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Human-Robot Collaborative Site Inspection under Resource Constraints
Hong Cai and Yasamin Mostofi

Abstract—This paper is on human-robot collaborative site
inspection and target classification. We consider the realistic
case that human visual performance is not perfect (depends on
the sensory input quality), and that the robot has constraints
in communication with human (e.g., limited chances for query,
poor channel quality). The robot has limited onboard motion
and communication energy, and operates in realistic channel
environments, experiencing path loss, shadowing, and multipath.
We then show how to co-optimize motion, sensing, and human
queries. Given a probabilistic assessment of human visual per-
formance and a probabilistic channel prediction, we pose the
co-optimization as Multiple-Choice Multidimensional Knapsack
Problems. We then propose a Linear Program-based efficient
near-optimal solution, mathematically characterize the optimality
gap, showing it to be very small, and mathematically characterize
properties of the optimum solution. We then comprehensively
validate the proposed approach with extensive real human data
(from Amazon MTurk) and real channel data (from downtown
San Francisco), confirming that the proposed approach signifi-
cantly outperforms benchmark methodologies.

Index Terms—Human-robot collaboration, Co-optimization of
motion, sensing, and communication, Surveillance systems, AI
reasoning methods.

I. INTRODUCTION

Recent years have seen great developments in robotics, in
areas such as navigation, motion planning, vision, learning and
group coordination [1]–[5]. However, while robots are capable
of more complicated tasks, there still exist many tasks that
robots simply cannot perform to a satisfactory level, when
compared to humans. A complex visual task, such as object
recognition under uncertainty, is one example of such tasks [6].
Thus, a properly-designed collaboration between humans and
robots is indispensable to many robotic missions.

More recently, the research community has been looking
into different aspects of human-robot collaboration, includ-
ing human decision-making modeling [7], operator decision-
support [8], cooperative manipulation [9], and human-robot
trust [10]. More related to this work are those papers that focus
on robots querying humans for help. For instance, Dias et
al. study how robots can recover from difficult states by asking
for help [11] and Rosenthal et al. study the case of a robot
asking for help in an office setting [12]. Particularly, for visual
inspection tasks, a number of papers propose human-machine
interface designs that allow the vision algorithm to query the
human in order to improve its performance [6], [13]–[16].
In these papers, human visual performance is assumed either
perfect or independent of the difficulty/quality of the individual
sensory/image input. Human visual performance, however, is
not perfect, as has been heavily acknowledged in cognitive
psychology [17]. In addition, human visual performance can
vary drastically depending on the sensory/image input, as we
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Fig. 1: The robot travels along a pre-defined path to inspect sites
nearby. For each site, the robot decides how much it should deviate
from the main path to move closer to the site for better sensing. It
also needs to decide whether to ask the remote operator for help with
target classification for this site. Human visual performance, however,
is not perfect, and can vary depending on the sensing quality.

have established in our previous work [18], [19]. Then, in this
paper, we are interested in human-robot collaboration when
imperfect human performance is properly taken into account.

Next, consider robotic field operation and decision making
under resource constraints, in terms of sensing [20]–[22], mo-
tion planning [23]–[25], and communication [26]–[28], which
have received considerable attention over the years. More re-
cently, researchers have become interested in communication-
aware robotics, which considers realistic wireless channel
environments and addresses the co-optimization of motion,
sensing, and communication, under limited resources. For
instance, Ghaffarkhah et al. study robotic target tracking and
coverage under wireless fading channels [5], [29]. Yan et
al. study the co-optimization of communication and motion in
robotic operations [30]. Optimal control-based co-optimization
methods have also been proposed in [31].

In this paper, we are interested in human-robot colla-
boration for site inspection under resource constraints, and
while considering imperfect human performance and realistic
communication channels. More specifically, we consider a
realistic surveillance and patrolling scenario where there is
a pre-defined path, near which there is a number of sites
containing targets to be classified, as shown in Fig. 1. A robot
is tasked with site inspection in this area. As the robot traverses
this path and reaches a point close to a site, it has to decide
whether (and to what extent) it should incur motion energy
to deviate from the main path towards the site to sense it
better, and whether it should ask for human help with this
site. The robot then returns to the pre-defined path after a
possible deviation. This scenario can capture several realistic
cases of robotic missions. For example, a security surveillance
drone can have a pre-defined patrol route, but may need to
deviate from the route to investigate suspicious locations off
the route. In another example, an indoor monitoring robot has
to survey the offices down a hallway. The pre-defined route
is then set along the hallway. When the robot needs to gather
more sensing information about a room, it has to decide how
far it should move into a room and whether it should query a
remote human operator for help with this particular room.

The main goal of this paper is then to provide an optimiza-
tion framework for a generic and realistic problem of human-
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robot collaborative site inspection under resource constraints,
which encompasses a number of real-world applications, as
discussed. More specifically, in the considered setup of this
paper, the robot’s objective is to maximize its target classifica-
tion performance at all the sites, under limited onboard energy
constraints (including both communication and motion), with
a limited access to a human operator to ask for help, and
while considering the fact that human visual performance is
not perfect. More specifically, we consider a realistic case that
human visual performance is not perfect and varies depending
on the sensory input, as we have established in [18], [19].
Thus, before deciding what to query the human operator,
the robot needs to predict human visual performance over
the sensory inputs. In [18], [19], we have shown how the
robot can predict human visual performance using an a priori-
trained machine learning pipeline. Furthermore, the robot has
constraints in communication with the human operator. We
consider two realistic communication constraints. In our first
case, the robot is given a limited number of chances to
query the human operator. This case realistically considers the
impact of possible human work overload, which needs to be
prevented by limiting the number of queries. Another cause
of communication constraint is the quality of the wireless
channel in the environment, when communicating with the
human operator. In other words, the quality of the link may not
be good enough to establish a reliable communication link all
over the workspace, due to path loss, shadowing, and multipath
fading in realistic channel environments. In our second case,
the robot then needs to first predict the channel quality at
unvisited locations in the environment. In our past work [32],
we have shown how the robot can probabilistically predict the
channel quality by utilizing a very small number of channel
samples. These samples can be acquired from prior operations
in the environment, collected online at the beginning of the
operation, communicated to the robot by other robots, or
acquired from the cloud. Based on this probabilistic wireless
channel prediction, the robot then needs to decide where to
communicate with the human operator, given a limited energy
budget that can be used towards communication and motion.

Due to the communication restrictions and the imperfect
human visual performance, the robot cannot query the operator
all the time. Instead, the robot should only ask for help
when human assistance can bring reasonable performance
improvements (i.e., the task is doable by humans with a high
probability) and when the cost of querying is reasonable. On
the other hand, the robot may not have sufficient motion
energy to sense the targets to the extent that it can fully rely
on its own classification performance. Therefore, to achieve
a good overall classification performance, it is necessary to
co-optimize the robot’s motion, sensing, and queries to the
operator, while considering the impact of limited energy and
the imperfect human performance, as is the goal of this paper.

Statement of contributions: In this paper, we show how to
co-optimize motion, sensing, and human queries in human-
robot collaborative site inspections, for the realistic case that
the human visual performance is not perfect, and under limited
energy resources and communication constraints to the opera-
tor, while considering realistic wireless channel environments

that experience path loss, shadowing, and multipath fading.
Given probabilistic predictions of human performance and
channel quality, we first show how to formulate the result-
ing co-optimization problems as Multiple-Choice Multidimen-
sional Knapsack Problems (MMKP) [33]. We then propose
a Linear Program (LP)-based efficient near-optimal solution
to the NP-hard MMKP, and mathematically characterize the
optimality gap, confirming that it can be considerably small.
We also mathematically characterize properties of the opti-
mal solution. Furthermore, we comprehensively validate our
proposed approach with real human visual performance data
that we acquired from extensive user studies on Amazon
Mechanical Turk (MTurk), real wireless channel data col-
lected from downtown San Francisco, and realistic motion
and communication models. The numerical results show that
our proposed approach properly co-optimizes motion, sens-
ing, and queries, and significantly outperforms benchmark
methodologies. Regarding our past conference paper in this
area, in [18], we introduced the initial idea that imperfect
human performance should be considered in human-robot
collaboration, and characterized human visual performance
based on MTurk data. This characterization is summarized in
Sec. II, which will be used in our numerical results in Sec. IV
and V. In [18], we further considered a simple scenario where
the robot has to survey a number of sites but it has to go
all the way to the site location if site inspection is needed,
leaving no room for path optimization. Furthermore, imperfect
communication links were not considered. In this paper, we
consider a realistic setting where motion, sensing, communica-
tion, and human queries have to be co-optimized, under energy
constraints, communication constraints, and while considering
imperfect human performance. This results in a need for a
new formulation and characterization, which we show how to
achieve by using an MMKP-based approach.

The rest of the paper is organized as follows. In Sec. II,
we summarize the system models to be used in the paper,
including our previously-proposed probabilistic human per-
formance characterization [18], [19], and the robot’s motion
energy model. In Sec. III, we give a brief overview of
MMKP problems, which we shall use later in the paper. In
Sec. IV and V, we show how to co-optimize the robot’s
motion, sensing, and queries to the operator, considering an
imperfect human visual performance, under communication
constraints to the operator, and given a limited energy budget.
More specifically, in Sec. IV, the robot is given a limited
number of queries to the operator, while in Sec. V, the quality
of communication link to the remote operator may not be
perfect everywhere in the workspace. The robot then has a
limited energy budget that can be used towards communication
or motion. Conclusions are given in Sec. VI.

II. SYSTEM MODELING

In this section, we summarize our previous work on human
and robot visual classification performance [18], and describe
the robot’s motion energy model to be used in the paper.

