Hybrid Control and Switched Systems

Lecture #16
Nonlinear Supervisory Control

João P. Hespanha
University of California
at Santa Barbara

Summary

• Estimator-based nonlinear supervisory control
• Examples
Motivation: in the control of complex and highly uncertain systems, traditional methodologies based on a single controller do not provide satisfactory performance.

Key ideas:
1. Build a bank of alternative controllers
2. Switch among them online based on measurements

For simplicity we assume a stabilization problem, otherwise controllers should have a reference input r.

Supervisor:
- places in the feedback loop the controller that seems more promising based on the available measurements
- typically logic-based/hybrid system
Estimator-based nonlinear supervisory control

Class of admissible processes: Example #4

Process is assumed to be in the family
\[\dot{\alpha} = a\alpha + b\beta \]
\[\dot{\beta} = u \]
where
\[p = (a, b) \in \mathbb{W} := [-1,1] \times \{-1,1\} \]
Class of admissible processes

A process is assumed to be in a family of parametric uncertainties:

\[\mathcal{M} := \bigcup_{p \in P} \mathcal{M}_p \]

where \(\mathcal{M}_p \) is the small family of systems around a nominal process model \(N_p \).

Typically, \(\mathcal{M}_p := \{ M_p : d(M_p, N_p) \leq \epsilon_p \} \)

Most results presented here:
- independent of metric \(d \) (e.g., detectability)
- or restricted to case \(\epsilon_p = 0 \) (e.g., matching)

Candidate controllers: Example #4

A process is assumed to be in the family

\[\dot{\alpha} = a\alpha^3 + b\beta \]
\[\dot{\beta} = u \]
\[y = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \quad p = (a, b) \in \mathcal{W} := [-1,1] \times \{-1,1\} \]

The state is accessible

To facilitate the controller design, one can first “back-step” the system to simplify its stabilization:

Virtual input:
\[\dot{\alpha} = -\alpha + \gamma \quad \gamma := a + a\alpha^3 + b\beta \]
\[\dot{\beta} = \gamma + b(u - \Psi_p(\alpha, \gamma)) \]
\[y := \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \frac{1}{b}(\gamma - a - a\alpha^3) \end{bmatrix} \]

After the coordinate transformation the new state is no longer accessible

Now the control law:
\[u = \Psi_p(\alpha, \gamma) \]

stabilizes the system

Candidate controllers

\[u = \Psi_p(\alpha, \gamma) = \Psi_p(\alpha, a + a\alpha^3 + b\beta) = -\frac{(a\alpha^3 + b\beta)(1 + 3a\alpha^2)}{b} \]
Candidate controllers

Class of admissible processes

\[\mathcal{M} := \bigcup_{p \in \mathcal{P}} \mathcal{M}_p \quad T_p \equiv \text{small family of systems around a nominal process model } N_p \]

Assume given a family of candidate controllers

\[\mathcal{C} := \bigg\{ \dot{z}_q = F_q(z_q, y), \ u = G_q(z_q, y) : q \in Q \bigg\} \]

(without loss of generality all with same dimension)

Multi-controller:

\[\begin{align*}
\dot{x}_C &= F_\sigma(x_C, y) \\
u &= G_\sigma(x_C, y)
\end{align*} \]

Multi-estimator

\[\begin{align*}
x_E &= A_p(x_E, y, u) \\
y_p &= C_p(x_E) \quad p \in \mathcal{P}
\end{align*} \]

How to design a multi-estimator?

we want: Matching property: there exist some \(p^* \in \mathcal{W} \) such that \(e_{p^*} \) is “small”

Typically obtained by:

process in \(\mathcal{M} := \bigcup_{p \in \mathcal{P}} \mathcal{M}_p \) \[\implies \exists p^* \in \mathcal{W}: \text{process in } T_{p^*} \quad e_{p^*} \text{ is “small”} \]

when process “matches” \(T_{p^*} \), the corresponding error must be “small”
Candidate controllers: Example #4

Process is assumed to be
\[\dot{\alpha} = -\alpha + \gamma \]
\[\dot{\gamma} = -\gamma + b^*(u - \Psi_p(\alpha, \gamma)) \]
\[y := \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{b^*}(\gamma - \alpha - a^*\alpha^3) \]
\[
\begin{align*}
\gamma := \alpha + a^*\alpha^3 + b^*\beta \\
\Psi_p(\alpha, \gamma) := \frac{(\alpha - \gamma)(1 + 3a\alpha^2)}{b}
\end{align*}
\]

