taken to be a percentage of the total energy required
to traverse the shortest tour through all the sites. The robot
is given a motion energy budget of 50% in this case. The
human and robot performances after the initial sensing are
dictated by Fig. 3. The noise variance of the initial sensing
is drawn from a uniform distribution over [0.55,4] for each
site and p̃ is set to 0.896, which is the best achievable
robot performance based on Fig. 3. Problem (2) is then
solved by using the Mixed Integer Linear Program solver of
MATLAB. Fig. 4 shows the optimum solution. The rectangle
bars indicate the noise variance of the initial sensing of
the sites, with higher bars indicating a larger variance. The
sites that the robot asks for human help are marked with a
human operator symbol. The sites that the robot relies on
the initial sensing are also marked. It can be seen that the
robot selects sites with a medium level of noise variance (as
opposed to a high or low level) to query the human operator.
This variance range corresponds to a large performance gain
obtained from human assistance according to Fig. 3. The red
solid curve shows the optimum TSP tour through a selected
subset of sites. It can be seen that the robot tends to visit
sites geographically close to each other (even if they are not
all the sites with the highest variances) in order to satisfy
the energy constraint. We can also see that 3 out of 5 of the
visited sites have a very high level of noise variance. Then,
visiting these sites can have a considerable impact on the
classification performance.

1) Energy Saving: We show the energy savings of the
collaborative approach by comparing to a possible state-
of-the-art methodology, to which we refer as the baseline
method. In the baseline approach, the robot only knows the
site variances and does not know the performance of the
human. It chooses the sites which maximize the sum of
noise variances, under motion energy budget E , to visit. It
then randomly chooses M sites from the remaining to ask
the human. Table I shows the motion energy savings when
aiming to achieve a desired average correct classification
probability, averaged over multiple runs. There are N = 15
sites and M = 6 given queries. The noise variance of each
site is randomly drawn from [0.55,4] and p̃ is set to 0.896.
The locations of the sites are i.i.d. uniformly distributed over
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Fig. 4: A sample solution to the human-robot collaborative TSP
of problem (2) with 10 sites, 3 allowed questions and 50% energy
budget. The solid curve shows the optimum tour. Further, the sites
that are chosen for human assistance are marked with a human
symbol. The sites that are classified based on the initial remote
sensing are also marked.

the space. It can be seen that the robot can reduce its energy
consumption significantly by properly collaborating with the
human operator. For instance, it achieves an average correct
classification probability of 0.7 with 57.69% less energy
consumption. The term “Inf” indicates that the baseline
simply cannot achieve the desired performance.

Desired Ave. Correct
Classification Prob. Ave. % Energy Saving

0.7 57.69%
0.75 28.00%
0.8 13.16%
0.85 3.85%
0.9 Inf

TABLE I: Average energy saving as compared to the baseline
case of no optimized collaboration. 6 questions are allowed.

2) Bandwidth Saving: Properly optimizing the TSP tour
and human help by solving problem (2) can also result in
considerable bandwidth savings by reducing the number of
questions asked.1 Consider two cases of “large bandwidth”
and “zero bandwidth”. In the first case, the robot can query
the human as many times as it needs to (15 in this case)
and in the latter, no access to a human operator is available,
i.e., the robot has to rely on its own classification after
exploring the field. The robot is given 40% of the total
energy needed to visit all the sites. Fig. 5 compares the
performance of problem (2) with these two cases. The case of
“no bandwidth” performs poorly as the robot could not seek
human’s help in the classification. On the other hand, the case
of “large bandwidth” performs very well as the robot has full
assistance from the human operator, which, however, causes
excessive communication and thus a high bandwidth usage.
It can be seen that an optimized collaboration can achieve a
performance very close to the “large bandwidth” case with
much less bandwidth usage. For instance, by asking 8 ques-
tions (46.67% bandwidth reduction), the robot achieves an
average correct classification probability of 0.8452, less than
1% short of the “large bandwidth” performance (0.8535).

1Bandwidth usage is taken proportional to the number of questions.
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Fig. 5: Average correct classification probability as a function of
the number of given queries, as compared to the “large bandwidth”
and “zero bandwidth” cases. There are 15 sites and the motion
energy budget is 40% of what is needed to visit all the sites.