A. Human and Robot Target Classification Performance
Consider the case where the robot has discovered a target

via visual sensing (e.g., taking an image) and needs to classify
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it based on a given set of target possibilities. For example,
Fig. 2 (left) shows 4 possible targets shown to the robot prior to
the task. The robot’s sensing in the field is in general subject to
noise, low resolution, occlusion, and other uncertainties, which
will degrade its classification accuracy. Fig. 2 (right) shows
a sample case where an image is corrupted by an additive
Gaussian noise with a variance of 3. Based on MTurk studies,
74.4% of humans can still classify this lion correctly (see
Fig. 4). If the robot could accurately model all the uncertainties
and use the best classifier accordingly, it would outperform
humans. However, this is impossible due to the complexity
of a real-life visual task. This is why the robot can benefit
tremendously from collaborating with the human by properly
taking advantage of human visual abilities. In another example,
Fig. 3 (left) shows a sample image that our ground robot
took on our campus. In this image, the state-of-the-art vision
algorithms fail to find the target (a person), while humans can
easily find it, as shown in our previous work [19]. Human
performance, however, is not perfect all the time, as we
have established in [18], [19]. Fig. 3 (right), for instance,
shows another campus image, where finding the target (a
person) is difficult for most humans based on extensive MTurk
user studies (several other hard cases have also been shown
in [19]). Thus, it is important that the robot does not assume
that the human operator is perfect and properly takes human
performance into account when optimizing its collaboration.

Fig. 2: (Left) Gray-scale images of lion, leopard, cat, and tiger used
in our user studies [18]. (Right) A sample corrupted image (lion)
with a noise variance of 3, which is shown to MTurk users in a user
study to evaluate human visual performance as a function of noise.

Fig. 3: Two sample campus images taken by a ground robot [19].
(Left) State-of-the-art vision algorithms fail to find the target (a
person), while humans can easily find it. (Right) It is hard for humans
to find the person in this image. For better viewing, see the color PDF.

B. User Studies to Acquire Real Human Data
In this paper, we are interested in the scenario where the

fact that the human performance is not perfect is taken into
account in the human-robot collaborative site surveillance. In
this context, the robot then predicts human visual performance,
and optimizes its field operation and human collaboration
accordingly. Thus, acquiring real human data for validation
purposes is considerably important.

In our previous work [18], human and robot performance
curves were obtained for the following scenario. The robot
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Fig. 4: Performance of human and robot in target classification of
Fig. 2 (left). The human data is acquired from a human study with
several Amazon MTurk users [18].

takes an image in the field, which is corrupted by an additive
Gaussian noise with a known variance but an unknown mean,
and then undergoes a pixel value clamping process unknown
to the robot. The original image is chosen from the four
images in the Fig. 2 (left). Then, a total of 160 noisy images
were generated with different noise levels. We then conducted
extensive user studies on Amazon MTurk, where, for each
noisy image, several human users were asked to classify
the target in the image to one of the four possibilities in
Fig. 2 (left). Overall, 8000 human responses were collected,
based on which the probability of human correct classification
as a function of the noise level was obtained, as shown in
Fig. 4. The figure further compares the human performance
with that of the robot, and confirms that humans can achieve a
much higher correct classification probability. For instance, for
Fig. 2 (right), humans have an estimated correct classification
probability of 0.744, which is considerably higher than that
of the robot (0.5). However, as the figure also shows, human
performance is not perfect, and can degrade significantly as
the noise level increases. These performance curves will then
be used for validation purposes in Sec. IV and V.

In this paper, our main focus is understanding the fun-
damentals of human-robot collaborative surveillance, when
the human performance is not perfect and under resource
constraints. We then test our proposed approach extensively
with real human data where the main source of uncertainty is
additive noise. We refer the readers to our past work [19], for a
more comprehensive prediction of human visual performance,
for any visual input with any source of uncertainty (not just
additive noise), using machine learning. Such more advanced
models of human performance can be integrated with the
theoretical derivations of this paper as part of future work.

C. Motion Energy Model
In this section, we summarize the robot’s motion energy

model to be used in this paper. As shown by experimental
studies, a mobile robot’s motion power can be modeled by
a linear function of its speed [23]: PM = κ1u+κ2 when 0 <
u≤ umax, and PM = 0 when u = 0, where u and umax are the
robot’s speed and maximum speed, respectively. κ1 and κ2 are
positive constants determined by the parameters of the motor,
the external load, and the mechanical transmission system of
the robot. Assuming that the robot travels at a constant speed
uconst, the motion energy cost for a travel distance of x is then
given by EM = (κ1+κ2/uconst)x, which is a linear function of
x. Thus, in our optimization formulations, the robot’s motion
energy cost is taken as a function of the traveled distance.
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III. MULTIPLE-CHOICE MULTIDIMENSIONAL KNAPSACK
PROBLEMS

In this section, we briefly introduce the Multiple-Choice
Multidimensional Knapsack Problem (MMKP) [33], which is
a complex variant of the standard Knapsack Problem (KP).1

In the subsequent sections, we then show how our resource-
constrained human-robot collaborative site inspection problem
can be posed as an MMKP.

In an MMKP, we are given C classes of items, where each
class contains Ji items, ∀i∈ {1, ...,C}. It is assumed that there
exist R types of resources and the respective budgets are given
by b = [b1, ...,bR]. In each class i, the jth item is characterized
by a non-negative reward pi, j > 0 and a non-negative weight
vector Wi, j = [w1

i, j, ...,w
R
i, j] � 0. The weight wr

i, j denotes the
needed resources from the rth resource if the jth item in class i
is selected, for r ∈ {1, ...,R}. The objective of the MMKP is
then to pick exactly one item from each class such that the
total reward is maximized, while satisfying all the R resource
constraints. The standard MMKP can be formally stated as:

max.
z

C

∑
i=1

Ji

∑
j=1

pi, jzi, j

s.t.
Ji

∑
j=1

zi, j = 1, ∀i ∈ {1, ...,C},

C

∑
i=1

Ji

∑
j=1

wk
i, jzi, j ≤ bk, ∀k ∈ {1, ...,R},

zi, j ∈ {0,1}, ∀i ∈ {1, ...,C} and j ∈ {1, ...,Ji},

(1)

where z = [z1,1, ...,z1,J1 , ...,zi, j, ...,zC,1, ...,zC,JC ], for i ∈
{1, ...,C} and j ∈ {1, ...,Ji}, zi, j = 1 indicates that item j of
class i is selected and zi, j = 0 indicates otherwise. z is then the
stacked vector with all the decision variables for all the sites.
When there is only one resource constraint (R= 1), this special
case is referred to as the Multiple-Choice Knapsack Problem
(MCKP) [35]. MMKP is then the more general case where
choosing an item can cost a number of different resources.

MMKPs have found many uses in practical applications
related to resource management, e.g., adaptive multimedia
systems [36] and cellular network management [37], as well as
in robotic applications [38]–[42]. However, they are typically
solved either by using integer program solvers, which can be
computationally expensive for large problems, or by heuristics
that have no theoretical optimality guarantees.

In this paper, we consider two human-robot collaborative
settings where the robot experiences two different kinds of
communication constraints. We show in Sec. IV and V how
our problems can be formulated as MMKP and MCKP, re-
spectively. As MMKP and MCKP are NP-hard combinatorial
problems, we further show how to efficiently obtain near-
optimal solutions based on LP relaxation, derive the optimality
gap, and prove several properties of the optimal solution.

IV. OPTIMIZING HUMAN-ROBOT COLLABORATION UNDER
TOTAL QUERY CONSTRAINTS

In this section, we consider the case that the robot has been
given a limited number of queries for human help during its

1See [34] for a comprehensive overview of Knapsack problems.

operation. As discussed earlier, this represents many realistic
situations where the operator has to work with a number of
robots and can thus not be overloaded with too many queries.
The robot then has to optimally choose the sites for which
humans have a high chance of accomplishing the visual task to
query the operator. Furthermore, it has to co-plan its trajectory
for site inspection, by considering its motion energy budget, its
query budget, and human visual performance. In this section,
we show how the robot can optimally achieve this.

A. Problem Setup
Consider the case where a robot travels along a pre-defined

main path and has a total number of N sites to inspect, as
shown in Fig. 1. In order to achieve a good target classification
performance, the robot has to decide how far it should deviate
from the pre-defined path to sense each site (it returns to the
main path after each deviation), and whether it should ask for
human help for each site. The robot is allowed to query the
human M times during this operation and has a motion energy
budget E for the deviations, which is in addition to the motion
energy required to travel the main path. We assume that the
distance of each site to the pre-defined path is known such
that motion energy costs can be estimated.

Let xi ∈ [0,di] denote the deviation distance from the path
to site i, ∀i ∈ {1, ...,N}, where di is the distance between the
path and site i. EM,i(xi) denotes the motion energy cost of a
deviation of xi, which includes both moving to the site and
returning to the main path. Based on the sensing quality after
traveling xi, the correct classification probabilities of site i are
pr,i(xi) and ph,i(xi) for the robot and the human, respectively.

In order to maximize the average correct classification
probability of the sites, we have the following optimization
problem:

max.
γ̃,x

1
N

N

∑
i=1

γi ph,i(xi)+(1− γi)pr,i(xi)

s.t.
N

∑
i=1

EM,i(xi)≤ E ,
N

∑
i=1

γi ≤M,

γ̃ ∈ {0,1}N , x� 0,

(2)

where γ̃ = [γ1, ...,γN ]
T , x = [x1, ...,xN ]

T . γi = 1 indicates that
the robot should query the human for site i and γi = 0 denotes
otherwise, and 0 is a vector of all 0s.

This optimization problem, however, is in general a non-
convex Mixed Integer Nonlinear Program, solving which
is computationally expensive [43]. We then show that by
discretizing the motion decision space, this problem can be
formulated as a Multiple-Choice Multidimensional Knapsack
Problem (MMKP), which can be further closely approximated
by solving a Linear Program (LP).

