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Many protein and mRNA species occur at low molecular counts within cells, and hence are
subject to large stochastic fluctuations in copy numbers over time. Development of compu-
tationally tractable frameworks for modeling stochastic fluctuations in population counts
is essential to understand how noise at the cellular level affects biological function and
phenotype. We show that stochastic hybrid systems provide a convenient framework for
modeling the time evolution of population counts of different chemical species involved
in a set of biochemical reactions. We illustrate recently developed techniques that allow
fast computations of the statistical moments of the population count, without having to
run computationally expensive Monte Carlo simulations of the biochemical reactions. Fi-
nally, we review different examples from the literature that illustrate the benefits of using
stochastic hybrid systems for modeling biochemical processes.
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1. Introduction
Deterministic hybrid systems that integrate continuous dynamics with discrete events have
been used to model a wide array of biological processes that exhibit switching behavior
(Belta et al. 2004, Lincoln & Tiwari 2004, Tanaka et al. 2008, Ghosh & Tomlin 2004).
However, deterministic frameworks often fail to capture biochemical processes within liv-
ing cells where low population counts of mRNAs and proteins can set the stage for signif-
icant stochastic effects (Raj & van Oudenaarden 2008). The inherent stochastic nature of
cellular processes has motivated the use of Stochastic Hybrid Systems (SHS) for modeling
biological phenomenon at the single cell level (Julius et al. 2008, Lygeros et al. 2008, Hu et
al., 2004). SHSs (formally defined in Section 2), combine the generality of hybrid systems
with stochastic processes.

Biochemical reactions inside cells are often modeled using a stochastic formulation,
which takes into account the inherent randomness of thermal molecular motion (Gillespie
1976). In the stochastic formulation of chemical kinetics, reactions are treated as proba-
bilistic events that change the population counts of individual chemical species based on
the stoichiometry of the reactions. We show in Section 3 that the time evolution of the
number of molecules of different chemical species involved in a set of chemical reactions
can be modeled using a SHS. We use this SHS formalism to compute the time-derivatives
of the lower-order statistical moments (for example means, standard deviations, correla-
tion, etc.) of the population count. It turns out that the differential equations that describes
the time evolution of the lower order statistical moments, are generally “not closed”, in
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the sense that the right-hand side of these equations depend on higher order moments. In
Section 4, we illustrate recently developed techniques that “closes” these moment equa-
tions by expressing high order moments as nonlinear functions of lower order moments.
The resulting closed differential equations provide quick and efficient computations of the
statistical moments for a given chemical reaction network, without having to use Monte
Carlo simulations that come at a significant computational cost.

Finally, in Section 5, we review different examples from literature that illustrate how
stochastic hybrid systems have been used to model uncertainty in different biochemical
processes. These examples include: (i) modeling random gene activation/inactivation in
gene regulatory networks; (ii) modeling the effects of perturbations on stochastic chemical
kinetics and (iii) modeling noise-induced transitions between different steady-states of a
multi-stable biological network.

2. Stochastic Hybrid Systems
The state-space of a Stochastic Hybrid System (SHS) is composed of a continuous com-
ponent x that takes values in Euclidean space Rn, and a discrete component q that takes
values in a finite set {q1, . . . ,qN}. The continuous state evolves according to the Ordinary
Differential Equation (ODE)

ẋ = f (q,x, t) (2.1)

where the vector field f depends on the discrete state of the SHS. During the evolution of
the above ODE, stochastic transitions or jumps may occur which change both the discrete
state and the continuous state of the SHS. More specifically, these random transitions are
characterized by a family of k reset maps

(q,x) 7→ ϕi(q,x, t), ∀i ∈ {1, . . . ,k}, (2.2)

and a corresponding family of k transition intensities

λi(q,x, t), ∀i ∈ {1, . . . ,k}. (2.3)

In essence, between stochastic transitions, the discrete state remains constant whereas the
continuous state flows according to (2.1). At transition times, the continuous and discrete
states are reset according to (2.2). The frequency with which different transitions occur is
determined by the transition intensities (2.3). In particular, the probability that a particular
transition will occur in an “elementary interval” (t, t +dt], and therefore the corresponding
reset map will be “activated” is given by λi(q(t),x(t), t)dt. Equations (2.1)-(2.3) define a
SHS, which is often conveniently represented by a directed graph as in Figure 1. We refer
interested readers to Hespanha (2005) for a mathematically precise characterization of a
SHS and an algorithm to run Monte Carlo simulations of its trajectories.

