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Abstract— This work focuses on enabling multiple UAVs to
flock together in order to distribute and collectively perform a
given sensing task. Flocking is performed in a leader-follower
fashion, and the leader is assumed to already have an effective
control policy for the particular task. The UAVs are small fixed-
wing aircraft cruising at a constant speed and fixed altitude,
but experience stochasticity in their dynamics. Accordingly, the
control problem for each follower is addressed in the context
of stochastic optimal control, wherein the cost is a function of
distance and heading with respect to the leader. The problem
is solved offline via dynamic programming to minimize the
expected cost over a finite horizon and generate a receding
horizon optimal control policy. This flocking algorithm was
successfully applied in the field, where three camera-equipped
UAVs flocked together to perform vision-based target tracking.
The experimental results verify the efficacy of the approach and
show the benefits of flocking with multiple UAVs to distribute
sensing tasks, which include a dramatic reduction in overall
sensing error and robustness to individual sensor faults.

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have
enhanced the performance of remote sensing tasks such
as surveillance, search and rescue, mapping, and real-time
monitoring. The UAVs considered in this work are small
fixed-wing aircraft that fly at a fixed altitude and constant
airspeed, and they are equipped with a global positioning
system (GPS), an inertial navigation system (INS), and a
sensor payload suited to the given mission. Having several
such UAVs perform a mission as a unified group is often
preferred to using a single large UAV, as it is less costly
and operationally burdensome. Therefore, the purpose of
flocking is to overcome the technological limitations imposed
by embedded hardware on a small airframe by distributing
the sensing and computational tasks amongst flock members.
As information is shared and combined within the group,
flocking improves the overall performance of the mission
and adds robustness to individual sensor faults. In this work,
a flock (or swarm) is regarded as a tight, collision-free
formation of UAVs that have a common velocity vector,
which is similar to the description in [1].

Perhaps the most well known biologically inspired model
for flocking is the Boids algorithm developed by Craig
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Reynolds in 1987 for creating computer animations of flocks
of birds [2]. In the distributed Boids algorithm, each agent
separates itself from its nearby neighbors, aligns itself with
the average heading of these same neighbors, and lastly,
steers toward the average position of the nearby neighbors
for cohesion. Inspiration from Reynolds and advancements
in mobile robot technologies have led to a significant amount
of work designing distributed control laws to enable mobile
robots to flock together. Tanner et al. present control laws
that guarantee asymptotic flocking for multiple agents having
double integrator dynamics under the assumption that the
proximity-based graph representing the network topology re-
mains connected at all times [1]. By also working with agents
having double integrator dynamics, Olfati-Saber provides and
analyzes several distributed control algorithms for flocking
[3], one of which prevents flock fragmentation while another
enables the flock to split and rejoin to avoid obstacles.

Other works have considered a relaxed objective for flock-
ing where N nonholonomic agents moving at unit speed only
need to align their velocity vectors. Moshtagh and Jadbabaie
develop distributed control laws in [4] that enable a group of
such agents to align their headings, so long as the proximity-
based graph representing the network topology is connected.
Similarly, Paley and Peterson assume an all-to-all communi-
cation topology and develop distributed control laws in [5]
that synchronize the group’s collective motion, i.e., align
the agent headings, in a known flowfield, e.g., constant-
velocity wind. While these two works consider unit-speed
nonholonomic vehicles with first-order rotational (heading)
dynamics, Mellish and Paley expand upon the work in [5] by
using backstepping techniques to synchronize the collective
motion of unit-speed nonholonomic vehicles with second-
order rotational dynamics in a uniform flowfield [6].

While the works considered thus far have provided dis-
tributed control laws that guarantee stable flocking under
certain assumptions, none have demonstrated the algorithms
with actual hardware. However, Hauert et al. have success-
fully demonstrated Reynolds flocking with 10 fixed-wing
UAVs in the field [7]. Nonetheless, the primary goal of
flocking controllers has generally been to have the group sim-
ply migrate together. Moreover, while the commonly stated
power of flocking lies in the group’s ability to distribute
communication, sensing, and computational tasks amongst
flock members [7], little work has been done to demonstrate
its effectiveness at achieving this in practical applications.

