

Summary
 Review of previous lecture Reachability transition systems reachability algorithm backward reachability algorithm invariance algorithm controller design based on backward reachability

Sequence Properties (signals) $X_{sig} \equiv set of all piecewise continuous signals \quad x:[0, T) \to \mathbb{R}^n, T \in (0, \infty]$ $Q_{sig} \equiv set of all piecewise constant signals$ $q:[0, T) \rightarrow Q, T \in (0, \infty]$ *Sequence property* $\equiv p : Q_{sig} \times X_{sig} \rightarrow \{ false, true \}$ E.g., $p(q, x) = \begin{cases} \text{true} & q(t) \in \{1, 3\}, \ x(t) \ge x(t+3), \ \forall t \\ \text{false} & \text{otherwise} \end{cases}$ A pair of signals $(q, x) \in Q_{sig} \times X_{sig}$ satisfies p if p(q, x) = trueA hybrid <u>automaton</u> *H* satisfies p (write $H \vDash p$) if p(q, x) =true, for every solution (q, x) of HSequence analysis \equiv Given a hybrid automaton H and a sequence property p show that $H \vDash p$ When this is not the case, find a witness $(q, x) \in \mathbf{Q}_{sig} \times \mathcal{X}_{sig}$ such that p(q, x) = false(in general for solution starting on a given set of initial states $\mathcal{H}_0 \subset Q \times \mathbb{R}^n$)

Completeness of liveness/safety	
Theorem 1 : If <i>p</i> is both a liveness and a safety property then every $(q, x) \in Q_{sig} \times X_{sig}$ satisfies <i>p</i> , i.e., <i>p</i> is always true (trivial property)	
Theorem 2 : For every nonempty (not always false) sequence property p there is a safety property p_1 and a liveness property p_2 such that: (q,x) satisfies p if and only if (q,x) satisfies both p_1 an p_2	
Thus if we are able to verify safety and liveness properties we are able to verify any sequence property.	
But sequence properties are not all we may be interested in	
"ensemble properties" \equiv property of the whole family of solutions e.g., stability (continuity with respect to initial conditions) is not a sequence property because by looking a each solution (q, x) individually we cannot decide if the system is stable. Much more on this later	
Can one find sequence properties that guarantee that the system is stable or unstable?	

Reachability		
Given: hybrid automaton H:		
$\dot{x}=f(q,x) \qquad (q,x)=\Phi(q^-,x^-) \qquad q(t)$	$\in \mathcal{Q}, x(t) \in \mathbb{R}^n, t \ge t_0$	
set of initial states $\mathcal{H}_0 \subset \mathcal{Q} \times \mathbb{R}^n$		
Reach _{<i>H</i>} (\mathcal{H}_0) \equiv set of pairs (q_f, x_f) $\in Q \times \mathbb{R}^n$ for which there is a solution (q,x) to <i>H</i> for which:		
1. $(q(t_0), x(t_0)) \in \mathcal{H}_0$ start	ts in \mathcal{H}_0	
2. $\exists t \ge t_0$: $(q(t), x(t)) = (q_f, x_f)$ pass	ses through $(q_{\rm f}, x_{\rm f})$	
Invariant set \equiv set $S \subset Q \times \mathbb{R}^n$ for which $\operatorname{Reach}_{H}(S) = S$		
R		

Transition system generalization of finite automaton, differential equations, hybrid automaton, etc. transition \mathcal{S} \equiv set of states (finite or infinite) \equiv alphabet of events (finite or infinite) system Е Т $T \subset \mathcal{S} \times \mathcal{E} \times \mathcal{S} \ \equiv \text{transition relation}$ $S = \{1, 2, 3\}$ $\mathcal{E} = \{a, b\}$ $T \in \{ (1,a,2), (2,b,1), (2,b,3), (3,a,1) \}$ *execution* of a transition system \equiv sequence of states { s_0, s_1, s_2, \dots } such that there exists a sequence of events { e_0, e_1, e_2, \dots } for which $(s_i, e_i, s_{i+1}) \in T \forall i$ Given a set of initial states $S_0 \subset S$: $\operatorname{Reach}_{T}(\mathcal{S}_{0}) \equiv \operatorname{set} \operatorname{of} \operatorname{states} s \in \mathcal{S}$ for which there is a finite execution that starts in S_0 and ends at s