Multi-estimator:
\[
\begin{align*}
\dot{\alpha}_p &= -\alpha_p + (\alpha + a\alpha^3 + b\beta) \\
\dot{\gamma}_p &= -\gamma_p + b(u - \Psi_p(\alpha, \alpha + a\alpha^3 + b\beta)) \\
e_p &= \begin{bmatrix} \alpha_p - \alpha \\ \gamma_p - (\alpha + a\alpha^3 + b\beta) \end{bmatrix}
\end{align*}
\]

for \(p = p^* \) …
\[
\begin{align*}
e_p &= \begin{bmatrix} \alpha_p - \alpha \\ \gamma_p - (\alpha + a\alpha^3 + b\beta) \end{bmatrix} \Rightarrow \dot{e}_{p^*} &= -e_{p^*} \Rightarrow e_{p^*} \to 0
\end{align*}
\]

\(\gamma \) for \(p = p^* \)

Designing multi-estimators - I

Suppose nominal models \(N_p, p \in W \) are of the form
\[
\begin{align*}
z &= A_p(z, u) \\
y &= z \\
p \in P
\end{align*}
\]

\(\text{no exogenous} \)
\(\text{input} \ w \)
\(\text{state} \)
\(\text{accessible} \)

Multi-estimator:
\[
\begin{align*}
\dot{z}_p &= A(z_p - y) + A_p(y, u) \\
y_p &= z_p \\
p \in P
\end{align*}
\]

\(\text{asymptotically} \)
\(\text{stable} \ A \)

When process matches the nominal model \(N_{p^*} \), exponentially
\[
\begin{align*}
e_{p^*} := y_{p^*} - y = z_{p^*} - z \Rightarrow \dot{e}_{p^*} &= A\epsilon_{p^*} \Rightarrow \epsilon_{p^*} \to 0 \text{ as } t \to \infty
\end{align*}
\]

Matching property: Assume \(T = \{ N_p : p \in W \} \)
\[
\exists p^* \in W, \epsilon_{p^*} > 0 : \quad \| e_{p^*}(t) \| \leq c_0 e^{\lambda^* t}, \quad t \geq 0
\]
Designing multi-estimators - II

Suppose nominal models $N_p, p \in \mathbb{W}$ are of the form

\[
\dot{z} = A_p z + B_p w + H_p(y, u) \quad \text{asymptotically stable } A_p \quad y = C_p z + D_p w \quad p \in \mathcal{P}
\]

\[
\begin{align*}
\text{Multi-estimator:} & \\
\dot{z}_p &= A_p z_p + H_p(y, u) \quad y_p = C_p z_p \quad p \in \mathcal{P}
\end{align*}
\]

When process matches the nominal model N_{p^*}

\[
\begin{align*}
\dot{z}_{p^*} := \dot{z}_p - z \quad &\Rightarrow \quad \dot{z}_{p^*} = A_p \dot{z}_{p^*} - B_p w \\
\end{align*}
\]

Matching property: Assume $\mathcal{T} = \{ N_p : p \in \mathbb{W} \}$

\[
\exists p^* \in \mathbb{W}, c_w, c_{\lambda^*} > 0 : \quad \| e_{p^*}(t) \| \leq c_{w} e^{\lambda^* t} + c_w \quad t \geq 0
\]

with $c_w = 0$ in case $w(t) = 0, \forall t \geq 0$

State-sharing is possible when all A_p are equal and $H_p(y, u)$ is separable:

\[
H_p(y, u) = M(y, u) k(p) \quad \forall p, u, y
\]

Designing multi-estimators - III

Suppose nominal models $N_p, p \in \mathbb{W}$ are of the form

\[
\begin{align*}
\ddot{z} = \zeta_p(\dot{z}) \left(A_p \xi_p^{-1}(\dot{z}) + B_p w + H_p(y, u) \right) \quad y = C_p \xi_p^{-1}(\dot{z}) + D_p w & \quad p \in \mathcal{P}
\end{align*}
\]

\[
\begin{align*}
\text{asymptotically stable } A_p \quad &\Rightarrow \quad \ddot{z} = \zeta_p(\dot{z}) = \zeta_{p^*}(\dot{z}) = \zeta_{p^*} \circ \zeta_p^{-1}
\end{align*}
\]

