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Lecture #6
Reachability

João P. Hespanha

University of California
at Santa Barbara

Hybrid Control and Switched Systems

Summary

Review of previous lecture
Reachability
• transition systems
• reachability algorithm
• backward reachability algorithm
• invariance algorithm
• controller design based on backward reachability
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Sequence Properties (signals)

sig ≡ set of all piecewise continuous signals x:[0, T ) → Rn, T ∈ ( 0, ∞]
sig ≡ set of all piecewise constant signals q:[0, T )→ , T ∈ ( 0, ∞]

Sequence property ≡ p : sig × sig → {false,true}
E.g.,

A pair of signals (q, x) ∈ sig × sig satisfies p if p(q, x) = true

A hybrid automaton H satisfies p ( write H ² p ) if
p(q, x) = true, for every solution (q, x) of H

Sequence analysis ≡ Given a hybrid automaton H and a sequence property p
show that  H ² p
When this is not the case, find a witness
(q, x) ∈ sig × sig such that p(q, x) = false

(in general for solution starting on a given set of initial states 0 ⊂  × Rn)

Example #1: Bouncing ball

x1 · 0 & x2 < 0 ?

x2 ú – c x2
–t

(¤ p)(t0) ⇔ ∀ t≥t0, p(t)
(♦ p )(t0) ⇔ ∃ t≥t0, p(t)
(¤ ♦ p)(t0) ⇔ ∀ t1≥t0, ∃ t≥ t1 p(t)
(♦ ¤ p)(t0) ⇔ ∃ t1≥t0, ∀ t≥ t1 p(t)

Assuming that x1(0) ≥ 0, the hybrid automaton satisfies:
¤ { x1 ≥ 0 } ( short for (¤ { x1(t) ≥ 0 })(0) )
♦ { x1 = 0 }
¤ ♦ { x1 = 0 }
♦ ¤ { x1 < 1 }
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Safety properties

safety property ≡ a sequence property p that is:
1. nonempty, i.e., ∃ (q,x) such that p(q,x) = true
2. prefix closed, i.e., given signals (q,x)

p(q, x) ⇒ p(q*, x*)
for every prefix (q*, x*) to (q, x)

3. limit closed, i.e., given an infinite sequence of signals
(q1,x1) , (q2,x2), (q3,x3), etc.

each element satisfying p such that
(qk,xk) is a prefix to (qk+1,xk+1) ∀ k

then (q,x) ú limk→∞ (qk,xk) also satisfies p

Given a signal x:[0,T) → Rn, T∈(0,∞],  x*:[0,T*) → Rn is called a prefix to x
if  T*· T & x*(t) = x(t) ∀ t∈[0,T*)

“Something bad never happens:”
1. nontrivial
2. a prefix to a good signal is always good
3. if something bad happens, it will happen in finite time

Examples

E.g., p(q, x) = ¤ (q(t),x(t)) ∈ where ⊂ × Rn is a nonempty set

x1

x1 satisfies p
x2 does not

x2

this is a safety property: 
nonempty, prefix closed, 
limit closed

Other safety properties:
p(q, x) = x(t) ≥ 0 ∀ t (closed  )
p(q, x) = x(t) > 0 ∀ t (open  )
Nonsafety property:
p(q, x) = inft x(t) > 0 (not of the form above; not limit closed, Why?)
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Liveness properties

liveness property ≡ a sequence property p with the property that for 
every finite (q*, x*) ∈ sig × sig there is some (q, x) 
∈ sig × sig such that:
1. (q*, x*) is a prefix to (q, x) 
2. (q, x) satisfies p

“Something good can eventually happen:”
for any sequence there is a good continuation.

E.g., p(q, x) = ♦ (q(t),x(t))∈ where ⊂ × Rn is a nonempty set
p(q, x) = ¤ ♦ (q(t),x(t))∈ (always, eventually: ∀ t1≥t0, ∃ t≥ t1)
p(q, x) = ♦ ¤ (q(t),x(t))∈ (eventually, always: ∃ t1≥t0, ∀ t≥ t1)
p(q, x) = ∃ L>0 ¤ ||x|| < L what does it mean?
p(q, x) = ∀ ε>0 ♦ ¤ ||x|| < ε what does it mean?

very rich class, more difficult to verify

Given a signal x:[0,T) → Rn, T∈(0,∞],  x*:[0,T*) → Rn is called a prefix to x
if  T*· T & x*(t) = x(t) ∀ t∈[0,T*)

Completeness of liveness/safety

Theorem 2: For every nonempty (not always false) sequence property p
there is a safety property p1 and a liveness property p2 such that:

(q,x) satisfies p if and only if (q,x) satisfies both p1 an p2

Thus if we are able to verify safety and liveness properties we 
are able to verify any sequence property.