Reachability algorithm Reachability algorithm: initialization: Reach₋₁ = \emptyset $\operatorname{Reach}_0 = \mathcal{S}_0$ states one can transition to i = 0from Reach_i while $\operatorname{Reach}_i \neq \operatorname{Reach}_{i-1}$ do loop: $\operatorname{Reach}_{i+1} = \operatorname{Reach}_i \cup \{s' \in \mathcal{S} : \exists s \in \operatorname{Reach}_i, e \in \mathcal{E}, (s, e, s') \in \mathsf{T}\}$ i = i + 1Two difficulties with hybrid automata the set of states $S := Q \times \mathbb{R}^n$ is not finite (algorithm may not terminate) 1. In the while loop: $\operatorname{Reach}_{i+1} = \operatorname{Reach}_i \cup S_1 \cup S_2$ 2. Computation of $S_1 := \{s' \in S : \exists s \in \text{Reach}_i, e = (q_i, q_j) \in \mathcal{E}, (s, e, s') \in T\}$ is simple but $S_2 \coloneqq \{s' \in S : \exists s \in \text{Reach}_i, e = \tau, (s, e, s') \in T\}$ is not (in general) $\mathcal{S}_1 = \{ (q_{\mathfrak{p}} x_{\mathfrak{f}}) \in \mathcal{S} : \exists (q_0, x_0) \in \operatorname{Reach}_i, (q_{\mathfrak{p}} x_{\mathfrak{f}}) = \Phi (q_0, x_0) \} = \Phi(\operatorname{Reach}_i)$ $S_2 = \{(q_0, x_f) \in S : \exists (q_0, x_0) \in \text{Reach}_i, \text{"there is a continuous evolution}\}$ from x_0 to x_f inside mode q_0 " }

Initialized Rectangular Automaton *rectangle* \equiv set of the form $I_1 \times I_2 \times ... \times I_n$ where each I_k is an interval whose finite end-points are rational (in \mathbb{Q}) e.g., $[3,4] \times [5,6)$ or $(-\infty,1) \times (1,2)$ or $\mathbb{R} \times (1/2, 5/4)$ but not $[1,2] \cup [3,4] \times [5,6]$ or $[1,2^{1/2}] \times [3,4]$ $Q \equiv$ set of discrete states $\mathbb{R}^n \equiv$ continuous state-space hybrid $f: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \ \equiv \text{vector field}$ automata $\varphi: \mathcal{Q} \times \mathbb{R}^n \to \mathcal{Q} \equiv \text{discrete transition}$ Η $\rho: \mathcal{Q} \times \mathbb{R}^n \to \mathbb{R}^n \equiv \text{reset map}$ H is an *initialized rectangular automaton* if: 1. The set Q is finite 2. $f(q,x) = k(q) \in \mathbb{Q} \ \forall x \in \mathbb{R}^n$ (constant rational vector fields in each discrete mode) 3. The discrete transitions are of the form conditions for jumps are $\varphi(q, x) = \begin{cases} q_j & q = q_i, \ x \in R_{ji} & \text{expressed} \\ \vdots & \text{where all the } R_{ji} \text{ are rectangles} \end{cases}$ expressed by rectangles in xthe resets are 4. There is a function $v: \mathcal{Q} \to \mathbb{Q}^n$ such that independent of x (and rectangles for $\varphi(q, x) \neq q \quad \Rightarrow \quad \rho(q, x) = \nu(q) \; \forall x \in \mathbb{R}^n$ nondeterministic case)

Decidability	
H is an <i>initialized rectangular automaton</i> if:1. the set Q is finite2. vector field is constant in each discrete mode3. jump conditions rectangular in x4. resets independent of x	rectangular automaton
Theorem: The reachability algorithm finishes in finit initialized rectangular automaton (determi Moreover, one can implement the reachab using finite memory and finite computatio	te time for any nistic or not). ility algorithm exactly
 finite number of discrete states & constant resets ⇒ fin needs to compute a finite number of reach sets inside ea rational numbers needed for exact representation with f constant vector fields & rectangular jump conditions m computation of reach sets inside each mode 	ite termination (only ach mode) ïnite memory ake possible exact