We highlight two main contributions of this work. The first
is the development of a novel flocking algorithm, wherein
we have assumed a leader-follower network topology and



a preexisting control policy for the leader suited to the
particular mission. Our focus is on the follower’s control
policy, and we develop a stochastic kinematic model for the
UAVs and a cost function that facilitates flocking. We refer
to the problem of generating the follower’s control policy as
the stochastic optimal flocking problem. This is a stochastic
optimal control problem whose solution is an optimal control
policy that facilitates flocking among mobile agents with
arbitrary dynamics.

The second contribution of the work is a successful field
test demonstration of three camera-equipped UAVs flocking
to perform the rather demanding sensing task of vision-based
target tracking. The objective is to have each UAV keep an
unpredictable ground vehicle in the camera’s limited sensing
region and simultaneously maintain proximity to the vehicle.
We assume the leader utilizes a control law that is reasonably
effective at achieving this objective so that the followers can
inherit this ability by flocking with the leader. In addition, by
distributing the sensing task across multiple UAVs, the group
dramatically reduces joint target localization error and adds
robustness against a single agent losing sight of the target.
Field test data illustrate these benefits.

The paper is organized as follows. In Section II, we
introduce the overall control approach for a follower and
discuss the stochastic kinematic model for a UAV, the
cost function for flocking, and the dynamic programming
solution. In Section III, we first provide the details of the
target tracking application, which include the metric used
to judge mission performance, the UAV test platform and
its sensing limitations, and the nature of the leader’s control
policy. Secondly, we provide the experimental details and
flight test results. Conclusions and directions for future work
are discussed in Section IV.

II. CONTROL POLICY FOR FLOCKING

For the purpose of designing effective flocking algorithms,
we first develop an empirical characterization of the stochas-
tic UAV dynamics that encompasses the reality of aircraft
dynamics. Since the flock has a particular mission other than
migration, there is a flock leader that is assumed to already
have a control policy suited to the mission, which is known to
the entire flock. Furthermore, the leader broadcasts its state
(and other relevant mission information) to the remaining
flock members, which we call followers.

Next, we present the stochastic optimal flocking problem
for the follower, which is a stochastic optimal control prob-
lem wherein the cost is a function of distance and heading
with respect to the leader. We use dynamic programming
to minimize the expected cost over a moderate planning
horizon and generate the optimal control policy, which is
the same for each follower. In this manner the followers
have no regard for one another, yet this is suitable for the
target tracking application whose main requirement for any
followers is that they remain close to the leader. In practice,
the aircraft are flown at different altitudes to deconflict them.
Nevertheless, one could add additional terms to the cost
function to facilitate desired flock geometries.

A. UAV Dynamics

While the majority of work on UAV flocking control
uses continuous time motion models, this work treats the
flocking problem in discrete time. In particular, we assume
that each UAV has an autopilot that regulates commanded
roll angle, pitch, airspeed, and altitude via internal feedback
loops, typically using Proportional-Integral-Derivative (PID)
control. Once every two seconds, the roll-angle setpoint r is
updated according to the control policy to achieve flocking.

In practice, UAVs are subject to environmental distur-
bances, such as wind gusts, that introduce stochasticity
into the dynamics. Although a real UAV’s kinematics are
most accurately captured by a 6 degree of freedom (DoF)
aircraft model, we opt for a 4-state stochastic model of the
kinematics, in which stochasticity accounts for the effects
of both unmodeled dynamics (arising from the reduced 4th
order model) and environmental disturbances.

In the aircraft model, we assume it flies at a nominal
airspeed s and at a fixed altitude. The UAV’s planar position
(x,y) € R? and heading v € S! are measured in a local East-
North-Up (ENU) earth coordinate frame while its roll angle
¢ € St is measured in a local North-East-Down (NED) body
frame. In the latter coordinate frame, the x-axis points out
of the nose, the y-axis points out of the right wing, and the
z-axis completes the right-handed coordinate frame. Hence,
we define the UAV state as £ == (x,y, ¥, ¢).