B. MMKP Formulation via Motion Space Discretization
In this section, we restrict the robot’s deviation to quantized

steps, which limits the robot’s motion decision to a finite set.
Let Xi = {xi, j : j ∈ {1, ...Di}} denote the set of possible motion
steps for site i, where xi, j represents a deviation distance
corresponding to the jth step and Di is the number of possible
steps for site i. The overall decision set for site i then becomes
Xi×{0,1}, where {0,1} is the decision set for whether the
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robot should ask for human help for site i. This discretization
then results in the following Integer Linear Program (ILP):

max.
γ

1
N

N

∑
i=1

Di

∑
j=1

γh,i, j ph,i, j + γr,i, j pr,i, j

s.t. (1)
Di

∑
j=1

γh,i, j + γr,i, j = 1, ∀i ∈ {1, ...,N},

(2)
N

∑
i=1

Di

∑
j=1

(γr,i, j + γh,i, j)EM,i, j ≤ E ,

(3)
N

∑
i=1

Di

∑
j=1

γh,i, j ≤M, (4) γ ∈ {0,1}2×∑
N
i=1 Di ,

(3)

where γ is the stacked vector containing all the optimization
variables as defined by Eq (4), with N denoting the number of
sites and Di representing the number of motion decisions of
site i. More specifically, for site i, the set of decision variables
is {γr,i,1,γh,i,1, ...,γr,i,Di ,γh,i,Di}, where γr,i, j = 1 if the robot
deviates xi, j from the path and relies on itself for classification
and γr,i, j = 0 denotes otherwise. Similarly, γh,i, j = 1 if the
robot deviates xi, j and queries the human after the further
sensing and γh,i, j = 0 denotes otherwise. γ is then the stacked
vector of all the decision variables for all the sites. Note that
due to constraint (3), for each site, only one variable will be
equal to 1 and all the others will be 0 in a feasible solution.
After the discretization, we represent ph,i(xi, j), pr,i(xi, j), and
EM,i(xi, j) by ph,i, j, pr,i, j, and EM,i, j for conciseness, which are
non-negative constants.

The next proposition shows that problem (3) is an MMKP
by comparing its structure and parameters to those of a
standard MMKP formulation.
Proposition 1. Problem (3) is an MMKP, where there are N
classes (sites) and for each class, there is a total number of
2×Di items (decisions). Furthermore, there are two resource
constraints, which correspond to the motion energy budget and
the query budget.
Proof. This can be established by comparing problem (3) with
problem (1).

In the following proposition, we characterize the approxi-
mation error due to solving the discretized problem (3) instead
of the original continuous problem (2).
Proposition 2. Denote the optimums of problems (2) and (3)
as f ?Cont and f ?MMKP, respectively. Then, we have f ?Cont −
f ?MMKP ∈ [0,g], where g = max{|ph,i, j+1 − ph,i, j|, |ph,i, j+1 −
pr,i, j|, |pr,i, j+1− ph,i, j|, |pr,i, j+1− pr,i, j|}, ∀i ∈ {1, ...,N} and
j ∈ {1, ...,Di}.
Proof. Since an optimal solution to problem (3) is also feasible
to problem (2), we have f ?Cont ≥ f ?MMKP. Suppose that for each
site i, the motion cost EM,i(xi) is non-decreasing in the devi-
ation distance xi. Denote an optimal solution to problem (2)
by γ̃? and x?. For each site i, to obtain a feasible solution to
problem (3), we replace x?i with x?i, j = argmin|xi, j−x?i |, where
xi, j ≤ x?i , xi, j ∈ Xi, and Xi is the discretized motion decision
set for site i. Then, in the feasible solution to problem (3),
for site i, the decision is represented by a deviation distance
of x?i, j and a human query indicator γ?i . It can then be easily
confirmed that the performance degradation is upper bounded
by g for each site and thus, we have f ?Cont− f ?MMKP ≤ g.

Based on Prop. 2, it can be seen that if a fine-grained
discretization is used, the difference between the optimums
of problem (2) and problem (3) is negligible. However, a
fine-grained discretization will introduce a large number of
variables in the MMKP. Since an MMKP is an NP-hard
combinatorial problem, it is not computationally efficient to
solve a large-scale MMKP. Therefore, in the next section,
we show how to efficiently obtain a solution based on LP
relaxation and further prove that the LP-based solution is very
close to the optimums of problems (2) and (3).

C. Near-Optimal LP-based Solution
In this section, we propose an approach to efficiently

obtain a near-optimal solution to problem (3) based on its
LP relaxation.2

The LP relaxation is obtained by replacing the binary
constraint γ ∈ {0,1}2×∑

N
i=1 Di with a linear constraint 0� γ � 1,

where “�” denotes a component-wise comparison, and 0
and 1 are vectors of all 0s and all 1s, respectively. We
start this section by studying some properties of any feasible
solution to this LP relaxation of problem (3). Based on these
properties, we then characterize the number of fractional (non-
binary) variables in an optimal solution to the LP relaxation
of problem (3). We further prove that by properly rounding
the LP optimal solution (to achieve a binary solution), we
can achieve a solution that is very close to the optimum
of problem (3), as well as problem (2). To the best of our
knowledge, this is the first proof characterizing the number of
fractional variables in an optimal solution to the LP relaxation
of an MMKP when there is more than one resource constraint.

Consider an initial feasible solution to the LP relaxation
of problem (3). We first describe a method to modify this
solution to obtain another feasible solution. In other words, the
variables in the modified solution still satisfy all the constraints
of the LP. Suppose that in a feasible solution to the LP
relaxation of problem (3), there is a number of fractional
variables: γh,i, j with (i, j) ∈ SH = {(i, j) : γh,i, j /∈ {0,1}} and
γr,k,m with (k,m)∈ SR = {(k,m) : γr,k,m /∈ {0,1}}. We introduce
some small changes to the fractional variables:

γ̂h,i, j = γh,i, j +δαi, j and γ̂r,k,m = γr,k,m +δβk,m, (5)

where |δ | > 0 is a small number, and αi, j,βk,m ∈ R are
numbers to be determined. The symbol “̂” denotes the
modified solution. The non-fractional variables stay the same.

Let α denote a stacked vector of αi, j with (i, j) ∈ SH
and β denote a stacked vector of βk,m with (k,m) ∈ SR.
In addition to requiring the modified solution to satisfy the
optimization constraints of the LP, we also enforce that the
modified solution uses the same amount of resources as the
initial solution. Then, α and β should satisfy the following
system of linear equations:

(1) ∑
(i, j)∈SH

αi, j + ∑
(i,m)∈SR

βi,m = 0, ∀i ∈ S f

(2) ∑
(i, j)∈SH

αi, j = 0,

(3) ∑
(i, j)∈SH

Ei, jαi, j + ∑
(k,m)∈SR

Ek,mβk,m = 0,

(6)

2Note that the LP relaxation of an ILP results in the same optimal solution
as its Lagrangian relaxation [44].
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γ = [γr,1,1,γh,1,1, ...,γr,1,D1 ,γh,1,D1︸ ︷︷ ︸
variables for site 1

, ...,γr,i,1,γh,i,1, ...,γr,i,Di ,γh,i,Di︸ ︷︷ ︸
variables for site i

, ...,γr,N,1,γh,N,1, ...,γr,N,DN ,γh,N,DN︸ ︷︷ ︸
variables for site N

]T (4)

where S f is the set of sites with fractional variables, line 1
corresponds to constraint (1) in problem (3) that the decision
variables of each site should add up to 1, lines 2 and 3
ensure that the number of queries used and the motion energy
usage do not change after modifying the initially-given feasible
solution. It can be seen that if α and β satisfy system (6), then
constraints (1) - (3) of the LP relaxation of problem (3) are
satisfied. Additionally, |δ |> 0 can be made sufficiently small
such that 0� γ̂ � 1.

We can write system (6) in matrix form, Aψ = 0, where
ψ = [α,β ]T and A has the following form:

1D̃H,1
0D̃H,2

... 0D̃H,N
1D̃R,1

0D̃R,2
... 0D̃R,N

0D̃H,1
1D̃H,2

... 0D̃H,N
0D̃R,1

1D̃R,2
... 0D̃R,N

...
...

. . .
...

...
...

. . .
...

0D̃H,1
0D̃H,2

... 1D̃H,N
0D̃R,1

0D̃R,2
... 1D̃R,N

1D̃H,1
1D̃H,2

... 1D̃H,N
0D̃R,1

0D̃R,2
... 0D̃R,N

EM,H EM,R


(7)

where 1D̃H,i
and 0D̃H,i

are 1×D̃H,i row vectors of all 1s and all
0s, respectively, and 1D̃R,i

and 0D̃R,i
are 1× D̃R,i row vectors of

all 1s and all 0s, respectively, ∀i∈ {1, ...,N}. D̃H,i and D̃R,i are
the numbers of fractional decision variables of site i, associated
with the robot’s decisions of querying the human and relying
on its own classification, respectively.

The entries of A to the left of the vertical dashed line
correspond to α and those to the right correspond to β . The
entries above the horizontal dashed line correspond to line 1 in
system (6). The two bottom rows correspond to lines 2 and 3,
respectively, where EM,H = [EM,i, j] ∈R1×|SH | is a row vector
containing the motion energy costs of γh,i, j with (i, j) ∈ SH
and EM,R = [EM,k,m] ∈R1×|SR| is a row vector containing the
motion energy costs of γr,k,m with (k,m) ∈ SR.

If there exists a non-trivial solution to Eq. (6) and |δ | is
sufficiently small, then we can obtain another feasible solution
by modifying the initial feasible solution based on Eq. (5).
In order for Eq. (6) to have non-trivial solutions, matrix A
needs to have a non-zero null space. In the following lemma,
we formally characterize the conditions under which A has a
non-zero null space.
Lemma 1. Consider a feasible solution to the LP relaxation
of problem (3), and a modification of it to achieve another
feasible solution through Eq. (5) and (6). There exist non-
trivial solutions to system (6) (non-zero null space for matrix
A in Eq. (7)) if any one of the following conditions hold:

1) the fractional variables are associated with more than 2
sites;

2) the fractional variables are associated with 2 sites and
there are more than 2 fractional variables associated with at
least one of the two sites;

3) the fractional variables are associated with 1 site and
there are more than 3 fractional variables.