Since the time evolution of the continuous state between stochastic transitions is deter-
ministic, these SHSs have often been referred to in literature as Piecewise Deterministic
Markov Processes (Davis 1993). However, equation (2.1) can be modified to allow the con-
tinuous state x to evolve according to a Stochastic Differential Equation (SDE) rather than
an ODE (Hespanha & Singh 2005). Another straightforward extension of the above SHS
is to include deterministic transitions between discrete states, where a transition is trig-
gered when a certain “‘guard condition” is satisfied (Hespanha 2005). We show next that
SHSs are convenient for modeling the temporal dynamics of population counts of different
species involved in a set of chemical reactions.
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Figure 1. Graphical representation of a stochastic hybrid system. Each vertex corresponds to a dis-
crete mode and each edge to a transition between discrete modes. The vertices are labeled with the
corresponding discrete mode and the vector fields that determine the evolution of the continuous state
in that particular mode. The edges are labeled with the transition intensities and their corresponding
reset maps.

3. Stochastic modeling of chemical reactions
We begin this section by reviewing the stochastic formulation of chemical kinetics.

(a) Stochastic formulation of chemical kinetics

Consider a spatially uniform mixture of n chemical species X1, X2, . . . , Xn in a fixed
volume V involved in a system of k reactions R1, R2, . . . , Rk of the form

R1 : u11X1 +u12X2 + . . .+u1nXn
c1−−→ v11X1 + v12X2 + . . .+ v1nXn

R2 : u21X1 +u22X2 + . . .+u2nXn
c2−−→ v21X1 + v22X2 + . . .+ v2nXn

...

Rk : uk1X1 +uk2X2 + . . .+uknXn
ck−−→ vk1X1 + vk2X2 + . . .+ vknXn,

where ui j is the stoichiometry associated with the jth reactant of the ith reaction and vi j
is the stoichiometry associated with the jth product of the ith reaction. In the sequel, we
denote by xi(t) as the number of molecules of the species Xi at time t.

At high population counts, the time evolution of x = [x1, . . . ,xn]T can be treated as a
continuous and deterministic process governed by an ordinary differential equation, often
referred to in literature as chemical rate equations (Wilkinson 1980). However, this deter-
ministic framework fails within single cells where many species occur at very low molec-
ular counts and change by discrete integer amounts whenever a reaction occurs inside the
cell. The time evolution of such low-copy bio-chemical species is more accurately repre-
sented by a stochastic formulation of chemical kinetics which treats x(t) as a stochastic
process (Gillespie 1976).

In the stochastic formulation of chemical kinetics, each reaction is a probabilistic event,
and is assigned a probability that it will occur in the next “infinitesimal” time interval
(t, t + dt]. This probability is given by the propensity function of the reaction, which is a
product of the following two terms:

1. the number hi(x) of distinct molecular reactant combinations for the reaction Ri
present in the volume V at time t,

2. the probability cidt that a particular reactant combination of Ri will actually react on
(t, t +dt]. The constant ci for each chemical reaction depends on the physical prop-
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Table 1. Propensity functions for different reaction types.

Reaction Ri Probability reaction will occur in interval (t, t +dt]
∗ −→ reaction products cidt

Xi −→ reaction products cixidt

Xi +Xj −→ reaction products, (i 6= j) cixix jdt

2Xi −→ reaction products ci
2 xi(xi−1)dt

erties of the reacting molecules and the temperature of the system, and is typically
experimentally determined.

Table 1 shows the form of the propensity function for different reaction types (Gillespie
1976). In summary, the stochastic formulation treats reactions as a set of stochastic chan-
nels, and whenever a particular channel “fires” the molecular counts changes based on the
stoichiometry of that reaction. Moreover, the frequencies at which these channels “fire” is
determined by the propensity functions of the individual reactions.

(b) Representing chemical reactions as a Stochastic Hybrid System

The evolution of the number of molecules x1,x2, . . . ,xn can be generated by a SHS.
Since the number of molecules take values in the discrete set on integers, they can be
regarded as either part of the discrete or the continuous state of the SHS. However, it will
turn out to be more convenient to view them as part of a continuous state. In this case, the
SHS has a single discrete mode, which we omit for simplicity. The continuous state of the
SHS consists of the vector x = [x1, . . . ,xn]T and has trivial dynamics, i.e.,

ẋ = 0. (3.1)

Each of the reactions is represented using a reset map defined by the stoichiometry

x 7→ ϕi(x) =


x1−ui1 + vi1
x2−ui2 + vi2

...
xn−uin + vin

 , (3.2)

and a corresponding transition intensity

λi(x) = cihi(x) (3.3)

given by the propensity function of the reaction. Thus, between reactions, the population
count remains constant and whenever the ith reaction “fires”, the state x is reset according
to (3.2), furthermore, the probability of the activation taking place in an “infinitesimal”
time interval (t, t +dt] is given by λi(x)dt.