We assume the UAV’s state evolves stochastically accord-
ing to a Markov Decision Process, where the probability of
transitioning from the current state £ to the next state £’ under
the roll command r is given by the state transition probability
function p, (& | €, r). Rather than deriving an explicit formula
for this state transition probability, we develop an empirical
characterization of the UAV kinematics that will allow us
to draw random samples &), ¢ € {1,...,N,}, from this
conditional probability density function. This ability to sam-
ple the state transition probability will suffice to effectively
approximate the dynamic programming solution.

To develop our stochastic discrete-time kinematic model,
we begin with a deterministic continuous-time model, which
is given by

x scosY

_a y | §sin
£= dt | v | | —(ag/s)tang |’ M

¢ f(g,r)

where oy is the acceleration due to gravity. The function
f(@,r) defines the roll dynamics, and could be, for example,
f(@,7) = —ay(¢ —r) with ag > 0. However, we will actu-
ally use a much more detailed model for the roll dynamics.
To generate a discrete-time model, we will apply a 2-second
zero-order hold (ZOH) to (1), where the roll command r
belongs to the set

C = {0°, +10°, +20°, +30°}. )

Denoting the roll command over the next ZOH period by 7/,
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Fig. 1. Monte Carlo simulations to sample roll trajectories. Once every
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Fig. 2. Error trajectories resulting from a —10° change in the roll setpoint.

two seconds the roll setpoint is randomly changed from r[k] to r[k+ 1] €
U(r[k]) using a uniform distribution among the elements of U(r([k])).

we also stipulate that 7’ € U(r), where
U(r) ={r, r+£10°} nC

is the roll-angle action space. This allows roll commands to
change by at most 10° and avoids sharp changes in roll that
would be detrimental to image processing algorithms in the
target tracking task [8].

Rather than considering a simple kinematic model with
first order roll dynamics for f(¢,r) in (1), we sampled
roll trajectories over the 2-second ZOH period using Monte
Carlo simulations from the high-fidelity flight simulator
Aviones [9], which utilizes a 6-DoF aircraft model. In
particular, we held constant a given roll setpoint r € C
over the 2-second ZOH period and then randomly select a
new roll setpoint 7’ € U(r), where all elements of the roll
action space U (r) occur with equal probability. Through this
process, which is illustrated in Figure 1, we collected families
of UAV trajectories for which the roll command increased by
10°, decreased by 10°, or remained constant every 2 seconds.
Also, as illustrated in the figure with r(t), for a continuous-
time signal u(t), we denote the signal at discrete sample
times k € Z>¢ by u[k], i.e., u[k] = u(¢) for t = 2k seconds.

Figure 2 shows a collection of reference tracking error
trajectories, {¢;(7)}, 7 € [0,2], over the 2-second ZOH
period for N, = 100 decreases of 10° in the roll-angle
setpoint. Similar collections of reference tracking error tra-
jectories, {e;(7)} and {é;(7)}, were constructed for holds on
the setpoint and for setpoint increases of 10°, respectively.

The collection of these Monte Carlos simulations pro-
vides us with a large sample of roll-angle trajectories.
For example, to generate a sample roll trajectory </5¢(7', ),
7 € [0, 2] corresponding to a 10° decrease in the roll setpoint
needed to reach the reference roll angle r € C, we take
¢i(1,7) = &;(7) + r. Similarly, the sampled tracking errors
{€;(7)} and {&;(7)} can be used to generate samples of roll-
angle trajectories corresponding to holds and increases in the
roll-angle setpoint, respectively. In the sequel, we denote by
®(r) the collection of all the sample roll-angle trajectories
so generated for each setpoint r € C.

To make the aircraft model more realistic we also intro-
duced stochasticity in the airspeed s, which was assumed

)
T

y [m]
o

7

& withr =0°7

& with r = —10°

§=0 .
IS i 4
& with r = +10°
- 10 15 20 25
z [m]

Fig. 3. Sample trajectories generated from the stochastic kinematic model
for the UAVs. The initial UAV state is & = 0 and 1,000 samples are
generated for r € U(0) = {0, +£10°}. For each command, the vertical
spread in final UAV positions is due to sampling different roll trajectories
while the horizontal spread results from stochastic airspeed.

to be normally distributed about a nominal value s, with
variance 2. Specifically, the airspeed s in (1) was assumed
to be constant over each 2-second ZOH period with values
drawn from the distribution A/ (3,02).