Theorem 1: If p is both a liveness and a safety property then every (q, x) ∈
sig × sig satisfies p, i.e., p is always true (trivial property)

But sequence properties are not all we may be interested in…

“ensemble properties” ≡ property of the whole family of solutions
e.g., stability (continuity with respect to initial conditions) is not a 
sequence property because by looking a each solution (q, x) individually 
we cannot decide if the system is stable. Much more on this later…

Can one find sequence properties that 
guarantee that the system is stable or unstable?
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Reachability

ReachH( 0) ≡ set of pairs (qf, xf) ∈  × Rn for which there is a solution (q,x) 
to H for which:
1. (q(t0),x(t0)) ∈ 0

2. ∃ t ≥ t0 : (q(t),x(t)) = (qf, xf)

Given: hybrid automaton H:

set of initial states 0 ⊂  × Rn

starts in 0

passes through (qf, xf)

0

ReachH( 0)

Reachability

ReachH( 0) ≡ set of pairs (qf, xf) ∈  × Rn for which there is a solution (q,x) 
to H for which:
1. (q(t0),x(t0)) ∈ 0

2. ∃ t ≥ t0 : (q(t),x(t)) = (qf, xf)

Given: hybrid automaton H:

set of initial states 0 ⊂  × Rn

starts in 0

passes through (qf, xf)

Invariant set ≡ set S⊂  × Rn for which  ReachH(S) = S

S
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Reachability v.s. Safety

ReachH( 0) ≡ set of pairs (qf, xf) ∈  × Rn for which there is a solution (q,x) 
to H for which:
1. (q(t0),x(t0)) ∈ 0

2. ∃ t ≥ t0 : (q(t),x(t)) = (qf, xf)

Given: hybrid automaton H:

set of initial states 0 ⊂  × Rn

starts in 0

passes through (qf, xf)

H satisfies a safety property
p(q, x) = ¤ (q(t),x(t)) ∈ 

where ⊂ × Rn is a nonempty set if and only if
ReachH( 0) ⊂

Reach( 0)
0

every point in every 
trajectory starting in 

0 satisfies p

Reachability v.s. Safety

ReachH( 0) ≡ set of pairs (qf, xf) ∈  × Rn for which there is a solution (q,x) 
to H for which:
1. (q(t0),x(t0)) ∈ 0

2. ∃ t ≥ t0 : (q(t),x(t)) = (qf, xf)

Given: hybrid automaton H:

set of initial states 0 ⊂  × Rn

starts in 0

passes through (qf, xf)

Reach( 0)

Over-approximation to the reach set ≡ any set over such that ReachH( 0) ⊂ over

To prove safety is enough to show that: over ⊂

over

every point in every 
trajectory starting in 

0 satisfies p

Are under-
approximations useful 
to study reachability?
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Transition system
generalization of finite automaton, differential equations, hybrid automaton, etc.

S ≡ set of states (finite or infinite)
E ≡ alphabet of events (finite or infinite)
T ⊂ S × E × S ≡ transition relation

1 2

3

a

b

a b

S = {1,2,3}
E = {a,b}
T ∈ { (1,a,2), (2,b,1), (2,b,3), (3,a,1) }

execution of a transition system ≡ sequence of states { s0, s1, s2, … } such that 
there exists a sequence of events { e0, e1, e2, … } 
for which (si, ei, si+1) ∈ T ∀ i

Given a set of initial states S0 ⊂ S:

transition
system 

T

ReachT(S0) ≡ set of states s ∈ S for which there is a finite execution that 
starts in S0 and ends at s

