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LECTURE 1

Noncooperative Games

This lecture uses several examples to introduce the key principles of noncooperative
game theory.

1.1 Elements of a Game
1.2 Cooperative vs. Noncooperative Games: Rope-Pulling
1.3 Robust Designs: Resistive Circuit
1.4 Mixed Policies: Network Routing
1.5 Nash Equilibrium
1.6 Practice Exercise

1.1 ELEMENTS OF A GAME

To characterize a game one needs to specify several items:
. The players are the agents that make decisions.
. The rules define the actions allowed by the players and their effects.
. The information structure specifies what each player knows before making each

decision.
Chess is a full-information game because the current state of the game is fully
known to both players as they make their decisions. In contrast, Poker is a partial-
information game.

. The objective specifies the goal of each player.

For a mathematical solution to a game, one further needs to make assumptions on the
player’s rationality, regarding questions such as:

. Will the players always pursue their best interests to fulfill their objectives? [YES]

. Will the players form coalitions? [NO]

. Will the players trust each other? [NO]

The answers in square brackets characterize what are usually called noncooperative
games, and will be implicitly assumed throughout this course. This will be further
discussed shortly.

Note 1 (Human players). Studying noncooperative solutions for games played by hu-
mans reveals some lack of faith in human nature, which has certainly not prevented
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4 LECTURE 1

economists (and engineers) from doing so. However, when pursuing this approach
one should not be overly surprised by finding solutions of “questionable ethics.” Actu-
ally, one of the greatest contributions of noncooperative game theory is that it allows
one to find problematic solutions to games and often indicates how to “fix” the games
so that these solutions disappear. This type of approach falls under the heading of
mechanism design.

In many problems, one or more players are modeling decision processes not affected
by human reason, in which case one can safely pursue noncooperative solutions with-
out questioning their ethical foundation. Robust engineering designs and evolutionary
biology are good examples of this.

1.2 COOPERATIVE VS. NONCOOPERATIVE GAMES: ROPE-PULLING

We use the rope-pulling game to discuss the motivation and implications of assuming
a noncooperative framework. This game is depicted schematically in Figure 1.1.

y

f2 f1

θ1

θ2

Point mass x

Figure 1.1 Rope-pulling game.

Rules. Two players push a point mass by exerting on it forces f1 and f2. Both players
exert forces with the same magnitude (|f1| = |f2|), but they pull in different directions
θ1(t) and θ2(t). The game is played for 1 second.Note. θ1(t) and θ2(t) corre-

spond to the decisions made
by the players. Initially the mass is at rest and, for simplicity, we assume unit forces and a unit mass.

According to Newton’s law, the point mass moves according toNote. The equations in (1.1)
effectively encode the rules of
the game, as they determine
how the player’s decisions
affect the outcome of the
game.

ẍ = cos θ1(t) + cos θ2(t), ẋ(0) = 0, x(0) = 0 (1.1a)

ÿ = sin θ1(t) + sin θ2(t), ẏ(0) = 0, y(0) = 0. (1.1b)

1.2.1 ZERO-SUM ROPE-PULLING GAME

Consider the following objective for the rope-pulling game:

Objective (zero-sum). Player P1 wants to maximize x(1), whereas player P2 wants toNotation. This is called a zero-
sum game since players have
opposite objectives. One could
also imagine that P1 wants to
maximize x(1), whereas P2
wants to maximize −x(1).
According to this view the two
objectives add up to zero.

minimize x(1).

Solution. We claim that the “optimal” solution for this game is given by

P1: θ1(t) = 0, ∀t ∈ [0, 1], P2: θ2(t) = π , ∀t ∈ [0, 1], (1.2)

which results in no motion (ẍ = ÿ = 0), leading to x(1) = y(1) = 0 [cf. Figure 1.2(a)].
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Figure 1.2 Solutions to the rope-pulling game. (a) Solution (1.2); (b) Solution (1.3);
(c) Solution (1.4).