Proof. 1) It can be seen that there are n+2 rows in A, where

n is the number of sites with fractional variables. Since the
decision variables associated with each site add up to 1, there
must be at least two fractional variables associated with each
of these n sites. Thus, there are at least 2n columns in A. Then,
when n > 2, system (6) is under-determined, and therefore, A
has a non-zero null space.

2) If the fractional variables are associated with exactly 2
sites and there are more than 2 fractional variables with at
least one of the sites, then there will be 4 rows and more than
4 columns in A, resulting in a non-zero null space for A.

3) If the fractional variables are associated with 1 site and
there are more than 3 fractional variables, then there will be
3 rows and more than 3 columns in A, resulting in a non-zero
null space for matrix A.

It is easy to confirm that there always exists a sufficiently
small |δ | such that γ̂h,i, j, γ̂r,i, j ∈ [0,1], ∀i ∈ {1, ...,N} and
j ∈ {1, ...,Di}. Then, the existence of non-trivial solutions to
system (6) and a sufficiently small |δ | ensure that the modified
variables satisfy the constraints of the LP. Denote the objective
function values of the initial solution and the modified solution
(based on Eq. (5) and (6)) by fLP and f̂LP, respectively. Then,
fLP and f̂LP are related as follows:

f̂LP = fLP +δ∆, (8)

where ∆ = ∑(i, j)∈SH αi, j ph,i, j +∑(k,m)∈SR βk,m pr,k,m. By apply-
ing Lemma (1) and analyzing δ∆, we then characterize the
fractional variables in an optimal solution to the LP relaxation
of problem (3) in the following proposition.
Proposition 3. There exists an optimal solution, γ?LP, to the
LP relaxation of problem (3) that satisfies the following:

1) γ?LP has at most four fractional (non-binary) variables;
2) The fractional variables are associated with at most two

sites;
3) If the fractional variables are associated with two sites,

then two fractional variables are associated with each site; if
the fractional variables are associated with only one site, then
there exists at most three fractional variables.

4) If γ?LP has no fractional variables, then the solution is
also an optimal solution to the MMKP problem (3).

Proof. 1) Suppose that we have an optimal solution to the
LP relaxation of problem (3) with fractional variables. If this
optimal solution does not satisfy any of the conditions in
Lemma 1, then there are at most four fractional variables.
On the other hand, if the optimal variables satisfy any of the
conditions in Lemma 1, then the fractional variables can be
modified as described in Eq. (5), where α and β are obtained
from a non-trivial solution to system (6). With a small |δ |, this
modified solution satisfies the constraints of the LP. Denote the
objective function values of the optimal LP solution and the
modified feasible solution as f ?LP and f̂LP, respectively. We
then have f̂LP = f ?LP + δ∆ based on Eq. (8). We discuss two
cases based on the value of ∆.

Case 1 (∆ = 0): If ∆ = 0, then f ?LP = f̂LP, regardless of
the value of δ . This indicates that there exist multiple optimal
solutions to the LP and that if we modify the initial optimal
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solution based on Eq. (5) and (6), we can obtain another
solution which is also optimal. We can then increase |δ | until
at least one of the modified fractional variables becomes 0 or
1, resulting in a strictly smaller number of fractional variables
in the solution. As long as the (modified) variables satisfy
any one of the conditions in Lemma 1, this process can be
repeated to reduce the number of fractional variables while
maintaining the optimality of the solution. When we cannot
perform this modification procedure anymore, we arrive at an
optimal solution that does not satisfy any of the conditions
in Lemma 1. Therefore, in this case, there exists an optimal
solution γ?LP with at most four fractional variables.

Case 2 (∆ 6= 0): If ∆ 6= 0, we can choose the sign of δ

such that δ∆ > 0, resulting in f̂LP > f ?LP. This contradicts
the assumption that f ?LP is the optimum. Thus, in this case,
the optimal solution can not satisfy any of the conditions in
Lemma 1, and γ?LP have at most four fractional variables.

In summary, based on the analysis of the two cases above,
there exists an optimal solution to the LP which does not
satisfy any of the conditions in Lemma 1, and thus, has at
most four fractional variables.

2) & 3) Based on part 1) of the proof, there exists an
optimal LP solution that does not satisfy any of the conditions
in Lemma 1. Such an optimal solution then also satisfies
conditions (2) and (3) of this proposition.

4) As the LP relaxation of problem (3) has a larger feasible
set, its optimum will be no worse than that of problem (3). If
the optimal LP solution consists of only binary variables, then
it is also an optimal solution to problem (3).

Based on Prop. 3, the following theorem bounds the opti-
mality gap between a feasible solution to problem (3) obtained
by rounding the fractional variables (to {0,1}) in the optimal
LP solution and the optimum of problem (3). Our derived
bound is general and independent of the rounding technique.

Theorem 1. Based on the optimal solution to the LP re-
laxation of problem (3), a feasible solution can be con-
structed to problem (3), which is less than or equal to
2× (pmax− pmin)/N from the optimum of problem (3), where
pmax = max{ph,i(xi), pr,i(xi)}, pmin = min{ph,i(xi), pr,i(xi)},
∀i ∈ {1, ...,N} and xi ∈ [0,di].

Proof. If the optimal LP solution has no fractional variables,
then it is also optimal to problem (3). On the other hand,
if it has fractional variables, Prop. 3 states that it has at
most four fractional variables associated with at most two
sites. Then, for sites with fractional variables, we round the
fractional variables such that the overall query and motion
energy constraints are still satisfied, which provides a feasi-
ble solution to problem (3). For the overall rounding of a
site, the performance degradation is at most pmax − pmin =
max{ph,i(xi), pr,i(xi)}−min{ph,i(xi), pr,i(xi)} ≤ 1, where i ∈
{1, ...,N} and xi ∈ [0,di], independent of the rounding method.
Denote the optimums of the LP and the MMKP, and the
objective function value of the LP-based solution obtained
by rounding as f ?LP, f ?MMKP and fLP-based. We then have
f ?LP ≥ f ?MMKP ≥ fLP-based. Since there are at most two sites
in the optimal LP solution that require rounding, we have

Algorithm 1: LP-based Solution to the MMKP Problem (3)

CASE 1 (|S f |= 0): Set γLP-based = γ?LP.

CASE 2 (|S f |= 1): Suppose that site i has fractional variables.
Set j?r = argmax{pr,i, j : EM,i, j ≤ Ei}.
Set j?h = argmax{ph,i, j : EM,i, j ≤ Ei}.
if M f < 1 then

Set γLP-based,r,i, j?r = 1.
else

If pr,i, j?r ≥ ph,i, j?h , set γLP-based,r,i, j?r = 1. Otherwise, set
γLP-based,h,i, j?h = 1.

end
Set the other variables associated with site i to 0. For the
remaining sites, set the variables in γLP-based equal to their
corresponding ones in γ?LP.

CASE 3 (|S f |= 2): Suppose that sites i1 and i2 have fractional
variables.
Set j?r = argmax{pr,i1, j : EM,i1, j ≤ Ei1}.
Set j?h = argmax{ph,i1, j : EM,i1, j ≤ Ei1}.
Set k?r = argmax{pr,i2,k : EM,i2,k ≤ Ei2}.
Set k?h = argmax{ph,i2,k : EM,i2,k ≤ Ei2}.
if M f < 1 then

Set γLP-based,r,i1, j?r = 1 and γLP-based,r,i2,k?r = 1.
else if M f ≥ 2 then

For site i1, set the variable corresponding to the larger
element of {pr,i1, j?r , ph,i1, j?h} to 1. For site i2, set the variable
corresponding to the larger element of {pr,i2,k?r , ph,i2,k?h} to 1.

else
if ph,i1, j?h − pr,i1, j?r ≥ ph,i2,k?h − pr,i2,k?r ≥ 0 then

Set γLP-based,h,i1, j?h = 1 and γLP-based,r,i2,k?r = 1.
else if ph,i2,k?h − pr,i2,k?r ≥ ph,i1, j?h − pr,i1, j?r ≥ 0 then

Set γLP-based,r,i1, j?r = 1 and γLP-based,h,i2,k?h = 1.
else

For site i1, set the variable corresponding to the larger one
of {pr,i1, j?r , ph,i1, j?h} to 1. For site i2, set the variable
corresponding to the larger one of {pr,i2,k?r , ph,i2,k?h} to 1.

end
end
Set the other variables associated with site i1 and i2 to 0. For
the remaining sites, set the variables in γLP-based equal to their
corresponding ones in γ?LP.

f ?LP − fLP-based ≤ 2× (pmax − pmin)/N, which further gives
f ?MMKP− fLP-based ≤ 2× (pmax− pmin)/N.

Theorem 1 provides a general bound that applies to any
form of rounding the fractional variables, while satisfying the
resource constraints. Next, we present a specific method of
rounding the fractional variables in Alg. 1 that optimizes the
performance. For the rest of this section, we refer to this
feasible solution to problem (3) given by Alg. 1 as the LP-
based solution, which will be used in our numerical studies.