Transition systems
As far as reachability goes …

1. A finite automaton (deterministic or not) can be viewed as a transition system

Q ú {q1, q2, …, qn} ≡ finite set of states
Σ ú {a, b, c,… } ≡ finite set of input symbols (alphabet)
Φ : Q × Σ →Q ≡ transition function

automata
M

S = Q ≡ set of states (finite)
E = Σ ≡ alphabet of events (finite)
T = { (s,e,Φ(s,e)) : s ∈ Q , e ∈ Σ } ≡ transition relation

transition
system 

T

for nondeterministic finite automaton
T = { (s,e,s’) : s ∈ Q , e ∈ Σ, s’∈ Φ(s,e) }

Same set of reachable states
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Transition systems
As far as reachability goes …

1. A hybrid automaton can be viewed as a transition system

hybrid
automata

H

S = Q × Rn ≡ set of states (infinite)
E = {τ, (qi,qj): qi,qj∈Q} ≡ alphabet of events:

τ called the continuous evolution event 
(qi,qj) called a jump event

T ⊂ S × E ×S ≡ transition relation

transition
system 

T

Same set of reachable states

Q ≡ set of discrete states 
Rn ≡ continuous state-space
f : Q × Rn → Rn ≡ vector field
Φ : Q × Rn →Q × Rn ≡ discrete transition (& reset map)

( (q0,x0), τ, (q0,xf) ) ∈ T if ∃ tf > 0 s.t. 

( (q0,x0), (q0,qf) , (qf,xf) ) ∈ T if

same  (q0,x0) and τ lead 
to many distinct elements in T

(flows modeled as nondetermism)

Reachability algorithm
Reachability algorithms:

1

2 3

4 5 6

a b

baaa

S0 = {3}
Reach0 = {3}
Reach1 = {1,3,5,6}
Reach2 =  {1,2,3,5,6}
Reach3 = Q
Reach4 = Q
ReachT({3}) = Q

a
S0 = {2}
Reach0 = {2}
Reach1 = {2,4,5}
Reach2 = {2,4,5}
ReachT({2})={2,4,5}

initialization: Reach-1 = ∅
Reach0 = S0
i = 0

loop: while Reachi ≠ Reachi-1 do
Reachi+1 = Reachi ∪ {s’ ∈ S : ∃ s ∈ Reachi, e ∈ E, (s,e,s’) ∈ T}
i = i + 1

states one can transition to 
from Reachi
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Reachability algorithm
Reachability algorithms:

Theorem: If S is finite then
(i) the reachability algorithm finishes in a finite number of steps and
(ii) upon exiting the while-loop Reachi = ReachT(S0)

Why?

initialization: Reach-1 = ∅
Reach0 = S0
i = 0

loop: while Reachi ≠ Reachi-1 do
Reachi+1 = Reachi ∪ {s’ ∈ S : ∃ s ∈ Reachi, e ∈ E, (s,e,s’) ∈ T}
i = i + 1

states one can transition to 
from Reachi

Reachability algorithm
Reachability algorithms:

Theorem: If S is finite then
(i) the reachability algorithm finishes in a finite number of steps and
(ii) upon exiting the while-loop Reachi = ReachT(S0)

Why?
(i) In each iteration the number of elements in Reachi increases by at least 1.

Since it can have, at most, as many elements as S there can only be as many 
iterations as the number of elements in S (minus the number of elements in S0).

(ii) Reachi ≡ the set of states that can be reached in i steps, thus any state that can 
be reached in a finite number of steps must be in one of the Reachi

initialization: Reach-1 = ∅
Reach0 = S0
i = 0

loop: while Reachi ≠ Reachi-1 do
Reachi+1 = Reachi ∪ {s’ ∈ S : ∃ s ∈ Reachi, e ∈ E, (s,e,s’) ∈ T}
i = i + 1

states one can transition to 
from Reachi
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Reachability algorithm:

initialization: Reach-1 = ∅
Reach0 = S0
i = 0

loop: while Reachi ≠ Reachi-1 do
Reachi+1 = Reachi ∪ {s’ ∈ S : ∃ s ∈ Reachi, e ∈ E, (s,e,s’) ∈ T}
i = i + 1

Reachability algorithm

Two difficulties with hybrid automata
1. the set of states S ú Q×Rn is not finite (algorithm may not terminate)
2. In the while loop: Reachi+1 = Reachi ∪ S1 ∪ S2