This modeling technique results in samples for the “next”
state & at discrete time k + 1, given the “current” state &;
at time k£ and the roll-angle setpoint r. The samples have
two sources of randomness: stochasticity in the roll-angle
dynamics captured by the collection of roll-angle trajectories
®(r) and stochasticity in the airspeed. These determine the
values of [k + 1], y[k + 1], and ¢[k + 1] according to (1).
Figure 3 illustrates the nature of the stochastic model.

While the model introduced above describes the dynamics
of one UAYV, for the purpose of flocking, all that mat-
ters is the relative dynamics between leader and follower.
Denoting by the leader’s state by &, and the follower’s
state by &£y, we define the system’s state to be the vector

a
2= |21, 22,23, 24, 25,26] € Z, where
Z =R x [—m,m) x St x St x C;

the pair (21, 22) denotes the 2D position of the follower
relative to the leader, given by

21 | cos Yy
z2 o —sin wg

and the remaining states are

(23, 24, 25, 26) = (Y — Vo, by, Du,70), 4)

where 7, is the leader’s roll command.

sin ¥y ] [ Ty — Ty

cos iy Yr— Ye ] O



To arrive at an empirical characterization of the over-
all state transition probability p(z’|z,r), where r is the
follower’s roll command, one simply combines &, and 5}
according to equations (3) and (4). The leader’s next control
action z§ is determined by its control policy.

B. Optimization Criterion for Flocking

Inspired by Reynold’s Boids, our flocking optimal con-
troller is based on a cost that is a function of distance
and heading with respect to the leader. Consider an annulus
A with inner radius a, outer radius b, and centered at the
leader’s position:

A={(z1,2)eR*:a< p<b},

where p == 4/2% + z2. The distance from the follower to this
annulus is denoted by d and is given by

d = max{a — p,0,p — b}. (5)
We consider a cost function that is given by
alzs|
= d, ———— 6
o) = max {a, 2 ©

where [ is a positive tuning parameter. The first argument in
the max function is the follower’s distance d to the annulus
and the second argument is the absolute difference of the
heading angles weighted inversely by d. Therefore, while the
follower is either very far from the leader or very close, the
first argument of the max function is active and regulates the
distance from the leader to be within a certain range. This
first argument thus combines the separation and cohesion
rules of Reynold’s Boids algorithm. When the follower gets
inside or fairly close to the annulus, the second argument of
the max function becomes active and aligns the headings of
the two aircraft, just as in the Boids algorithm.

C. Control Objective and Dynamic Programming Solution

The stochastic optimal flocking problem is to determine
the optimal control feedback control policy F}*:2Z — C,
ke {0,..., K — 1}, that minimizes

Z

] vz[0] (7

where K € N and E[-] denotes expectation. Furthermore, the
state z is a Markov Decision Process that evolves according
to the transition probability p(z’ |z, ) and the feedback law
rlk] = Fj*(2).

Dynamic programming can be used to minimize the crite-
rion (7) by optimizing control actions in reverse chronolog-
ical order. To compute optimal controls using dynamic pro-
gramming, we perform value iteration as presented in [10].
To describe the method, we introduce the value function, or
cost-to-go from state z € Z at time k € {0,..., K — 1}, as

miner_1 El Z g(z[n])},

ThyThk4150 eyt

Vi(2) = g(2) +

where 1 is shorthand for r[k]. For & = K, we have
Vk(z) = g(z) and the cost-to-go for previous times
is computed (offline) in reverse chronological order, i.e.,
k= (K —1,...,0), according to the following recursion

Vi(2) = g(2) + E[Vi1(2')| z,7]

(2) + min JVkH
reU(dy)
This recursion holds due to Bellman’s principle of optimal-
ity, and performing this sequence of computations yields
J(z) = Vo(z), Vz € Z. Also, as this minimization is per-
formed, the optimal control policy is formed as

Fi¥(z) = arg min(g(z) + B[ Vis1(2)| 2, 7] ), Vze Z.
reU(¢f)
The main hurdle in computing equation (8) is the expecta-
tion, which we overcome by replacing it with an empirical
average computed using samples drawn according to the
stochastic UAV model developed in Section II-A:
NP

