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Supervisory control overview
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Supervisory control
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Motivation: in the control of complex and highly uncertain systems, traditional 
methodologies based on a single controller do not provide satisfactory performance.

bank of candidate 
controllers

measured 
output

control 
signal

exogenous 
disturbance/ 

noise
switching signal

Key ideas:
1. Build a bank of alternative controllers
2. Switch among them online based on measurements

For simplicity we assume a stabilization problem, otherwise controllers should have a reference input r

Supervisory control

Supervisor:
• places in the feedback loop the controller that seems more 

promising based on the available measurements
• typically logic-based/hybrid system
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process
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Motivation: in the control of complex and highly uncertain systems, traditional 
methodologies based on a single controller do not provide satisfactory performance.

measured 
output

control 
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disturbance/ 

noise
switching signal

bank of candidate 
controllers
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Multi-controller

σcontroller 1
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u
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Conceptual diagram: not 
efficient for many 

controllers & not possible 
for unstable controllers

Multi-controller

Given a family of (n-dimensional) candidate controllers

u
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control 
signal

switching signal
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Multi-controller

switching 
signal

t

σ(t)
σ = 1 σ = 3 σ = 2 

σ = 1 

Given a family of (n-dimensional) candidate controllers

u

σ

measured 
output

control 
signal

switching signal

y

switching times

Supervisor

supervisor

σ switching signal
u

measured output

control signal

y

Typically an hybrid system: ϕ ≡ continuous state
δ ≡ discrete state

continuous 
vector field

discrete 
transition 
function

output 
function

uy
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Types of supervision
Pre-routed supervision

σ = 1

σ = 2

σ = 3

• try one controllers after 
another in a pre-defined 
sequence

• stop when the performance 
seems acceptable

not effective when the 
number of controllers is 

large

Estimator-based supervision
(indirect)

• estimate process model from 
observed data

• select controller based on current 
estimate – Certainty Equivalence

Performance-based supervision
(direct)

• keep controller while observed 
performance is acceptable

• when performance of current 
controller becomes unacceptable, 
switch to controller that leads to 
best expected performance based 
on available data

Estimator-based supervision’s setup

Process is assumed to be in a family
Mp ≡ small family of systems around a 

“nominal” process model Npparametric uncertainty

unmodeled 
dynamics

for each process in a family Mp, at least one candidate controller Cq, q ∈ Q
provides adequate performance.

process in Mp, p∈ P controller Cq with q =χ(p)
provides adequate performance

controller selection function

processucontrol 
signal y measured 

output

w exogenous 
disturbance/

noise
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Estimator-based supervisor

set σ = χ(p)ep small process
likely in Mp

should use
Cq, q = χ(p)

Multi-estimator
yp ≡ estimate of the process output y that would be correct if the process was Np
ep ≡ output estimation error that would be small if the process was Np

Process is assumed to be in family
process in
Mp, p∈ P

controller Cq, q =χ(p)
provides adequate performance

Decision logic:

multi-
estimatoru

measured 
output

control 
signal

y

y

decision
logic σ

switching 
signal

–
+

–
+

Certainty equivalence inspired

Estimator-based supervisor

set σ = χ(p)ep small process
likely in Mp

should use
Cq, q = χ(p)

Multi-estimator
yp ≡ estimate of the process output y that would be correct if the process was Np
ep ≡ output estimation error that would be small if the process was Np

Process is assumed to be in family
process in
Mp, p∈ P

controller Cq, q =χ(p)
provides adequate performance

Decision logic:

multi-
estimatoru

measured 
output

control 
signal

y

y

decision
logic σ

switching 
signal

–
+

–
+

A stability argument cannot be 
based on this because typically

process in Mp ⇒ ep small
but not the converse

Certainty equivalence inspired
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Estimator-based supervisor

Multi-estimator
yp ≡ estimate of the process output y that would be correct if the process was Np
ep ≡ output estimation error that would be small if the process was Np

Process is assumed to be in family
process in
Mp, p∈ P

controller Cq, q =χ(p)
provides adequate performance

Decision logic:

overall state 
is smallep small

overall system 
is detectable 
through ep

multi-
estimatoru

measured 
output

control 
signal

y

y

decision
logic σ

switching 
signal

–
+

–
+

set
σ = χ(p)

Certainty equivalence inspired, but formally justified by detectability

Performance-based supervision

Performance monitor:

πq ≡ measure of the expected performance of controller Cq inferred from past data

Candidate controllers: 

Decision logic:

performance
monitoru

measured 
output

control 
signal

y
decision

logic σ
switching 

signal

πσ is acceptable

πσ is unacceptable

keep current controller 

switch to controller Cq corresponding to best πq
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Abstract supervision
Estimator and performance-based architectures share the same common architecture

processmulti-
controller

multi-est.
or

perf. monitor

decision
logic

u
control 
signal

y

σ switching 
signal

w

measured 
output

In this talk we will focus mostly on an estimator-based supervisor…

Abstract supervision

processmulti-
controller

multi-
estimator

decision
logic

u measured 
outputcontrol 

signal

y

σ switching 
signal

switched system

w

Estimator and performance-based architectures share the same common architecture
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The four basic properties (1-2)

decision
logic

σ
switching 

signal

Matching property:
At least one of the ep is “small”

Why?
process in ∃ p*∈ P:

process
in Mp*

ep* is
“small”

essentially a requirement on the multi-estimator

Detectability property:
For each p∈ P, the switched system is detectable 
through ep when σ = χ(p) index of controller 

that stabilizes 
processes in Mp

essentially a requirement on the candidate controllers

This property justifies using the candidate controller 
that corresponds to a small estimation error.

