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Abstract

We address the problem of finding a local solution to a nonconvex-
nonconcave minmax optimization using Newton type methods, including
interior-point ones. We modify the Hessian matrix of these methods
such that, at each step, the modified Newton update direction can
be seen as the solution to a quadratic program that locally approx-
imates the minmax problem. Moreover, we show that by selecting
the modification in an appropriate way, the only stable points of
the algorithm’s iterations are local minmax points. Using numerical
examples, we show that the computation time of our algorithm scales
roughly linearly with the number of nonzero elements in the Hes-
sian. For minmax control problems with per-stage costs, this generally
leads to computation times that scale linearly with the horizon length.

Keywords: minmax optimization, robust optimization, Newton method,
interior-point method, local minmax
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1 Introduction

In minmax optimization, one minimizes a cost function which is itself obtained
from the maximization of a scalar function. Minmax optimization is a powerful
modeling framework, generally used to guarantee robustness to an adversar-
ial parameter such as accounting for disturbances in model predictive control
[1, 2], security related problems [3, 4], or training neural networks to be
robust to adversarial attacks [5]. It can also be used as a framework to model
more general problem such as sampling from unknown distributions using
generative adversarial networks [6], reformulating stochastic programming as
minmax optimization [7–9], or producing robustness of a stochastic program
with respect to the probability distribution [10]. Minmax optimization is also
known as minimax or robust optimization.

Finding a global minmax point for nonconvex-nonconcave problems is
generally difficult, and one has to settle for finding a local minmax point. Sur-
prisingly, only recently a first definition of unconstrained local minmax was
proposed in [11], and the definition of constrained local minmax in [12].

It is widely accepted that the application of Newton-like methods to the
minimization of nonconvex functions requires the modification of the Hessian
matrix through the addition of a matrix, typically a multiple of the identity.
An initial contribution of our paper is the observation that by selecting this
additive term so that a quadratic local approximation to the cost function
becomes convex has two important consequences. First it guarantees progress
towards a solution, in the sense that the function decreases with each Newton
step – this result is well known [13, Chapter 3.4]. In addition, we show that
the same additive term also guarantees that the set of locally asymptotically
stable equilibrium points of the Newton iteration is precisely the set of strict
local minimum of the optimization. This guarantees that convergence to a
locally asymptotically stable equilibrium point necessarily implies convergence
to a local minima. We also show that, in the case of constrained minimization,
it is possible to analyze interior-point methods as a quadratic approximation
which can also be appropriately modified. These results (presented in Section
2) directly motivate the design of novel Newton-type algorithms for minmax
optimizations

The Newton-type algorithms proposed in this paper are motivated by a
quadratic local approximation to the optimization criteria to which we add
terms to make it have a finite minmax solution (without necessarily becoming
convex-concave). Any additive terms that guarantee this are said to satisfy the
Local Quadratic Approximation Condition (LQAC). We show that contrary to
minimization, such modification does not lead to Newton-type iterations with
desired stability: a local minmax can be unstable and an equilibrium point
that is not a local minmax can be stable. Our first minmax result shows that
additional conditions are needed to guarantee that every locally asymptotically
stable equilibrium point of a Newton-type iteration is a local minmax. This
additional condition is expressed in terms of the inertia of the modified Hessian
matrix, i.e., in terms of the number of positive, negative, and zero eigenvalues.
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To simplify the presentation, we first present this result in Section 3.1 for
unconstrained minmax and then extend it in Section 3.2 to interior-point
methods for constrained minmax.

The conditions described above to establish the equivalence between local
minmax and local asymptotic stability of the equilibria to a Newton-type itera-
tion are directly used to construct a numerical algorithm to find local minmax.
By construction, when this algorithm converges to a locally asymptotically
stable equilibrium point, its is guaranteed to obtain a local minmax. It is
important to clarify that this result fall shy of guaranteeing global asymptotic
convergence to a local minmax, as the algorithm could simply never converge.

Using numerical examples, we show that by using an appropriate imple-
mentation of the LDL decomposition, the numerical complexity increases
roughly with the number of nonzero entries of the Hessian. This is important
for problems with stage costs and constraints, such as robust Model Predictive
Control, where the number of nonzero entries of the Hessian tend to increase
linearly with the number of stages. The numerical results are implemented on
MATLAB, using TensCalc as a backend for the symbolic computation [14].
A general solver for minmax optimization based on the results of this paper
is being implemented to TensCalc to complement its other solvers.

Notation:

The set of real numbers is denoted byR. Given a vector v ∈ Rn, its transpose is
denoted by v′. The operation diag(v) creates a matrix with diagonal elements
v and off-diagonal elements 0. The matrix I is the identity, 1 is the matrix
of ones and 0 the matrix of zeros; their sizes will be provided as subscripts
whenever it is not clear from context. If a matrix M only has real eigenvalues,
we denote by λmin(M) and λmax(M) its smallest and largest eigenvalues.

Consider a differentiable function f : Rn × Rm 7→ Rp. The Jacobian
(or gradient if p = 1) at a point (x̄, ȳ) according to the x variable is a
matrix of size n × p and is denoted by ∇xf(x̄, ȳ), and analogously for the
variable y. When p = 1 and f(·) is twice differentiable, we use the nota-
tion ∇yxf(x̄, ȳ) := ∇y

(
∇xf

)
(x̄, ȳ) which has sizes m× n. We use analogous

definition for ∇xyf(x̄, ȳ), ∇xxf(x̄, ȳ) and ∇yyf(x̄, ȳ).

1.1 Literature Review

Traditionally, robust optimization focused on the convex-concave case, with
two main methods. The first, robust reformulation, uses results from convex
analysis to reformulate the minmax optimization as a counterpart minimiza-
tion problem which has the same solution as the original problem [15–17].
The second, cutting-set methods, solves a sequence of minimization where the
constraint of each minimization is based on subdividing the inner maximiza-
tion [18]. The robust reformulation is problem specific, while the cutting-set
approach requires solving many exact maximization which might not be
feasible in large scale.
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Motivated by some of the shortcomings of these methods and the neces-
sities of machine learning, research on minmax optimization started to shift
towards the study of methods based on variations of gradient descent-ascent.
The results tend to focus on providing convergence complexity given different
convexity/concavity assumptions on the target function. In multistep gradient
descent ascent, also know as unrolled or GDmax, the minimizer is updated by
a single gradient descent whereas the maximizer is updated by several gradient
ascent steps that aim to approximately find the maximum [11, 19, 20]. In sin-
gle step, the minimizer and maximizer are updated at each iteration, generally
combined with some other features such as different step sizes, momentum or
extra gradient [21–25]

In recent years, researchers have also started to work on algorithms that
use second order derivatives to determine the directions. These algorithm, in
their major part have not attracted as much attention as first order methods.
In the Learning with Opponent Learning Awareness (LOLA), the minimizer
anticipates the play of the maximizer using the Jacobian of the maximizer’s
gradient [26, 27]. In competitive gradient descent, both minimizer and maxi-
mizer use the cross derivative of the Hessian to compute their direction [28].
In follow the ridge, the gradient ascent step is corrected by a term that avoids
a drift away from local maxima [29]. In the total gradient descent-ascent, simi-
larly to LOLA, the descent direction is computed by taking to total derivative
of a function which anticipates the maximizer’s response to the minimizer [30].
Finally, the complete Newton borrows ideas from follow the ridge and total
gradient to obtain a Newton method which prioritizes steps towards local min-
max [31]. These three last algorithms are shown to only converge towards local
minmax under some conditions, but in none of them it is addressed the issue
of how to adjust the Hessian far away from a local minmax point.

Recently, some second order methods have been proposed for the
nonconvex-strongly-concave case, where the Hessian is modified such that it
is invertible and that the minimizer update is a descent direction of the objec-
tive function at its maximum. They either use cubic regularization [32, 33] or
randomly perturb the Hessian [34]. Because of some of the assumptions these
work make, most important the strong-concavity of the objective function
with respect to the maximizer, they are able to establish complexity analysis
and guarantee. It is also worth mention that these algorithms are all multistep
based, meaning they (approximately) solve the maximization between each
update of the minimizer, whereas our algorithm updates both the minimizer
and the maximizer simultaneously.