One could wonder whether it is reasonable to pull at all, given that the mass will
not move. Perhaps the optimal solution is not to push at all. This is not the case for
two reasons

1. Not pushing is not allowed by the rules of the game, which call for each player
to exert a force of precisely one Newton, as per (1.1).

2. Even if not pulling was an option, it would be a dangerous choice for the player
that decided to follow this line of action, as the other player could take advantage
of the situation.
This of course presumes that we are talking about noncooperative games for
which players do not trust each other and do not form coalitions.

For now we do not justify why (1.2) is the optimal solution for the objective given
above. Instead, we do this for a modified objective, for which the solution is less
intuitive.

1.2.2 NON-ZERO-SUM ROPE-PULLING GAME

Consider now a version of the game with precisely the same rules, but a modified
objective:

Objective (non-zero-sum). Player P1 wants to maximize x(1), whereas player P2Attention! This is no longer a
zero-sum game. wants to maximize y(1).

Solution (Nash). We claim that the “optimal” solution for this game is given byNotation. In games a solution
is generally a set of policy,
one for each player, that
jointly satisfy some optimality
condition.

P1: θ1(t) = 0, ∀t ∈ [0, 1], P2: θ2(t) = π

2
, ∀t ∈ [0, 1] (1.3)

which leads to constant accelerations ẍ = ÿ = 1and therefore x(1) = y(1) = 1
2 [cf. Fig-

ure 1.2(b)].

This solution has two important properties:

P1.1 Suppose that player P1 follows the course of action θ1(t) = 0 throughout the
whole time period and therefore

ẍ = 1 + cos θ2(t), ÿ = sin θ2(t), ∀t ∈ [0, 1].
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6 LECTURE 1

In this case, the best course of action for P2 so as to maximize y(1) is
precisely to choose

θ2(t) = π

2
, ∀t ∈ [0, 1] ⇒ ÿ(t) = 1, ∀t ∈ [0, 1].

Moreover, any deviation from this will necessarily lead to a smaller value of
y(1). In this sense, once P1 decides to stick to their part of the solution in
(1.3), a rational P2 must necessarily follow their policy in (1.3).

P1.2 Conversely, suppose that player P2 follows the course of action θ2(t) = π
2

throughout the whole time period and therefore

ẍ = cos θ1(t), ÿ = sin θ1(t) + 1, ∀t ∈ [0, 1].

In this case, the best course of action for P1 so as to maximizex(1) is precisely
to choose

θ1(t) = 0, ∀t ∈ [0, 1] ⇒ ẍ(t) = 1, ∀t ∈ [0, 1].

Moreover, any deviation from this will necessarily lead to a smaller value of
x(1). Also now, once P2 decides to stick to their part of the solution in (1.3),
a rational P1 must necessarily follow their policy in (1.3).

A pair of policies that satisfy the above properties is called a Nash equilibrium
solution. The key feature of Nash equilibrium is that it is stable, in the sense that if
the two players start playing at the Nash equilibrium, none of the players gains from
deviating from these policies.

This solution also satisfies the following additional properties:
P1.3 Suppose that player P1 follows the course of action θ1(t) = 0 throughout

the whole time period. Then, regardless of what P2 does, P1 is guaranteedNote. Even if P2 pulls against
P1, which is not very rational
but possible.

to achieve x(1) ≥ 0.

Moreover, no other policy for P1 can guarantee a larger value for x(1)
regardless of what P2 does.

P1.4 Suppose that player P2 follows the course of action θ2(t) = π
2 throughout

the whole time period. Then, regardless of what P1 does, P2 is guaranteed
to achieve y(1) ≥ 0.

Moreover, no other policy for P2 can guarantee a larger value for y(1)
regardless of what P1 does.

In view of this, the two policies are also called security policies for the corresponding
player.