In Alg. 1, we denote γ?LP as the optimal solution to the LP
relaxation of problem (3) and γLP-based as the LP-based feasible
solution to problem (3) obtained via the rounding in Alg. 1.
Similar to problem (3), subscripts “r, i, j” (“h, i, j”) indicate
that the robot will deviate xi, j towards the site, and then rely
on its own classification (query the operator). In the optimal
LP solution γ?LP, S f is the set of sites with fractional variables,
M f is the total number of queries allocated to the fractional
variables: ∑i∈S f ∑

Di
j=1 γ?LP,h,i, j, and Ei is the energy allocated to

site i: ∑
Di
j=1(γ

?
LP,r,i, j + γ?LP,h,i, j)EM,i, j.
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Given the optimal LP solution, Alg. 1 optimizes the de-
cisions over the sites with fractional variables,3 such that
the resulting solution contains only binary variables, and
the energy consumption per site is kept the same as in the
LP solution. For instance, in case 2, there is one site with
fractional variables (|S f | = 1) in the LP solution (denoted as
site i). We then keep the same energy consumption of this site
and solve for the best binary decision for site i, as follows. If
the total number of queries allocated to the fractional variables
is less than one (M f < 1), then we cannot query site i. In
that case, we choose the position in site i with the best
robot classification performance, subject to the motion energy
consumption of site i (Ei), and set the corresponding variable
to one. In this manner, the robot obtains an optimized binary
decision for site i, using the same or less resource as allocated
by the LP solution to site i. On the other hand, if M f ≥ 1, we
first look at the two positions with the highest probabilities of
human performance (ph,i, j?h

) and robot performance (pr,i, j?r ),
respectively, given the energy consumption of this site. If
ph,i, j?h

≥ pr,i, j?r , then the robot should move to position j?h
and ask about the site. Otherwise, the robot should move to
position j?r and rely on itself. Similarly, in case 3, we solve for
the best binary decisions for the sites with fractional variables,
while ensuring that the motion energy consumption per site
does not increase and the query budget is satisfied. Note that
one cannot simply round the fractional variables to the closest
integers, as this may violate the given resource constraints.

Next, we characterize the optimal gap between the LP-
based solution to problem (3) and the optimum of the original
continuous problem (2).
Corollary 1. The LP-based solution to problem (3) is less
than or equal to 2× (pmax− pmin)/N + g from the optimum
of problem (2), where g is the approximation error bound
introduced in Prop. 2.

Proof. Based on Prop. 2 and Theorem 1, we have f ?Cont −
f ?MMKP≤ g and f ?MMKP− fLP-based≤ 2×(pmax− pmin)/N. Thus,
f ?Cont− fLP-based ≤ 2× (pmax− pmin)/N +g

Although the LP relaxation-based solution does not always
provide the exact optimal solution to problem (3), it offers a
very close approximation. For instance, as Theorem 1 shows,
the gap between the MMKP optimum and the LP-based
feasible solution is very small, especially when N is large.
Furthermore, unlike the NP-hard MMKP problem (3), solving
the LP is computationally efficient. By choosing a fine-grained
motion discretization, we can then get a near-optimal efficient
solution to the original difficult continuous problem (2).
Remark 1. (Optimality gap for general MMKPs) Our analysis
can be extended to a general MMKP. More specifically, based
on a similar analysis to that of Lemma 1 and Prop. 3, it can
be confirmed that in an optimal solution to the LP relaxation
of a general MMKP with R resource constraints, there exist at
most 2×R fractional variables and the fractional variables
are associated with at most R classes. Based on similar
arguments to those in Theorem 1, the optimality gap between
the R-resource MMKP, whose objective function is the average

3If a site has fractional variables, then all the variables of this site must be
strictly less than 1 due to constraint (1) of Eq. (3).

reward from each class, and its LP-based solution is upper
bounded by R×(pmax− pmin)/N, where pmax and pmin are the
maximum and minimum rewards associated with a variable,
respectively. We skip the proof due to the space limitation.

D. Properties of the Optimal Solution
Next, we study some properties of the optimal decisions.

Proposition 4. In an optimal solution to problem (3),
if γ?h,i1, j1

= 1 and γ?r,i2, j2 = 1, where i1, i2 ∈ {1, ...,N},
j1 ∈ {1, ...,Di1}, j2 ∈ {1, ...,Di2}, and max{xi1, j1 ,xi2, j2} <
min{di1 ,di2}, then ph,i1, j1 − pr,i1, j1 ≥ ph,i2, j2 − pr,i2, j2 .

Proof. Suppose that in an optimal solution, γ?h,i1, j1
= 1,

γ?r,i2, j2 = 1, and ph,i1, j1 − pr,i1, j1 < ph,i2, j2 − pr,i2, j2 . By letting
γh,i1, j1 = 0, γr,i1, j1 = 1, γh,i2, j2 = 1, and γr,i2, j2 = 0, we obtain a
strictly better solution using the same amount of motion energy
and the same number of queries, which is a contradiction.

This proposition says that if we have two sites i1 and i2,
for which the robot will ask the human and rely on its
own classification, respectively, then there should be a greater
benefit from asking for human help for the first site.
Proposition 5. In an optimal solution to problem (3),
if γ?r,i1, j1 = 1 and γ?r,i2, j2 = 1, where i1, i2 ∈ {1, ...,N},
j1 ∈ {1, ...,Di1}, j2 ∈ {1, ...,Di2}, and max{xi1, j1 ,xi2, j2} <
min{di1 ,di2}, then pr,i1, j1 − pr,i1, j2 ≥ pr,i2, j1 − pr,i2, j2 .
Proof. Suppose that in an optimal solution, γ?r,i1, j1 = 1, γ?r,i2, j2 =
1, and pr,i1, j1 − pr,i1, j2 < pr,i2, j1 − pr,i2, j2 . Then by letting
γr,i1, j1 = 0, γr,i1, j2 = 1, γr,i2, j1 = 1, and γr,i2, j2 = 0, we obtain a
strictly better solution using the same amount of motion energy
and the same number of queries, which is a contradiction.
Proposition 6. In an optimal solution to problem (3),
if γ?h,i1, j1

= 1 and γ?h,i2, j2
= 1, where i1, i2 ∈ {1, ...,N},

j1 ∈ {1, ...,Di1}, j2 ∈ {1, ...,Di2}, and max{xi1, j1 ,xi2, j2} <
min{di1 ,di2}, then ph,i1, j1 − ph,i1, j2 ≥ ph,i2, j1 − ph,i2, j2 .
Proof. The proof is similar to the proof of Prop. 5.

Props. 5 and 6 state that if we have two sites i1 and i2, at
which the robot deviates two different distances, x1 and x2,
respectively, then the performance gain by moving from x2 to
x1 at site i1 should be greater than that at site i2.

E. Computation Time
In this section, we numerically compare the computational

efficiency of solving the MMKP of problem (3) and obtaining
its LP-based solution. In this comparison, there are 10 sites, 5
given queries, and the motion energy budget is 50% of what is
needed to reach all the sites. The computations are performed
on Matlab with an i7 CPU running at 3.4 GHz and the reported
computation time is averaged over 500 problem instances.

Fig. 5 shows the computations of solving problem (3) and
obtaining its LP-based solution w.r.t. the number of discretized
motion steps per site. It can be seen that the LP-based solution
is considerably more efficient. For instance, when a fine-
grained discretization of 100 motion decisions per site is used,
it takes an average of 268.23 s (or 4.47 min) to compute the
MMKP solution. This makes it impractical to directly solve
problem (3) in a robotics field operation. On the other hand, it
takes an average of 0.0304 s to obtain the LP-based solution,
making it a more favorable approach to efficiently compute a
near-optimal solution in real-life applications where there can
be many decision variables.



9

20 30 40 50 60 70 80 90 100
Number of Motion Decisions for Each Site

10-2

100

102

104

C
om

pu
ta

tio
n 

T
im

e 
(s

)

Solving MMKP problem (3)
LP-based solution to problem (3)

Fig. 5: Computation time of solving problem (3) and obtaining its
LP-based solution for 10 sites w.r.t. the number of motion decisions
for each site. The computation time is plotted in log scale.

F. Online Replanning to Cope with Operation Changes
As can be seen from Theorem 1 and Sec. IV-E, our proposed

approach provides a computationally fast near-optimal solution
to problem (3). Such computational efficiency enables the
robot to quickly replan its actions to cope with possible
changes in the operation. For instance, depending on the
cognitive load of the human operator, the number of allowed
queries may increase or decrease. During the operation, the
set of sites which the robot is responsible for inspection
may change as well, which also requires an efficient online
replanning scheme. Given the updated command, the robot
can then quickly recompute its future actions accordingly.

G. Simulation Results with Real Human Data
In this part, we numerically demonstrate the performance of

our proposed collaboration framework for target classification
under motion energy and query constraints, using real human
responses. More specifically, we use the Amazon MTurk
studies discussed in Sec. II, where we collected 8000 human
visual responses over noisy images. The robot then uses Fig. 4
to assess human visual performance during its operation.

In the simulations, there are 10 sites, and the distance
between each site and the path is 10 m. The noise variance
is modeled as a quadratic function of the sensing distance:
v = aid2 + bi, where ai and bi are parameters of the sensing
model for site i [29]. We assume that the sites have three levels
of sensing difficulty: easy, medium, and hard, encoded in ai,
which is then randomly assigned to the sites. Thus, given a
sensing distance, the robot can easily assess the human’s and
its own performance as described in Sec. II. The motion model
parameters are: κ1 = 7.4, κ2 = 0.29, and the robot travels with
a constant speed of 1 m/s. The motion parameters are based on
real power measurements of a Pioneer 3DX robot [23]. The
motion energy budget is taken as a percentage of the total
energy required to visit all the site locations.

We consider a benchmark methodology where the colla-
boration is not fully optimized. More specifically, in the
benchmark, the robot assumes a perfect human performance
(which is a common assumption), but is aware of its own per-
formance (blue dashed curve in Fig. 4). The robot then solves
problem (3) with ph,i, j = 1, ∀i = {1, ...,N}, j ∈ {1, ...,Di}.

Next, we compare our proposed approach with the bench-
mark, by showing the resource savings from using our pro-
posed approach, as compared to the benchmark. More specif-
ically, given any combination of the motion budget and the
query budget, we obtain the average correct classification
probabilities of our proposed approach and the benchmark, by
solving their respective optimization problems, and averaging

Ave. Correct
Classification Prob.