2 Minimization

Let f : X → R a twice continuously differentiable cost function defined in a
set X ⊂ Rn, and consider the minimization problem

min
x∈X

f(x). (1)
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We recall that a point x∗ is called a strict local minimum of f(·) if there exist
δ > 0 such that ‖x− x∗‖ < δ implies that f(x∗) < f(x) for every x ∈ X . If
f(·) is twice continuously differentiable in a neighborhood of a point x which
belongs to the interior of X , ∇xf(x) = 0 and ∇xxf(x) � 0, then x is a strict
local minimum of f(·) [13, Chapter 2].

Closely related to local minima, is the concept of descent direction. A
vector dx ∈ Rn is a descent direction of f(·) at a point x if ∃α0 > 0 such that
∀α ∈ (0, α0], f(x + αdx) < f(x). It is straightforward to establish that there
are no descent direction at a local minimum. For continuously differentiable
functions, one can further show that a given vector dx ∈ Rn is a descent
direction if an only if d′x∇xf(x) < 0 [13].

In a widely used modification of Newton’s method for unconstrained (i.e.,
X = Rn) nonconvex optimization, a descent direction dx is obtained by solving
the following local quadratic approximation to (1)

dx = arg min
d̄x

f(x) + ∇xf(x)′d̄x +
1

2
d̄x(∇xxf(x) + εx(x)I)d̄x

= −(∇xxf(x) + εx(x)I)−1∇xf(x) (2)

with εx(x) ≥ 0 chosen such that (∇xxf(x) + εx(x)I) is positive definite. For
twice differentiable strictly convex functions we can choose εx(x) = 0 and
this corresponds to the classical Newton’s methods. However, when f(·) is
not convex, the minimization in (2) is only well defined if ∇xxf(x) + εx(x)I
is positive definite and which requires selecting a strictly positive value for
εx, leading to a perturbed Newton’s method. Regardless of whether of not
f(·) is convex, the positive definiteness of ∇xxf(x) + εx(x)I guarantees that
d′x∇xf(x) = −∇xf(x)(∇xxf(x) + εx(x)I)∇xf(x) < 0 and therefore dx is a
descent direction at x. The corresponding Newton iteration to obtain a local
minimum is then given by

x+ = x+ dx = x− (∇xxf(x) + εx(x)I)−1∇xf(x) (3)

where we use the notation x+ to designate the value of x at the next iteration.

The following result establishes that the positive definiteness of ∇xxf(x)+
εx(x)I not only guarantees that dx is a descent direction, but also that every
locally asymptotically stable (LAS) equilibrium point of the Newton iteration
(3) is a strict local minimum. This result has two important consequence: First,
that if the Newton iteration starts sufficiently close to a strict local minimum,
it will converge asymptotically fast to it (in fact exponentially fast). Second,
regardless of where the iteration starts, if it converges to some asymptotically
stable equilibrium point, then we can be sure that it converged to a strict local
minimum.
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Theorem 1 (Stability of modified Newton method for minimization) Let x be an
equilibrium point and assume that εx(·) is differentiable, that f(·) is three times
differentiable on a neighborhood around x and that ∇xxf(x) and (∇xxf(x)+εx(x)I)
are invertible. Then x is a LAS equilibrium point of the Newton iteration (3) if and
only if x is a strict local minimum.

Proof The Jacobian of the expression (∇xxf(x) + εx(x))−1∇xf(x) that appears in
(3) at an equilibrium point x is given by

∇x

(
(∇xxf(x) + εx(x))−1∇xf(x)

)
= (∇xxf(x) + εx(x))−1∇xxf(x)+

N∑
i=1

∇x[(∇xxf(x) + εx(x))−1]i∇xf(x)(i)

where ∇xf(x)(i) is the ith element of ∇xf(x) and [(∇xxf(x) + εx(x))−1]i is
the ith column of (∇xxf(x) + εx(x))−1. Since (∇xxf(x) + εx(x)I) is invertible,
∇x[(∇xxf(x) + εx(x))−1]i is well defined and since x is an equilibrium point,

∇xf(x)(i) = 0 for i ∈ {1 . . . N} and therefore the Jacobian of right-hand side of (3)
is given by

∇x

(
x− (∇xxf(x) + εx(x))−1∇xf(x)

)
= I − (∇xxf(x) + εx(x))−1∇xxf(x). (4)

The main argument of the proof is based on the following result. Let v be an
eigenvector associated to an eigenvalue ρ of (4). Then(

I − (∇xxf(x) + εx(x)I)−1∇xxf(x)
)
v = ρv

⇔ (1− ρ)v = (∇xxf(x) + εx(x)I)−1∇xxf(x)v

⇔
(
ρ∇xxf(x) + (ρ− 1)εx(x)I

)
v = 0 (5)

Therefore, ρ is an eigenvalue of (4) if and only if ρ∇xxf(x)+(ρ−1)εx(x)I is singular.
We remind the reader that given a dynamical system, if the system’s dynamic

equation is continuously differentiable, a point is a LAS equilibrium point if all the
eigenvalues of the linearized system are inside the unit circle. Conversely, if at least
one of the eigenvalues of the linearized system is outside the unit circle, then the
system is unstable [35, Chapter 8].

From (5), the case ρ = 0 happens if and only if εx(x) = 0, which, by construction,
can only happen if x is a local minmax, in which case x is a LAS equilibrium point
of (3), as expected.

For ρ 6= 0, let us rewrite this expression as ∇xxf(x) + µεx(x)I with µ := 1 −
1/ρ. We conclude that x is a LAS equilibrium point of (3) if ∇xxf(x) + µεx(x)
is nonsingular ∀µ ∈ [0, 2]. Conversely, x is an unstable equilibrium point of (3) if
∇xxf(x) + µεx(x) is singular for some µ ∈ [0, 2].

If x is a local minimum, then λmin(∇xxf(x)) > 0. As εx(x) > 0, we conclude that
λmin(∇xxf(x) + µεx(x)) > 0 for every µ ≥ 0 and therefore x is a LAS equilibrium
point of (3). Conversely, if x is not a local minimum then λmin(∇xxf(x)) < 0.
By construction of εx(x), we have that λmin(∇xxf(x) + µεx(x)) > 0, which, by
continuity of the eigenvalue, implies ∃µ ∈ (0, 1) such that λmin(∇xxf(x)+µεx(x)) =
0. Therefore x is an unstable equilibrium point of (3). �
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2.1 Constrained minimization and interior-point method

In order to make the presentation of the results of the rest of the paper more
clear, it is useful to consider the case with more general constraint with the
minimization set X involving equality and inequality constraints of the form

X = {x ∈ Rn : G(x) = 0, F (x) ≤ 0}

where the functions G : Rn → Rl and F : Rn → Rm are all twice continu-
ously differentiable. It will be convenient for the development of interior-point
methods to use slack variables and rewrite (1) as

min
x,s:G(x)=0,F (x)+s=0,s≥0

f(x). (6)

The Lagrangian of (6) is L(z) = f(x) + ν′G(x) + λ′(F (x) + s), where we
use the shorthand notation z := (x, s, ν, λ). The Karush–Kuhn–Tucker (KKT)
conditions [13, Chapter 12] for the optimization (6) are g(z, 0) = 0 and λ, s ≥ 0
where

g(z, b) :=


∇xL(z)
λ� s− b1
Gx(x)

Fx(x) + sx

 (7)

with � denoting the element wise Hadamard product of two vectors and b ≥ 0
the barrier parameter (its role will be explained shortly).

Let dz := (dx, ds, dν , dλ) be the update direction for z, which will play an
equivalent role to dx in the unconstrained case. A basic interior-point method
finds a candidate solution to (6) using the iterations

z+ = z + αdz = z − α∇zg(z, b)−1g(z, b) (8)

where the barrier parameter b is slowly decreased to 0, so that z converges
to a root of g(z, 0) = 0 while α ∈ (0, 1] is chosen at each step such that the
feasibility condition λ, s > 0 hold [13, Chapter 19]. This basic interior-point
has similar limitation as a (non-modified) Newton method for unconstrained
minimization: it might not converge towards a local minimum and ∇zg(z, b)
might not be invertible. Similar to what we have done in the unconstrained
case, we can modify this basic interior-point method such that the update
direction dz is obtained from a quadratic program that locally approximates
(6).

Let us start with X described only by equality constraints (i.e., no F (x)
and no s), in which case L(z) = f(x) + ν′G(x). If ∇xG(x) is full column
rank, the update directions dx can be obtained as the solution and dν as the
associated Lagrange multiplier to the minimization

min
dx:G(x)+∇xG(x)′dx

L(z) + d′x∇xL(z) +
1

2
d′x(∇xxL(z) + εx(z))dx (9)
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where εx(x) is chosen such that the solution is unique. Notice that we use the
second order linearization of the Lagrangian L(z) as the cost function in (9),
not the one of f(x). The justification is that, if x∗ is a local minimum of (6)
with associated Lagrange multiplier ν∗, then x∗ is also a local minimum of

min
x:G(x)=0

f(x) + ν∗ ′G(x).