The Matching property is an input/output property so the same multi-estimator can be used:

\[
\begin{align*}
\dot{z}_p &= A_p z_p + H_p(y, u) \quad y_p = C_p z_p \quad p \in \mathcal{P}
\end{align*}
\]

Matching property: Assume $\mathcal{T} = \{ N_p : p \in \mathbb{W} \}$

\[
\exists p^* \in \mathbb{W}, c_w, c_{\lambda^*} > 0 : \quad \| e_{p^*}(t) \| \leq c_{w} e^{\lambda^* t} + c_w \quad t \geq 0
\]

with $c_w = 0$ in case $w(t) = 0, \forall t \geq 0$
The switched system can be seen as the interconnection of the process with the “injected system” essentially the multi-controller & multi-estimator but now quite...

Constructing the injected system

1st Take a parameter estimate signal $\rho : [0, \infty) \rightarrow \mathbb{W}$.

2nd Define the signal $v := e_\rho = y_\rho - y$

3rd Replace y in the equations of the multi-estimator and multi-controller by $y_\rho - v$.

\[
\begin{align*}
\dot{x}_E &= A_E(x_E, y_\rho - v, u) \\
y_p &= C_p(x_E) \quad p \in \mathcal{P} \\
\dot{x}_C &= F_\sigma(x_C, y_\rho - v) \\
u &= G_\sigma(x_C, y_\rho - v)
\end{align*}
\]
Switched system = process + injected system

Q: How to get “detectability” on the switched system?
A: “Stability” of the injected system

Stability & detectability of nonlinear systems

Stability: input u “small” \Rightarrow state x “small”

$$\dot{x} = A(x, u) \quad A(0, 0) = ()$$

Input-to-state stable (ISS) if $\exists \beta \in \mathbb{R}_+, \gamma \in \mathbb{R}$

$$||x(t)|| \leq \beta(||x(0)||, t) + \sup_{\tau \in [0, t]} \gamma(||u(\tau)||) \quad \forall t \geq 0$$

Integral input-to-state stable (iISS) if $\exists \alpha \in \mathbb{R}_\infty, \beta \in \mathbb{R}_+, \gamma \in \mathbb{R}$

$$\alpha(||x(t)||) \leq \beta(||x(0)||, t) + \int_{\tau \in [0, t]} \gamma(||u(\tau)||) \quad \forall t \geq 0$$

Notation:
$\alpha: [0, \infty) \rightarrow [0, \infty)$ is class $\mathbb{R} \equiv$ continuous, strictly increasing, $\alpha(0) = 0$

is class $\mathbb{R}_\infty \equiv$ class \mathbb{R} and unbounded

$\beta: [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ is class $\mathbb{R}_\mathbb{S} \equiv \beta(\cdot, t) \in \mathbb{R}$ for fixed t &

$$\lim_{s \rightarrow \infty} \beta(s, t) = 0 \text{ (monotonically) for fixed } s$$
Stability & detectability of nonlinear systems

Stability: input u “small” \Rightarrow state x “small”

\[
\dot{x} = A(x, u) \quad A(0, 0) = 0
\]

Input-to-state stable (ISS) if $\exists \beta \in \mathcal{R}, \gamma \in \mathcal{R}$

\[
\|x(t)\| \leq \beta(\|x(0)\|, t) + \sup_{\tau \in [0, t]} \gamma(\|u(\tau)\|) \quad \forall t \geq 0
\]

Integral input-to-state stable (iISS) if $\exists \alpha \in \mathcal{K}_\infty, \beta \in \mathcal{R}, \gamma \in \mathcal{R}$

\[
\alpha(\|x(t)\|) \leq \beta(\|x(0)\|, t) + \int_{\tau \in [0, t]} \gamma(\|u(\tau)\|) \quad \forall t \geq 0
\]

One can show:

1. for ISS systems: $u \to 0 \Rightarrow$ solution exist globally & $x \to 0$
2. for iISS systems: $\int_0^\infty \gamma(\|u\|) < \infty \Rightarrow$ solution exist globally & $x \to 0$

Detectability: input u & output y “small” \Rightarrow state x “small”

\[
\dot{x} = A(x, u) \quad y = C(x, u)
\]