Computation of 
S1ú {s’ ∈ S : ∃ s ∈ Reachi, e = (qi,qj) ∈ E , (s,e,s’) ∈ T} is simple

but
S2ú {s’ ∈ S : ∃ s ∈ Reachi, e = τ, (s,e,s’) ∈ T} is not (in general)

S1 = {(qf,xf) ∈ S : ∃ (q0,x0) ∈ Reachi, (qf,xf) = Φ (q0,x0)} = Φ(Reachi)
S2 = {(q0,xf) ∈ S : ∃ (q0,x0) ∈ Reachi, “there is a continuous evolution

from x0 to xf inside mode q0” }

states one can transition to 
from Reachi

Example #5: Tank system

y

pump goal ≡ prevent the tank from 
emptying or filling up 

constant outflow ≡ μ = 1

pump-on inflow ≡ λ = 3 δ = .5 ≡ delay between command 
is sent to pump and the 
time it is executed

pump off
(q = 1)

wait to on
(q = 2)

pump on
(q = 3)

wait to off
(q = 4)

y · 1 ?

y ≥ 2 ?
s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0
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Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2 y

s

Xo

.5

1 2 y

s
Reach0 = {1} × Xo

.5

q = 1

1 2 y

s
Reach1 = {1} × X1

.5

q = 1
τ event

X1Xo

Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s
Reach1 = {1} × X1

.5

q = 1

1 2

s

.5

q = 2(1,2) event

Xo

Reach2 = Reach1 ∪ { (2, (1,0)) }

y

y y
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Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s

.5

q = 2

1 2

s

.5

q = 2
τ event

Reach3 = Reach1 ∪ {(2, (1-α,α)) : α∈[0,.5] }Reach2 = Reach1 ∪ {(2, (1,0)) }

y

y y

Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s

.5

q = 2

1 2

s

.5

q = 3

Reach3 = Reach1 ∪ {(2, (1-α,α)) : α∈[0,.5] }

(2,3) event

Reach4 = Reach3 ∪ {(3, (.5,.5)) }

y

y y
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Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s

.5

q = 3

1 2

s

.5

q = 3

Reach4 = Reach3 ∪ {(3, (.5,.5)) }

τ event

Reach5 = Reach3 ∪ {(3, (.5,.5+α)):α∈[0,1.5] }

y

y y

Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s

.5

q = 3

1 2

s

.5

q = 4

(3,4) event

Reach5 = Reach3 ∪ {(3, (.5,.5+α)):α∈[0,1.5] } Reach6 = Reach5 ∪ {(4, (2,0)) }

y

y y
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Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s

.5

q = 4

1 2

s

.5

q = 4
τ event

Reach6 = Reach5 ∪ {(4, (2,0)) } Reach7 = Reach5 ∪ {(4, (2+2α,α)):α∈[0,.5] }

y

y y

Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s

.5

q = 4

1 2

s

.5

q = 1
(4,1) event

Reach6 = Reach5 ∪ {(4, (2,0)) } Reach7 = Reach6 ∪ {(1, (3,.5))}

y

y y
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Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s

.5

q = 1

1 2

s

.5

q = 1

Reach7 = Reach6 ∪ {(1, (α,.5)):α∈[1,3]}

τ event

Reach7 = Reach6 ∪ {(1, (3,.5))}

y

y y

Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2

s

Xo

.5

1 2

s

.5

q = 1 q = 2

Reach7 = Reach6 ∪ {(1, (α,.5)):α∈[1,3]}

(1,2) event

Reach8 = Reach7 !!!

1 2

y

y y
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Reachability algorithm for the tank system

y · 1 ?

y ≥ 2 ?s ú 0

s ≥ .5 ?

s ≥ .5 ?

s ú 0

Suppose S0 ú { (1,x): x ∈ Xo }

1 2 y

s

Xo

.5

.5

1 2 y

s
q = 1

.5

1 2 y

s
q = 3

1 2 y

s

.5

q = 4.5

q = 2

1 2 y

s

Initialized Rectangular Automaton

hybrid
automata

H

H is an initialized rectangular automaton if:
1. The set Q is finite
2. f(q,x) = k(q) ∈ Q ∀ x∈Rn (constant rational vector fields in each discrete mode)
3. The discrete transitions are of the form