Table II further shows the bandwidth saving as compared
to the baseline approach. The robot is given an energy
budget of 20%. It can be seen that the robot can reduce
its bandwidth usage considerably. For instance, it achieves
an average probability of correct classification of 0.7 with
29.27% less bandwidth usage. Overall, we can see that by
properly optimizing the collaboration, considerable amount
of motion energy and bandwidth can be preserved.

Desired Ave. Correct
Classification Prob. Ave. % Bandwidth Saving

0.65 50.00%
0.7 29.27%
0.75 23.29%
0.8 11.65%

TABLE II: Average bandwidth saving as compared to the
baseline case of no optimized collaboration. The robot’s
energy budget is 20% of what is needed to visit all the sites.

IV. CHARACTERIZATION OF THE AVERAGE
PERFORMANCE FOR HUMAN-ROBOT COLLABORATIVE

TSP

In this section, we mathematically approximate the ex-
pected (average) correct classification probability of our
human-robot collaborative TSP scheme, which can be used to
predict the performance based on the available resources. By
average performance we refer to the expected value of the
probability of correct classification over both the locations
and variances of the sites. We assume that the site locations
are drawn from an i.i.d spatial distribution and that the site
variances are drawn uniformly from a given variance range,
for instance, [0.55,4] in Fig. 3. We further derive a lower
bound on the performance. Numerical simulations show the
derived expressions to be a good approximation of the actual
performance. We note that we have to make a number of
assumptions in order to derive the approximations. Relaxing
these assumptions is the subject of our future work.

We start by considering two simplified cases of “zero
questions” and “zero motion energy”, whose derivations will
then be utilized to derive an approximated expression for the
average performance of our general scenario.



A. Case of Zero Questions
Suppose that no questions are allowed. Let EN denote the

required motion energy to have a minimum-distance tour to
visit all the sites. Then, a motion energy budget of E = αEN
is given for our site inspection operation, where α ∈ [0,1].
Motion energy is taken as a linear function of the travelled
distance as described in Section III-A.

Assumption 1: The average travelled distance between
two sites in the TSP tour through all the sites is equal to the
average travelled distance between two sites in our energy
constrained TSP tour through the selected set of sites, where
the averaging is over all the realizations. Let d̄ denote this
average distance in the rest of the paper.

Intuitively, this becomes a better assumption as the number
of sites increases and α is not too small.

The next lemma approximates the expected number of
sites that are visited by the robot under the motion energy
budget of α .

Lemma 1: Assume that N is large and α is not too small.
Then, based on Assumption 1 and the given motion energy
budget of α , the expected number of sites that the robot can
visit is approximated by

E[Nv]≈ αN, (3)

where Nv is the number of visited sites and N is the total
number of sites.

Proof: Let LN denote the total tour length of the optimal
tour through all the N sites. With a given motion energy
budget of α , the robot can travel a maximum distance of
αLN . The real travelled distance of the energy-constrained
case is denoted by Lα , which will be in the following range:
(αLN−2ds,αLN ], where ds is a variable denoting the length
of an edge. For the case that the number of sites is large, their
locations are i.i.d and α is not too small, we expect ds to
be well approximated by d̄. Thus, we have αE[LN ]− 2d̄ ≤
E[Lα ] ≤ αE[LN ], which results in αN − 2 ≤ E[Nv] ≤ αN.
Then, for the case that N is large and α is not too small, we
have the following approximation E[Nv]≈ αN.

Lemma 2: The expected correct classification probability
E[pc] can be approximated as follows for the case of M = 0:

E[pc|M = 0]≈ 1
N
(αN p̃+(N−αN)p̄r), (4)

where p̄r is the average robot’s correct classification proba-
bility.

Proof: By inserting M = 0 in Eq. 1 and taking expec-
tation, we have

E[pc|M = 0] =
1
N
(E[

N

∑
i=1

ηi(p̃− pr,i)]+E[
N

∑
i=1

pr,i]),

=
1
N
(ENv

[
E[

N

∑
i=1

ηi(p̃− pr,i)|Nv]
]
+E[

N

∑
i=1

pr,i]),

=
1
N
(E[Nv(p̃− p̄r)]+N p̄r),

=
1
N
(E[Nv]p̃+(N−E[Nv])p̄r),

≈ 1
N
(αN p̃+(N−αN)p̄r),

where Lemma 1 is deployed in the 5th line. Further, average
p̄r of a visited site is taken as the same as average p̄r of any
site, which is a reasonable assumption.