Why? Certainty equivalence stabilization theorem…

The four basic properties (3-4)

decision
logic

σ
switching 

signal

Small error property:
There is a process switching signal

ρ : [0,∞) → P

for which eρ is “small” compared to any fixed ep and 
that is consistent with σ, i.e.,

σ = χ(ρ)

Non-destabilization property:
Detectability is preserved for the time-varying 
switched system (not just for constant σ)

Typically requires some form of “slow switching”

Both are essentially (conflicting) properties of the decision logic

ρ(t) can be viewed 
as current parameter 

“estimate”

controller consistent with 
parameter “estimate”
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Analysis outline (linear case, w = 0)

decision
logic

σ
switching 

signal

1st by the Matching property:
∃ p*∈ P such that ep* is “small”

2nd by the Small error property:
∃ ρ such that σ = χ(ρ) and eρ is “small”
(when compared with ep*)

3rd by the Detectability property:
there exist matrices Kp such that the matrices

Aq– Kp Cp,  q = χ(p)
are asymptotically stable

4th the switched system can be written as

“small” by 
2nd step

asymptotically stable by 
non-destabilization property

∴ x is small (and converges to zero if, e.g., eρ∈ L2)

injected 
system

Outline

Supervisory control overview

Estimator-based linear supervisory control

Estimator-based nonlinear supervisory control

Examples



11

Estimator-based linear supervisory control

processmulti-
controller

multi-
estimator

decision
logic

u measured 
outputcontrol 

signal

y

σswitching 
signal

w
LINEAR

Class of admissible processes

processucontrol 
signal y measured 

output+
+

+
+

d n
exogenous 
disturbance

measurement 
noise

The transfer function from u to y is an unknown element of

Mp ≡ small family of systems around a 
“nominal” transfer function νpparametric uncertainty

Typically

or

multiplicative 
unmod. dynamics additive unmod. 

dynamics

co-prime factorization of νp (SISO) 
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A word on norms…

Given a transfer function ν and λ ≥ 0
eλ t – weighted H∞ norm of ν

(finite if all poles of ν have 
real part smaller than −λ)

we will sometimes need a stability margin λ > 0 ...

ν

|| ν ||∞,λ = γ

u y

The eλ t – weighted L2 induced norm of transfer function ν is numerically 
equal to the eλ t – weighted H∞ norm of ν

Given a signal y and λ ≥ 0

eλ t – weighted L2 norm of y 
truncated to [0, t )

due to initial 
conditions

Candidate controllers

Mp ≡ small family of systems around a 
“nominal” transfer function νp

Class of admissible processes

Assume given a family of candidate controller transfer functions

and a controller selection function χ : P → Q such that

∀ p∈ P controller κq, q = χ(p) stabilizes all processes in Mp

χ maps parameter values with the 
corresponding stabilizing controller

No other constrain is posed on the candidate controllers:
κq can be designed using any (nonadaptive) technique

(e.g., pole placement, LQG/LQR, H-infinity, etc.)
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Multi-estimator

multi-
estimatoru

measured 
output

control 
signal

y
–

+
–

+

with AE asymptotically stable

Matching property:
There exist positive constants c0, cw, cε, λ and some p*∈ P such that

recall

initial cond.

noise/disturb.

unmodeled 
dynamics

ep* is “L2” when noise/disturb. and 
unmodeled dynamics are “L2”

y

A simple multi-estimator…
Class of admissible processes (2 elements)

Assuming realizations are detectable, we could make 

asymptotically stable

process ≡ cp* (s I - Ap*)-1 bp* ep* = yp* - y → 0 (exp. fast)

Multi-estimator: AE xE DE

BE

Luenberger observers

with noise & unmodeled 
dynamics
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Multi-controller

Compute (nC-dimensional) stabilizable and detectable realization

u

σ

measured 
output

control 
signal

switching signal

y

Given a family of candidate controller transfer functions

Multi-controller

detectability property?

Switched system

processmulti-
controller

multi-
estimator

decision
logic

u y

σ

switched system

w

The switched system can be seen as the
interconnection of the process with the “injected system”

essentially the multi-controller & 
multi-estimator but now quite… 
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Constructing the injected system

injected
system

v

u

1st Take an (arbitrary) process switching signal ρ : [0,∞)→ P.

2nd Define the signal v ú eρ = yρ − y

3rd Replace y in the equations of the multi-estimator and multi-controller 
by yρ − v.

