Index

action, 11
action space, $21,38,78,80,93,111,117,121$
mixed, 33,97
pure, 33
advertising campaign game, 11-13, 17, 32
alternate play, 13, 23, 67
battle of the sexes game, 96, 100, 103, 105
behavioral policy, 79
best-response equivalent games, 98, 99, 119
bilateral symmetric game, 129
bimatrix game, 94
mixed, 97
Brouwer's fixed-point Theorem, 98, 114
budget balanced utility, 133
chicken game, 13-15, 18
closed-loop game, 16
closed-loop policy, 13
computational complexity, 27, 160
congestion game, 130
conservative force, 124
convex
combination, 46
hull, 46
set, 46, 55
cooperative solution, 6
cost-to-go
continuous time, 166, 170
discrete time, 156, 176
crime deterrence game, 32
CVX, 56
decoupled game, 128
difference Riccati equation, 162
differential game, 151
one player, 165-173
pursuit evasion, 192-193
variable termination time, 154, 170-171, 191
zero sum, 187-193
differential Riccati equation, 170
directionally-local minimum, 117, 119
discount factor, 14
distributed resource allocation, 132
distributed welfare games, 132
budget balanced, 133
distribution rule, 133
dominant saddle-point equilibrium, 58
dominating policy
strictly, 57
weakly, 58
dummy game, 121, 127
dynamic game
continuous time, 151
one player, 165-173
zero sum, 187-193
discrete time, 149
one player, 155-164
zero sum, 175
dynamic programming, 73, 82, 160
continuous time
one player, 166-168
zero sum, 187-189
discrete time
one player, 156
zero sum, 176
exercise
best-response equivalence, 101-102
chess, 75
convex set, 61
CVX, 60-61, 85-89
extensive form, 75
behavioral policies, 85-90
behavioral saddle-point equilibrium, 85-90
feedback game, 70, 75
mixed saddle-point equilibria, 83-85
perfect information, 75
recursive computation, 75
fictitious play, 143-144
linear quadratic game, 163
MATLAB, 60-61, 85-89, 108-110, 141-145
mixed Nash equilibrium computation, 108-110
mixed saddle-point equilibrium, 50-51, 61
mixed saddle-point equilibrium computation
graphical method, 59-60
linear program, 60-61
Nash equilibrium, 102
completely mixed, 110
multi-stage games, 18
multiple, 17-18
order interchangeability, 100-102
potential game, 124-126, 139-145
bilateral symmetric game, 140-141
bimatrix game, 124-126
congestion game, 145
decoupled game, 139, 145
dummy game, 145
mixed policies, 125-126
prisoners' dilemma game, 124-126
pure policies, 124-125
Sudoku, 139-143, 145
sum game, 126
wonderful life utility, 141
quadratic game
zero sum, 44, 180, 189
resistive circuit design game, 40-42
robust design, 40-42
rock-paper-scissors game, 50
saddle-point equilibria, 9, 28-29, 40-44
alternate play, 29
graphical method, 83-85
mixed policies, 40-42, 79
policy domination, 83-85
saddle-point value, 44
security level, 28-29, 102
security policies, 40-43
state-feedback policy
continuous time, 171-173
discrete time, 163-164
symmetric games, 50-51
tic-tac-toe game, 182-185
extensive form game representation, 12, 6375
multi stage, 149
feedback behavioral saddle-point equilibrium, 81,82
feedback multi-stage game, $70,82,83$
feedback pure saddle-point equilibrium, 70 , 72, 73
fictitious play, 136
belief, 136
best response, 137
full information, 3
game-over state, 154, 170
global minimum, 117-119
global welfare cost, 132
separable, 132
H-infinity norm
continuous time, 191
discrete time, 181
half space, 47
Hamilton-Jacobi-Bellman-Isaac equation, 187, 189-191, 193
Hamilton-Jacobi-Bellman equation, 167, 169, 170
hyperplane, 47
inwards-pointing normal, 47
normal, 47
identical interests game, 95, 117, 119, 121, 127
induced norm
continuous time, 190
discrete time, 181
infimum, 38, 94, 112
infinite horizon game, 150, 152
information
set, $64,73,74,79,81,82$
structure, $3,12,64,150,156,159,160$, 166-168, 171, 178, 181, 188, 189, 191, 192
state feedback, 175,187
integral quadratic cost, 169, 189
lady in the lake game, 17
large population paradigm, 32
linear program, 55
linear quadratic differential game