Note that p̄r is simply the area underneath the robot’s
performance curve, normalized by the length of the given
variance range, in Fig. 3.

Remark 2: In this section, we have assumed that average
pr ( p̄r) of a visited site is the same as the average pr of any
site. We note that pr of a visited site may not have the exact
same distribution as the pr of any site. Further investigation
of this is a subject of future work. Similarly, we assume that
the average human probability of correct classification is the
same for a site that is chosen for assistance and any general
site in the rest of this section.

Next we derive a lower bound for the expected classifi-
cation performance of the case of M = 0, based on studies
on TSP tour length for i.i.d. randomly distributed nodes. As
shown in the literature [19], the expected length E[LN ] of an
optimal tour covering N nodes randomly located in a square
environment satisfies,

lim
N→∞

E[LN ] = βN1/2, (5)

where β is a positive constant. Eq. (5) is still a tight
approximation when N ≥ 15 [20].

The lower bound for our selective case with M = 0 is then
given in the lemma below.

Lemma 3: Consider a workspace with a large number (N)
of sites randomly located. Given a motion energy budget
α and no allowed questions (M = 0), the expected correct
classification probability can be lower bounded by

E[pc|M = 0]≥ 1
N
(α2N p̃+(N−α

2N)p̄r), (6)

where p̄r is the expected robot’s correct classification prob-
ability.

Proof: For large N, we have E[LN ] = βN1/2 as a
tight approximation. Furthermore, assuming that the energy
budget is not too small such that the number of selected sites
is still high enough and that they can be still considered
randomly distributed with the same distribution, we have
E[Lα ] = βN1/2

v , where Lα is the length of the tour and Nv is
the number of the visited sites in our selective case. Similar
to the proof of Lemma 1, we take E[Lα ] ≈ αE[LN ]. This
results in Nv ≈ α2N.

In reality, however, α2N is a lower bound to the number
of sites visited in our selective case since the selected sites
will be near each other rather than randomly distributed due
to the optimization in problem (2). Thus, the robot can visit
more than α2N sites. The inequality in Eq. 6 can then be
obtained via an analysis similar to the proof of Lemma 2.

Fig. 6 shows the approximated (Lemma 2) and simulated
average correct classification probabilities as well as the
lower bound of Lemma 3, for the case of 15 sites. It can
be seen that the derived approximation of Lemma 2 matches
the true simulated performance well. The figure also shows
the lower bound, which provides a looser approximation to
the performance.
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Fig. 6: Average correct classification probability for the case of
zero questions – A comparison of the theoretical derivations and
actual performance. As can be seen, our theoretical derivations
provide a good approximation and bound for the true performance.

B. Case of Zero Motion Energy

In this section, we assume that the energy budget is zero
and approximate the resulting expected correct classification
probability. With a total number of N sites, M allowed
questions and zero motion energy budget, the robot will use
all the questions since asking human is always better than
relying on self. Therefore, the number of sites that the robot
asks for human’s help is M and the number of sites that the
robot relies on its initial sensing is N −M. The expected
correct classification probability with zero energy budget is
then given in the following lemma.

Lemma 4: Consider a case with N sites, M allowed ques-
tions and zero motion energy budget (α = 0). The expected
correct classification probability E[pc] can be approximated
as follows,

E[pc|α = 0]≈ 1
N
(Mp̄h +(N−M)p̄r), (7)

where p̄h and p̄r are the average human’s and robot’s correct
classification probabilities.

Proof: Consider Eq. 1 with zero motion energy. We
have

E[pc|α = 0] =
1
N
(E[

N

∑
i=1

γi(ph,i− pr,i)]+E[
N

∑
i=1

pr,i]). (8)

By assuming that the average human probability of correct
classification is the same for a site that is chosen for
assistance and any general site (see Remark 2), Eq. 7 easily
follows.

Fig. 7 compares the theoretical (Lemma 4) and simulated
average correct classification probabilities for the case of N =
15. It can be seen that the derived approximation (Lemma
4) matches the true simulated performance well.

