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Abstract

This paper addresses the problem of navigation system
design for autonomous aircraft landing. New nonlinear
filter structures are introduced to estimate the position of
an aircraft with respect to a possibly moving landing site,
such as a Naval vessel, based on measurements provided
by airborne vision and inertial sensors.. By exploring the
geometry of the navigation problem, the navigation filter
dynamics are cast in the framework of linear parametri-
cally varying systems (LPVS). Using this set-up, filter
performance and stability are studied in an H~ setting
by resorting to the theory of linear matrix inequalities
(LMIs). The design of nonlinear, globally stable filters
to meet adequate 11~ performance measures is thus con-
verted into that of determining the feasibility of a related
set of LMIs and finding a solution to them, if it exists.
This is done by resorting to widely available numerical
tools that borrow from convex optimization techniques.
The paper develops the mathematical framework that is
required for integrated vision / inertial navigation sys-
tem design and details a design example for an air vehicle
landing on an aircraft carrier.

1 Introduction

This paper describes a solution to the problem of nav-
igation system design for autonomous aircraft landing on
board a moving platform, such as a Naval vessel. The
main motivation for this work stems from the need to
develop reliable, miniaturized advanced navigation sys-
tems to enable the safe operation of unmanned air v~
hicles. Economy considerations, together with strict r~
quirements imposed in the course of some envisioned mie-
sion scenarios, all but dictate the need to use passive sen-
sors only. Thus the emphasis on the integration of vision
with other passive sensors such as altimeters and other
inertial sensors installed on-board the aircraft.

For previous related work in this area, the reader is
referred to [5, 8] and the referencw therein. Reference
[8] describes a solution to the problem of estimating the
ground velocity and position of an aircraft based on vi-
sual terrain information, whereas [5] focuses on the use
of GPS and vision based systems for aircraft navigation.
Both papers tackle the problem of navigation system de-
sign in the context of Extended Kalman Filters which lack
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stability and performance guarantees and require a com-
plete characterization of process and observation noises,
a task that may be difficult, costly, or not suited to the
problem at hand. This issue is argued at great length in
[4], who points out that in a great number of practical ap
placations the filter design process is entirely dominated
by constraints that are naturally imposed by the sensor
bandwidths. In this case, a design method that explicitly
addresses the problem of merging information provided by
a given sensor suite over distinct, yet complementary fre-
quency regions is warranted. Complementary filters have
been developed to address this issue explicitly. See for ex-
ample [4, 11] for a concise introduction to complementary
filters and their applications.

Motivated by these observations, this paper proposes
the use of special nonlinear filter structures - akin to those
used in complementary filtering - to estimate the relative
position and velocity of an aircraft with respect to a possi-
bly moving landing site based on measurements provided
by airborne vision and other inertial sensors. The paper
builds on a key result introduced in [10], where a use-
ful property of the so-called perspective projection map
is derived and used in the development of a visual es-
timation system for dexterous manipulation. By using
that result and exploring the geometry of the navigation
problem at hand, the nonlinear filter dynamics are cast
in the framework of linear parametrically varying systems
(LPVS) [I]. Using this set-up, filter performance and sta-
bility are studied in an Hm setting by resorting to the
theory of linear matrix inequalities (LMIs) [2]. The de-
sign of nonlinear, regionally stable filters to ensure sta-
bility and meet adequate Hm performance measures is
thus converted into that of determining the feasibility of
a related set of LMIs and finding a solution to them, if it
exists. This is done by resorting to widely available nu-
merical tools that borrow from convex optimization tech-
niques. The paper develops the mathematical framework
that is required for integrated vision/inertial navigation
system design and details a design example for an air VE+
hicle landing on an aircraft carrier.

The paper is organized as follows. Section 2 describes
the class of integrated vision/inertial navigation systems
that we consider and provides a rigorous mathematical
formulation of the related filtering problems. Section 3
provides solutions to the problems posed in terms of lin-
ear matrix inequalities (LMIs). Section 4 includes a sim-
ple example illustrating application of the proposed tech-
niques to a shipboard landing problem. Finally, section
5 contains the main conclusions and discusses theoretical
and practical issues that deserve further consideration.