Constructing the injected system

injected
system

v

u

multi-
controller

multi-
estimator

u
–yρ

v

y

1st Take an (arbitrary) process switching signal ρ : [0,∞)→ P

2nd Define the signal v ú eρ = yρ − y

3rd Replace y in the equations of the multi-estimator and multi-controller 
by yρ − v. σ
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The injected system

multi-
controller

multi-
estimator

u
–yρ

v

y

By inspection: for each p∈ P, q∈ Q

eigenvalues of Ap q ≡ { subset of eigenvalues of AE } U
{ poles of the feedback interconnection of νp with κq }

∴ q =χ( p ) κq stabilizes νp Ap q is asymptotically stable

σ

If we choose ρ such that σ =χ(ρ) then Aρ σ is always stable

Switched system = process + injected system

injected
system

u

v
–

+
–

+

y
process

w

ρ

σρ

Why? because v ú eρ = yρ − y

Using this diagram one can 
prove the detectability 

property by inspection …
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Detectability property

• w = 0
• ep = 0   ( eρ = v = 0 )

state & outputs u, yp of
injected system → 0

process input & output
u, y=yp – ep → 0

process state→ 0

Suppose
• ρ = p ∈ P
• σ = χ( p ) ∈ Q

whole state of 
switched system → 0

The state of the switched system converges to zero along 
any solution compatible with zero input w & output ep

detectability

⇓

⇓

⇓

⇓

stability of injected system

detectability of processinjected
system

u

v
–

+
–

+

y
process

ρ

σρ

w

Detectability property

w Detectability property: Given any p ∈ P,
setting ρ = p ∈ P and σ = χ( p ) ∈ Q :
1. The injected system is asymptotically stable
2. The switched system is detectable through ep

Also known as the Certainty 
Equivalence Stabilization Theorem

Stability of the injected system is not the only mechanism to achieve detectability:
e.g.:   injected system i/o stable + process min. phase ⇒ detectability of switched system

(Certainty Equivalence Output Stabilization Theorem)

injected
system

u

v
–

+
–

+

y
process

ρ

σρ
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Decision logic

decision
logic

σ
switching 

signal

switched
system

estimation 
errors injected

system

process

1. For boundedness one wants eρ small for 
some ρ consistent with σ (i.e., σ = χ (ρ))

2. To recover the “static” detectability of the 
time-varying switched system one wants slow 
switching.

“small error”

“non-destabilization”

These are conflicting requirements:
1. ρ should follow smallest ep
2. σ = χ(ρ) should not vary

Dwell-time switching

start

wait τD seconds

monitoring signals

p ∈ P

measure of the size of ep over a 
“window” of length 1/λ

Non-destabilizing property:
The minimum interval between consecutive discontinuities of σ is τD > 0.

forgetting factor
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Small error property

Assume P finite and ∃ p* ∈ P : (e.g., L2 noise and no 
unmodeled dynamics)

· C*< ∞

⇓

⇓
when we select ρ = p at time t we must have

⇔

Two possible cases:

1. Switching will stop in finite time T at some p ∈ P:

Small error property

Assume P finite and ∃ p* ∈ P : (e.g., L2 noise and no 
unmodeled dynamics)

· C*< ∞

⇓

⇓
when we select ρ = p at time t we must have

⇔

Two possible cases:

2. After some finite time T switching will occur only among elements of a 
subset P* of P, each appearing in ρ infinitely many times:
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Small error property

Assume P finite and ∃ p* ∈ P : (e.g., L2 noise and no 
unmodeled dynamics)

⇓

⇓
when we select ρ = p at time t we must have

⇔

Small error property: (L2 case)
Assume that P is a finite set.  If ∃ p* ∈ P for which 

then

at least one error L2 “switched” error will be L2

Small error property
Small error property: (L2 case)
Assume that P is a finite set.  If ∃ p* ∈ P for which 

then
at least one error L2 “switched” error will be L2

(for process switching signal
ρ defined by the logic)

Small error property: (general case)
Assume that Q is a finite set with m element. For every p ∈ P, t ≥ 0, ∃ process 
switching signal ρt : [0, t ) → P such that:
1. σ = χ(ρt) except at most on m time intervals of length τD

2.

although the bound may not hold for eρ, it will hold for another process 
switching signal ρt that is “almost always” consistent with σ

The small error property can still be generalized for the case when Q is not finite 
(i.e., infinitely many controllers)
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Implementation issues

start

wait τD seconds

monitoring signals

How to efficiently compute a large number 
of monitoring signals?

From this and the definition of µp:

So, by linearity, all the µp can be generated by:

It is always possible to write: appropriately 
defined function

dimension is independent of 
the number of element in P

Implementation issues

start

wait τD seconds

When P is a continuum (or very large), it may be 
issues with respect to the optimization for ρ.

Things are easy, e.g.,

1. P has a small number of elements 
2. model is linearly parameterized on p

(leads to k(p) quadratic)
3. there are closed form solutions

(e.g., k(p) polynomial)
4. k(p) is convex on p

usual requirement 
in adaptive control

results still hold if there exists a computational 
delay τC in performing the optimization, i.e. 

monitoring signals
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Analysis (w = 0, ε = 0)

Matching property: ∃ p*∈ P such that

Detectability property: for frozen ρ = p ∈ P and σ = χ( p ) ∈ Q the injected 
system is asymptotically stable

Small error property (L2 case, P finite): ⇒

Non-destabilizing property: The minimum interval between consecutive 
discontinuities of σ is τD > 0.

Analysis (w = 0, ε = 0)

Matching property: ∃ p*∈ P such that

Detectability property: for frozen ρ = p ∈ P and σ = χ( p ) ∈ Q the injected 
system is asymptotically stable

Small error property (L2 case, P finite): ⇒

Non-destabilizing property: The minimum interval between consecutive 
discontinuities of σ is τD > 0.

Assumption (slow switching):
τD is large enough and λ is small enough so that the injected system is unif. exp. stable

any process switching signal with interval between 
consecutive discontinuities no smaller than τD

state transition matrix of injected system
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Matching property: ∃ p*∈ P such that

Detectability property: for frozen ρ = p ∈ P and σ = χ( p ) ∈ Q the injected 
system is asymptotically stable

Small error property (L2 case, P finite): ⇒

Non-destabilizing property: The minimum interval between consecutive 
discontinuities of σ is τD > 0.