Evidently, ν∗ is not know in advance, so instead one uses the value of ν at the
current iteration, which leads to the local approximation (9).

In the case where there are inequality constraints, using only L(z) does not
provide the desired behavior as it would not account for the constraint s ≥ 0.
To address this, a first step is to include the barrier function −b1′ log(s) (the
log(·) is element wise) which only accepts s ≥ 0 and goes to +∞ if s→ 0. The
second order linearization of the barrier is

− b1′ log(s)− d′sb1� s+
1

2
d′sbdiag(s)−2ds (10)

where � designates the element wise division on 1 by s. We are going to modify
this quadratic approximation, by using as as second order term diag(λ � s)
instead of bdiag(s)−2. The justification is that, if we were at a point such that
g(z, b) = 0, the two would be equivalent as λ � s − b1 = 0. This modified
linearization tends to perform better because it provides directions ds that also
take into account the current value of λ in the quadratic form, which helps to
get a direction dz that does no violate the constraints λ, s > 0 [13, Chapter
19.3]. Putting this all together, we can modify the basic interior-point method
such that (dx, ds) is obtained from the solution and (dν , dλ) the associated
Lagrange multiplier of the quadratic program

min
dx,ds:

G(x)+∇xG(x)′dx,
F (x)+s+∇xF (x)′dx+ds

L(z)− b1′ log(s) + d′x∇xL(z) + d′s(λ− b1� s)

+
1

2
d′x(∇xxL(z) + εx(z))dx +

1

2
d′s diag(λ� s)ds (11)

where εx(x) is chosen such that the solution is unique (the term d′sλ comes
from the linearization term d′s∇sL(z)). With some algebra, one could show
that the dynamic equation of this modified interior-point is

z+ = z + αdz = z − α(∇zg(z, b) + E(x))−1g(z, b), (12)

where E(x) := diag(εx1n+m,0l+m). Conveniently, because we used diag(λ�s)
for the second order linearization of the barrier, when εx(x) = 0 we recover
the basic interior-point method from (8).

While it is beyond the scope of this paper, one could show that if some
assumptions hold, the set of local minima of (6) coincides with the set of
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asymptotically stable equilibrium points of (12). The proof uses very similar
arguments as the proof of Theorem 1.

3 Minmax optimization

Consider the minmax optimization problem

min
x∈X

max
y∈Y(x)

f(x, y) (13)

where f : Rnx × Rny → R is a twice continuously differentiable objective
function, X ⊂ Rnx is the feasible set for x and Y : X ⇒ Rny is a set-valued
map that defines an x dependent feasible set for y. A solution (x∗, y∗) to (13)
is called a global minmax and satisfies

f(x∗, y) ≤ f(x∗, y∗) ≤ max
ỹ∈Y(x)

f(x, ỹ) ∀(x, y) ∈ X × Y(x∗).

A point (x∗, y∗) is said to be a local minmax of (13) if there exist a constant
δ0 > 0 and a positive function h(·) satisfying h(δ) → 0 as δ → 0, such
that for every δ ∈ (0, δ0] and for every (x, y) ∈ {x ∈ X : ‖x− x∗‖ ≤ δ}
×{y ∈ Y(x∗) : ‖y − y∗‖ ≤ h(δ)} we have

f(x∗, y) ≤ f(x∗, y∗) ≤ max
ỹ∈Y(x):‖ỹ−y∗‖≤h(δ)

f(x, ỹ)

[11, 12]. Inspired by the properties of the modified Newton’s method for min-
imization in Section 2, we want to develop a Newton-type iterative algorithm
of the form [

x+

y+

]
=

[
x
y

]
+

[
dx
dy

]
. (14)

where dx and dy satisfy the following properties:

P1: At each time step, (dx, dy) is obtained from the solution of a quadratic
program that locally approximates (13) and therefore (x+, y+) can be seen
as an improvement over (x, y) .

P2: The set of asymptotically stable equilibrium points of (14) coincides with
the set of local minmax of (15).

3.1 Unconstrained minmax

We start by considering the case where X = Rnx and Y(·) = Rny such that
(13) simplifies to

min
x∈Rnx

max
y∈Rny

f(x, y). (15)

For this case, [11] establishes second order sufficient conditions to determine
if a point (x, y) is a local minmax which can be stated in terms of the inertia
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of the matrix

∇zzf(x, y) :=

[
∇xxf(x, y) ∇xyf(x, y)
∇yxf(x, y) ∇yyf(x, y)

]
.

We recall that the inertia In(A) of a symmetric matrix A is a 3-tuple with the
number of positive, negative and zero eigenvalues of A.

Proposition 1 (Unconstrained second order sufficient condition) Let (x, y) be an
equilibrium point in the sense that ∇xf(x, y) = 0 and ∇yf(x, y) = 0. If

In(∇yyf(x, y)) = (0, ny, 0) and In(∇zzf(x, y)) = (nx, ny, 0) (16)

then (x, y) is a local minmax.

The second order conditions in [11] are:

In(∇yyf(x, y)) = (0, ny, 0) and

In(∇xxf(x, y)−∇xyf(x, y)∇yyf(x, y)−1∇yxf(x, y)) = (nx, 0, 0),

which turn out to be equivalent to the inertia conditions in Proposition 1 in
view of Haynsworth inertia additivity formula [36, Theorem 1.6].

For the property P1 the Newton direction (dx, dy) for (14) should be
obtained by solving the following local quadratic approximation to (15)

min
d̄x

max
d̄y

f(x, y) + ∇xf(x, y)′d̄x + ∇yf(x, y)′d̄y + d̄′x∇xyf(x, y)d̄y

+
1

2
d̄′x

(
∇xxf(x, y) + εx(x, y)I

)
d̄x +

1

2
d̄′y

(
∇yyf(x, y)− εy(x, y)I

)
d̄y (17)

with εx(·) and εy(·) chosen so that the minmax problem in (17) has a unique
solution, which means that the inner (quadratic) maximization must be
strictly concave and that the outer (quadratic) minimization of the maximized
function must be strictly convex, which turns out to be precisely the second
order sufficient conditions in Proposition 1, applied to the approximation in
(17), which can be explicitly written as follows:

In
(
∇yyf(x, y)− εy(x, y)I

)
= (0, ny, 0) and

In
(
∇zzf(x, y) + E(x, y)

)
= (nx, ny, 0)

(LQAC)

where E(x, y) = diag(εx(x, y)1nx ,−εy(x, y)1ny ). We call these condition the
Local Quadratic Approximation Condition (LQAC). It is straightforward to
show that the Newton iterations (14) with (dx, dy) obtained from the solution
to (17) is given by[

x+

y+

]
=

[
x
y

]
+

[
dx
dy

]
=

[
x
y

]
−
(
∇zzf(x, y) + E(x, y)

)−1
[
∇xf(x, y)
∇yf(x, y)

]
. (18)
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For the property P2, we need all locally asymptotically stable equilibrium
points of (17) to be local minmax of (15). For the minimization in Section 2,
simply selecting εx(·) such that the local quadratic approximation (2) has a
well defined minimum suffices to guarantee that the only equilibrium points
that are LAS for the Newton iterations (3) are strict local minima (Theorem
1). However, now the LQAC does not suffice to guarantee that P2 holds, as
the two counter examples bellow show.

Example 1 Consider f(x, y) = −1.5x2 − 4xy + y2 for which the unique equilibrium
point x = y = 0 is not a local minmax point. Take εy(0, 0) = 4 and εx(0, 0) = 0
which satisfy LQAC. The Jacobian of the dynamics is

I −
([

3 −4
−4 2

]
+

[
0 0
0 −4

])−1 [
3 −4
−4 2

]
≈
[
0 0.72
0 0.54

]
which has eigenvalues approximately equal to (0, 0.54). Therefore (0, 0) is a LAS
equilibrium point of (18) even though it is not a local minmax point.