Detectability (or input/output-to-state stability IOSS) if $\exists \beta \in \mathcal{R}, \gamma_u, \gamma_y \in \mathcal{R}$

\[
\|x(t)\| \leq \beta(\|x(0)\|, t) + \sup_{\tau \in [0, t]} \gamma_u(\|u(\tau)\|) + \sup_{\tau \in [0, t]} \gamma_y(\|y(\tau)\|) \quad \forall t \geq 0
\]

Integral detectable (iIOSS) if $\exists \alpha \in \mathcal{K}_\infty, \beta \in \mathcal{R}, \gamma_u, \gamma_y \in \mathcal{R}$

\[
\alpha(\|x(t)\|) \leq \beta(\|x(0)\|, t) + \int_{\tau \in [0, t]} \gamma_u(\|u(\tau)\|) + \int_{\tau \in [0, t]} \gamma_y(\|y(\tau)\|) \quad \forall t \geq 0
\]

One can show:

1. for IOSS systems: $u, y \to 0 \Rightarrow x \to 0$
2. for iIOSS systems: $\int_0^\infty \gamma_u(\|u\|), \int_0^\infty \gamma_y(\|y\|) < \infty \Rightarrow x \to 0$
Certainty Equivalence Stabilization Theorem

Theorem: (Certainty Equivalence Stabilization Theorem)
Suppose the process is detectable and take fixed $\rho = p \in W$ and $\sigma = q \in X$

1. injected system ISS \Rightarrow switched system detectable.
2. injected system integral ISS \Rightarrow switched system integral detectable

Stability of the injected system is not the only mechanism to achieve detectability:
e.g., injected system i/o stable + process “min. phase” \Rightarrow detectability of switched system

(Nonlinear Certainty Equivalence Output Stabilization Theorem)

Achieving ISS for the injected system

Theorem: (Certainty Equivalence Stabilization Theorem)
Suppose the process is detectable and take fixed $\rho = p \in W$ and $\sigma = q \in X$

1. injected system ISS \Rightarrow switched system detectable.
2. injected system integral ISS \Rightarrow switched system integral detectable

We want to design candidate controllers that make the injected system
(at least) integral ISS with respect to the “disturbance” input v

- “disturbance” input v can be measured ($v = e\rho = y\rho - y$)
- the whole state of the injected system is measurable (x_C, x_E)
Designing candidate controllers: Example #4

Multi-estimator:
\[
\begin{align*}
\dot{\alpha}_p &= -\alpha_p + (\alpha + a\alpha^3 + b\beta) \\
\dot{\gamma}_p &= -\gamma_p + b(u - \Psi_p(\alpha, \alpha + a\alpha^3 + b\beta)) \\
e_p &= \begin{bmatrix} \alpha_p - \alpha \\ \gamma_p - (\alpha + a\alpha^3 + b\beta) \end{bmatrix}
\end{align*}
\]

To obtain the injected system, we use
\[
\begin{bmatrix} \alpha_p \\ \gamma_p \end{bmatrix} = \begin{bmatrix} \alpha \\ \alpha + a\alpha^3 + b\beta \end{bmatrix} - \begin{bmatrix} \dot{\alpha}_p \\ \dot{\gamma}_p \end{bmatrix}
\]

Candidate controller \(q = \chi(p) \):
\[
\begin{align*}
u &= \Psi_p(\alpha_p - \tilde{\alpha}_p, \gamma_p - \tilde{\gamma}_p) = \Psi_p(\alpha + a\alpha^3 + b\beta) \\
\dot{\alpha}_p &= -\alpha_p + \gamma_p - \tilde{\gamma}_p \\
\dot{\gamma}_p &= -\gamma_p \\
\text{Detectability property}
\end{align*}
\]

For nonlinear systems dwell-time logics do not work because of finite escape

Decision logic
Scale-independent hysteresis switching

Theorem: Let \mathcal{W} be finite with m elements. For every $p \in \mathcal{W}$

$$N_\sigma(\tau, t) \leq 1 + m + \frac{m \log (e_0^{-1} e^{\lambda t} \mu_p(t))}{\log(1 + h)} + \frac{m \lambda (t - \tau)}{\log(1 + h)} \quad \forall t > \tau \geq \zeta$$

number of switchings in $[\tau, t)$

and

$$\int_0^t e^{-\lambda(t-\tau)} \gamma_p(||e_\rho(\tau)||) d\tau \leq (1 + h) m \mu_p(t) \quad \forall t > \zeta$$

