Exercise 15 (A-invariance and controllability). Consider the continuous-time LTI system
\[\dot{x} = Ax + Bu \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^k. \]
(AB-CLTI)

Prove the following two statements:

(a) The controllable subspace C of the system (AB-CLTI) is A-invariant.

(b) The controllable subspace C of the system (AB-CLTI) contains $\text{Im} B$.

Exercise 16 (Satellite). The equations of motion of a satellite linearized around a steady-state solution, are given by
\[\dot{x} = Ax + Bu, \quad A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 3\omega^2 & 0 & 0 & 2\omega \\ 0 & 0 & 0 & 1 \\ 0 & -2\omega & 0 & 1 \end{bmatrix}, \quad B := \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \]

where the state vector $x := [x_1 \ x_2 \ x_3 \ x_4]$ includes the perturbation x_1 in the orbital radius, the perturbation x_2 in the radial velocity, the perturbation x_3 in the angle, and the perturbation x_4 in the angular velocity; and the input vector $u := [u_1 \ u_2]$ includes the radial thruster u_1 and a tangential thruster u_2.

(a) Show that the system is controllable from the input vector u.

(b) Can the system still be controlled if the radial thruster does not fire? What if it is the tangential thruster that fails?

Exercise 17 (Controllable canonical form). Consider a system in controllable canonical form
\[A = \begin{bmatrix} -\alpha_1 I_{k \times k} & -\alpha_2 I_{k \times k} & \cdots & -\alpha_{n-1} I_{k \times k} & -\alpha_n I_{k \times k} \\ I_{k \times k} & 0_{k \times k} & \cdots & 0_{k \times k} & 0_{k \times k} \\ 0_{k \times k} & I_{k \times k} & \cdots & 0_{k \times k} & 0_{k \times k} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0_{k \times k} & 0_{k \times k} & \cdots & I_{k \times k} & 0_{k \times k} \end{bmatrix}_{nk \times nk}, \]
\[B = \begin{bmatrix} I_{k \times k} \\ 0_{k \times k} \\ \vdots \\ 0_{k \times k} \end{bmatrix}_{nk \times k}, \quad C = [N_1 \ N_2 \ \cdots \ N_{n-1} \ N_n]_{m \times nk}. \]

Show that such a system is always controllable.