one player, $169-170$
zero sum, 189-191
linear quadratic dynamic game
continuous time
one player, 169-170
zero sum, 189-191
discrete time
one player, 162-163
zero sum, 179-185
marginal contribution utility, 132
MATLAB
linprog, 55
max, 23
min, 23
quadprog, 106
fictitious play, 137-139, 143-144
improvement path, 135-136, 141-143, 145
solving one-player finite game, 161-162
solving potential game, 135-139, 141145
solving zero-sum finite game, 179
tic-tac-toe game, 182-185
matrix form game representation, 66
maximally reduced game, 58
maximum, 39
minimax
pair, 94
policy tuple, 112
Minimax Theorem, 36, 45-51, 82
minimum, 38
mixed Nash equilibrium
computation using linear equation, 105
computation using quadratic program, 106
mixed policy, $31,33,77,97,113,114$
mixed saddle-point equilibrium computation
graphical method, 53
linear program, 54
mixed value, 50, 78
monotone function, 100
multi-stage game, $13,64,70$
multiplayer game, 111
Nash equilibrium, 5, 6, 9, 94, 112, 113, 117, 119
admissible, 96, 112, 118
completely mixed, 104, 105, 114
computation for potential games, 134139
inner point, 104, 114
mixed, 98, 114
pure, 95
Nash outcome, 94, 112
mixed, 98
network routing game, $8-10,36$
non-feedback game, 83
non-zero-sum game, 5
noncooperative game, 4, 95
open-loop game, 16, 150, 152
open-loop policy, 12,155
continuous time, 165, 166, 170
one player, 167
discrete time, 156
one player, 157,159
optimization of linear functions over simplexes, 35
order interchangeability property, 27, 39, 78, 81, 83, 97, 98, 118

Pareto-optimal solution, 7
partially known matrix game, 28
partial information, 3
path
improvement, 134, 135
mixed, 136
pure, 134
perfect information game, 68, 74
perfect state-feedback game, 151,152
policy, 11
potential, 121, 124
exact, 119,122
ordinal, 119
potential game, 121
bimatrix, 120
exact, $119,120,122$
interval action spaces, 122
mixed, 120
ordinal, 119
pure, 120
price of anarchy, 134
prisoners' dilemma game, 95, 100
probability simplex, 33, 35
proofs
direct, 26
equivalence, 26, 123
pure game in normal form, 113
pure policy, 64, 77
pursuit-evasion game, 16, 192-193
quadratic program, 106
indefinite, 106
rationality, 3
regret, $23,24,94,95,112$
repeated games, 13
repeated game paradigm, 32
resistive circuit design game, 39-42
risk averse solution, 22
robust design, 7-8, 39
rock-paper-scissors game, 31, 37, 40, 50-51, 105
rope-pulling game, 4-7
saddle-point equilibrium, $9,38,39,94$
behavioral, 80, 81
completely mixed, 104, 105
dominant, 58
inner point, 104
mixed, $34,36,50,78$
pure, 25, 26, 72
recursive computation, $68,73,82$
state feedback, 177, 181, 187, 190, 191
saddle-point value, 38
behavioral, 80, 81
mixed, 34,36
pure, 25, 26
secure solution, 22
security level, 22, 38, 39, 94, 112
average, $33,34,36,45,98,114$
pure, 95
security policy, $6,9,22,38,39,94,112$
behavioral, 81
mixed, $33,34,36,50,78,98$
pure, 95
Separating Hyperplane Theorem, 47
Shapley value utility, 133
simultaneous play, 12, 24
single-stage game, 13, 68
stage-additive cost, 150, 155, 175
quadratic, 162, 180
state-feedback game, 151, 152
state-feedback policy, 155
continuous time, 165, 171, 187, 190, 191 one player, 167
discrete time, 177, 181
one player, 158, 159
state of the game, 149
state space, 149
Sudoku, 130
sum game, 122
supermodular cost, 134
supremum, 38, 39, 94, 112
symmetric game, 50-51
tax-payers auditing game, 32
tensor, 113
terminal cost, 150
Theorem of the Alternative for Matrices, 47
tic-tac-toe game, 161, 182-185
time-consistent policy, 158, 159, 162, 167, 171
value function
continuous time, 166, 170
discrete time, 156
vehicle routing game
heterogeneous, 132
homogeneous, 130
war deterrence game, 32
war of attrition game, 13-15, 18
Weierstrass' Theorem, 34, 35
wireless power control game, 128-129
wonderful life utility, 132, 133
zebra in the lake game, 16-17, 152, 154
zero-sum game, 4, 93, 94
matrix, 21