The solution in (1.3) is therefore “interesting” in two distinct senses: these policiesNote. We shall see later that
for zero-sum games Nash
policies are always security
policies (cf. Lecture 3), but
this is not always the case for
non-zero-sum games such as
this one.

form a Nash equilibrium (per P1.1–P1.2) and they are also security policies (per P1.3–
P1.4).

Solution (cooperative). It is also worth considering the following alternative solution

P1: θ1(t) = π

4
, ∀t ∈ [0, 1], P2: θ2(t) = π

4
, ∀t ∈ [0, 1] (1.4)
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which leads to constant accelerations ẍ = ÿ = √
2 and therefore

x(1) = y(1) =
√

2
2

>
1
2

[cf. Figure 1.2(c)]. This policy is interesting because both players do strictly better than
with the Nash policies in (1.3). However, this is not a Nash policy because suppose that
P1 decides to follow this course of action θ1(t) = π

4 throughout the whole time period
and therefore

ẍ =
√

2
2

+ cos θ2(t), ÿ =
√

2
2

+ sin θ2(t), ∀t ∈ [0, 1].

In this case, the best course of action for P2 to maximize y(1) is to choose

θ2(t) = π

2
, ∀t ∈ [0, 1],

instead of the assigned policy in (1.4), because this will lead to ÿ =
√

2
2 + 1 and

y(1) =
√

2 + 2
4

>

√
2

2
.

Unfortunately for P1, this also leads to ẍ =
√

2
2 and

x(1) =
√

2
4

<
1
2

<

√
2

2
.

In this sense, (1.4) is a dangerous choice for P1 because a greedy P2 will get P1 even
worse than with the Nash policy (1.3) that led to x(1) = 1

2 . For precisely the same
reasons, (1.4) can also be a dangerous choice for P2. In view of this, (1.4) is not a NashNote 2. The solution (1.4) is

called Pareto-optimal. � p. 7 equilibrium solution, in spite of the fact that both players can do better than with the
Nash solution (1.3).

Solutions such as (1.4) are the subject of cooperative game theory, in which one
allows negotiation between players to reach a mutually beneficial solution. However,
this requires faith/trust among the players. As noted above, solutions arising from
cooperation are not robust with respect to cheating by one of the players.

For certain classes of games, noncooperative solutions coincide with cooperative
solutions, which means that by blindingly pursuing selfish interests one actually helps
other players in achieving their goals. Such games are highly desirable from a social
perspective and deserve special study. It turns out that it is often possible to “reshape”
the reward structure of a game to make this happen. In economics (and engineering)Note. We shall see an example

in Lecture 12, where a network
administrator can minimize
the total interference between
“selfish” wireless users by
carefully charging their use of
the shared medium.

this is often achieved through pricing, taxation, or other incentives/deterrents and
goes under the heading of Mechanism Design.

Note 2 (Pareto-optimal solution). A solution like (1.4) is called Pareto-optimal be-
cause it is not possible to further improve the gain of one player without reducing the
gain of the other. The problem of finding Pareto-optimal solutions can typically be

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



8 LECTURE 1

reduced to a single-criteria constrained optimization. For the non-zero-sum rope-
pulling game, all Pareto-optimal solutions can be found by solving the following
constrained optimization problem

Note. In some cases, all
Pareto-optimal solutions
can also be found by solving
unconstrained optimization
problems. This is the case for
this example, where all Pareto-
optimal solutions can also be
found by solving

max
θ1(t),θ2(t)

βx(1) + (1 − β)y(1).

The different solutions are
found by picking different
values for β in the interval
[0, 1].

max
θ1(t),θ2(t)

{x(1) : y(1) ≥ α}

with α ∈ R. Pareto-optimal solutions are generally not unique and different values of
α result in different Pareto-optimal solutions.