C. Derivation of Average Probability of Correct Classifica-
tion for the General Case

Consider the case where the energy budget is α and the
number of allowed questions is M. Let variable Nv denote the
number of visited sites. Then, the number of sites for which
the robot asks for human help is Nh = min{N−Nv,M} and
the number of sites for which the robot will rely on its initial
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Fig. 7: Average correct classification probability for the case of
zero energy budget – A comparison of the theoretical derivation
and actual performance. As can be seen, our theoretical derivation
provides a good approximation for the true performance.

sensing is Nr =N−Nv−Nh. From Eq. 1, the expected correct
classification probability is then as follows,

E[pc] =
1
N
(E[Nv p̃+Nh p̄h +Nr p̄r]), (9)

where p̄h and p̄r are as defined before.
Let pnv(Nv) = Nh p̄h +Nr p̄r = min{N−Nv, M} p̄h +(N−

Nv−Nh)p̄r, which is a function of Nv. It can be confirmed
that |E[pnv(Nv)]/N − pnv(E[Nv])/N| ≤ |p̄h − p̄r|/4, making
E[pnv(Nv)]/N ≈ pnv(E[Nv])/N a good approximation if |p̄h−
p̄r| is small enough.2

We next present the approximation of the expected correct
classification probability of the general case in the following
theorem.

Theorem 1: Consider a case with N sites. The robot
is given a motion energy budget of α and M allowed
questions. The expected correct classification probability can
be approximated by

E[pc]≈
1
N
(E[Nv]p̃+ pnv(E[Nv])), (10)

where E[Nv] ≈ αN, pnv(E[Nv]) = Ñh p̄h + Ñr p̄r, Ñh ,
min{N −E[Nv],M}, Ñr , N −E[Nv]− Ñh, and p̄h and p̄r
are the expected human’s and robot’s correct classification
probabilities respectively.

Proof: Eq. 10 easily follows from the approximation
E[pnv(Nv)]/N ≈ pnv(E[Nv])/N and Lemmas 2 and 4.

Lemma 5: Consider a case with N sites. The robot is
given a motion energy budget of α and M allowed ques-
tions. A lower bound to the expected correct classification
probability is given by

E[pc]≥
1
N
(α2N p̃+ pnv(α

2N)), (11)

where pnv(α
2N) = min{N − α2N,M} × p̄h + (N − α2N −

min{N − α2N,M})× p̄r, and p̄h and p̄r are the expected
human’s and robot’s correct classification probabilities re-
spectively.

Proof: This lower bound can be easily derived from
Lemma 3.

2Using the data from the curves in Fig. 3, |p̄h− p̄r| = 0.2438 and thus
the approximation gap is upper bounded by 0.06.



Fig. 8 compares the derived theories with simulation
results, as a function of the energy budget and for the case of
N = 15 and M = 5. Fig. 9 further shows the comparison as
a function of the allowed number of questions for a motion
energy budget of 20%. As can be seen, the approximation
of Theorem 1 matches the true curve well, while the bound
of Lemma 5 provides a looser approximation. Overall, our
theoretical analysis can be utilized for planning purposes.
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Fig. 8: Average correct classification probability for the case of
M = 5 question – A comparison of the theoretical derivations and
actual performance. As can be seen, our theoretical derivations pro-
vide a good approximation and bound for the true performance. The
average deviation of the approximation from the actual performance
(absolute value of the difference) is 0.023.
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Fig. 9: Average correct classification probability for the case
of α = 20% energy budget – A comparison of the theoretical
derivations and actual performance. As can be seen, our theoretical
derivations provide a good approximation and bound for the true
performance. The average deviation of the approximation from the
actual performance (absolute value of the difference) is 0.025.

V. CONCLUSIONS

In this paper, we proposed an optimal design for the col-
laborative human-robot Traveling Salesman Problem under a
limited access to a human operator and with a given motion
energy budget. By utilizing our past work on human and
robot visual performance, we showed how the collaborative
human-robot TSP can be solved under limited resources.
We further mathematically approximated the average per-
formance as a function of a given number of questions
to the human operator and a given motion energy budget.
More specifically, we derived an approximated expression
for the optimum performance and confirmed its tightness

with several simulation results. We further derived a lower
bound for the performance based on a well-established
theory from the traditional TSP literature, which provided
a looser bound than our approximated expression. Overall,
the derived theories can help with performance prediction
and resource planning of human-robot collaborations.
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