Percentage
Energy Saving

0.70 100%
0.75 39.39%
0.80 34.29%
0.85 35.29%

0.90 or higher Inf

TABLE I: Motion energy saving by our proposed approach as
compared to the benchmark. In this example, the robot is given 6
allowed queries.

Ave. Correct
Classification Prob.

Percentage
Query Saving

0.80 46.15%
0.85 55.62%

0.90 or higher Inf

TABLE II: Saving of queries by our proposed approach as compared
to the benchmark. In this example, the motion energy budget is 50%
of what is needed to visit all the site locations.

over 100 problem instances with uniformly random sensing
difficulty assignments over the sites. Based on these results, we
can then see that to achieve the same average performance, our
proposed approach would require smaller resource budgets, as
compared to the benchmark.

More specifically, Table I shows the motion energy sav-
ing, enabled by our proposed approach, when the robot is
given 6 allowed queries. It can be seen that our proposed
approach requires considerably smaller energy budgets than
the benchmark to achieve the same performance. For instance,
when achieving an average correct classification probability of
0.75, our proposed approach requires a 39.39% smaller motion
energy budget. In the table, “Inf” indicates that the benchmark
method simply cannot achieve the performance no matter how
much motion energy is given. Thus, our proposed approach is
able to more efficiently utilize the given energy budget.

Table II summarizes the saving of queries by using our
proposed approach, when the robot is given a motion energy
budget of 50% of what is needed to reach all the site locations.
It can be seen that our approach requires considerably less
communication to the operator. For instance, to achieve an
average classification accuracy of 0.85, our approach needs
55.62% fewer queries. This result shows that our proposed
approach can reduce the overall burden on human operators
who have to operate under fatigue and work overload.

V. OPTIMIZING HUMAN-ROBOT COLLABORATION UNDER
TOTAL ENERGY CONSTRAINTS

In the previous section, we considered the case where the
communication bottleneck was human work overload, which
limited the number of queries the robot could present to
the remote operator. In this section, we consider another
source of communication bottleneck, the cost of wireless
transmission. More specifically, if the robot is operating in
the areas where the communication link quality is not good
everywhere, and/or if the robot has energy constraints on
the communication side, then that can limit the number of
successful queries to the human operator. In this section,
we explicitly model and analyze this case, by considering
the true energy cost of wireless transmissions in realistic
communication environments that can experience path loss,
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shadowing, and multipath fading. We further show how the
robot can actively take the communication link quality into
account when optimizing its collaboration with the operator.
More specifically, we show that the resulting human-robot
collaborative site survey problem, under both motion and
communication energy constraints, can be posed as a Multiple
Choice Knapsack Problem (MCKP) problem. We then derive
an efficient near-optimal solution and mathematically charac-
terize several properties of the optimal collaborative solution.

A. Communication Energy Modeling and Prediction in Real-
istic Communication Environments

In this part, we summarize how to model the communication
energy cost in realistic channel environments. Consider the
case where the robot adopts the commonly-used MQAM
modulation for transmission. As shown in the literature [45],
the required transmission power is given by PT = (2log2Mc −
1)ln(5pb,th)/(−1.5ϒ), where Mc is the modulation constel-
lation size, pb,th is the required Bit Error Rate (BER), and
ϒ is the received Channel to Noise Ratio (CNR). Since
real wireless channels experience path loss, shadowing and
multipath fading, CNR has to be modeled stochastically and
as a random process. As shown by [32], the CNR (in dB) at
an unvisited location q can be best modeled by a Gaussian
random variable, with the mean and variance given by

ϒ̄dB(q) = Hqθ̂ +Ψ
T (q)Φ−1(Y −HQθ̂),

Σ(q) = α̂
2
dB + ρ̂

2
dB−Ψ

T (q)Φ−1
Ψ(q),

(9)

where Y = [y1, ...,ym]
T is the stacked vector of m

a priori collected CNR measurements (in dB), Q =
[q1, ...,qm] contains the measurement locations, θ̂ , α̂dB,
β̂ , and ρ̂dB are the estimated channel parameters, Hq =
[1 − 10log10(||q − qb||)], HQ = [HT

q1
, ...,HT

qm ]
T , Ψ(q) =

[α̂2
dBexp(−||q−q1||/β̂ ), ..., α̂2

dBexp(−||q−qm||/β̂ )]T , and Φ=

Ω + ρ̂2
dBIm with [Ω]i, j = α̂2

dBexp(−||qi − q j||/β̂ ), ∀i, j ∈
{1, ...,m} and Im being the identity matrix. In summary, this
formulation captures the best prediction the robot can have
for the channel quality at an unvisited location, based on a
small number of a priori channel measurements in the same
environment.4 See [32] for more details and the performance
of this channel predictor in different real environments.

Based on this framework, the CNR (in the linear domain) at
an unvisited location q, denoted by ϒ(q), can be characterized
as a log-normal random variable, resulting in the following
predicted required transmission power at location q,

PT (q) =
(1−2log2Mc)ln(5pb,th)

1.5
E
[

1
ϒ(q)

]
, (10)

where E[1/ϒ(q)] can be evaluated based on the log-normal
distribution of ϒ(q). Based on the above equation and a
transmission time duration, we then predict the communication
energy consumption for any unvisited location in the envi-
ronment, which can then be used in the optimization of the
human-robot collaboration under communication and motion
energy constraints.

4The small number of prior measurements could have been obtained by the
robot as it starts its operation in the environment, could have been collected
in prior operations in this environment, or could have been communicated to
the robot by other robots and/or through crowdsourcing.

B. Problem Setup

Consider the setup of Fig. 1, where we have a total of N
sites. In this section, we consider the case where, instead of
a direct limitation on the total number of queries, the robot
has a constraint on its total energy consumption, including
both communication and motion energy costs. We further
consider realistic communication environments, as modeled in
the previous part.

Sending a query to the human operator and moving closer to
a site for better sensing will incur communication and motion
energy costs, respectively. The robot is then given a total
energy budget E , which can be used towards communication
or motion for site visiting. For the ith site, i ∈ {1, ...,N},
xi is the deviation distance from the path. We denote the
communication energy cost after deviating xi towards site i
by EC,i(xi) (i.e., the cost of communicating to the operator
from a location that is xi off the main path towards site i),
while EM,i(xi) denotes the motion energy cost of deviating a
distance of xi. The probabilities of correct target classification
of the ith site, based on the sensing performed after deviating
xi towards site i, are denoted by pr,i(xi) and ph,i(xi) for the
robot and the human, respectively. In order to maximize the
average correct classification probability, the robot needs to
decide how far it should deviate from the main path to sense
each site, and whether it should ask for help for each site by
communicating to the operator after deviating xi from the main
path, subject to a total energy budget. In addition to predicting
the human and robot correct classification probabilities, as
we discussed in Sec. IV, the robot further probabilistically
predicts its communication energy cost, using the formulation
of Sec. V-A, which is needed for a proper optimization.

Similar to in Sec. IV, it is possible to formulate this
optimization problem as an ILP by discretizing the continuous
motion decision space, as follows:

max.
γ

1
N

N

∑
i=1

Di

∑
j=1

γh,i, j ph,i, j + γr,i, j pr,i, j

s.t.
Di

∑
j=1

γh,i, j + γr,i, j = 1, ∀i ∈ {1, ...,N},

N

∑
i=1

Di

∑
j=1

γh,i, jEC,i, j +(γr,i, j + γh,i, j)EM,i, j ≤ E ,

γ ∈ {0,1}2×∑
N
i=1 Di ,

(11)

where N is the number of sites and Di is the number of motion
decisions of site i. For site i, the set of decision variables
is {γr,i,1,γh,i,1, ...,γr,i,Di ,γh,i,Di}, where γr,i, j = 1 if the robot
deviates xi, j from the path and relies on itself for classification,
while γr,i, j = 0 denotes otherwise. Similarly, γh,i, j = 1 if the
robot deviates xi, j from the path and queries the human after
further sensing, and γh,i, j = 0 denotes otherwise. γ is then the
stacked vector of all the decision variables for all the sites, as
given by Eq. (4). ph,i, j, pr,i, j, EC,i, j, and EM,i, j are nonnegative
constants representing the probability of human correct clas-
sification, the probability of robot correct classification, the
communication energy cost of querying the operator, and the
motion energy cost, respectively, after deviating xi, j for site i.

As can be seen, the energy-constrained collaborative human-
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robot site surveillance problem (11) is an MCKP, a special
form of MMKP, when there is only one type of resource
constraint. Due to the prevalence of MCKP problems in
computer science, there exists a rich body of literature for
mathematically characterizing MCKPs, which we tap into
next for deriving an efficient near-optimal solution to our
collaborative problem.

C. Near-Optimal LP-based Solution
As MCKP is NP-hard and computationally expensive, we

show how to utilize an LP relaxation to obtain an efficient
near-optimal solution to the MCKP problem (11).

Similar to Sec. IV-C, the LP relaxation is obtained by replac-
ing the binary constraint γ ∈ {0,1}2×∑

N
i=1 Di in problem (11)

with a linear constraint 0� γ � 1. The following proposition
describes the number of fractional variables in an optimal
solution to the LP, which then allows us to relate the LP
optimal solution to problem (11).
Proposition 7. An optimal solution γ? to the LP relaxation of
the MCKP problem (11) satisfies the following:

1) γ? has at most two fractional variables;
2) If γ? has two fractional variables, then they must be

associated with the same site;
3) If γ? has no fractional variables, then the solution is also

an optimal solution to the MCKP problem (11).