Assume \mathcal{W} is finite, the γ_p are locally Lipschitz and

$$\exists p^* \in \mathcal{P}, c_0 > 0, \lambda^* > \lambda: \quad ||e_{p^*}(t)|| \leq c_0 e^{-\lambda^* t} \quad \forall t \in [0, T_{\text{max}}]$$

maximum interval of existence of solution

$$e^{\lambda t} \mu_p(t) = e_0 + \int_0^t e^{\lambda \tau} \gamma_p(||e_\rho(\tau)||) d\tau$$

uniformly bounded on $[0, T_{\text{max}})$

$$N_\sigma(t, \tau) \& \int_0^t e^{\lambda \tau} \gamma_p(||e_\rho(\tau)||) d\tau$$

uniformly bounded on $[0, T_{\text{max}})$

All the μ_p can be generated by a system with small dimension if $\gamma_p(||e_\rho||)$ is separable. i.e.,

$$\gamma_p(||e_\rho||) = k(p) h(y, u, x_E) \quad \forall p, u, y, x_E,$$
Scale-independent hysteresis switching

Theorem: Let \(\mathcal{W} \) be finite with \(m \) elements. For every \(p \in \mathcal{W} \)
\[
N(p, \tau, t) \leq 1 + m + \frac{m \log \left(\log(1 + h) \right)}{\log(1 + h)} \quad \forall t > \tau \geq \tau \text{ number of switchings in } [\tau, t)
\]
and
\[
\int_0^t e^{-\lambda(t-\tau)} \gamma_p(||e_p(\tau)||) d\tau \leq (1 + h)m\mu_p(t) \quad \forall t > \tau
\]

Assume \(\mathcal{W} \) is finite, the \(\gamma_p \) are locally Lipschitz and
\[
\exists p^* \in \mathcal{P}, c_0 > 0, \lambda^* > \lambda : \quad ||e_p^*(t)|| \leq c_0 e^{-\lambda^* t} \quad \forall t \in [0, T_{\text{max}})
\]

Non-destabilizing property: Switching will stop at some finite time \(T^* \in [0, T_{\text{max}}) \)
Small error property:
\[
\int_0^{T^*} e^{\lambda^* (t-\tau)} \gamma_p(||e_p(\tau)||) d\tau \leq C^* < \infty \quad \forall t \in [0, T_{\text{max}})
\]

Analysis

\(w = 0, \) no unmodeled dynamics

1st by the Matching property: \(\exists p^* \in \mathcal{W} \) such that \(||e_p(t)|| \leq c_0 e^{\lambda_p t} \) \(t \geq 0 \)

2nd by the Non-destabilization property: switching stops at a finite time \(T^* \in [0, T_{\text{max}}) \) \(\Rightarrow p(t) = p^* \) & \(\sigma(t) = \gamma(p) \) \(\forall t \in [T^*, T_{\text{max}}) \)

3rd by the Small error property:
\[
\int_{T^*}^{T_{\text{max}}} e^{\lambda^* (t-\tau)} \gamma_p(||e_p(\tau)||) d\tau < \infty
\]

4th by the Detectability property:

the state \(x \) of the switched system is bounded on \([T^*, T_{\text{max}})\)
\[
\downarrow
\]
solution exists globally \(T_{\text{max}} = \infty \) & \(x \to 0 \) as \(t \to \infty \)

Theorem: Assume that \(\mathcal{W} \) is finite and all the \(\gamma_p \) are locally Lipschitz. The state of the process, multi-estimator, multi-controller, and all other signals converge to zero as \(t \to \infty \).
Outline

✓ Supervisory control overview
✓ Estimator-based linear supervisory control
✓ Estimator-based nonlinear supervisory control
✗ Examples

Example #4: System in strict-feedback form

Suppose nominal models $N_p, p \in \mathbb{W}$ are of the form
\[
\dot{\alpha} = a\alpha^3 + b\beta
\]
\[
\dot{\beta} = u \quad \text{state accessible}
\]
To facilitate the controller design, one can first “back-step” the system to simplify its stabilization:
\[
\dot{\alpha} = -\alpha + \gamma \quad \gamma := \alpha + a\alpha^3 + b\beta
\]
\[
\dot{\beta} = -\gamma + b(u - \Psi_p(\alpha, \gamma))
\]
\[
y := \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \frac{1}{b}(\gamma - \alpha - a\alpha^3) \end{bmatrix}
\]
now the control law
\[
u = \Psi_p(\alpha, \gamma)
\]
stabilizes the system
Example #4: System in strict-feedback form