Example 2 Consider f(x, y) := −0.25x2+xy−0.5y2, for which the unique equilibrium
point x = y = 0 is a local minmax point. Take εy(0, 0) = 3 and εx(0, 0) = 0.2 which
satisfy LQAC. The Jacobian of the dynamics is

I −
([
−0.5 1

1 −1

]
+

[
0.2 0
0 −3

])−1 [−0.5 1
1 −1

]
=

[
−4 15
−1 4.5

]
,

for which the eigenvalues are 2 and −1.5. Therefore (0, 0) is an unstable equilibrium
point of (18) even though it is a local minmax point.

The main contribution of this section is a set of sufficient conditions that,
in addition to LQAC, guarantee the P2 holds. In the results that follow, we use
In+(·) to designate the number of positive eigenvalues of a symmetric matrix
and In−(·) the number of negative ones.

Theorem 2 (Stability of modified Newton method for unconstrained minmax) Let
(x, y) be an equilibrium point of (18) for which ∇zzf(·) and E(·) are differentiable
on a neighborhood around (x, y) and LQAC holds. If (x, y) is such that (16) holds
and either

εy(x, y) = 0 or In−
([

εx(x, y)I ∇xyf(x, y)

∇yxf(x, y) εy(x, y)−1∇yyf(x, y)2

])
= 0 (19)

then (x, y) is a locally exponentially stable equilibrium point of (18). Conversely,
suppose (x, y) is such that (16) does not hold. If there exist µ̄ ∈ (0, 1) for which
∇yyf(z)− µ̄εy(x, y) and ∇zzf(x, y) + µ̄E(x, y) are nonsingular and either

• In+(∇yyf(z)− µ̄εy(x, y)) = 0 and In+(∇zzf(x, y) + µ̄E(x, y)) < nx (20a)

• nx ≥ In+(∇yyf(z)− µ̄εy(x, y)) > 0 and In+(∇zzf(x, y) + µ̄E(x, y)) > nx
(20b)

• nx < In+(∇yyf(z)− µ̄εy(x, y)) (20c)

then (x, y) is an unstable equilibrium point of (18).
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Essentially, Theorem 2 shows that if we select εx and εy so that both LQAC
and either (19) or (20) hold, then (x, y) is a locally asymptotically stable
equilibrium point of (18) if and only if this point satisfies the second order
sufficient conditions in Proposition 1. The statement of the result is slightly
more complicated than this because if the second order sufficient conditions do
not hold, then the point is actually unstable (rather than just not exponentially
stable). Conversely, if these conditions hold, we actually have local exponential
stability.

Proof of Theorem 2 Using the same reasoning as in Theorem 1, we conclude that
the Jacobian of the dynamical system (18) at (x, y) is

I − (∇zzf(x, y) + E(x, y))−1∇zzf(x, y), (21)

where we know that (∇zzf(x, y)+E(x, y)) is nonsingular from the LQAC. Therefore,
we can also use the same reasoning as in the proof of Theorem 1 to conclude that
(x, y) is a LAS equilibrium point of (18) if ∇zzf(x, y) + µE(x, y) is nonsingular
∀µ ∈ [0, 2]. Conversely, (x, y) is an unstable equilibrium point of (18) if ∇zzf(x, y)+
µE(x, y) is singular for some µ ∈ [0, 2].

For the rest of the proof, it will be useful to have defined the function

S(µ) = ∇xxf(x, y)−∇xyf(x, y)(∇yyf(x, y)−µεy(x, y)I)−1∇yxf(x, y)+µεx(x, y)I

and to drop the inputs (x, y) from the expressions in order to shorten them.

Let us start by proving that if (x, y) is such that (16) and (19) hold, then (x, y)
is a LAS equilibrium point of (18). First, we want to show that condition (19) is
equivalent to the condition

εx(x, y)I − εy(x, y)∇xyf(x, y)∇yyf(x, y)−2∇yxf(x, y) � 0. (22)

For εy(x, y) = 0 the equivalence is true because εx(x, y) ≥ 0. For εy(x, y) > 0, the
equivalence comes from Haynsworth inertia additivity formula combined to the fact
that ∇yyf(x, y)2 � 0.

Let us show that this ensures that ∇zzf + µE is nonsingular ∀ µ > 0, and
therefore (x, y) is a LAS equilibrium point of (18). First, as ∇yyf ≺ 0, µ ≥ 0, and
εy ≥ 0, we have ∇yyf − µεyI ≺ 0 and is thus nonsingular. Second, let us show that
the condition (22) implies that for any vector v

min
µ∈[0,2]

v′S(µ)v = v′S(0)v. (23)

Taking the derivative of v′S(µ)v with respect to µ we obtain

v′
(
εxI − εy∇xyf(∇yyf − µεyI)−2∇yxf

)
v � v′

(
εxI − εy∇xyf∇yyf

−2∇yxf
)
v

in which we use the the fact that ∇yyf
−2 � (∇yyf − µεyI)−2 for all µ ≥ 0 as

∇yyf ≺ 0, and εy ≥ 0. Therefore, if (22) holds, the derivative of v′S(µ)v, thus
the cost does not decrease with µ, which implies that the minimum is obtained for
µ = 0, which proves (23). Therefore if εx and εy are chosen to satisfy (19), then
∀µ ∈ [0, 2] it holds that S(µ) � S(0) � 0, where the second inequality comes from
the second order sufficient conditions for unconstrained minmax (16). As neither
∇yyf − µεyI ≺ 0 nor S(µ) are singular for µ ∈ [0, 2], Haynsworth inertia additivity
formula [36, Theorem 1.6] implies that ∇zzf + µE is nonsingular ∀µ ∈ [0, 2], and
therefore (x, y) is a LAS equilibrium point of (18).
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(a) Illustration of (20a)
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(b) Illustration of (20b)
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(c) Illustration of (20c)

Fig. 1: Eigenvalues of S(µ) for the three differente scenarios in (20) illustrating
the arguments for the proof of Theorem 2

Now the second part, let us prove that if (x, y) is not such that (16) and εx and εy
are chosen to satisfy the LQAC and (20) then (x, y) is an unstable equilibrium point
of (18). Let us start with the following general results. Using Haynsworth inertia
additivity formula, if ∇yyf −µεyI is nonsingular then ∇zzf +µE is singular if and
only if S(µ) is singular. Let µk with k = 1, 2, . . . , In+(∇yyf(x, y)) be the points such
that ∇yyf(x, y) − µkεy is singular with µ1 > · · · > µIn+(∇yyf(x,y)). Moreover, the

LQAC imply that ∇yyf(x, y)− µεy(x, y)I is negative definite for µ ∈ (µ1, 1).
Starting with (20a). First, notice that by construction of µ1, we have that µ̄ > µ1,

and therefore (∇yyf(x, y) − µεy(x, y)I) ≺ 0 ∀µ ≥ µ̄. As In+(∇zzf(x, y)) < nx
implies that λmin(S(µ̄)) < 0 and the LQAC implies that λmin(S(1)) > 0 (both
by Haynsworth inertia additivity formula), from the continuity of the eigenvalues,
∃µ ∈ (µ̄, 1) such that λmin(S(µ)) = 0. We illustrate this reasoning in Figure 1a.

Now (20b). First, notice that, by construction of µ1, µ̄ < µ1. For each point µk,
the limit of λmax(S(µ)) is +∞ when µ tends to µk by the right and the limit of
λmin(S(µ)) is −∞ when µ tends to µk by the left. Let λ1(µ) be the eigenvalue of
S(µ) such that the limit of λ1(µ) when µ tends to µ1 by the left is −∞. Between
µ2 and µ1, λ1(µ) is the smallest eigenvalue of S(µ). Between µ3 and µ2, λ1(µ) is
the second smallest eigenvalue of S(µ), as another eigenvalue has gone to −∞ (it
might be useful at this point to look at Figure 1b to have an illustration). If we show
that (20b) is equivalent to λ1(µ̄) > 0, then by continuity of the eigenvalue we know
that there exist µ ∈ (µ̄, µ1) such that λminS(µ) = 0. We now only need to show the
equivalence of the conditions.

If µ̄ ∈ (µ2, µ1) then λ1(µ̄) > 0 if S(µ̄) has nx positive eigenvalues, as λ1(µ) is the
smallest eigenvalue of S(µ) for µ in (µ2, µ1). If µ̄ ∈ (µ3, µ2) then λ1(µ̄) > 0 if S(µ̄)
has at least nx−1 positive eigenvalues, as λ1(µ) is the second smallest eigenvalue of
S(µ) for µ in (µ2, µ1) (see discussion in previous paragraph). In the general case, if
µ̄ ∈ (µk+1, µk) then λ1(µ̄) > 0 if S(µ̄) has at least nx− k+ 1 positive eigenvalues as

λ1(µ) is the kth smallest eigenvalue of S(µ) for µ in (µk+1, µk). This is equivalent
to say In+(S(µ̄)) > nx − k. Using Haynsworth inertia additivity formula we obtain
In+(∇zzf + µ̄E) = In+(S(µ̄)) + In+(∇yyf(x, y)− µ̄εy) > (nx − k) + (k) = nx.