In many cases bio-chemical reactions can be divided into subsystems of fast and slow
reactions. For example, the binding and unbinding of a transcription factor to a promoter
typically occurs at much faster time-scales than the process of transcription, which create
mRNAs from DNA. When such differences in time-scale exist between reactions, slow
reactions or reactions containing low-copy molecular species should be modeled using
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Figure 2. SHS representation of chemical reactions, where reactions are modeled as stochastic tran-
sitions that reset the population count x based on the stoichiometry of the reaction (left figure). Note
that this SHS representation of the chemical reaction network is a special case of the SHS given by
equations (2.1)-(2.3) as it has a only a single discrete mode, which we omit for simplicity. To reduce
the computational costs of simulating these SHSs, fast reactions or reactions containing high copy
molecular species (solid arrows) are often modeled using differential equations (right figure).

stochastic transitions and resets, as in the stochastic formulation of chemical kinetics. How-
ever, fast reactions or reactions containing high copy molecular species can be modeled
using ODEs (or in some cases SDEs) resulting in a reduced approximate SHS where the
dynamics of the continuous state is no longer trivial (Figure 2). These reduced SHSs pro-
vide much faster simulation times than the original SHS, with only a marginal decrease in
accuracy (Neogi 2004, Salis & Kaznessis 2005, Chen et al. 2009) and have been used to
model a wide array of biological processes ranging from lactose regulation in Escherichia
coli (Julius et al. 2008), HIV transactivation network (Griffith et al. 2006) and synthetic
gene networks (Bortolussi & Policriti 2008).

4. Computing moment dynamics of a chemically reacting system
The stochastic formulation of chemical reactions permit the computation of the probability
density function of the population count x(t), which is often done through various Monte
Carlo techniques at a significant computational cost (Gillespie 1976, 2001). Since one is
often interested in computing only the first and second order moments for the number of
molecules of the different species involved, much time and effort can be saved by apply-
ing approximate methods to directly compute these low-order moments (for example, Van
Kampen’s linear noise approximation (Kampen01)), without actually having to solve for
the probability density function. In this section, we describe a procedure to compute the
time evolution of the statistical moments of x(t) for an arbitrary set of chemical reactions.

Given a vector {m1,m2, . . . ,mn} of n non-negative integers, we define the uncentered
moment of x = [x1, . . . ,xn]T to be

E
[
xm1

1 xm2
2 · · ·xmn

n ] (4.1)

where E stands for the expected value. We refer to the sum ∑
n
j=1 m j as the order of the

moment. For example, consider a system of reactions with two species with population
counts x1 and x2. Then, the first order moments are given by

E[x1], E[x2], (4.2)

the second order moments are given by

E[x2
1], E[x2

2], E[x1x2], (4.3)
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and so on. The SHS formalism for chemical reactions introduced in the previous section
allows a straightforward derivation of the moment dynamics using the Dynkin’s equation
(Davis 1993). Applying the Dynkins equation to the SHS given by equations (3.1)-(3.3),
gives the following time derivative of an uncentered moment of the population count:

dE
[
xm1

1 xm2
2 · · ·xmn

n ]
dt

= E

[
k

∑
i=1

cihi(x)

{[
n

∏
j=1

(x j −ui j + vi j)m j

]
−xm1

1 xm2
2 · · ·xmn

n

}]
(4.4)

(Singh & Hespanha 2006). The right-hand-side of the above equation can be interpreted as
the expected value of the product of the change in the monomial xm1

1 xm2
2 · · ·xmn

n whenever a
reaction occurs and the frequency with which reaction occurs, summed up over all chemical
reactions. Since the propensity functions cihi(x) are polynomials in the population count
x (see Table 1) , it follow from (4.4) that the time derivative of an uncentered moment
E
[
xm1

1 xm2
2 · · ·xmn

n ] will be a linear combination of uncentered moments of x(t). Note that
this result will also hold for SHSs where the continuous dynamics is non trivial, i.e., ẋ =
f (x) (as in Figure 2), as long as the vector field f is a polynomial in x (see Hespanha &
Singh 2005). Thus for chemically reacting systems, uncentered moments of the population
count evolve according to a linear system of equations. However, these moment equations
may not always be “closed” in the sense that the time derivative of a mth order moment
may depend on moments of order higher than m. We discuss techniques used for solving
such system of equations below, but we first consider a class of chemical reactions where
the moment dynamics is always “closed”.