Assumption (slow switching):
τD is large enough and λ is small enough so that the injected system is unif. exp. stable

any process switching signal with interval between 
consecutive discontinuities no smaller than τD

state transition matrix of injected system

Analysis (w = 0, ε = 0)

injected
system

u

v

–
+

–
+

y
process

ρ

Analysis (w = 0, ε = 0)

injected
system

u

v

–
+

–
+

y
process

ρ

σρ

1st by the Matching property: ∃ p*∈ P such that

2nd by the Small error property: 

3rd by the Non-destabilization property & assumption the injected system is 
unif. exp. stable (state transition matrix decays faster then eλ t)
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Analysis (w = 0, ε = 0)

injected
system

u

v

–
+

–
+

y
process

ρ

σρ

2nd by the Small error property: 

3rd by the Non-destabilization property & assumption the injected system is 
unif. exp. stable (state transition matrix decays faster then eλ t)

4th by 2nd and 3rd (same for u and yρ )

Analysis (w = 0, ε = 0)

injected
system

u

v

–
+

–
+

y
process

ρ

σρ

4th by 2nd and 3rd (same for u and yρ )

5th by the process’ detectability: 

⇒

state the process is also L2 and converges to zero
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Analysis (w = 0, ε = 0)

injected
system

u

v

–
+

–
+

y
process

ρ

σρ

Theorem:
Assuming that P is finite and in the absence of noise and unmodeled dynamics 
(i.e., ε = 0, w(t) = 0, ∀ t ≥ 0) the states of the process, the multi-estimator, and 
the multi-controller are all (eλt-weighted) L2 and converge to zero as t→∞.

Analysis (general case)

Matching property: ∃ p*∈ P such that

Detectability property: for ρ = p ∈ P and σ = χ( p ) ∈ Q the injected system is 
asymptotically stable

Small error property (Q finite): ∀ p ∈ P, t ≥ 0, ∃ ρt : [0, t ) → P such that:
1. σ = χ(ρt) except at most on m time intervals of length τD

2.  

Non-destabilizing property: The minimum interval between consecutive 
discontinuities of σ is τD > 0.

we will start by cheating and assuming that σ = χ(ρt) all the time ...

Assumption (slow switching): τD is large enough and λ is small enough so that

any process switching signal with interval between 
consecutive discontinuities no smaller than τD

state transition matrix of injected system
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Analysis (general case)

injected
system

u

v

–
+

–
+

y
process

ρ

σρ

Consider a fixed interval [0, t )
1st by the Matching property: ∃ p*∈ P such that

2nd by the Small error property: ∃ ρt such that “σ = χ( ρt )” &

3rd use ρt from Small error property to construct the injected system

Analysis (general case)

injected
system

u

v

–
+

–
+

y
process

ρt

σρt

2nd by the Small error property: ∃ ρt such that “σ = χ( ρt )” &

3rd use ρt from Small error property to construct the injected system
since “σ = χ( ρt )” the injected system switches among stability matrices

4th by the Non-destabilization property & assumption the injected system is unif. 
exp. stable (state transition matrix decays faster then eλ t )
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Analysis (general case)

injected
system

u

v

–
+

–
+

y
process

ρt

σρt

2nd by the Small error property: ∃ ρt such that “σ = χ( ρt )” &

4th by the Non-destabilization property & assumption the injected system is unif. 
exp. stable (state transition matrix decays faster then eλ t )

⇒

finite  || · || λ,[0, t ) induced norm from v to u :

Analysis (general case)

injected
system

u

v

–
+

–
+

y
process

ρt

σρt

2nd by the Small error property: ∃ ρt such that “σ = χ( ρt )” &

4th by the Non-destabilization property & assumption:

5th by small-gain argument (using 2nd and 4th)

just as before: v bounded & injected system stable ⇒ … ⇒ all signals bounded
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Analysis (general case)

injected
system

u

v

–
+

–
+

y
process

ρt

σρt

Where did we use “σ = χ( ρt )” ?

3rd use ρt from Small error property to construct the injected system
since “σ = χ( ρt )” the injected system switches among stability matrices

4th by the Non-destabilization property & assumption the injected system is unif. 
exp. stable (state transition matrix decays faster then eλ t )

Analysis (general case)

injected
system

u

v

–
+

–
+

y
process

ρt

σρt

Where did we use “σ = χ( ρt )” ?