Q ≡ set of discrete states    Rn ≡ continuous state-space
f : Q × Rn → Rn ≡ vector field
ϕ : Q × Rn →Q ≡ discrete transition
ρ : Q × Rn → Rn ≡ reset map

conditions for jumps are 
expressed by rectangles in x

rectangle ≡ set of the form I1 × I2 × … × In where each Ik is an interval whose 
finite end-points are rational (in Q) 
e.g., [3,4]× [5,6)   or   (-∞,1) × (1,2)   or   R × (1/2, 5/4)
but not [1,2]∪[3,4] × [5,6] or [1,21/2]× [3,4]

4. There is a function ν : Q → Qn such that
the resets are 

independent of x
(and rectangles for 

nondeterministic case)

where all the Rji are rectangles
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Example #5: Tank system

pump off
(q = 1)

wait to on
(q = 2)

pump on
(q = 3)

wait to off
(q = 4)

y · 1 ?

y ≥ 2 ?
y ú 1
s ú 0

s ≥ .5 ?

s ≥ .5 ?

y ú 2
s ú 0

y ú .5
s ú .5

y ú 3
s ú .5

By adding “no-effect” resets one obtains an initialized rectangular automaton

Decidability

Theorem: The reachability algorithm finishes in finite time for any 
initialized rectangular automaton (deterministic or not).

Moreover, one can implement the reachability algorithm exactly 
using finite memory and finite computation

• finite number of discrete states & constant resets ⇒ finite termination (only 
needs to compute a finite number of reach sets inside each mode)

• rational numbers needed for exact representation with finite memory
• constant vector fields & rectangular jump conditions make possible exact 

computation of reach sets inside each mode

H is an initialized rectangular automaton if:
1. the set Q is finite
2. vector field is constant in each discrete mode
3. jump conditions rectangular in x
4. resets independent of x

rectangular automaton

initialized
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Decidability
H is an initialized rectangular automaton if:
1. the set Q is finite
2. vector field is constant in each discrete mode
3. jump conditions rectangular in x
4. resets independent of x

Perhaps the most restrictive condition is the “initialization”
because it clears any memory regarding the previous continuous 

evolution (other than what was encoded in the discrete state)
but without it we may not have finite termination

rectangular automaton

initialized

s ≥ 1 ?

S0 ú {1,0} = Reach0

x

s

Reach1

Reach2

Back to safety…
Given: hybrid automaton H:

set of initial states 0 ⊂  × Rn

H satisfies a safety property p(q, x) = ¤ (q(t),x(t))∈ , ⊂ × Rn if and 
only if ReachH( 0) ⊂

Reach( 0)

every point in every 
trajectory starting in 

H0 satisfies p

Reachability algorithm:

initialization: Reach-1 = ∅
Reach0 = S0
i = 0

loop: while Reachi ≠ Reachi-1 or Reachi ⊄ do
Reachi+1 = Reachi ∪ {s’ ∈ S : ∃ s ∈ Reachi, e ∈ E, (s,e,s’) ∈ T}
i = i + 1

end: if Reachi = Reachi-1 then H satisfies p
else H does not satisfy p

algorithm can terminate 
immediately if one of the 

Reachi is outside of 
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Backward reachability
Given: hybrid automaton H:

set of final states f ⊂  × Rn

BackReachH( f) ≡ set of pairs (q0, x0) ∈  × Rn for which there is a solution 
(q,x) to H for which:
1. (q(t0),x(t0)) = (q0, x0) 
2. ∃ t ≥ t0 : (q(t),x(t)) ∈ f

starts at (q0, x0)
passes through f

What can you say about 
ReachH(BackReachH( f))
BackReachH(ReachH( 0)) ?

f

BackReachH( f)

In general
ReachH(BackReachH( f)) ⊃ f
BackReachH(ReachH( 0)) ⊃ 0

For deterministic systems
ReachH(BackReachH( f)) = ReachH( f)⊃ f

For backwards-in-time deterministic systems
BackReachH(ReachH( 0)) = BackReachH( 0) ⊃ 0

Backward reachability
Given: hybrid automaton H:

set of final states f ⊂  × Rn

BackReachH( f) ≡ set of pairs (q0, x0) ∈  × Rn for which there is a solution 
(q,x) to H for which:
1. (q(t0),x(t0)) = (q0, x0) 
2. ∃ t ≥ t0 : (q(t),x(t)) ∈ f

starts at (q0, x0)
passes through f

BR( f)