2 Problem Formulation.

This section describes the navigation problem that is
the main focus of the paper and formulates it mathemat-
ically in terms of an equivalent filter design problem. For
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the sake of clarity we first introduce some required nota- 2.2 Kinematic relations.
tion and review the kinematic relationships of an aircraft
/ ship carrier ensemble, where the former is equipped with

The rotation matrix 73 satisfies the orthonormality con-
dition ‘R~7? = 1. Furthermore, [3]:

a vision based system.

2.1 Notation

J!fk-“

Figure 1: Coordinate Systems

Consider Figure 1, which depicts an aircraft equipped
with a vision camera operating in the vicinity of the ship.
Let {Z} denote an inertial reference frame, {B} a body-
fixed frame that moves with the aircraft, and {C} a a
camera-tied frame. The symbol {S} denotes a ship-fixed
body frame. The following symbols will be used:

●

●

●

●

●

●

●

●

●

PB = [x, y, ~b]T - position of the origin of {B} mew
sured in {Z} (i.e., inertial position of the aircrafi).

ps = [x. y, ZS]T - inertial position of the ship.

ps~ (abbe. p = [z y Z]T) - relative position of the
ship with respect to the aircraft, resolved in {Z}.

c
Psc (a~b~. PC = [~. y. zC]~) - relative position of

the ship with respect to the aircraft, resolved in {C}.

v~ - linear velocity of the origin of {B} measured in
{Z} (i.e., inertial velocity of the aircraft).

vs - inertial velocity of the ship.

Ba - linear acceleration of {23} with respect to {Z},
resolved in {B}.

Q - angular velocity of {C} with respect to {Z}, re-
solved in {Z}.

A = (~ O ~1~ - vector of roll, pitch, and yaw angles
that parametrize locally the orientation of frame {C}
with respect to {Z}.

Given two frames {A} and {B}, ~ 7?-denotes the rota-
tion matrix from {B} to {A}. In particular, &7? (abbre
viated 7?) is the rotation matrix from {C} to {Z}, param-
eterized locally by A, that is, 7? = R(A).

72 = T&s(n),

where

(1)

[

—Wz LJy

s(n) := := o —LLJm

1
(2)

—% w= o

is a skew symmetric matrix, that is, ST = –S. The
matrix S satisfies the relationship S(a) b = a x b, where
a,,b are arbitrary vectors and z denotes the cross product
operation. Furthermore, IIS(Q) II= IIfll 1.

We introduce the following assumption. Al - The
ship’s inertial velocity vs is constant Now, from the above
definitions, it follows that

PS = PB +& %@c *

and since -$ p~ = O (assumption A 1) we obtain

d2 ~
-#cRPc) = ‘APB
,,

(4)

Equation (4) shows that aside from a change in sign, the
relative acceleration of the ship with respect to the air-
craft resolved in {Z} is equal to the aircraft’s inertial ac-
celeration resolved in {Z}. However, in the case of strap
down inertial navigation systems widely in use today [14]
the aircraft’s inertial acceleration is usually given in {B}.
Therefore, since

it follows that

d2 ~
~(cRPc) = –&R ‘a. (5)

2.3 Process Model

We assume the image of the origin of {S} acquired by
a camera installed on-board the aircraft is obtained using
a simple pinhole camera model of the form [6]

[1u .
v 7rf(zc,l/c,&) = : [ : ] , (6)

cc

where ,f is the focal length of the camera and [u v]T are
the image coordinates of p. = [z. y= z.] ~ in the camera’s
image plane. We also make the following assumption. A2
- xc >0, that is, the ship is always located in front of the
camera’s image plane . We further assume that A3 - the
rotation mat rices &R and &R are available from the on-
board attitude measurement system. This assumption is
quite reasonable, considering the sophistication achieved
by such systems today.