3rd use ρt from Small error property to construct the injected system
since σ = χ(ρt) except at most on m time intervals of length τD,
the injected system switches among stability matrices except at most on m time 
intervals of length τD

4th by the Non-destabilization property & assumption the injected system is still 
unif. exp. stable (state transition matrix decays faster then eλ t )
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Analysis (general case)

injected
system

u

v

–
+

–
+

y
process

ρt

σρt

Theorem:
Assuming that Q is a finite set with m element and

the || · || λ,[0, t ) norm of all signals can be bounded by expressions of the form

Moreover:
• w(t) is uniformly bounded for t ∈ [0,∞)   ⇒ all signals uniformly bounded
• w(t) → 0 as t→∞ ⇒ all signals converge to zero as t→∞

(finite induced norms)

Fast switching

Assumption (slow switching): τD is large enough and λ is small enough so that

any process switching signal with interval between 
consecutive discontinuities no smaller than τD

state transition matrix of injected system

So far…

Assumption (fast switching):
λ is small enough so that all matrices Ap χ(p) + λ I, p ∈ P are asymptotically stable

Can be relaxed to …

(any dwell-time τD will do)
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Fast switching
Assumption (fast switching):
λ is small enough so that all matrices Ap χ(p) + λ I, p ∈ P are asymptotically stable

Theorem:
Assuming that the process is SISO and that the multi-controller is realized as

the || · || λ,[0, t ) norm of all signals can be bounded by expressions of the form

Moreover:
• w(t) is uniformly bounded for t ∈ [0,∞)   ⇒ all signals uniformly bounded
• w(t) → 0 as t→∞ ⇒ all signals converge to zero as t→∞

(finite induced norms)

there exists a constant such that when

(any dwell-time τD will do)

proof: utilize internal structure of injected system & inject more errors to 
“boost rate of decay”…

(no loss of generality)

Other logics
Scale-independent 

hysteresis switching

start

wait τD seconds

Dwell-time switching

start

wait fixed amount of time
wait until current monitoring 
signal becomes significantly 
larger than some other one

n

y

hysteresis 
constant
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Other logics
Hierarchical 

hysteresis switching

start

wait until current monitoring signal, or 
another one consistent with σ, becomes 
significantly larger than some other one

n

y

Scale-independent 
hysteresis switching

start

wait until current monitoring 
signal becomes significantly 
larger than some other one

n

y

Other logics
For both logics we have:

number of 
switchings in the 

interval [τ, t ) number of elements 
in  P (scale-indep.) 

or in Q (hierarchical)

average dwell-time
type growth

⇒

either
• large h (hysteresis constant) or 
• small λ (forgetting factor)
leads to stability of injected system

Non-destabilizing property: For every p ∈ P

Small error property:
For every p ∈ P, t ≥ 0, ∃ process switching signal ρt : [0, t ) → P such that:

all the time !
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Outline

Supervisory control overview

Estimator-based linear supervisory control

Estimator-based nonlinear supervisory control

Examples

Estimator-based nonlinear supervisory control

processmulti-
controller

multi-
estimator

decision
logic

u measured 
outputcontrol 

signal

y

σswitching 
signal

w
NON LINEAR
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Class of admissible processes

processucontrol 
signal y measured 

output

w exogenous 
disturbance/

noise

Typically

Process is assumed to be in a family

parametric uncertainty

unmodeled 
dynamics

Mp ≡ small family of systems around a 
nominal process model Np

metric on set of 
state-space model (?) Most results presented here:

• independent of metric d (e.g., detectability)
• or restricted to case εp = 0 (e.g., matching) 

Candidate controllers
Class of admissible processes

Assume given a family of candidate controllers

Mp ≡ small family of systems around a 
nominal process model Np

u

σ

measured 
output

control 
signal

switching signal

y

Multi-controller:

(without loss of generality all with same dimension)
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Multi-estimator

multi-
estimatoru

measured 
output

control 
signal

y
–

+
–

+

we want: Matching property: there exist some p*∈ P such that ep* is “small”

Typically obtained by:

How to design a multi-estimator? 

process in ∃ p*∈ P:
process
in Mp*

ep* is
“small”

when process “matches” Mp* the 
corresponding error must be “small”

Designing multi-estimators - I

Suppose nominal models Np, p ∈ P are of the form

no exogenous 
input w

state 
accessible

Multi-estimator:

asymptotically 
stable A

When process matches the nominal model Np*

⇒ ⇒

exponentially

Matching property: Assume M = { Np :  p ∈ P }
∃ p*∈ P, c0, λ* >0 : || ep*(t) || · c0 e-λ* t t ≥ 0

(state accessible)
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State-sharing
Multi-estimator:

state of multi-estimator is xE ú { zp : p ∈ P }

can be large when P has 
many elements

Suppose Ap( y, u ) is separable, i.e.,
matrix vector

By linearity, the yp can be generated by:

matrix with the size of M
with every column equal to y

The dimension of the multi-estimator is 
independent of the number of elements 

in P (could even by infinity)

true, e.g., is process is 
linearly parameterized

Designing multi-estimators - II

Suppose nominal models Np, p ∈ P are of the form

Multi-estimator:

When process matches the nominal model Np*

⇒

Matching property: Assume M = { Np :  p ∈ P }
∃ p*∈ P, c0, cw, λ* >0 : || ep*(t) || · c0 e-λ* t + cw t ≥ 0

with cw = 0 in case w(t) = 0, ∀ t ≥ 0

(output-injection away 
from stable linear system)

asymptotically 
stable Ap

nonlinear output 
injection (generalization of case I)

State-sharing is possible when all Ap are equal an Hp( y, u ) is separable:
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Designing multi-estimators - III

Suppose nominal models Np, p ∈ P are of the form

Matching property: Assume M = { Np :  p ∈ P }
∃ p*∈ P, c0, cw, λ* >0 : || ep*(t) || · c0 e-λ* t + cw t ≥ 0

with cw = 0 in case w(t) = 0, ∀ t ≥ 0

(output-inj.  and coord. 
transf. away from stable 

linear system)

asymptotically 
stable Ap

(generalization of case I & II)

The Matching property is an input/output property so the same multi-estimator 
can be used:

ζp ú ξp‘ ◦ ξp
-1

≡ cont. diff. coordinate transformation with continuous 
inverse ξp

-1 (may depend on unknown parameter p)

Switched system

processmulti-
controller

multi-
estimator

decision
logic

u y

σ

switched system

w

Also now the switched system can be seen as the
interconnection of the process with the injected system

detectability property?
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Constructing the injected system
1st Take a process switching signal ρ : [0,∞)→ P.