1
Vi(z) ~ g(=) + min N, - Z Vier1(2))- 9)

min
reU(¢f)

2 z,r)dz. (8)

Furthermore, to limit the computation of the value function
to a finite number of points, we introduce a finite subset S
of the state space Z having N, distinct elements and the
quantization function ¢ : Z — S, defined by

q(z) = argmin||z — w|;.
wES

Based on these, we approximate the computation of the value
function and optimal policy by
N,

~g(z)+ min — » 'V z
9(2) Jin | Np; kr1(a(
Fj(z) = arg min(g(z) +

1O
= 2, Vi (D).
reU () Np;

which only require the evaluation of the value function over
the finite set S. In practice, to lookup the optimal roll
command r[k] for a state z € 2\S, we use r[k] = F¥ (q(z)).

For the hardware experiment, the discretized state
space considered was S = X 2 x ¥ x (3, where
X = {-300,—-295,...,300}, ¥ = {0°,15°,...,345°}, and
the set C' is defined in (2). The remaining parameters used in
the dynamic programming optimization are given in Table I,
where the first two columns have units of [m/s]. The control
policy is applied in a receding horizon fashion, which entails
that r[k] = F{f(z), Vk € Z>o. A planning horizon of K =4
corresponds to a follower UAV that considers the impact
its control decisions have on the flocking cost (7) up to 8
seconds into the future.

Vi(2)

TABLE 1
AIRCRAFT MODEL AND COST FUNCTION PARAMETER VALUES

Parameter: 3 o5 a b 5 K Np
Value: 18 | 4/5 | 40 | 65 | 0.05 | 4 1,000




III. HARDWARE EXPERIMENTS

This section presents the field test results of three camera-
equipped UAVs flocking together to perform vision-based
target tracking as a group. We first introduce the problem
by describing the process of geolocation (target localization)
and the associated geolocation error covariance (GEC),
which is the metric used to judge mission performance. We
then discuss the UAV hardware and corresponding sensing
limitations and provide a brief description of how the leader’s
control policy was designed to address such limitations.
Next, we describe the experimental setup for the field tests.
Finally, we present and discuss the results that demonstrate
not only the effectiveness of the flocking control policy, but
also the benefits of flocking for this particular sensing task.

A. Vision-based Target Tracking and Geolocation

While vision-based target tracking has been given signif-
icant attention in recent years, [11]-[14], for example, to
the best of the authors’ knowledge, none have explicitly
considered flocking with NV UAVs as a means to improve
tracking performance. For a single camera-equipped UAV
tracking a moving ground vehicle, onboard video processing
algorithms are typically used to determine the centroid pixel
coordinates of the target, as it moves in the image frame.
Using these pixel coordinates, the intrinsic and extrinsic
camera parameters, and terrain altitude data, one can estimate
the 2D location of the target in inertial coordinates and
compute the associated error covariance [15]. This is the
process of geolocation.

Geolocation error is directly proportional to the distance
from the target. However, hovering over the target to fully
reduce this error is not only infeasible due to kinematic
constraints, but also undesirable from the standpoint of the
sensing limitations discussed in the next section. To mitigate
the effects of this proximity restriction on geolocation error,
one can fuse geolocation estimates across multiple UAVs,
as in [14]. Accordingly, we utilize the same metric of fused
geolocation error covariance P € R2*? to assess tracking
performance, which can be computed in terms of individual
geolocation error covariances P; € R2%2 for N UAVs, as
follows: P~ = 3, ijl, where P; is derived in both [14]
and [15]. We shall see that flocking with 3 UAVs provides
a significant reduction in P.

B. UAV Hardware and Leader Control Policy

To demonstrate flocking for vision-based target tracking,
we used Unicorn/Zagi flying wings. The Unicorn comprises
a 60” expanded polypropylene foam wing that houses four
lithium polymer batteries driving an electric motor attached
to a push propeller. The autopilot adjusts the throttle and
two elevons to maintain pitch, airspeed, altitude, and the
commanded roll angle.