Suppose the aircraft is equipped with a barometric-
based sensor that provides a measurement of the altitude
of the aircraft with respect to the mean sea level. Then,
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using the relation p =& Rp. and assuming that the air-
craft is sufficiently away from the ship, so as to neglect the
height h, of the ship’s deck above the mean sea surface
we may assume that A4: hs = O. Thus we obtain that
the altitude measurement equals

z = g(pc) = Sin O,zc — cosf)sin~~c +COSOCOSI#ZC.

In (2 .3)# and Oare the roll and pitch angles in the rotation
matrix ~%?.

We now introduce the underlying design model that
plays a fundamental role in this paper. Let y = [u v Z]T.
Then, the model that we consider can be written as

G=
{

~; ~ :&~(Bam + ~a) (7)
Ym = hf@,o(Pc) + w~,

where h+,e : 77.3+ ‘R3 is defined by

[u v z]T = h~,e(pc) = [~~ 9(Pc)]T

and am and y~ denote the measured values of a and y,
respectively, the measurements being corrupted by the
process noises W. and WV. We assume that the matrix
~ R can be measured accurately. In the sequel we adopt
the deterministic set-up of H~ filtering [12] and assume
that W. and WY are arbitrary functions in L2.

2.4 Problem Definition

The problem that we consider in this paper consists of
determining the relative position and relative velocity of
an aircraft with respect to a landing site using vision and
other on-board passive sensors. For the sake of clarity,
we first tackle the simplified problem of designing a filter
with no measurement noise in the model. This exercise is
simple, yet it captures some of the key ideas used in the
development that follows.

The additional notation that is required is introduced
next. In what follows, we let p and + denote estimates of
p and v, respectively. In the camera frame, they are de-
noted by pc, &c. We assume that the orientation of cam-
era frame {C} with respect to {Z} is restricted through
the set

AC = {A = [~O@]T : 1#[ s I&am, [01S &a., IVI S q%}
(8)

Notice, @~az, for example, should be set tom. We further
assume that the vectors pc lie in the compact set

Pc = {pc = [Zc yc Zc], ~mi.. < ~c s ~ma.,

Ymi. 5 YC 5 ?Jm.z, ~mi.. 5 ‘C 5 ‘-ax} . (9)

where x~in, .....z~~~ are determined from the geometry of
the problem at hand. The set Pc can be determined as
follows. First, compute PC for a nominal orientation of
the camera (usually inertial orientation). Determine the
maximum range of camera orientation angles with respect
to the nominal orientation. Then compute PC by allowing
the angles to vary within these predetermined bounds.

Filter design will aim at ensuring that the estimates PC

of pc lie in a compact set

@c = {pc = [ic tic 2C], Iic –Xcl s dz,
Ijc - ycl < dz,lzc-zc!l < d.z}. (lo)

where dx, dy and dz are positive numbers, and dx < x~in.
Fl: Regional Stability. Consider the process model
(7) and assume that W. = w. = O. For a given @c, find
a numbera > 0, and a dynamical system (filter) F that
operates on y~ and am to produce estimates p of p, and
* of v, such that

●fic EPcforanyt>O,

● llti-dl +ll~—vll~oas t~~.

provided that [l(jc(0) – PC(O), i(0) – V(0))TII < a.
Notice that the problem described aims at finding a fil-

ter that complements the information available from the
vision system / barometric pressure sensor with that avail-
able from the inertial sensors.

The problem F1 focuses on the stability of the filter.
The second filtering problem addresses the scenario where
the performance of the filter in the presence of distur-
bances is considered.
F2: Regional Stability and Performance Consider
the process model (7) where w = [w. WU]T E L2, IIw112s

1 and let the sets PC and @C of allowable position vectors
and allowable estimation vectors be given by (9) and (10),
respectively. For given positive numbers -y > 0 and a >
0, find a stable jilter F that operates on y~ and am to
obtain estimatesp of p, and t of v such that if II[(p(O) –
p(0))T (*(O) – v(0))T]~ll < a, the filter satisfies the
,following conditions for all IIwI12~ 1

● tic(t) ● PC ,for all t >0,

● Ifw = O, then I[p(t) – p(t)ll + [It(t)– v(t)ll + O as
t-+ cm.