Finally, (20c). Continuing the reasoning from above, for µ ∈ (µnx+1, µnx), λ1(µ)
is the largest eigenvalue of S(µ) (as all the nx−1 other eigenvalues have gone to −∞).
As nx < In+(∇yyf(z)− µ̄εy(x, y)), we know that at µnx+1, the limit of λmax(S(µ))
(in this case, λ1(µ)) is +∞ when µ tends to µnx+1 by the right, meaning that λ1(µ)
has crossed zero at some point between (µnx+1, µ1). We illustrate this reasoning in
Figure 1c. �
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3.2 Constrained minmax

We now consider the case with more general constraint sets involving equality
and inequality constraints of the form

X = {x ∈ Rnx : Gx(x) = 0, Fx(x) ≤ 0} and

Y(x) = {y ∈ Rny : Gy(x, y) = 0, Fy(x, y) ≤ 0}
(24)

where the functions Gx : Rnx → Rlx , Fx : Rnx → Rmx , Gy : Rnx×Rny → Rly

and Fy : Rnx ×Rny → Rmy are all twice continuously differentiable. Similar
to what we did in Section 2.1, it will be convenient for the development of
the interior-point method to use slack variables and rewrite the constrained
minmax (13) as

min
x,sx:Gx(x)=0,Fx(x)+sx=0,sx≥0

max
y,sy:Gy(x,y)=0,Fy(x,y)+sy=0,sy≥0

f(x, y). (25)

Similar to what we have done in the unconstrained case, we want to present
second order conditions to determine if a point is a constrained local minmax.
In order to do so, we need to extend some fundamental concepts of constrained
minimization to constrained minmax optimization. The function

L(z) := f(x, y) + ν′xGx(x) + λ′x(Fx(x) + sx) + ν′yGy(x, y)− λ′y(Fy(x, y) + sy),

will play an equivalent role as the Lagrangian with (νx, νy, λx, λy) as the
equivalent of Lagrange multipliers; we use the shorthand notation z =
(x, sx, y, sy, νy, λy, νx, λx). Furthermore, the definition of linear independence
constraint qualifications (LICQ) and the strict complementarity for minmax
optimization are1:

Definition 1 (LICQ and strict complementarity for minmax) Let the sets of
active inequality constraints for the minimization and maximization be defined,
respectively, by

Ax(x) = {i : F
(i)
x (x) = 0, i = 1, . . . ,mx} and

Ay(x, y) = {i : F
(i)
y (x, y) = 0, i = 1, . . . ,my}

(26)

where F
(i)
y (x, y) and F

(i)
x (x) denote the ith element of Fy(x, y) and Fx(x). Then:

• The linear independence constraint qualification (LICQ) is said to hold at
z if the vectors the sets

{∇xG
(i)
x (x), i = 1, . . . , lx}

⋃
{∇xF

(i)
x (x), i ∈ Ax(x)} and

{∇yG
(i)
y (x, y), i = 1, . . . , ly}

⋃
{∇yF

(i)
y (x, y), i ∈ Ay(x, y)}

are linearly independent.

1Their definition for constrained minimization can be found in [13, Definitions 12.4 and 12.5].
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• Strict complementarity is said to hold at z if λ
(i)
y > 0 ∀i ∈ Ay(x, y) and

λ
(i)
x > 0 ∀i ∈ Ax(x)

We have almost all the ingredients to present the second order condition.
For the unconstrained minmax optimization, the second order condition in
Proposition 1 required that gradients (∇xf(x, y) and ∇yf(x, y)) were equal to
zero and that Hessians (∇zzf(x, y) and ∇yyf(x, y)) had a particular inertia. If
it were not for the inequality constraints in (24), we would be able to state the
second order conditions using gradients and Hessians of L(z). Unfortunately,
the inequality constraints make the statement a bit more complicated. The
role of the gradient will be played by

g(z, b) :=



∇xL(z)
λx � sx − b1

∇yL(z)
−λy � sy + b1

Gy(x, y)
−Fy(x, y)− sy

Gx(x)
Fx(x) + sx


where � denotes the element wise Hadamard product of two vectors and b ≥ 0
the barrier parameter, which is the extension to minmax of the function g(·)
defined in (7) for the minimization. The role of ∇yyf(x, y) will be played by

Hyyf(z) =


∇yyL(z) 0 ∇yGy(x, y) −∇yFy(x, y)

0 −diag(λy) 0 −diag(
√
sy)

∇yGy(x, y)′ 0 0 0
−∇yFy(x, y)′ −diag(

√
sy) 0 0

 , (27a)

while the role of ∇zzf(x, y) will be played by

Hzzf(z) =

Hxxf(z) Hxyf(z) Hxλf(z)
Hxyf(z)′ Hyyf(z) 0
Hxλf(z)′ 0 0

 (27b)

with blocks defined by

Hxyf(z) =

[
∇xyL(z) 0 ∇xGy(x, y) −∇xFy(x, y)

0 0 0 0

]
Hxxf(z) =

[
∇xxL(z) 0

0 diag(λx)

]
Hxλf(z) =

[
∇xGx(x) ∇xFx(x)

0 diag(
√
sx)

] (27c)
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Proposition 2 (Constrained second order sufficient conditions) Let z be an equi-
librium point in the sense that g(z, 0) = 0 with λy, λx, sy, sx ≥ 0. If the LICQ and
strict complementarity hold at z and

In(Hyyf(z)) = (ly+my, ny +my, 0) and

In(Hzzf(z)) = (nx +mx + ly+my, lx +mx + ny +my, 0)
(28)

then (x, y) is a local minmax of (13).

The conditions for Proposition 2 are slightly stricter than the ones in [12]
as we require strict complementarity and LICQ both for the max and the min.
However, our conditions allow us to verify whether a point is a local minmax
using the inertia, instead of having to compute solution cones. We prove that
given these stricter assumptions our conditions are equivalent to those in [12]
in Appendix A.

Let dz = (dx, dsx , dy, dsy , dνy , dλy , dνx , dλx) be a shorthand notation to
designate the update direction of the variables z = (x, sx, y, sy, νy, λy, νx, λx).
Similar to the basic interior-point method introduced in Section 2.1, a basic
interior-point method for minmax finds a candidate solution to (25) using the
iterations

z+ = z + αdz = z − α∇zg(z, b)−1g(z, b) (29)

where the barrier parameter b is slowly decreased to 0, so that z converges
to a root of g(z, 0) = 0 while α ∈ (0, 1] is chosen at each step such that the
feasibility conditions λy, λx, sy, sx > 0 hold. We want to modify this basic
interior-point so it satisfies the properties P1 and P2.

For the property P1, dz needs to be obtained from the solution of a
quadratic program that locally approximates (25). Using equivalent argu-
ments as in the development of the quadratic program (11) for the constrained
minimization in Section 2.1, we obtain the the objective function should be

K(dx, dsx , dy, dsy ) = L(z) + ∇xL(z)′dx + (λx − b1� sx)′dsx + ∇yL(z)′dy

− (λy − b1� sy)′dsy + d′x∇xyL(z)dy +
1

2
d′x(∇xxL(z) + εx(z)I)dx

+
1

2
d′sx diag(λx�sx)dsx +

1

2
d′y(∇yyL(z)−εy(z)I)dy−

1

2
d′sy diag(λy�sy)dsy ,

where εx(z) ≥ 0 and εy(z) ≥ 0 are scalar and � designates the element wise
division of two vectors. The feasible sets dX for (dx, dsx) and the set-valued
map that defines a feasible set dY(dx) for (dy, dsy ) are obtained from the first
order linearization of the functions in X and Y(dy) and are given by

dX = {(dx, dsx) ∈ Rnx ×Rmx : Gx(x) + ∇xGx(x)′dx = 0,

Fx(x) + sx + ∇xFx(x)′dx + dsx = 0}
dY(dx) = {(dy, dsy ) ∈ Rny ×Rmy : Gy(x, y) + ∇xGy(x, y)′dx + ∇yGy(x, y)′dy
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= 0, Fy(x, y) + sy + ∇xFy(x, y)′dx + ∇yFy(x, y)′dy + dsy = 0}.