R(BR( f))

R( 0)

BR(R( f))

f

0
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Backward reachability
Given: hybrid automaton H:

set of final states f ⊂  × Rn

H satisfies a safety property
p(q, x) = ¤ (q(t),x(t)) ∈ 

where ⊂ × Rn is a nonempty set if and only if
BackReachH(¬ ) ∩ 0 = ∅

BackReach(¬ )

every point in every 
trajectory starting in 

0 satisfies p

¬
0

BackReachH( f) ≡ set of pairs (q0, x0) ∈  × Rn for which there is a solution 
(q,x) to H for which:
1. (q(t0),x(t0)) = (q0, x0) 
2. ∃ t ≥ t0 : (q(t),x(t)) ∈ f

starts at (q0, x0)
passes through f

¬ means  × Rn \ 

Transition system

S ≡ set of states (finite or infinite)
E ≡ alphabet of events (finite or infinite)
T ⊂ S × E × S ≡ transition relation

1 2

3

a

b

a b

S = {1,2,3}
E = {a,b}
T ∈ { (1,a,2), (2,b,1), (2,b,3), (3,a,1) }

execution of a transition system ≡ sequence of states { s0, s1, s2, … } such that 
there exists a sequence of events { e0, e1, e2, … } 
for which (si, ei, si+1) ∈ T ∀ i

Given a set of initial states S0 ⊂ S:

transition
system 

T

ReachT(S0) ≡ set of states s ∈ S for which there is a finite execution that 
starts in S0 and ends at s

Given a set of final states Sf ⊂ S:
BackReachT(Sf) ≡ set of states s ∈ S for which there is a finite execution that 

starts at s and ends in Sf
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Backward reachability algorithm
Backward reachability algorithm:

1

2 3

4 5 6

a b

baaa

Sf = {5}
BReach0 = {5}
BReach1 = {2,3,5}
BReach2 =  {1,2,3,5}
BReach3 = {1,2,3,5}
BackReachT({5}) = {1,2,3,5}

a

initialization: BReach-1 = ∅
BReach0 = Sf
i = 0

loop: while BReachi ≠ BReachi-1 do
BReachi+1 = BReachi ∪ {s ∈ S : ∃ s’ ∈ BReachi, e ∈ E s.t. (s,e,s’) ∈ T}
i = i + 1

states from where one can 
transition into BReachi

Backward reachability algorithm
Backward reachability algorithm:

initialization: BReach-1 = ∅
BReach0 = Sf
i = 0

loop: while BReachi ≠ BReachi-1 do
BReachi+1 = BReachi ∪ {s ∈ S : ∃ s’ ∈ BReachi, e ∈ E s.t. (s,e,s’) ∈ T}
i = i + 1

Theorem: If S is finite then
(i) the backwards reachability algorithm finishes in a finite number 
of steps and
(ii) upon exiting the while-loop BReachi = BackReachT(Sf)

Why?
(i) In each iteration the number of elements in BReachi increases by at least 1.

Since it can have, at most, as many elements as S there can only be as many 
iterations as the number of elements in S (minus the number of elements in S0).

(ii) BReachi ≡ the set of states that can reach f in i steps, thus any state from 
which f can be reached in a finite number of steps must be in one of the Reachi

states from where one can 
transition into BReachi
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Invariant set algorithm
Invariant set algorithm (backward reachability working with complements):

1

2 3

4 5 6

a b

baaa

= {1,2,3,4,6}  (Sf = ¬  = {5})
Inv0 = {1,2,3,4,6}
Inv1 = {1,4,6}
Inv2 =  {4,6}
Inv3 = {4,6}
InvT({5}) = {4,6} = ¬ BackReachT({5})

a

initialization: Inv-1 = S
Inv0 = ¬ Sf
i = 0

loop: while Invi ≠ Invi-1 do
Invi+1 = Invi ∩ {s ∈ S : ∀ s’ ∉ Invi, e ∈ E s.t. (s,e,s’) ∉ T}
i = i + 1

Invi ú ¬ BReachi

complement of previous set
{s ∈ S : ∃ s’ ∉ Invi, e ∈ E s.t. (s,e,s’) ∈ T}

(new set can be interpreted as 
“states for which there is no transition out of Invi”)

consistent with previous computation:
BackReachT({5}) = {1,2,3,5}

Invariant set algorithm

Theorem: If S is finite then
(i) the algorithm finishes in a finite number of steps and
(ii) upon exiting the while loop

Invi = InvT(¬ Sf) ≡ largest invariant set contained in ¬ Sf (= )

Why?
(i) In each iteration the number of elements in Invi decreases by at least 1.