2nd Define the signal v ú eρ = yρ − y

3rd Replace y in the equations of the multi-estimator and multi-controller 
by yρ − v.

multi-
controller

multi-
estimator

u
–yρ

v

y

σ

Switched system = process + injected system

injected
system

u

v
–

+
–

+

y
process

w

ρ

σρ

Q: How to get “detectability” on the 
switched system ?

A: “Stability” of the injected system
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Stability & detectability of nonlinear systems

Notation:

α:[0,∞) → [0,∞) is class K ≡ continuous, strictly increasing, α(0) = 0

is class K∞ ≡ class K and unbounded

β:[0,∞)×[0,∞) → [0,∞) is class KL ≡ β(·,t) ∈ K for fixed t &
limt→∞ β(s,t) = 0 (monotonically) for fixed s

Stability: input u “small” ⇒ state x “small”

Input-to-state stable (ISS)  if  ∃ β∈KL,  γ∈K

Integral input-to-state stable (iISS)  if  ∃ α∈K∞,  β∈KL,  γ∈K

strictly 
weaker

Stability & detectability of nonlinear systems

Stability: input u “small” ⇒ state x “small”

Input-to-state stable (ISS)  if  ∃ β∈KL,  γ∈K

Integral input-to-state stable (iISS)  if  ∃ α∈K∞,  β∈KL,  γ∈K

strictly 
weaker

One can show:

1. for ISS systems: u → 0 ⇒ solution exist globally & x → 0

2. for iISS systems: ∫0
∞ γ(||u||) < ∞ ⇒ solution exist globally & x → 0
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Stability & detectability of nonlinear systems

Detectability: input u & output y “small” ⇒ state x “small”

Detectability (or input/output-to-state stability IOSS)  if  ∃ β∈KL,  γu, γy∈K

Integral detectable (iIOSS)  if  ∃ α∈K∞,  β∈KL,  γu, γy∈K
strictly 
weaker

One can show:

1. for IOSS systems: u, y → 0 ⇒ x → 0

2. for iIOSS systems: ∫0
∞ γu(||u||), ∫0

∞ γy(||y||) < ∞ ⇒ x → 0

Interconnecting stable & detectable systems

system 1
(stable)

system 2
(detectable)

cascade (detectable)

Lemma 1 (cascade):
i. system 1 ISS & system 2 detectable ⇒ cascade detectable
ii. system 1 integral ISS & system 2 detectable ⇒ cascade integral detectable

Lemma 2 (feedback):
i. system 1 detectable ⇒ feedback detectable
ii. system 1 integral detectable ⇒ feedback integral detectable

system 1
(detectable)

feedback (detectable)
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Certainty Equivalence Stabilization Theorem

injected
system

u

v

–
+

–
+

y
process

ρ

σρ

switched system
(version 1)

processinjected
system

–+
y eρ

yρ

u

Σ2σρΣ1

switched system
(version 2)

Certainty Equivalence Stabilization Theorem

switched system
(version 2)

processinjected
system

–+
y eρ

yρ

u

Σ2σρΣ1

1st process detectable ⇒ system Σ2 detectable

2nd injected system ISS & 1st ⇒ cascade Σ1 − Σ2 detectable

3rd cascade Σ1 − Σ2 detectable ⇒ switched system detectable

or

2nd’ injected system integral ISS & 1st ⇒ cascade Σ1 − Σ2 integral detectable

3rd’ cascade Σ1 − Σ2 integral detectable ⇒ switched system integral detectable
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Certainty Equivalence Stabilization Theorem

Theorem: (Certainty Equivalence Stabilization Theorem)

Suppose the process is detectable and take fixed ρ = p ∈ P and σ = q ∈ Q

1. injected system ISS ⇒ switched system detectable.

2. injected system integral ISS ⇒ switched system integral detectable

Stability of the injected system is not the only mechanism to achieve detectability:
e.g.,   injected system i/o stable + process “min. phase” ⇒ detectability of switched system

(Nonlinear Certainty Equivalence Output Stabilization Theorem)

injected
system

u

v

–
+

–
+

y
process

ρ

σρ

switched system

Achieving ISS for the injected system

We want to design candidate controllers that make the injected system 
(at least) integral ISS with respect to the “disturbance” input v

Theorem: (Certainty Equivalence Stabilization Theorem)

Suppose the process is detectable and take fixed ρ = p ∈ P and σ = q ∈ Q

1. injected system ISS ⇒ switched system detectable.