	Back to safet	y		
Given: hybrid auto $\dot{x} = f(q)$ set of initia	tomaton H: $q, x)$ $(q, x) = \Phi(q^-, x^-)$ al states $\mathcal{H}_0 \subset \mathcal{Q} \times \mathbb{R}^n$	$q(t) \in \mathcal{Q}, \ x(t) \in \mathbb{R}^n, \ t \ge t_0$		
<i>H</i> satisfies a safety property $p(q, x) = \Box (q(t), x(t)) \in \mathcal{F}, \mathcal{F} \subset Q \times \mathbb{R}^n$ if and only if $\operatorname{Reach}_H(\mathcal{H}_0) \subset \mathcal{F}$				
	Reach (\mathcal{H}_0)	\mathcal{F} every point in every trajectory starting in \mathcal{H}_0 satisfies p		
Reachability algo	rithm:			
initialization:	$\begin{aligned} \text{Reach}_{-1} &= \emptyset \\ \text{Reach}_{0} &= \mathcal{S}_{0} \\ i &= 0 \end{aligned}$	algorithm can terminate immediately if one of the Reach _i is outside of \mathcal{F}		
loop:	while $\operatorname{Reach}_i \neq \operatorname{Reach}_{i-1}$ or $\operatorname{Reach}_{i+1} = \operatorname{Reach}_i \cup \{s' \in i = i + 1\}$	$_{i} \not\subset \mathcal{F}$ do $\mathcal{S} : \exists s \in \operatorname{Reach}_{i}, e \in \mathcal{E}, (s, e, s') \in \mathrm{T} \}$		
end:	if $\operatorname{Reach}_i = \operatorname{Reach}_{i-1}$ then H satisfield else H does r	ies <i>p</i> not satisfy <i>p</i>		

	Transition system
$\begin{array}{c} \text{transition} \\ \text{system} \\ T \end{array} \begin{cases} \mathcal{S} \\ \mathcal{E} \\ T \subset \mathcal{S} \end{cases}$	$\equiv \text{set of states (finite or infinite)} \\ \equiv \text{alphabet of events (finite or infinite)} \\ S \times S \times S \equiv \text{transition relation}$
a a 3 b	$S = \{1,2,3\}$ $E = \{a,b\}$ $T \in \{ (1,a,2), (2,b,1), (2,b,3), (3,a,1) \}$
<i>execution</i> of a transi	ition system \equiv sequence of states { s_0, s_1, s_2, \dots } such that there exists a sequence of events { e_0, e_1, e_2, \dots } for which $(s_i, e_i, s_{i+1}) \in T \forall i$
Given a set of initial	states $S_0 \subset S$:
$\operatorname{Reach}_{T}(\mathcal{S}_{0}) \equiv \operatorname{set} \alpha$	of states $s \in S$ for which there is a finite execution that s in S_0 and ends at s
Given a set of final s	states $\mathcal{S}_{\mathrm{f}} \subset \mathcal{S}$:
$\operatorname{BackReach}_{T}(\mathcal{S}_{f}) \equiv$	set of states $s \in S$ for which there is a finite execution that starts at <i>s</i> and ends in S_f

Controller design based on backward reachability

Backwards Reachability algorithm:

initialization: $BReach_{-1} = \emptyset$ algorithm can terminate immediately if one of the $BReach_0 = S_f := \neg \mathcal{F}$ BReach, intersects \mathcal{H}_0 i = 0while $BReach_i \neq BReach_{i-1}$ or $BReach_i \cap \mathcal{H}_0 \neq \emptyset$ do loop: $BReach_{i+1} = BReach_i \cup \{s \in S : \exists s' \in BReach_i, e \in \mathcal{E}, (s,e,s') \in T\}$ i = i + 1if $\text{Reach}_i = \text{Reach}_{i-1}$ then H satisfies p else H does not satisfy p end: When one obtains $BReach_{i+1} \cap \mathcal{H}_0 \neq \emptyset$ it is because $\{s \in \mathcal{S} : \exists s' \in \mathrm{BReach}_i, e \in \mathcal{E}, (s,e,s') \in \mathrm{T}\} \cap \mathcal{H}_0 \neq \emptyset$ therefore transition from \mathcal{H}_0 to BReach_i $\exists s \in \mathcal{H}_0, s' \in \mathrm{BReach}_i, e \in \mathcal{E} : (s, e, s') \in \mathrm{T}$ Safety could be recovered if the transition $(s,e,s') \in T$ was removed Control design based on backward reachability: inhibit any transition (*s*,*e*,*s*') for which $s' \in BReach_i$, $e \in \mathcal{E}$, $s \in \mathcal{H}_0$ Typically amounts to 1. removing a discrete transition

2. adding a discrete transition to prevent continuous evolution

Next lecture		
Lyapunov stability of ODEs		
 Lyapunov's stability theorem 		
LaSalle's invariance principle		
Lyapunov stability of hybrid systems		