Q ll~ewllz,, < ~, where e := P — p is the estimation
error and T&, : w + e.

Notice the technical requirement that an allowable set
of position estimates PC be specified. AS explained later,
this requirement is essential to establishing the bounded-
ness of a certain operator for all possible values of the
estimates p(t).In practice, the “size” of the allowable
region P plays the role of a design parameter.

3 Proposed Solution

This section describes the solutions to problems F1 and
F2. First, however, we need the following basic results.
Let H denote the Jacobian of h$,e with respect to pC.
From the definition of h+,e, it follows that

[

-* & o

H(pc) = –~ o L
xc

1

(11)

sin O –COSOsin ~ cos Ocos @

It is easy to check that

det(H) = $.z.

Therefore, His not invertible if and only if z = O,which is
only possible when aircraft is flying at sea level h.+,e= O.
This will never occur in practice. Therefore, H(pc) is
invertible for all admissible values of pC, ~ and 0.

The next result is adopted from [10] and plays a key
role in the development that follows.



Lemma 3.1 Let h+,e be given by equation (7). Then

/t@,o(pc) – ho,o(pc) = A(pc, Pc)ff(ib)(b ‘Pc)! (12)

where H is given in equation (11), pC = [i. j. .2. ]= and

[1
Qoo
z=

A(pc, pc) = O ~ O
0 01

Lemma 3.2 Let @ :736 ~ 7Z3X3 and #l : 7?3 ~ 7?3”3 be
the operators defined by

4(Pc) PC) = H~(Pc)A(Pc, PC) H(PC)

and ~l(pc) = HUH. Then

@(Pc, Pc) >0, #l(Pc) >0 VPC e Pc and PC E @c.

The following result provides a solution to problem F1.

Theorem 3.3 Define a filter

Theorem 3.4 Let Pc and PC be giuen. Let rx and a be
positive number as in Theorem 3’.5’. Define

(15)

Suppose assumptions AI-A4 hold. For a given gain ~,
suppose there eziits a matriz P = P= E ‘R6x6 such that

P>o

[

FTP + PF +
$ – (1 – 7“.)261 o

0 0
pFT

1

<0,
FP –I

(16)

+ >0,p–4ma.x(-&!$1dz2,,
1
~ –P>o

Let

[~l=-p-’[(’-)l)l
De,fine the filter

[

P = i’ + ~1 &R H=(Pc) (h,&O(fiC) – Ym)
F2= ; = ~;R ‘am + K2 &R HT(PC) (h.d,e(pc) – y~)

{

P == i’ + ~1 &RHT(pc) (h@,8($C) – Ym) ( pc = ~Rp

31= + = – ~R ‘am + Kz &RHT(PC) (hd,e(pc) – y~) (17)

P = ;RP
Then 32 solves the jiltering problem F2 if

(13)
Let PC be given, Suppose assumptions Al- A4 hold. Let
a < min{dx, dy, dz} be any positive number. Define r~ =
dx/xmi., and define e = ~~~cAmin(HT(jjc) H(@c)).

Suppose there exists a matrix P such that

P>o

FTP + PF +
[

–2(1–r.)26
o 0 1

<o

1—— P>o
~2

[1

01where F = o 0 . Let

[1

K1
KZ [1

= –P-l(l –rm) ~ ~ (14)

Then the filter FI solves the ,filtering problem F1.

The solvabilityy of the inequality (14) is addressed in
Theorem 3.5. It shows that the inequality has a solu-
tion iff ~ >0. Notice that the filter Xl complements the
information available from the vision system / baromet-
ric pressure sensor with that available from the inertial
sensors. This structure is similar to that found in com-
plementary filters [4, 11], the practical relevance of which
can hardly be overemphasized.

The next theorem provides solution to the filtering
problem F2.

Ill(P(o) - P(o))T (*(O) - V(0)) T]TII<a,

The next theorem derives necessary and sufficient con-
ditions under which (16) is satisfied.