2. injected system integral ISS ⇒ switched system integral detectable

Nonlinear robust control design problem, but…
• “disturbance” input v can be measured (v = eρ = yρ – y)
• the whole state of the injected system is measurable (xC, xE)

injected system

multi-
controller

multi-
estimator

u
–yρ

v

y

σ
ρ = p ∈ P
σ = q ∈ Q
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Designing candidate controllers - I
(feedback linearizable)

Suppose the multi-estimator is of the form

with ( A+D Cp , B ) stabilizable

To obtain the injected system, we make y = yp – v :

must be input-to-state stabilized by the q = χ( p )
candidate controller (with respect to “disturbance” v)

Candidate controller q = χ( p ): with A+D Cp + B Fp asymptotically stable

Also applicable if the multi-estimator is a coordinate transformation away from this form…

⇓

injected system ISS: 

Designing candidate controllers - II
(input/output feedback 

linearizable)Suppose for each p ∈ P we can 
1. partition the state of the multi-estimator as
2. write its dynamics as with ( A+Dp Cp , Bp ) stabilizable

ISS with respect to “input” ( xp, u, y )

Also applicable if the multi-estimator is a coordinate transformation 
(possibly p-dependent) away from this form…

This form is quite common because 
typically one can linearize the system 

with respect to each individual yp but not 
with respect to all the yp simultaneously
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Designing candidate controllers - II
(input/output feedback 

linearizable)Suppose for each p ∈ P we can 
1. partition the state of the multi-estimator as
2. write its dynamics as with ( A+Dp Cp , Bp ) stabilizable

Candidate controller q = χ( p ): with A+Dp Cp + Bp Fp asymptotically stable

⇓

injected system ISS: 

ISS with respect to “input” ( xp, u, y )

(cascade of ISS systems)

Also applicable if the multi-estimator is a coordinate transformation 
(possibly p-dependent) away from this form…

Detectability property
Detectability property:
For any of the previous multi-estimators and candidate controller

1. The injected system is ISS (and also integral ISS)
2. The switched system is detectable through ep (and also integral detectable)

Remarks:
a. Other controllers also lead to detectability, e.g., one could

1st use the feedback linearizing controller to find an ISS control Lyapunov 
function

2nd use the ISS control Lyapunov to construct a more robust controller
(e.g., using an inverse optimal design)

b. It is possible to achieve iISS for much larger classes of systems
(e.g., systems that cannot even be controlled by smooth time-invariant feedback)



44

Decision logic

decision
logic

σ
switching 

signal

switched
system

estimation 
errors injected

system

process

For nonlinear systems dwell-time logics 
do not work because of finite escape

Scale-independent hysteresis switching

monitoring signals

p ∈ P

measure of the size of ep over a 
“window” of length 1/λ

forgetting factor

start

wait until current monitoring 
signal becomes significantly 
larger than some other one

n

y

hysteresis 
constant

class K function from 
detectability property 

All the µp can be generated by a system with small 
dimension if γp(||ep||) is separable. i.e.,
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Scale-independent hysteresis switching

number of switchings in [τ, t )

Theorem: Let P be finite with m elements. For every p ∈ P

maximum interval of 
existence of solution

⇓

uniformly bounded on [0, Tmax)
⇒

uniformly bounded on [0, Tmax)

Assume P is finite, the γp are locally Lipschitz and 

and

Scale-independent hysteresis switching

number of switchings in [τ, t )

Theorem: Let P be finite with m elements. For every p ∈ P

and

Assume P is finite, the γp are locally Lipschitz and 

maximum interval of 
existence of solution

Non-destabilizing property: Switching will stop at some finite time T* ∈ [0, Tmax)

Small error property:
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Analysis

1st by the Matching property: ∃ p*∈ P such that || ep*(t) || · c0 e-λ* t t ≥ 0

2nd by the Non-destabilization property: switching stops at a finite time
T* ∈ [0, Tmax) ⇒ ρ(t) = p & σ(t) = χ(p)  ∀ t ∈ [T*,Tmax)

3rd by the Small error property:

(w = 0, no unmodeled dynamics)

Theorem: Assume that P is finite and all the γp are locally Lipschitz.
The state of the process, multi-estimator, multi-controller, and all other signals 
converge to zero as t→ ∞.

⇓
solution exists globally Tmax = ∞ &  x → 0 as t→∞

the state x of the switched system is bounded on [T*,Tmax)
4th by the Detectability property:

Outline

Supervisory control overview

Estimator-based linear supervisory control

Estimator-based nonlinear supervisory control

Examples
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Example: One-link flexible manipulator

y(x, t)

x mt

T IH

θ

mass at the tip

torque applied
at the base

axis’s inertia (.023)

transversal
slice’s inertia

beam’s
elasticity

deviation with 
respect to rigid body

beam’s
mass density

(.68Kg total mass)

beam’s
length

(113 cm)

PDE (small bending): Boundary conditions:

Example: One-link flexible manipulator

y(x, t)

x mt

IH

θ

mass at the tip

deviation with 
respect to rigid body

Series expansion and truncation:

eigenfunctions of the beam

T
torque applied

at the base
axis’s inertia (.023)
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Example: One-link flexible manipulator

y(x, t)

x mt

IH

θ

mass at the tip

Control measurements:

≡ base angle
≡ base angular velocity

≡ tip position
≡ bending at position xsg (measured by a strain gauge 

attached to the beam at position xsg)

Assumed not known a priori:
mt ∈ [0, .1Kg]

xsg ∈ [40cm, 60cm]
T

torque applied
at the base

axis’s inertia (.023)
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Example: One-link flexible manipulator
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transfer functions as mt ranges over [0, .1Kg] and  xsg ranges over [40cm, 60cm]
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Example: One-link flexible manipulator

Class of admissible processes:

utorque

unknown parameter
p ú (mt, xsg)

parameter set:
grid of 18 points in 

[0, .1]×[40, 60]

Mp ≡ family around a nominal transfer function 
corresponding to parameters p ú (mt, xsg)

For this problem it is not possible to write the coefficients of the nominal 
transfer functions as a function of the parameters because these coefficients are 
the solutions to transcendental equations that must be computed numerically.