Suppose nominal models \(N_p, p \in \mathcal{P} \) are of the form

\[
\begin{align*}
\dot{\alpha} &= -\alpha + \gamma \\
\dot{\gamma} &= -\gamma + b(u - \Psi_p(\alpha, \gamma)) \\
y &:= \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \frac{1}{b}(\gamma - \alpha - a\alpha^3) \end{bmatrix}
\end{align*}
\]

Multi-estimator:

\[
\begin{align*}
\dot{\alpha}_p &= -\alpha_p + (\alpha + a\alpha^3 + b\beta) \\
\dot{\gamma}_p &= -\gamma_p + b(u - \Psi_p(\alpha, \alpha + a\alpha^3 + b\beta)) \\
p &\in \mathcal{P}
\end{align*}
\]

When process matches the nominal model \(N_p^* \) exponentially, it is separable so we can do state-sharing.

Candidate controller \(q = \chi(p) \):

\[
\begin{align*}
e_p &:= \begin{bmatrix} \alpha_p - \alpha \\ \gamma_p - (\alpha + a\alpha^3 + b\beta) \end{bmatrix} \\
\Rightarrow \quad e_p^* &= -e_p^* \\
\Rightarrow \quad e_p^* &\to 0
\end{align*}
\]

Detectability property

Example #4: System in strict-feedback form

\[
\begin{align*}
\dot{\alpha} &= a\alpha^3 + b\beta \\
\dot{\beta} &= u
\end{align*}
\]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{example4_graph.png}
\end{figure}
Example #4: System in strict-feedback form

Suppose nominal models $N_p, p \in \mathcal{W}$ are of the form

$$\dot{\alpha} = a\alpha^3 + b\beta \quad \quad p := (a, b) \in \mathcal{P} \subset [-1, 1] \times [-1, 1] \setminus \{0\}$$

$$\dot{\beta} = u \quad \text{state accessible}$$

In the previous back-stepping procedure:

$$\dot{\alpha} = -\alpha + \gamma \quad \quad \gamma = \alpha + a\alpha^3 + b\beta$$

$$\dot{\gamma} = -\gamma + b(u - \Psi_p(\alpha, \gamma))$$

the controller $u = \Psi_p(\alpha, \gamma) \Rightarrow b\beta \rightarrow -\alpha - a\alpha^3$ nonlinearity is cancelled (even when $a < 0$ and it introduces damping)

One could instead make

$$b\beta \rightarrow \varphi_p(\alpha) := \begin{cases} 0 & a\alpha^2 \leq -1 \\ -\alpha - a\alpha^3 & a\alpha^2 > -1 \end{cases}$$

pointwise min-norm design

still leads to exponential decrease of α (without canceling nonlinearity when $a < 0$)

Example #4: System in strict-feedback form

Suppose nominal models $N_p, p \in \mathcal{W}$ are of the form

$$\dot{\alpha} = a\alpha^3 + b\beta \quad \quad p := (a, b) \in \mathcal{P} \subset [-1, 1] \times [-1, 1] \setminus \{0\}$$

$$\dot{\beta} = u \quad \text{state accessible}$$

A different recursive procedure:

$$\dot{\alpha} = a\alpha^3 + \varphi_p(\alpha) + \gamma \quad \quad \gamma := b\beta - \varphi_p(\alpha)$$

$$\dot{\gamma} = \Psi_p(\alpha, \gamma) + bu$$

In this case

$$u = \frac{1}{b} \begin{cases} 0 & \gamma\Psi_p(\alpha, \gamma) \leq -\gamma^2 \\ -\gamma + \Psi_p(\alpha, \gamma) & \gamma\Psi_p(\alpha, \gamma) > -\gamma^2 \end{cases} \Rightarrow \gamma \rightarrow 0 \quad \text{exponentially}$$

$$b\beta \rightarrow \varphi_p(\alpha) \quad \downarrow$$

$$\alpha \rightarrow 0 \quad \text{exponentially}$$

pointwise min-norm recursive design
Example #4: System in strict-feedback form

Suppose nominal models $N_p, p \in \mathcal{W}$ are of the form

$\dot{\alpha} = a\alpha^3 + \varphi_p(\alpha) + \gamma$ \quad $p := (a, b) \in \mathcal{P} \subset [-1, 1] \times [-1, 1] \setminus \{0\}$