Each UAV carries a gimbaled video camera with two
degrees of freedom. The visibility region imposed by the
particular pan angle limitations of the gimbal mechanism is
illustrated in Figure 4 and is subsequently referred to as the
field of regard (FOR). The most prominent feature of this

Fig. 4. The field of regard is indicated by the shaded region and is the
total area visible to the camera as the gimbal is swept through its entire
range of pan angles. If the azimuth angle ¢ of the line-of-sight vector to
the target lies within the upper and lower bounds, 9 and ¥, respectively,
then the target is said to be in the UAV’s field of regard.

Fig. 5. The tilt (or elevation) angle ¢ of the gimbal mechanism.

figure is that there is a large blind spot extending from the
right side of the UAV to its back, and hence the UAV must
keep the target to its left for visibility. If the target exits UAV
7’s FOR, we take Pfl =0.

The tilt (or elevation) angle of the gimbal mechanism is
illustrated in Figure 5. Although its mechanical limitations
do not create blind spots, there are still reasons to avoid
extreme tilt angles. In particular, a small tilt angle usually
means that the airframe is visible to the camera, which can
block visibility of the target and/or generate false detections
in image processing software. On the other hand, a large tilt
angle results in unpredictable movement of the gimbal, as
this represents a singularity point in the gimbal geometry,
i.e., the pan angle is not unique [8].

Based on these sensor limitations, the control objective
for a single UAV performing vision-based target tracking
is to maintain a good viewing geometry with respect to
an unpredictable target vehicle on the ground. This means
that the UAV should not only keep its position as close as
possible to the target to reduce geolocation error, but also
keep the target in its FOR while simultaneously avoiding
extreme gimbal angles. Thus, the control policy for the leader
was obtained by solving (offline) a stochastic optimal control
problem for a cost function that penalizes the distance from
a stochastic target and extreme gimbal angles. This control
approach is detailed and compared with an alternative game
theoretic control approach in a paper under preparation that
includes further details and field test results [16].

C. Experimental Setup

A flight experiment was conducted in July, 2012 with
three UAVs at the McMillan Airfield, Camp Roberts, CA.
Toyon Research Corporation was responsible for launching,
monitoring, and landing the UAVs.



Fig. 6. Live simultaneous video footage from the flock. Each UAV tracks
the ground vehicle in the image plane with video processing algorithms
developed by Toyon Research Corporation.
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Fig. 7. Trajectories of the UAVs over 3 minutes as they flock to track the
target. An “S” indicates a starting position and “E” an ending position.

During the tracking experiment, the UAVs were controlled
by the ground control station (GCS) while a truck with GPS
was driven along the roads of Camp Roberts. By communi-
cating with the GCS and the GPS receiver onboard the truck,
MATLAB® was able to acquire the UAV telemetry and
target data and determine the optimal roll command for each
UAV according to the leader and follower control policies.
These roll commands were then sent back to the GCS and
relayed to the UAVs.

The UAVs were each set to fly at a nominal airspeed of
18 [m/s]. The leader, A;, flew at an altitude of 170 [m] while
the two followers, As and As, flew at altitudes of 200 [m]
and 230 [m], respectively. Video footage from each camera
was sent to the ground on a dedicated radio link, which is
shown in Figure 6. The video footage illustrates the diverse
viewing angles of the ground target achieved by the flock as
the target travels along a dirt road at Camp Roberts.

D. Experimental Results

We now highlight 3 minutes of the flight experiment that
captures the essence of vision-based target tracking with a
flock of 3 UAVs. The target and UAV trajectories during this
window are provided in Figure 7. In the figure, we observe
A1 keeping to the right of the target 7 and making coun-

t [s]

Fig. 8. Performance of the flocking controller. The quantities z3, d, and
g(z) are given by (4), (5), and (6), respectively. The flocking cost g(z) is
primarily governed by d and illustrates the controller’s ability to recover
from poor initial conditions and disturbances.

terclockwise turns about the target. Such behavior enables
the UAV keep the target in its FOR and stay close to the
target in spite of a ground speed differential. Also, the leader
never passes over the target to fully minimize geolocation
error, which illustrates the tradeoff between minimizing the
distance to the target and avoiding a large elevation angle.
By virtue of flocking, the followers have similar trajectories
and inherit tracking abilities similar to those of the leader,
which are influenced by flocking performance.