If ∇xGx(x) and ∇yGy(x, y) have linearly independent columns, we propose to
obtain (dx, dsx , dy, dsy ) as the optimizers and (dνy , dλy , dνx , dλx) the associated
Lagrange multipliers of the minmax optimization

min
d̄x,d̄sx∈dX

max
d̄y,d̄sy∈dY(d̄x)

K(d̄x, d̄sx , d̄y, d̄sy ) (30)

where εx(z) and εy(z) are chosen such that the solution to (30) is unique. We
can apply to (30) the second order condition from Proposition 2 and obtain
that εx(z) and εy(z) need to be chosen to satisfy

In(Jyyf(z)− Ey(z)) = (ly+my, ny +my, 0) and

In(Jzzf(z) + E(z)) = (nx +mx + ly+my, lx +mx + ny +my, 0)

(ConsLQAC)

where Ey(z) := diag(εy(z)1ny ,0ly+2my ) and E(z) :=
diag(εx(z)1nx ,0mx ,−εy(z)1ny ,0ly+2my+lx+mx); Jzzf(z) is the equivalent of
the matrix defined in (27b) for the problem (30) and can be shown to be
equal to

Jzzf(z) = S−1/2Hzzf(z)S−1/2 = S−1∇zg(z, b). (31)

with S = diag(1nx , sx,1ny , sy,1ly+my+lx+mx); Jyy(z) is the equivalent par-
tition of Jzz(z) as Hyy(z) is of Hzz(z). We will call these conditions the
Constrained Local Quadratic Approximation Conditions (ConsLQAC). In this
case, it is straightforward to show that modifying the basic interior-point
iterations in (29) by taking dz from the solution of (30) leads to the iterations

z+ = z + αdz = z − α(Jzzf(z) + E(z))−1S−1g(z, b). (32)

For the property P2, one can deduce that analogously to the unconstrained
case, choosing εx(z) and εy(z) such that the ConsLQAC hold is not suffi-
cient to guarantee the desired stability/instability, and we need to develop
equivalent conditions as those of Theorem 2. In order to state them, let
us define the partitions, Jxxf(z), Jyxf(z), and Jxλf(z) of Jzzf(z) analo-
gously to the partitions Hxxf(z), Hyxf(z), and Hxλf(z) of Hzzf(z). We also
need to define the perturbation matrices Ex(z) = diag(εx(z)1nx ,0mx) and
Ẽy(z) := diag(εy(z)1ny , ξ1ly+2my ) for an arbitrary choice of ξ > 0 (preferably
small)

Theorem 3 (Stability of modified interior-point method for constrained minmax)
Let α = 1 and (z, b), b > 0 be an equilibrium point of (32) (in the sense that
g(z, b) = 0) for which Jzzf(·) and E(·) are differentiable on a neighborhood around
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z and ConsLQAC and the LICQ hold. If z is such that (28) hold and either

εy(z) = 0 or In−

 Ex(z) Jxyf(z) Jxλf(z)

Jxyf(z)′ Ẽy(z)−1Jyyf(z)2 0
Jxλf(z)′ 0 0

 = lx +mx (33)

then (z, b) is a locally exponentially stable equilibrium point of (32). Conversely,
suppose z is such that (28) does not hold. If there exist µ̄ ∈ (0, 1) for which Hyyf(z)−
µ̄Ey(z) and Hzzf(z) + µ̄E(z) are nonsingular and either

• In+(Hyyf(z)− µ̄Ey(z)) = ly +my

and In+(Hzzf(z) + µ̄E(z)) < nx +mx + ly +my (34a)

• nx +mx ≥ In+(Hyyf(z)− µ̄Ey(z))− ly −my > 0

and In+(Hzzf(z) + µ̄E(z)) > nx +mx + ly +my (34b)

• nx +mx < In+(Hyyf(z)− µ̄Ey(z))− ly −my (34c)

then z is an unstable equilibrium point of (32).

Proof sketch First, using the same arguments as in the proof of Theorem 1, we
conclude that the Jacobian of the dynamic system (32) around a point z such that
g(z, b) = 0 is

I − α
(
Jzzf(z) + E(z)

)−1
S−1∇zg(z, b) = I − α

(
Jzzf(z) + E(z)

)−1
Jzzf(z) (35)

Second, from (31) we have that In(Hzzf(z)) = In(S1/2Jzzf(z)S1/2). Using
Sylvester’s law of inertia [36, Theorem 1.5], this simplifies to In(Hzzf(z)) =
In(Jzzf(z)). If a point z is such that g(z, b) = 0, then one can check (28) using
Jzzf(z) and Jyyf(z). The rest of the theorem’s proof is analogous to the one of
Theorem 2, but using the function

S(µ) = Zx(z)′
(
Jxxf(z)− Jxyf(z)(Jyyf(z)− µEy(z))−1Jyxf(x, y) + µEx(z)

)
Zx(z)

where Zx(z) ∈ Rnx+mx,nx−lx is such that Jxλf(z)′ Zx(z) = 0 and that
[Jxλf(z), Zx(z)] is full rank. Which comes from (A3), in the proof of Proposition 2.

First, the proof that if z is such that (28) and (33) hold then z is a LAS
equilibrium point of (32). Similar to the unconstrained case, (33) implies that

Zx(z)′
(
Ex(z)− Jxyf(z)Jyyf(z)−1Ẽy(z)Jyyf(z)−1Jyxf(z)

)
Zx(z) � 0

=⇒ Zx(z)′
(
Ex(z)− Jxyf(z)Jyyf(z)−1Ey(z)Jyyf(z)−1Jyxf(z)

)
Zx(z) � 0 (36)

The first implication comes from the arguments we used in the proof of Proposition
2, while the second implication comes from Ẽy(z) � Ey(z).

The only extra argument needed is to show that condition (36) is always feasible
for some εx(z) large enough. This is not evident as the matrix

R := Hxyf(z)Hyyf(z)−1Ey(z)Hyyf(z)−1Hyxf(z)

size is (nx + mx) × (nx + mx) while Ex(z) has only nx nonzero elements in the
diagonal. However, because of the zero entries in Hxyf(z) and Ey(z), one can verify
with some algebraic manipulation that rank(R) := r ≤ min(nx, ny). Let Λ be the
matrix with eigenvalues of R in decreasing order and V its associated eigenvectors
such that R = V ΛV ′. We can partition V into two diagonal block V1 of size (r, r)
associated to the nonzero eigenvalues of R and V2 = Inx+mx−r. Therefore Ex(z) =
V ′Ex(z)V , which concludes the proof sketch. �
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4 Algorithmic development and numerical
examples

The following algorithm combines the result of the previous section to pro-
pose a method for selecting εx(z) and εy(z) that satisfies the ConsLQAC and
guarantees the stability properties of Theorem 3. We only state the algo-
rithm for the constrained case, its specialization to the unconstrained case is
straightforward.

Algorithm 1 Interior-point method for minmax

Require: An initial point z = (x, sx, y, sy, νy, λy, νx, λx), an initial barrier
parameter value b, a barrier reduction factor σ ∈ (0, 1), a stopping
accuracy δs, and a local stability switching criteria δl.

1: while ‖g(z, b)‖∞ > δs do
2: while ‖g(z, b)‖∞ > b do
3: if ‖g(z, b)‖∞ > δ` then
4: Take εy(z) and εx(z) such that (ConsLQAC) is satisfied
5: else
6: if Jyy(z) and Jzzf(z) satisfy (28) then
7: Take εy(z) and εx(z) such that (33) is satisfied
8: else
9: Take εy(z) and εx(z) such that (ConsLQAC) is satisfied.

10: Test conditions (34) for µ̄ = 0
11: if conditions (34) do not hold for µ̄ = 0 then
12: Pick candidates µ̄k > 0, k = 1, 2, . . . with at least one of

them satisfying In+(Jyyf(z)− µ̄kEy(z))− ly −my > 0
13: Increase εx until either condition (34a) or (34b) holds for

one of the µ̄k
14: end if
15: end if
16: end if
17: Compute a new z using the equation

z ← z − α
(
Jzzf(z) + E(z)

)−1

S−1g(z, b)

where α ∈ (0, 1] is selected such that the feasibility conditions
λy, λx, sy, sx > 0 hold.