Family of candidate controllers:

18 controllers designed using LQR/LQE, one for each nominal model

Example: One-link flexible manipulator

0 5 10 15 20 25
-3

-2

-1

0

1

2

3

t

tip position
torque  
set point 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

t

mt
xsg

σ
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Example: One-link flexible manipulator

(open-loop)

Example: One-link flexible manipulator

(closed-loop with fixed controller)
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Example: One-link flexible manipulator

(closed-loop with supervisory control)

+

−
C

Doyle, Francis, Tannenbaum, Feedback Control Theory, 1992

Example: Uncertain gain

The maximum gain margin achievable by a 
single linear time-invariant controller is 4

1 · k < 4
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+

−

multi-
controller

Anderson et. al., “Multiple Model Adaptive Control, Part 1: Finite Controller Coverings,”
Special George Zames Issue of  IJRNC, 2000.

Example: Uncertain gain

1 · k < 40

Example: Uncertain gain

output reference true parameter value monitoring signals
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Example: 2-dim SISO linear process

Class of admissible processes:

nominal transfer function 
nonlinear parameterized on p

Any re-parameterization that makes 
the coefficients of the transfer function 

lie in a convex set will introduce an 
unstable zero-pole cancellation

unstable zero-pole 
cancellations

–1 +1

But the multi-estimator is still separable and state-sharing can be used …

Example: 2-dim SISO linear process

(without noise)
output reference true parameter value
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Example: 2-dim SISO linear process

(with noise)
output reference true parameter value

Example: Disturbance Rejection

(rejection of one sinusoid)
outputfrequency estimatedisturbance

(unknown frequency)
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Example: Disturbance Rejection

(rejection of two sinusoids)
output

(unknown frequency)

frequency estimatedisturbance

Example: Disturbance Rejection

(rejection of a square wave)
output

(unknown frequency)

frequency estimatedisturbance
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Example: System in strict-feedback form

Suppose nominal models Np, p ∈ P are of the form

Multi-estimator ( option I ):

When process matches the nominal model Np*

⇒

exponentially

Matching property: Assume M = { Np :  p ∈ P }
∃ p*∈ P, c0, λ* >0 : || ep*(t) || · c0 e-λ* t t ≥ 0

state accessible

⇒

it is separable so we 
can do state-sharing

now the control law

stabilizes the system

Example: System in strict-feedback form

Suppose nominal models Np, p ∈ P are of the form

state accessible
To facilitate the controller design, one can first “back-step” the system to 
simplify its stabilization:

after the coordinate transformation the 
new state is no longer accessible 



57

Example: System in strict-feedback form

Suppose nominal models Np, p ∈ P are of the form

Multi-estimator ( option II ):

When process matches the nominal model Np*

it is separable so we 
can do state-sharing

⇒

exponentially

⇒

Matching property
Candidate controller q = χ(p):

makes injected 
system ISS ⇒ Detectability property

Example: System in strict-feedback form

p1

p2

u

α

αreference
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Example: System in strict-feedback form

Suppose nominal models Np, p ∈ P are of the form

state accessible
In the previous back-stepping procedure:

the controller

drives γ → 0
⇒

nonlinearity is cancelled
(even when p1 < 0 and
it introduces damping)

One could instead make still leads to exponential 
decrease of α

(without canceling 
nonlinearity when  p1 < 0 )

pointwise min-norm design

Example: System in strict-feedback form

Suppose nominal models Np, p ∈ P are of the form

state accessible
A different recursive procedure:

⇒

pointwise min-norm 
recursive design

γ → 0

α → 0

⇒
⇒

exponentially

exponentially

In this case
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Example: System in strict-feedback form

Suppose nominal models Np, p ∈ P are of the form

Multi-estimator ( option III ):

When process matches the nominal model Np*

⇒

exponentially

⇒

Matching propertyCandidate controller q = χ(p):

⇒ Detectability property

Example: System in strict-feedback form

p1

p2

u

α

αreference
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Example: System in strict-feedback form

p1

p2

u

α

p1

p2

u

α

pointwise min-norm design feedback linearization design

Example: Unstable-zero dynamics

(stabilization)
estimate output yunknown parameter
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Example: Unstable-zero dynamics

(stabilization with noise)
estimateunknown parameter output y

Example: Unstable-zero dynamics

(set-point with noise)
output yreferenceunknown parameter



62

Example: Kinematic unicycle robot

x2

x1

θ
u1 ≡ forward velocity
u2 ≡ angular velocity

p1, p2 ≡ unknown parameters determined by the radius of the driving wheel
and the distance between them

This system cannot be stabilized by a continuous time-invariant controller.
The candidate controllers were themselves hybrid

Example: Kinematic unicycle robot
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Example: Induction motor in current-fed mode

λ ∈ —2 ≡ rotor flux
u ∈ —2 ≡ stator currents
ω ≡ rotor angular velocity
τ ≡ torque generated

Unknown parameters: τL ∈ [τmin, τmax] ≡ load torque
R ∈ [Rmin, Rmax]≡ rotor resistance

“Off-the-shelf” field-oriented candidate controllers:

ω is the only measurable output