Theorem 3.5 Let F, T and t be defined in Theorem 34.
Then 3 P = PT >0 such that

[

FTP + PF +
+ – (1 –TZ)261 o

0 0
PFT

1

<o
FP –I

+ – (1 –rX)2c1 <0
7

Remark 3 Notice, that a similar argument as used in
Theorem 3.5 can be used to show that the LMI

FTP + PF –
[ 1

(1 -T-.)261 o <0
0 0

used in Theorem 3.3 has a solution P >0 u r. < 1.
Remark 4 Theorem 3.5 shows that the LMI (18) is fea-
sible iff y2 > ~~_~m~,,. Recall that

c = *&c{ A~in,(HT(Pc)H(Pc))}.

Therefore, we obtain

1
72> (1 – r.)2 ~ce~c

mq {ll(HT(pc)H(pc) )-ill}.

1913



This inequality imposes a lower bound on the achievable
values of ~. The bound is similar to the classical Posi-
tional Dilution of Precision (PDOP) metric that is com-
monly used in navigation systems to determine a lower
bound on the achievable error covariance as a function of
geometry of the underlying navigation problem [7, 13, 14].
Using our notation, the classical PDOP can be written ss

PDOP = ~tr(HT(pc)H(pc) )-l.

We therefore see that the new bound derived in this paper
captures a worst case performance scenario. and the es-
timate of xc increases the lower bound on the achievable
~, since

l>(l– T=)2>0.

Remark 5 The filters used in this paper borrowed from
the structure of the nonlinear observer proposed in [10].
Both filters are designed for a process model that exhibits
linear dynamics and nonlinear measurement equations. In
view of this fact, one is naturally driven to ask the fol-
lowing question: why not simply solve the measurement
equation to obtain estimate of p. that can in turn drive
a linear filter with a much simpler structure? This tech-
nique was, in fact, applied in an erlier version of the work
reported in [10]. However, as pointed out by the authors
the latency inherent to this approach led to unacceptable
results. This stemmed from the fact that the estimate
of p~ obtained by the nonlinear solver from the measurem-
ent equation and used by the linear filter represented a
“delayed version” of the true position.

Furthermore, the algorithm used by the nonlinear solver
requires inverting the Jacobian. In a noisy environment
this may lead to excessive noise amplification. This prob-
lem is entirely avoided by the filters proposed in this paper
as well as by the nonlinear observer in [10]. Finally, the
gains used by every filter in this paper are of the form
similar to the gains of optimal filters obtained for the lin-
ear time invariant (LTI) case. This is important, since in
the LTI case even if the output matrix is invertible the
optimal gain does not require inversion of this matrix.

4 Example

In this section we present simulation results for the fil-
ter F2. The LMIs included in Theorems 3.4 were imple-
mented in Matlab. The gains obtained by solving these
LMIs were used to simulate response of this filter to non-
zero initial conditions and L2 measurement noise.

Figure 2: Filter ~Z: Position errors in meters along g-axis,
time in sec along z-axis.

5 Conclusions
This paper addressed the problem of estimating the rel-

ative position and velocity of an aircraft with respect to a
moving landing site such as a Naval vessel. The problem
was cast in the LPV framework and solved using tools

that borrow from the theory of Linear Matrix Inequali-
ties. This approach resulted in nonlinear filtering struc-
tures that integrate vision with inertial measurements and
have regional stability and performance guarantees, Em-
ploying inertial sensors has an additional benefit of offer-
ing robustness with respect to out-of-camera events and
occlusions, whereby these sensors can be used by the filter
to provide the estimates of the image coordinates of the
ship to the image processing algorithms. Furthermore,
it was shown that the worst case H~-based performance
of these filters is bounded below by a quantity similar to
the Positional Dilution of Precision used in the science of
navigation to determine the impact of the geometry on
the performance of a navigation system. Future work will
include development of an example, where the proposed
filters are applied to a realistic problem and the extension
of these techniques to the multi-rate case.
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