18: end while
19: b← σ b
20: end while

The switching condition ‖g(z, b)‖∞ > δ` between the two modes is used
for computationally efficiency. As the stability results are only local, when
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the system is far from an equilibrium point, generating local instability is not
necessary, and εx(·) and εy(·) can be chosen simply to satisfy the constrained
local quadratic approximation condition (ConsLQAC).

An option for line (7) would be to choose εy(z) = εx(z) = 0, which would
guarantee that (28) always holds. However, it is often the case that the matri-
ces Jyyf(z) and Jzzf(z) can be ill conditioned, meaning that one of their
eigenvalues is close to zero. In this case, it can be interesting to choose non zero
εx(z) and εy(z) which would generally make the computation more numerically
stable.

Proposition 3 (Convergence to feasible local minmax points) Suppose that Algo-
rithm 1 generates an infinite sequence of iterates {(xk, yk)} (i.e., δs = 0) and that
{bk} → 0. Then all limit points (x̂, ŷ) of {(xk, yk)} are feasible. Furthermore, if the
LICQ and strict complementarity condition hold at a given limit point (x̂, ŷ), then
g(ẑ, 0) = 0.

The proof is analogous to the proof of Theorem 19.1 in [13]. In addition
to this result, because εx and εy are selected using the results from Theorem
3, which guarantees that the only stable equilibrium points of (32) are local
minmax points, any given limit point (x̂, ŷ) will also, in general, be a local
minmax point.

Remark 1 (Strongly-concave case) Suppose that for all x ∈ X the function f(x, y)
is strongly concave and the set Y(x) is convex. Then one can set εy = 0 as
In(Jyyf(z)) = (ly +my, ny +my, 0) and Jyyf(z) will generally be well conditioned.
Therefore, if Jzzf(z) satisfies (28), the condition (33) will always hold, and if it does
not satisfy (28), then choosing εx(z) such that the ConsLQAC is satisfied is enough
to guarantee instability as (34a) will hold for µ̄ = 0. �

Remark 2 (Computing the inertia) It is not necessary to actually compute the eigen-
values of Jzzf(z) in order to determine the inertia. A first option is to use the LBL
decomposition [13, Appendix A], which decomposes Jzzf(z) into the product LBL
where L is a lower triangular matrix and B a block diagonal one, the inertia of B is
the same as the inertia of Jzzf(z).

Let Γ = diag(γ1nx+mx ,−γ1ny+my , γ1ly+my
,−γ1lx+mx

), with γ a small pos-
itive number. A second approach is to use the LDL decomposition, to decompose
Jzzf(z) + Γ into the product LDL where L is a lower triangular matrix and D is a
diagonal matrix; the inertia of D, which is given by the number of positive,negative
and zero elements of the diagonal of D, gives the inertia of Jzzf(z) + Γ. The matrix
Γ introduces a distortion in the inertia but it helps to stabilize the computation
of the LDL decomposition, which tends to be faster than the LBL decomposition.
This is the approach we use in our implementation; it has been studied in interior-
point algorithms for minimization and the distortion introduced by Γ tends to be
compensated by a better numerical algorithm [37, 38]. �
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Pure Newton Alg 1, δ` = 0 Alg 1, δ` = ∞
Cnvg Cnvg mm Iter Cnvg Cnvg mm Iter Cnvg Cnvg mm Iter

f1 1000 1000 4.1 1000 1000 4.0 937 937 5.7
f2 1000 486 19 1000 997 14 890 890 13
f3 700 49 6.0 1000 1000 5.0 979 979 5.0
f4 1000 178 4.1 1000 322 4.9 320 320 4.9

Table 1: Comparing the performance of Algorithm 1 with two extreme
parameters for δ`.

4.1 Benchmark example for unconstrained minmax

Consider the following functions

f1(x, y) = 2x2 − y2 + 4xy + 4/3y3 − 1/4y4

f2(x, y) = (4x2 − (y − 3x+ 0.05x3)2 − 0.1y4) exp
(
−0.01(x2 + y2)

)
f3(x, y) = (x− 0.5)(y − 0.5) + exp

(
−(x− 0.25)2 − (y − 0.75)2

)
f4(x, y) = f3(x, y) + 10x2

which have been used as examples in [25, 29, 39] respectively, while f4(·) we
constructed ourselves. We have chosen these functions because, as we will
show, they illustrate some interesting behaviors.

We want to investigate the performance of our algorithm for two extreme
values of δ`, the switching parameter which chooses between when to guarantee
stability, which will be δl = 0 (i.e., only verifying the LQAC without worrying
about stability/instability) and δ` = ∞ (i.e., always guarantee stability/in-
stability even far away from an equilibrium point). As a baseline, we compare
our algorithm with a “pure” Newton (PN) algorithm, using εx = εy = 0.

The pure Newton and Algorithm 1 with the different δ` are each initialized
1000 times, using the same initialization for the three of them each time. We
compare their convergence properties according to three criteria: the number
of times the algorithm converged (Cnvg), the number of times it converged
to a local minmax point (Cnvg mm) and the average number of iterations to
converge to a local minmax point (Iter). The algorithm is terminated when
the infinity norm of the gradient is smaller than δs = 10−5 and we declare
that they did not converge if it has not terminated in less than 100 iterations
or (in the case of the pure Newton algorithm) the solver failed to invert the
Hessian. The result of the comparison is displayed in Table 1. We can make
the following observations from this comparison.

• The pure Newton algorithm is not suited to solve minmax problems. Except
for f1, it has substantially worst convergence towards minmax points com-
pared to Algorithm 1. This suggests that by modifying the Newton method
with εx and εy such that LQAC are satisfied, the directions (dx, dy) update
(x, y) to the correct place.

• By selecting δ` = ∞ in Algorithm 1, we are able to guarantee that the
Newton iterations only converge towards local minmax points, as predicted
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by Theorem 2. However, if we compare these results to the case where
we set δ` = 0, it seems that guaranteeing stability decreases the basin of
attraction of equilibrium points, without increasing the basin of attraction
of local minmax points. In f2(·) the basin of attraction reduction impacts
the convergence towards local minmax, with δ` = 0 converging to more
local minmax than in the case of δ` = 0. In f4(·), taking δ` = ∞ seems to
only reduce the basin of attraction of equilibrium points that are not local
minmax, but this does not translate to larger basin of attractions for local
minmax points.

4.2 The homicidal chauffeur example for constrained
minmax

In the homicidal chauffeur problem, a pursuer driving a car is trying to hit a
pedestrian, who (understandably) is trying to evade it. The pursuer is modeled
as a discrete time Dubins’s vehicle with equations

x+
p =

x
(1)
p + v cosx

(3)
p

x
(2)
p + v sinx

(3)
p

x
(3)
p + u

 =: φp(xp, u)

where x
(i)
p designates the ith element of the vector xp, v is a constant forward

speed and u is the steering, over which the driver has control. The pedestrian
is modeled by the accumulator

x+
e = xe + d =: φe(xe, d)

where d is the velocity vector. Given a time horizon T , and initial positions
xe(t) and xp(t), we want to solve

min
U∈U

max
D∈D

T−1∑
i=0

γx

∥∥∥x(1,2)
p (t+ i+ 1)− xe(t+ i+ 1)

∥∥∥2

2
+γuu(t+ i)2−γdd(t+ i)2

2

(37)

where x
(1,2)
p designates the first and second elements of the vector xp; γx, γu

and γd are positive weights; and U , U , D and D are defined for i = 0, . . . , T−1

U := u(t+ i), xp(t+ i+ 1)

U := u(t+ i), xp(t+ i+ 1) : |u(t+ i)| ≤ umax,
xp(t+ i+ 1) = φp

(
xp(t+ i), u(t+ i)

)
D := d(t+ i), xe(t+ i+ 1)

D := {d(t+ i), xe(t+ i+ 1) : d(t+ i)2 ≤ dmax,
xe(t+ i+ 1) = φe

(
xe(t+ i), d(t+ i)

)
}.
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Fig. 2: Trajectory for Homicidal Chauffeur problem with 200 time steps for
different horizons T .

Instead of explicitly computing the solution of the trajectory of the pursuer
and evaders, we are implicitly computing them by setting the dynamics as
equality constraints. While this increases the number of variables to solve the
optimization for, because the problem has stage costs and constraints, the
number of nonzero entries of Jzzf(z) grows in O(T ), instead of growing in
O(T 2) if we had chosen to solve the dynamical equations. As we will show
shortly, this has important impact on the scalability of the algorithm.