$\dot{\gamma} = \Psi_p(\alpha, \gamma) + bu$

$y := \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \frac{1}{b}(\gamma + \tilde{\varphi}_p(\alpha)) \end{bmatrix}$

$\gamma = b\beta - \varphi_p(\alpha)$

Multi-estimator (option III):

$\dot{\alpha}_p = a\alpha^3 + \varphi_p(\alpha) + \gamma - (\alpha_p - \alpha)$ \quad $p \in \mathcal{P}$

$\dot{\gamma}_p = \Psi_p(\alpha, \gamma) + bu - (\gamma_p - \gamma)$

When process matches the nominal model N_{p^*}

$e_p := \begin{bmatrix} \dot{\alpha}_p \\ \dot{\gamma}_p \end{bmatrix} = \begin{bmatrix} \alpha_p - \alpha \\ \gamma_p - b\beta + \varphi_p(\alpha) \end{bmatrix} \Rightarrow \dot{\alpha}_{p^*} = -\tilde{e}_{p^*}$

$\dot{\gamma}_{p^*} = -\tilde{\gamma}_{p^*}$ \quad \Rightarrow \quad $e_{p^*} \rightarrow 0$

Candidate controller $q = \chi(p)$:

$u = \frac{1}{b} \begin{cases} 0 & \gamma \Psi_p(\alpha, \gamma) \leq -\gamma^2 \\ -\gamma + \Psi_p(\alpha, \gamma) & \gamma \Psi_p(\alpha, \gamma) > -\gamma^2 \end{cases}$ \quad \Rightarrow \quad Detectability property
Example #4: System in strict-feedback form

\[\dot{\alpha} = a\alpha^3 + b\beta \quad \dot{\beta} = u \]

pointwise min-norm design feedback linearization design

Example #5: Unstable-zero dynamics

\[\dot{x} = -py^2 + u \quad \dot{y} = x + py^2 - u \]

unknown parameter estimate output \(y \)

(stabilization)
Example #5: Unstable-zero dynamics

\[\dot{x} = -py^2 + u \quad \dot{y} = x + py^2 - u \]

(stabilization with noise)

Example #5: Unstable-zero dynamics

\[\dot{x} = -py^2 + u \quad \dot{y} = x + py^2 - u \]

(set-point with noise)
Example #6: Kinematic unicycle robot

\[\begin{align*}
\dot{x}_1 &= p_1 u_1 \cos \theta \\
\dot{x}_2 &= p_1 u_1 \sin \theta \\
\dot{\theta} &= p_2 u_2
\end{align*} \]

\(u_1\) ≡ forward velocity
\(u_2\) ≡ angular velocity

\(p_1, p_2\) ≡ unknown parameters determined by the radius of the driving wheel and the distance between them

This system cannot be stabilized by a continuous time-invariant controller. The candidate controllers were themselves hybrid.
Example #7: Induction motor in current-fed mode

\[
\begin{align*}
\dot{\lambda} &= -R\lambda + Ru \\
\dot{\omega} &= \tau - \tau_L \\
\tau &= u^T J \lambda
\end{align*}
\]

\(\lambda \in \mathbb{R}^2 \equiv \text{rotor flux}\)

\(u \in \mathbb{R}^2 \equiv \text{stator currents}\)

\(\omega \equiv \text{rotor angular velocity}\)

\(\tau \equiv \text{torque generated}\)

\(\omega\) is the only measurable output

\[
J := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]

Unknown parameters:

\(\tau_L \in [\tau_{\text{min}}, \tau_{\text{max}}] \equiv \text{load torque}\)

\(R \in [R_{\text{min}}, R_{\text{max}}] \equiv \text{rotor resistance}\)

“Off-the-shelf" field-oriented candidate controllers:

\[
\begin{align*}
\dot{\beta} &= \frac{R}{\beta_d} \tau_d \\
\tau_d &= -\tau_d \left(K_p + K_i \int - \right) (\omega - \omega_d) \\
u &= e^{\phi J} \begin{bmatrix} \beta_d \\ \frac{\beta_d}{\beta_d} \end{bmatrix}
\end{align*}
\]