There can only be as many iterations as the number of elements in S\Sf.
(ii) Upon exiting:    Inv ⊂ {s ∈ S : ∀ s’ ∉ Inv, e ∈ E, (s,e,s’) ∉ T}

set of states for which there is no 
transition out of Inv

⇓
Inv is invariant set

Invariant set algorithm (backward reachability working with complements):

states for which there is 
no transition out of Invi

initialization: Inv-1 = S
Inv0 = ¬ Sf
i = 0

loop: while Invi ≠ Invi-1 do
Invi+1 = Invi ∩ {s ∈ S : ∀ s’ ∉ Invi, e ∈ E s.t. (s,e,s’) ∉ T}
i = i + 1

Invi ú ¬ BReachi



23

Invariant sets
Given: hybrid automaton H:

set of final states f ⊂  × Rn

H satisfies a safety property
p(q, x) = ¤ (q(t),x(t)) ∈ 

where ⊂ × Rn is a nonempty set if and only if
BackReachH(¬ ) ∩ 0 = ∅

or equivalently
¬ InvH(  ) ∩ 0 = ∅ ⇔  0 ⊂ InvH(  )

InvH( f) ≡ largest invariant set contained in f.
As just seen, InvH( f) = ¬ BackReach(¬ f)

Inv( )
0

InvH( ) ≡ largest set of 
initial states for which the 

property is satisfied

Back to safety (again)…
Given: hybrid automaton H:

set of final states f ⊂  × Rn

H satisfies a safety property p(q, x) = ¤ (q(t),x(t)) ∈ ⊂ × Rn (nonempty set) 
if and only if BackReachH(¬ ) ∩ 0 = ∅

BackReach(¬ )

every point in every 
trajectory starting in 

0 satisfies p

¬
0

algorithm can terminate 
immediately if one of the 

BReachi intersects 0

Backwards Reachability algorithm:

initialization: BReach-1 = ∅
BReach0 = Sf := ¬
i = 0

loop: while BReachi ≠ BReachi-1 or BReachi ∩ 0 ≠ ∅ do
BReachi+1 = BReachi ∪ {s ∈ S : ∃ s’ ∈ BReachi, e ∈ E, (s,e,s’) ∈ T}
i = i + 1

end: if Reachi = Reachi-1 then H satisfies p else H does not satisfy p
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Controller design based on backward reachability

algorithm can terminate 
immediately if one of the 

BReachi intersects 0

Backwards Reachability algorithm:

initialization: BReach-1 = ∅
BReach0 = Sf := ¬
i = 0

loop: while BReachi ≠ BReachi-1 or BReachi ∩ 0 ≠ ∅ do
BReachi+1 = BReachi ∪ {s ∈ S : ∃ s’ ∈ BReachi, e ∈ E, (s,e,s’) ∈ T}
i = i + 1

end: if Reachi = Reachi-1 then H satisfies p else H does not satisfy p

When one obtains BReachi+1 ∩ 0 ≠ ∅ it is because 
{s ∈ S : ∃ s’ ∈ BReachi, e ∈ E, (s,e,s’) ∈ T} ∩ 0 ≠ ∅

therefore
∃ s ∈ 0, s’ ∈ BReachi, e ∈ E : (s,e,s’) ∈ T 

Safety could be recovered if the transition (s,e,s’) ∈ T was removed

Control design based on backward reachability:
inhibit any transition (s,e,s’)  for which s’ ∈ BReachi, e ∈ E, s ∈ 0

transition from 0 to BReachi

Typically amounts to
1. removing a discrete transition
2. adding a discrete transition to prevent continuous evolution

Next lecture…

Lyapunov stability of ODEs
• epsilon-delta and beta-function definitions
• Lyapunov’s stability theorem
• LaSalle’s invariance principle
Lyapunov stability of hybrid systems