Each player is controlled using Model Predictive Control, meaning that at
each time step t we solve (37) obtaining controls u(t) and d(t), which are then
used to control the system for the next time step. In Figure 2 we show the
different trajectories over 200 time steps of the pursuer and evader for three
different future horizon predictions.

We want to study the scalability of the algorithm by enlarging the horizon
T . The number of variables and the number of constraints increase in O(T ),
while the number of elements of Jzzf(·) increases in O(T 2). However, as we can
see from the sparsity pattern in Figure 3b, most of the entries in the Hessian
are actually structurally zero (meaning they are always zero), and the number
of nonzero elements in Jzzf(·) scales in O(T ). TensCalc’s implementation
of the LDL factorization exploits sparsity patterns and scales roughly with
the number of nonzero entries of the matrix, which makes it substantially
more efficient than standard LDL decomposition, which scales in O(T 3) [13,
Appendix A]. At each step of Algorithm 1, most of the time is spent computing
the LDL decomposition, either for adjusting εx and εy or to invert Hzzf(z).
As a consequence, we can see in Figure 3a that both the number of iterations
necessary to solve the optimization as well as the time per iteration scale
roughly linear, the first being multiplied by about 1.7 while the second by 3.5
while the horizon length T is multiplied by roughly 30.

Remark 3 (Minmax problems with shared dynamics) In the homicidal chauffeur, the
control of the pursuer does not impact the dynamics of the evader, and vice versa.
This is why in (37) the dynamics can be set as equality constraints independently
for the min and for the max.
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(a) Computational scaling for solving homi-
cidal chauffeur per horizon length

(b) Structural sparsity pattern of
Jzzf(z)

Fig. 3: Scaling of homicidal chauffeur with horizon length and sparsity pattern
of the Hessian

Now consider the problem

x+ = f(x, u, d)

where u is the control and d is the disturbance and one wants to minimize a cost func-
tion V (x(1), . . . , x(T ), u(0), . . . , u(T−1)) given the worst disturbance d(1), . . . , d(T ).
Because both the control and the disturbances influence the dynamics, we need to
include the dynamics as equality constraints for the maximization, leading to the
optimization problem

min
u(i)∈U,i=0,...,T−1

max
d(i)∈D,x(i+1),i=0,...,T−1:
x(i+1)=f(x(i),u(i),d(i))

V
(
x(1), . . . , x(T ), u(0), . . . , u(T − 1)

)
where U ,D are the feasible sets for the control and disturbances. It is important to
notice that x just acts as a latent/dummy variable that allows us to avoid solving
the trajectory equation. Setting it as a maximization variable does not changes the
result as x is always exactly determined by the value of u and d. It does, however,
improves the numerical efficiency of the algorithm as now the Hessian matrices are
sparse and their LDL decomposition can be efficiently computed. �

5 Conclusion

The main contribution of this article is the construction of Newton and
interior-point algorithm for nonconvex-nonconcave minmax optimization. We
show that by modifying the Newton/interior-point matrices such that the
update steps can be seen as the solution of quadratic programs that locally
approximate the minmax problem, we are able to make progress towards a
solution even far away from it. While we show that these conditions are not
enough to guarantee that the iterations are only stable at local minmax points,
numerical results seem to indicate that guaranteeing the stability does not
improve the convergence of the algorithm, and actually can even impair it.
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The main future direction would be to obtain a method to generate insta-
bility that also improves convergence. A possible attempt would be to use
trust region methods. Another future direction would be the development of
merit functions for minmax problems. We used local quadratic approximation
to obtain a proxy for what could be descent-ascent directions, but ideally what
one would want to measure is how good of an improvement they are. Merit
functions could also be used to establish some sort of Armijo rule which could
be used to improve convergence.

Appendix A Proof of Proposition 2:
Constrained second order
sufficient conditions

First, g(z, 0) = 0 implies that sx = −Fx(x) and sy = −Fy(x, y), thus λy �
Fy(x, y) = 0 and λx�Fx(x) = 0, and therefore g(z, 0) is equivalent to the first
order necessary condition in [12]. For the rest of the proof, let us substitute
sx = −Fx(x) and sy = −Fy(x, y) back in the definitions of Hzzf(z) and
Hyyf(z) as defined in (27).

Let hxyf(z) be the first block row of Hxyf(z) (i.e., without the block
row of zeros). Because strict complementarity holds, the solution cones of the
maximizer and minimizer are Cy(x, y) := {dy ∈ Rny\{0} : ∇yGy(x, y)dy =

0,∇yf
(i)
y (x, y)dy = 0, i = 1 ∈ Ay(x, y)} and Cx(x) := {dx ∈ Rnx\{0} :

∇xGx(x)dx = 0,∇xf
(i)
x (x)dx = 0, i = 1 ∈ Ax(x)}, respectively, where

Ay(x, y) and Ax(x) are defined in (26). According to [12, Theorem 3.2], if
g(z, 0) = 0 and

d′y∇yyL(z)dy < 0 ∀ dy ∈ Cy(x, y) (A1a)

and

d′x

(
∇xxL(z)− hxyf(z)Hyyf(z)−1hxyf(z)′

)
dx > 0 ∀ dx ∈ Cx(x) (A1b)

then (x, y) is a local minmax of (13). We will show that the conditions in our
proposition are equivalent to these. For the sake of notation convenience we
will drop the dependency on the variable with the understanding the functions
are being taken at (x, y, νx, νy, λx, λy).

Let us start by the part on In(Hyyf). First, reformulate the inner
maximization using only equality constraints, i.e.,

max
y,w:Gy(x,y)=0,Fy(x,y)+ 1

2w�w=0
f(x, y).

Now all the constraints are active and for any solution w =
√
−Fy. Let

Hyλf :=

[
∇yGy ∇yFy

0 − diag(
√
−Fy)

]
.
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As the linear independence constraint qualification – which imply that the
Lagrange multipliers are unique – and strict complementarity hold at z, we
can use the so called projected Hessian form of the second order conditions [13,
Chapter 12.5]. In this case, the sufficient condition (A1a) for the reformulated
problem is equivalent to

Z ′y

[
∇yyL 0
0 −diag(λy)

]
Zy ≺ 0, (A2)

where Zy ∈ Rny+my,ny+my−my−ly is such that Hyλf
′ Zy = 0 and [Hyλf, Zy] is

full rank. The equivalence between (A1a) and (A2) comes from the constraints
for the reformulated problem being all active, and therefore the solution cone
Cy(x, (y, w)) is equal to the null space of Hyλf

′. Finally, according to [13,
Theorem 16.3]

In(Hyyf) = In

(
Z ′y

[
∇yyL(z) 0

0 − diag(λy)

]
Zy

)
+ (ly +my, ly +my, 0).

Therefore (A2) holds if and only if In(Hyyf) = (ly + my, ny + my, 0). This
finishes this part of the proof.

In an analogous way than for the inner maximization, reformulate the
outer minimization using equality constraints and construct Zx analogously to
Zy for Hxλf

′. Then the sufficient conditions (A1b) for the reformulated outer
minimization is

Z ′x

(
Hxxf −Hyxf

′Hyyf
−1Hyxf

)
Zx � 0. (A3)

We can verify that the matrix matrix

Z̄ :=

[
Zx 0nx+mx,ny+my+ly+my

0ny+my+ly+my,nx−lx Iny+my+ly+my ,

]
is full column rank and its columns spans the null space of
[Hxλf

′,0lx+mx,ny+my+ly+my ] (the subscripts in 0 and I denote the sizes).
Applying again [13, Theorem 16.3] but now to Hzzf , with the correct
partitioning gives

In(Hzzf)

= In

(
Z̄ ′
[
Hxxf Hxyf
Hxyf

′ Hyyf

]
Z̄

)
+ (lx +mx, lx +mx, 0)

= In

([
Z ′xHxxfZx Z

′
xHxyf

Hxyf
′Zx Hyyf

])
+ (lx +mx, lx +mx, 0)

= In
(
Z ′x

(
Hxxf −HxyfHyyf

−1Hxyf
′
)
Zx

)
+ In(Hyyf) + (lx +mx, lx +mx, 0)
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where the last equality comes from Haynsworth inertia additivity formula [36,
Theorem 1.6]. Therefore, if (A1a) holds, (A1b) is equivalent to

In(Hzzf) = (nx − lx, 0, 0) + (ly +my, ny +my, 0) + (lx +mx, lx +mx, 0)

which finishes the proof. �
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