Proof. The proof is similar to that of Prop. 3. Alternatively,
see the proof of Prop. 2 in [35], which is a different approach
based on explicitly constructing the optimal LP solution.5

As a consequence of Prop. 7, we have the following theorem
regarding the optimality gap between the optimum of the
MCKP and an LP-based feasible solution.
Theorem 2. Based on the optimal solution to the LP relax-
ation, a feasible solution can be constructed to problem (11),
which is less than or equal to (pmax − pmin)/N from the
optimum of problem (11), where pmax =max{ph,i(xi), pr,i(xi)},
pmin = min{ph,i(xi), pr,i(xi)}, ∀i ∈ {1, ...,N} and xi ∈ [0,di].

Proof. The proof is similar to the proof of Theorem 1.

Alg. 2 next describes our method of rounding the fractional
variables in the optimal LP solution, which is similar to Alg. 1
in that while solving for the best binary decisions, Alg. 2 keeps
the energy consumption per site the same as in the LP solution.
We refer to the feasible solution to problem (11), provided by
Alg. 2, as the LP-based solution for the rest of this section.
Similar to Alg. 1, we denote γ?LP as the optimal solution to the
LP relaxation of problem (11) and γLP-based as the LP-based
solution to problem (11) given by Alg. 2. In the LP optimal
solution γ?LP, S f is the set of sites with fractional variables and
Ei is the energy allocated to site i in the LP optimal solution:
∑

Di
j=1 γ?LP,h,i, jEC,i, j +(γ?LP,r,i, j + γ?LP,h,i, j)EM,i, j.

D. Properties of the Optimal Solution
Next, we study some properties of the optimal decisions.

Proposition 8. In an optimal solution to problem (11),
if γ?r,i1, j1 = 1 and γ?r,i2, j2 = 1, where i1, i2 = 1, ...,N,

5Note that we can not use the proof of [35] for the MMKP case of Sec. IV as
it was developed specifically for the case of one resource constraint (MCKP).

Algorithm 2: LP-based Solution to the MCKP Problem (11)

CASE 1 (|S f |= 0): Set γLP-based = γ?LP.

CASE 2 (|S f |= 1): Suppose that site i has fractional variables.
Set j?r = argmax{pr,i, j : EM,i, j ≤ Ei}.
Set j?h = argmax{ph,i, j : EM,i, j +EC,i, j ≤ Ei}.
if pr,i, j?r ≥ ph,i, j?h then

Set γLP-based,r,i, j?r = 1.
else

Set γLP-based,h,i, j?h = 1.
end
Set the other variables associated with site i to 0. For the
remaining sites, set the variables in γLP-based equal to the
corresponding ones in γ?LP.

j1 ∈ {1, ...,Di1}, j2 ∈ {1, ...,Di2}, and max{xi1, j1 ,xi2, j2} <
min{di1 ,di2}, then pr,i1, j1 − pr,i1, j2 ≥ pr,i2, j1 − pr,i2, j2 .

Proof. The proof is through contradiction, similar to the proof
of Prop. 5.

This proposition says that if we have two sites i1 and i2 for
which the robot relies on its own decision after deviating two
different distances towards the sites, x1 and x2 respectively,
then the performance gain by moving from x2 to x1 at site i1
should be greater than that at site i2.
Proposition 9. Consider a simplified scenario where

1) The distance between the pre-defined path and each site
is the same: di = d, ∀i∈ {1, ...,N}, where d > 0 is a constant;

2) pr,i(.) is the same for all the sites. Similarly, ph,i(.) is
the same for all the sites;

3) The required communication energy is constant in the
vicinity of a site (does not change along the route to a site):
EC,i = EC,i,1 = ...= EC,i,Di , ∀i = 1, ...,N;

4) In the route to a site, human and/or robot performance
strictly increases as the sensing distance decreases.

Then, in an optimal solution to problem (11), if γ?h,i1, j1
= 1

and γ?r,i2, j2 = 1, where i1, i2 = 1, ...,N, j1 ∈ {1, ...,Di1}, j2 ∈
{1, ...,Di2}, and max{xi1, j1 ,xi2, j2}< min{di1 ,di2}, then EC,i1−
EM,δ < EC,i2 , where EM,δ is the motion energy required to move
one step closer to a site.

Proof. Suppose that in an optimal solution, γ?h,i1, j1
= 1,

γ?r,i2, j2 = 1, and EC,i1−EM,δ ≥ EC,i2 . Then by letting γh,i1, j1 = 0,
γr,i1, j2 = 1, γh,i2, j1 = 1, and γr,i2, j2 = 0, we would obtain
the same objective function value with an energy saving of
EC,i1−EC,i2 ≥ EM,δ . The robot may then utilize this energy to
move one step closer towards any site, resulting in a strictly
better solution, which is a contradiction.

Consider the case that the discretized motion step is small
and thus, the energy cost for moving one step is negligible.
Prop. 9 then says that, under the conditions in Prop. 9,
the robot will select the sites with the best communication
qualities to query the human operator, as expected.

The following proposition characterizes the optimal solution
to the LP relaxation of problem (11), where we suppress the
subscripts “h” and “r” in the variables as the result does not
distinguish between the two cases. More specifically, given a
decision variable γi,q for site i, where q∈ {1, ...,2×Di}, it can
either represent γh,i, j or γr,i, j, where j ∈ {1, ...,Di}. We denote
the corresponding human/robot performance and the energy
cost of γi,q by pi,q and Ei,q, respectively.
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Fig. 6: The robot travels along a pre-defined main path to inspect
sites near the path. Along the path, the robot’s communication quality
to the remote operator is subject to a space-varying wireless channel
power from downtown San Francisco [46].

Proposition 10. For site i, if pi, j1 ≤ pi, j2 ≤ pi, j3 , Ei, j1 ≤ Ei, j2 ≤
Ei, j3 and

pi, j2 <
Ei, j2 −Ei, j1
Ei, j3 −Ei, j1

pi, j3 +
Ei, j3 −Ei, j2
Ei, j3 −Ei, j1

pi, j1 , (12)

then in an optimal solution to the LP relaxation of prob-
lem (11), γ?i, j2 = 0, where i ∈ {1, ...,N} and j1, j2, j3 ∈
{1, ...,2×Di}.
Proof. Suppose that in an optimal solution, γ?i, j2 = δ > 0.
It can be confirmed that if Eq. (12) holds, then by letting
γi, j2 = 0, γi, j1 = γ?i, j1 +δ (Ei, j3 −Ei, j2)/(Ei, j3 −Ei, j1), and γi, j3 =
γ?i, j3 + δ (Ei, j2 −Ei, j1)/(Ei, j3 −Ei, j1), we can further improve
the current optimal solution, which is a contradiction.

Prop. 10 describes the LP-dominance property of the LP
relaxation of problem (11) [35]. It says that for a site, if a
decision’s performance is worse than that of a certain linear
combination of two other decisions, then this decision will not
be selected in the optimal LP solution.

E. Online replanning of Communication and Motion Energy
In our proposed energy-aware collaborative planning, the

robot uses its prediction of the communication energy cost
for the purpose of planning, which is based on a small
number of prior or online channel measurements in the same
environment. As the robot spends more time in its workspace
during the mission, it can collect more measurements to fine-
tune the channel learning (i.e., to better predict communication
energy costs). Furthermore, as the robot communicates its
sensing data of a site after a site inspection, it will incur the
true communication cost at that spot, which may differ from
the predicted one. As such, the robot can benefit from re-
planning its collaborative path planning and decision making,
as it obtains more channel samples and updates the cost of
communication during the operation. For instance, the robot
can re-solve problem (11), with the updated available energy
resource, after each site visit. While re-solving the MCKP
problem (11) in an online manner can be computationally
expensive, especially when the problem size is large, obtaining
the near-optimal LP-based solution to problem (11) is fast and
efficient, allowing for online replanning, which can be key in
such realistic stochastic settings.

F. Performance with Real Human Data and Real Wireless
Channel Data

In this section, we evaluate our proposed approach using
real human data, as described in Sec. II and also used in
the evaluation part of Sec. IV. We further use real wireless
channel measurements, which were collected along a street
in downtown San Francisco [46].6 This real data then presents
the channel along the main path of the robot, as illustrated in
Fig. 6. We assume that within the vicinity of a site, the wireless
channel is approximately stationary and can be characterized
by the same Gaussian random variable. Thus, the expected
communication energy required to send a query near a site
is constant.7 There is a total of 10 sites. We assume that
the sites are 10 m off the main street (main path) and 20 m
apart. The robot then uses 5% a priori channel measurements
to predict the channel quality in this workspace. For the
communication system, 64-QAM modulation is used and the
transmission time of each query is 2 s, with a target BER
of 10−6. The receiver noise power is −100 dBm. For the
motion model, we have κ1 = 7.4, κ2 = 0.29, and the robot
travels with a constant speed of 1 m/s. The robot adopts a
distance-dependent noise variance model: v = aid2+bi, where
ai and bi are positive constants [29]. We assume that the sites
have three levels of sensing difficulty: easy, medium, and hard,
encoded in ai, which is randomly assigned to the sites. The
robot then uses the proposed approach of Sec. V-B to co-
plan its human collaboration and site inspection. Furthermore,
after visiting each site, it learns the true channel value and the
corresponding true incurred communication energy cost, and
can replan its future actions over the remaining sites, using
the updated true remaining energy, as discussed in Sec. V-E.
Note that after measuring the channel at a site that was
planned to be queried, the robot may find that the true required
communication energy plus the motion energy to return to
the main path will exceed its remaining budget. In this case,
it will give up communication for this site and rely on its
own classification instead. It then uses the remaining energy
to continue replanning for the remaining sites.

Remark 2. (Mission failure without replanning) Suppose that
the robot does not replan. When the robot communicates to
the remote operator at a location with a worse-than-predicted
channel quality, it will need to spend more energy than
planned to guarantee the required end-to-end communication
quality. Since the robot does not replan, it could exhaust the
energy budget (E ) and may not be able to arrive at the final
destination eventually. Such cases are then considered mission
failures. In other words, the no-replanning approach does not
always provide a feasible solution, highlighting the importance
of replanning.