1.3 ROBUST DESIGNS: RESISTIVE CIRCUIT

In many engineering applications, game theory is used as tool to solve design prob-
lems that do not start as a game. In such cases, the first step is to take the original
design problem and “discover” a game theoretical formulation that leads to a desir-
able solution. In these games, one of the players is often the system designer and the
opponent is a fictitious entity that tries to challenge the choices of the designer. Pro-
totypical examples of this scenario are discussed in the example below and the one in
Section 1.4.

Consider the resistive circuit in Figure 1.3 and suppose that our goal is to pick
a resistor so that the current i = 1/R is as close as possible to 1. The challenge is
that when we purchase a resistor with nominal resistance equal to Rnom, the actual
resistance may exhibit an error up to 10%, i.e.,

R = (1 + δ)Rnom,

where δ is an unknown scalar in the interval [−0.1, 0.1].

This a called a robust design problem and is often formalized as a game betweenNote. Robust designs gener-
ally lead to noncooperative
zero-sum games, such as this
one. Cooperative solutions
make no sense in robust de-
sign problems.

the circuit designer and an unforgiving nature that does her best to foil the designer’s
objective:

. P1 is the circuit designer and picks the nominal resistance Rnom to minimize the
current error

e =
∣∣∣∣ 1
R

− 1
∣∣∣∣ =

∣∣∣∣ 1
(1 + δ)Rnom

− 1
∣∣∣∣ .

R1 volt

i = R—
1

Figure 1.3 Resistive circuit game.
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NONCOOPERATIVE GAMES 9

. P2 is “nature” and picks the value of δ ∈ [−0.1, 0.1]to maximize the same current
error e.

Solution (security). A possible solution for this game is given by

P1: Rnom = 100
99

, P2: δ = 0.1 (1.5)

which leads to a current error equal to

e(Rnom, δ) =
∣∣∣∣ 1
(1 + δ)Rnom

− 1
∣∣∣∣ =

∣∣∣∣ 99
110

− 1
∣∣∣∣ =

∣∣∣∣99 − 110
110

∣∣∣∣ = 0.1.

This solution exhibits the following properties:

P1.5 Once player P1 picks Rnom = 100
99 , the error e will be maximized for δ = 0.1

and is exactly e = 0.1.

P1.6 However, if player P2 picks δ = 0.1, then player P1 can pick

1
(1 + δ)Rnom

= 1 ⇔ Rnom = 1
1 + δ

= 1
1.1

= 100
110

and get the error exactly equal to zero.

We thus conclude that (1.5) is not a safe choice for P2 and consequently not a Nash

Note. It turns out that, as
defined, this game does not
have any Nash equilibrium.
It does however have a
generalized form of Nash
equilibrium that we will
encounter in Lecture 4. This
new form of equilibrium will
allow us to “fix” P2’s policy and
we shall see that P1’s choice for
the resistor in (1.5) is already
optimal.

equilibrium. However, (1.5) is safe for P1 and Rnom = 100
99 is therefore a security policy

for the circuit designer.

1.4 MIXED POLICIES: NETWORK ROUTING

Consider the computer network in Figure 1.4 and suppose that our goal is to send
data packets from source to destination. In the typical formulation of this problem,
one selects a path that minimizes the number of hops transversed by the packets.
However, this formulation does not explore all possible paths and tends to create hot
spots.

An alternative formulation considers two players:Note. As in the example in
Section 1.3, the second player
is purely fictitious and, in this
game, its role is to drive P1
away from routing decisions
that would lead to hot spots.
The formulation discussed
here is not unique and one
can imagine other game
theoretical formulations that
achieve a similar goal.

. P1 is the router that selects the path for the packets

. P2 is an attacker that selects a link to be disabled.

The two players make their decisions independently and without knowing the choice
of the other player.