The performance of the flocking controller for the two
followers is given in Figure 8. The first follower A5 begins
in a somewhat poor configuration relative to the leader, as
indicated by d and z3. However, it recovers after nearly
45 seconds and maintains a relatively good flocking cost
(9(z) < 40) for the remainder of the interval. The second
follower A3 begins in a good configuration and maintains a
good flocking cost for nearly two minutes. When the target
begins making major turns, the leader maneuvers to keep
sight of the target and disturbs the flocking performance of
As. However, this agent also recovers by the end of the
interval. Thus the flock ends in a good configuration after
compensating for poor initial conditions and disturbances,
which can also be seen in Figure 7.

The tracking performance of the flock is illustrated in
Figure 9. To illustrate the advantages of cooperative target
tracking via flocking over single-UAV target tracking, we
have also provided a comparison of the flock’s fused GEC
to the leader’s individual GEC. The figure highlights two
key features of the fused geolocation error. Namely, it is
primarily governed by minimum distance to target, and it is
often significantly less than that of the leader. In fact, when
the trace of the leader’s GEC peaks near ¢ = 120 [s], the
trace of the fused GEC is less than half its value. Also, over
this 3-minute span, the average value of trace(P) was ap-
proximately 105 while that of trace(P;) was approximately
257, which is nearly a 60% reduction in the average value
of the trace of the GEC. Moreover, the figure illustrates that
performing vision-based target tracking with a flock of even
just 3 UAVs dramatically reduces both the peak and average
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Fig. 9.  The tracking performance of the flock. The signals 9; and p;
denote each flock member’s individual azimuth angle and planar distance
to target, respectively. The FOR limits for the azimuth angles, ¥ and ¥, are
indicated by dashed lines at —152° and 32°, respectively. Also, the flock’s
fused GEC P is compared to the leader’s individual GEC Pj.

values of the overall geolocation error.

Each UAV generally keeps its azimuth angle centered
around —90° in order to keep the target to its left for
visibility; however, we observe all azimuth angles tending
to zero near t = 120 [s] when the target begins to make its
second major turn left. This shows the target’s two major
direction changes disturbing the flock’s steady state tracking
performance. When ¢ € [132,142], ¥J5 and ps3 vanish to
indicate that the target left A3’s FOR. Thus, the perturbation
to the flocking performance of A3 resulting from the leader’s
counter maneuvers ultimately caused A3 to lose sight of the
target completely. This is supported by the observation that
3 deviated significantly from 1J; and exceeded the upper
FOR limit during the same time that g3(z) hit its peak
value. Moreover, we witness the influence of the flocking
performance of a follower on its tracking performance.

On a final note, when ¢ € [132,142], P3 = 0, yet P was
affected only slightly since A3 was not the closest agent to
the target. Thus, Figure 9 also illustrates the robustness of
vision-based target tracking with a flock to individual sensor
faults, as the sensing is distributed across multiple UAVs.

IV. CONCLUSION

We have detailed the design of a novel flocking algorithm
that enabled multiple, small, fixed-wing UAVs to flock to-
gether in order to distribute a given sensing task among group
members. Flocking is performed in a leader-follower fashion,
where the leader is assumed to already have an effective
control policy for the particular sensing task. Since the UAVs
experience stochasticity in their dynamics, we developed
an empirical characterization of the UAVs’ stochastic kine-
matics. We also presented the stochastic optimal flocking
problem for the follower, which is a stochastic optimal
control problem wherein the cost is a function of distance

and heading with respect to the leader. The solution is an
optimal control policy that facilitates flocking among mobile
agents with arbitrary dynamics.

We demonstrated the power of flocking in a practical
application by testing the flocking control algorithm in the
field. In particular, three camera-equipped UAVs were tasked
with performing vision-based target tracking. The flight test
results verified the effectiveness of the flocking controller
and showed the benefits of flocking with multiple UAVs.

Future work involves adapting the cost function to add
collision avoidance among followers and even induce certain
flock geometries, e.g., having followers distribute uniformly
around the leader-centered annulus.
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