Similar to Sec. IV-G, we compare our proposed approach
with a benchmark methodology where the collaboration is
not fully optimized. In this benchmark, the robot assumes

6Channel data is courtesy of W. M. Smith [46].
7We make this assumption since this real channel data from downtown San

Francisco is only available along a street. As such, we assume the channel
remains the same when deviating towards a site. In the next part, we show
the performance in a realistic 2D wireless environment where the channel
changes along a route to a site as well.
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that human performance is perfect. The benchmark robot
then solves problem (11) with ph,i, j = 1, ∀i = {1, ...,N},
j ∈ {1, ...,Di}.

Fig. 7 shows the average correct classification probability
of our proposed LP-based solution (Alg. 2) with channel
prediction and online replanning (red solid), and compares
it to the benchmark with replanning (blue dashed). The per-
formance is averaged over 100 problem instances for each
given energy budget. In each instance, the 5% a priori channel
measurements are randomly and uniformly chosen over the
space, and each site is randomly and uniformly assigned one
of the three sensing difficulty levels. The energy budget is
represented as a percentage of what is needed to reach and
query all the sites. The figure further shows the performance
of solving the MCKP of problem (11) with perfect channel
knowledge (green dashed), which provides a performance
upper bound. As the figure shows, the gap between the upper
bound and our approach is considerably small, even though our
approach learns the channel with a small number of channel
measurements (as opposed to assuming it known), and is based
on solving the LP relaxation. It can also be seen that our
proposed approach outperforms the benchmark significantly.
For instance, given an energy budget of 0.8, the performance
upper bound is 0.938, the performance of our proposed LP-
based solution with replanning is 0.930, and the performance
of the benchmark (with replanning) is 0.785. Note that if
the robot does not replan, it may not accomplish the entire
mission, as discussed in Remark 2. For instance, for the case of
our proposed LP-based approach, the robot fails the operation
12.1% of the time if it does not replan, while it will fail 16.0%
of the time for the benchmark case without replanning.

Table III summarizes the energy saving, enabled by our
proposed approach, as compared to the benchmark. For in-
stance, our proposed approach can achieve an average correct
classification probability of 0.75, but requires 58.46% less
energy consumption as compared to the benchmark. “Inf” in-
dicates that the benchmark simply cannot achieve the specified
performance no matter how much energy is given.

Fig. 8 shows a sample result using our proposed LP-based
solution with online replanning. The discretized motion step
is 1 m. The base station is located on the far left of the x-axis.
The first and second rows show the real and the predicted chan-
nel powers along the main path, respectively. The third row
then indicates the sensing difficulty associated with each site,
with 0 and 2 being the easiest and the hardest, respectively.
The fourth row shows the robot’s optimal deviation distance
at each site. The fifth row indicates whether the robot should
ask for human help at each site, with 1 indicating a query.

It can be seen that the robot queries the human operator at
sites 5 and 6,8 where the channel qualities are the best among
all the sites. The channel power at sites 4 and 9 are also good.
However, the robot does not query the human operator with
these two sites. This is because the sensing difficulty is high
for these two sites and the robot needs to move close to the
sites for sensing, after which the robot’s own performance is
already good and the improvement obtained from asking the

8The sites are indexed from 1 to 10 with the leftmost being site 1.
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Fig. 7: The solid red curve shows the performance of our proposed
LP-based solution, where the robot has a limited total combined
motion and communication energy budget. The dashed blue curve
shows the performance of the benchmark. The dashed green curve
shows the upper bound performance of solving problem (11) with
perfect channel knowledge.

Ave. Correct
Classification Prob.

Percentage Energy
Saving

0.60 27.78%
0.65 37.21%
0.70 46.67%
0.75 58.46%
0.80 64.80%

0.85 or higher Inf

TABLE III: Energy saving of our proposed approach as compared
to the benchmark, for the case where the robot has a limited total
motion and communication energy budget.

human will be small. In other words, the robot predicts that the
performance gain obtained from querying the human is better
for sites 5 and 6 (as compared to sites 4 and 9), and the channel
quality is also better at sites 5 and 6. For sites 2, 7, and 10, it
can be seen that the robot does not deviate much from the main
path for further sensing as it is easy to sense these sites. For
sites with a medium sensing difficulty, the robot moves some
distance towards the site locations for better sensing (sites 3,
5, 6, and 8). Among these sites, the robot deviates less at sites
5 and 6 where it queries the human. For sites that are hard to
sense, the robot needs to move very close to the site locations
for a reasonably good sensing quality (site 1, 4, and 9). The
average correct classification probability is 0.798 in this case.

G. Simulation with Realistic 2D Wireless Channel
In this section, we demonstrate our proposed approach in

a realistic simulated 2D wireless environment [47], where the
channel parameters (obtained from real wireless measurements
[32]) are θ̂ = [−41.34,3.86], α̂dB = 3.20, η̂ = 3.09 m, and
ρ̂dB = 1.64. The sensing model, motion parameters, and com-
munication system parameters are the same as in Sec. V-F. The
robot predicts the channel in this workspace based on 0.25% a
priori channel samples (randomly located over the workspace),
by using the framework of Sec. V-A. During the operation, the
robot utilizes the LP-based approach, with online replanning
when optimizing its motion and queries.

For a better illustration, we show an example result with
4 sites in Fig. 9. In terms of the sensing difficulty, site 1 is
the easiest, site 2 and 4 have a medium sensing difficulty,
and site 3 is the hardest to sense. The channel power (in
dBm) is plotted on a 2D map with brighter colors (higher
values) indicating better channel qualities. The horizontal grey
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Fig. 8: The performance of our proposed energy-aware collaborative
human-robot site inspection – First row: real channel power along the
main path (from downtown San Francisco). Second row: predicted
channel power based on 5% prior channel measurements. Third row:
the height of the bars indicates the sensing difficulty level, with 0
being the easiest and 2 being the hardest. Fourth row: the height
of the bars indicates how much the robot deviates from the path
to sense the site. Fifth row: it shows whether the robot queries the
human, with 1 indicating a query. The sites are indexed from 1 to 10
with the leftmost being site 1. The energy budget is 30% of what is
needed to both reach the site locations and query the human for all
the sites.

Fig. 9: Planning result in a 2D wireless environment. Brighter colors
(higher values) on the channel map indicate better channel qualities.9
The horizontal grey curve represents the pre-defined main path and
the orange triangles are the points where the robot deviates from
the main path to perform further sensing. The house icons indicate
the site locations. For each site, the yellow dashed line indicates the
extent of the deviation, and the presence of a human icon indicates
that the robot will query the human operator. Readers are referred to
the color PDF for optimal viewing.

curve represents the pre-defined main path and the orange
triangles are the points where the robot deviates from the
main path to perform further sensing. The house icons indicate
the respective site locations. For each site, the yellow dashed
line indicates the extent of the deviation and the presence of
a human icon indicates that the robot will query the human
operator. For each site, the terminal point of the yellow dashed
line shows the location where the robot conducts further
sensing and communicates to the remote operator (if the robot
decides to query the operator).

9In this wireless environment, the channel power ranges from −5.40 dBm
to −123.06 dBm. For a better visualization, we assign a light yellow color to
locations with a channel power greater than −80 dBm and a dark blue color
to locations with a channel power less than −100 dBm.

It can be seen that for site 1, the robot queries the human
operator and stays on the main path. This is because site 1 is
easy to sense and the required communication energy is very
small for site 1, as the channel quality is very good in this
region, which can be seen on the channel power map. In other
words, there is no need for further sensing as both the human
performance and the channel quality are already good for this
site. For site 2, the robot deviates some distance and queries
the human operator after sensing. In particular, the robot
moves to a good channel quality region when communicating
to the human, as indicated by the brighter color near the
terminal point of the yellow dashed line for site 2. On the other
hand, although site 4 also has a medium sensing difficulty,
the robot moves much closer to the site location for sensing
and does not query the human operator. This is because the
channel quality near site 4 is very poor and thus, the robot
has to rely on itself for classification by moving close to the
site. Site 3 has a high level of sensing difficulty and the robot
thus has to reach the site location for sensing. Although the
channel quality near site 3 is good, there is no incentive for
the robot to query the human operator as its own performance
is already good after sensing at the site location. The average
correct classification probability is 0.850 in this case.

VI. CONCLUSIONS
In this paper, we studied human-robot collaborative site

inspection and target classification. More specifically, we con-
sidered the realistic case where the human visual performance
is not perfect, depending on the sensing quality, and the robot
has constraints in communicating with the human operator.
Furthermore, the robot has a limited onboard motion and
communication energy budget and has to operate in realistic
channel environments that experience path loss, shadowing,
and multipath fading. We then showed how to co-optimize
motion, sensing, and queries in human-robot collaborative
site inspections under limited motion and communication
resources, constraints in communication with the operator, and
imperfect human visual performance. We considered two types
of realistic communication constraints: 1) the robot is given
a limited number of chances to query the human operator,
and 2) the wireless channel quality is not good enough all
over the workspace to result in a reliable communication link,
necessitating the robot to optimally choose the locations for
communication with the operator.

Given a probabilistic human performance characterization
and a probabilistic prediction of channel quality in realistic
environments, we formulated the resulting co-optimization as
MMKPs. We then proposed an LP-based efficient near-optimal
solution to the NP-hard MMKP, and mathematically charac-
terized the optimality gap, showing that it can be considerably
small. We also mathematically characterized several properties
of the optimal solution. Finally, we validated the proposed
approach comprehensively with extensive real human data,
as well as with real wireless channel data from downtown
San Francisco. The numerical results show that our proposed
approach properly co-optimizes motion, sensing, and human
queries, and can significantly outperform benchmark method-
ologies in terms of task performance and resource savings.
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