Objective. Player P1 wants to maximize the probability that a packet reaches its
destination, whereas P2 wants to minimize this probability.
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Figure 1.4 Network routing game. The 3-hop shortest
path from source to destination is highlighted.
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Figure 1.5 Saddle-point solution to the routing game. (a) Stochastic routing
policy. The percentages by each link indicate how traffic should be distributed
among the outgoing links of a node. (b) Stochastic attack policy. The percentages
by each link indicate the probability by which the attacker will disable that link.

Solution. Figure 1.5 shows a saddle-point solution to this game for which 50% of theNote. See Exercise 1.1. � p. 11
packets will reach their destination. This solution exhibits the two key properties:

P1.7 Once player P1 picks the routing policy, P2’s attack policy is the best response
from this player’s perspective.
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NONCOOPERATIVE GAMES 11

P1.8 Once player P2 picks the routing policy, P1’s attack policy is the best response
from this player’s perspective.

These are also security policies because each policy guarantees for that player a
percentage of packet arrivals no worse than 50%. Moreover, no other policies can

Note. Here, “no worse” may
mean “larger than” or “smaller
than,” depending on the
player.

lead to a guaranteed better percentage of packet arrivals.

The policies in Figure 1.5 are mixed policies because they call for each player to
Notation. By contrast,
policies that do not require
randomization are called pure
policies (cf. Lecture 4).

randomize among several alternatives with “carefully” chosen probabilities. For this
particular game, there are no Nash equilibrium that do not involve some form of
randomization.

1.5 NASH EQUILIBRIUM

The previous examples were used to illustrate the concept of Nash equilibrium, forNotation. In zero-sum
games, Nash equilibrium
solutions are called saddle-
point solutions (cf. Lecture 3).

which we now provide a “meta definition”:

Definition 1.1 (Nash Equilibrium). Consider a game with two Players P1, P2. A pair
of policies (π1, π2) is said to be a Nash equilibrium if the following two conditions hold:Notation. We often refer

to C1.1–C1.2 as the Nash
equilibrium conditions. C1.1 If P1 uses the policy π1, then there is no admissible policy for P2 that does

strictly better than π2.
Attention! Condition C1.1
does not require π2 to be
strictly better than all the
other policies, just no worse.
Similarly for π1 in C1.2.

C1.2 If P2 uses the policy π2, then there is no admissible policy for P1 that does
strictly better than π1.

We call this a “meta definition” because it leaves open several issues that need to be
resolved in the context of specific games:

Note. As we progress, we will
find several notions of Nash
equilibrium that fall under this
general “meta definition,” each
corresponding to different
answers to these questions.

1. What exactly is a policy?
2. What is the set of admissible policies against which π1 and π2 must be com-

pared?
3. What is meant by a policy doing “strictly better” than another?
As mentioned before, the key feature of a Nash equilibrium is that it is stable, in

the sense that if P1 and P2 start playing at the Nash equilibrium (π1, π2), none of the
players gains from an unilateral deviating from these policies.

Attention! The definition of Nash equilibrium does not preclude the existence of
multiple Nash equilibria for the same game. In fact we will find examples of that shortly
(e.g., in Lecture 2).

Moreover, there are games for which there are no Nash equilibria.

1.6 PRACTICE EXERCISE

1.1. Find other saddle-point solutions to the network routing game introduced in
Section 1.4.

Solution to Exercise 1.1. Figure 1.6 shows another saddle-point solution that also
satisfies the Nash equilibrium conditions C1.1–C1.2 in the (meta) Definition 1.1.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



12 LECTURE 1

Source
1 50%

100%

50%

100%

50%

100%

50%

100%
100%

4

2

5

3

6

7

Destination

(a) (b)

Source
1 0%

50%

0%

0%

0%

50%

0%

0%
0%

4

2

5

3

6

7

Destination

Figure 1.6 Saddle-point solution to the routing game. (a) Stochastic routing policy.
The percentages by each link indicate how traffic should be distributed among the
outgoing links of a node. (b) Stochastic attack policy. The percentages by each link
indicate the probability by which the attacker will disable that link.
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