(a) Linear system of chemical reactions

Consider a system of chemical reactions where all reactions have linear propensity
functions cihi(x). This implies from Table 1 that we only have reactions of the form ∗−→Xi
or Xi −→Xj. In this case, it follows from (4.4) that the time derivative of a mth order moment
E
[
xm1

1 xm2
2 · · ·xmn

n ] is a linear combination of moments of x of order up to m. Hence, if we
construct a vector µ consisting of the first M order moments of x, then its time evolution
is given by

µ̇ = â+Aµ (4.5)

for some appropriate constant vector â and constant matrix A. Thus for a chemically re-
acting system with linear propensity functions, the moments of the population count can
always be computed by solving equation (4.5). We illustrate this point with a stochastic
model of gene expression, which is given by the following set of chemical reactions

∗ c1−−→ mRNA, mRNA
c2−−→ ∗, mRNA

c3−−→ mRNA+Protein, Protein
c4−−→ ∗ (4.6)

The first two reactions represent mRNA transcription from DNA at a rate c1 and mRNA
degradation at a constant rate c2. The last two reactions correspond to protein translation
from the mRNA and protein degradation at rates c3 and c4, respectively. Let x1 and x2
denote the population count of the mRNA and the protein, respectively. Then, the time
evolution of x = [x1,x2]T can be represented by a SHS with trivial continuous dynamics,
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four reset maps

x 7→ ϕ1(x) =
[

x1 +1
x2

]
, x 7→ ϕ2(x) =

[
x1−1

x2

]
, (4.7a)

x 7→ ϕ3(x) =
[

x1
x2 +1

]
, x 7→ ϕ4(x) =

[
x1

x2−1

]
. (4.7b)

and corresponding transition intensities λ1(x)= c1, λ2(x)= c2x1, λ3(x)= c3x1 and λ4(x)=
c4x2. From (4.4) the time evolution of the first and second order moments of the mRNA
and the protein count are given by the following system of linear equations

dE[x1]
dt = c1− c2E[x1],

dE[x2
1]

dt = c1 +2c1E[x1]+ c2E[x1]−2c2E[x2
1]

dE[x2]
dt = c3E[x1]− c4E[x2],

dE[x2
2]

dt = c3E[x1]+ c4E[x2]+2c3E[x1x2]−2c4E[x2
2]

dE[x1x2]
dt = c1E[x2]+ c3E[x2

1]−2c2E[x1x2]− c4E[x1x2]. (4.8)

A steady-state analysis of the above moment dynamics shows that the steady-state vari-
ance σ2 of protein levels is given by σ2 =

(
c3

c2+c4
+1
)

E[x1], and scales linearly with the

steady-state value of the mean protein level E[x1]. This linear scaling of variance with
the mean protein levels obtained from the stochastic model is consistent with experimental
measurements of gene expression noise in both eukaryotes (Bar-Even et al. 2006, Newman
et al. 2006) and prokaryotes (Ozbudak et al. 2002)

(b) Nonlinear system of chemical reactions

We next consider the scenario where the system of chemical reactions contains at least
one reaction with a nonlinear propensity function. Then, the time derivative of the vector
µ consisting of the first M order moments of x is given by

µ̇ = â+Aµ +Bµ̄, (4.9)

for an appropriate constant vector â, constant matrices A and B, and a (time-varying) vector
µ̄ containing moments of order M + 1 and higher. For example, consider the following
reactions

∗ c1−−→ X, 2X
c2−−→ Y, Y

c3−−→ ∗ (4.10)

where species X is produced as a monomer at a constant c1 and dimerizes to form Y. The
dimer Y then decays at a constant rate c3. Let x1 and x2 denote the population count of
species X and Y, respectively. Then, the time evolution of x = [x1,x2]T can be represented
by a SHS with trivial continuous dynamics, three reset maps

x 7→ ϕ1(x) =
[

x1 +1
x2

]
, x 7→ ϕ2(x) =

[
x1−2
x2 +1

]
, x 7→ ϕ3(x) =

[
x1

x2−1

]
(4.11)

and corresponding transition intensities λ1(x) = c1, λ2(x) = c2
2 x1(x1−1) and λ3(x) = c3x2.

Using the Dynkin’s equation for the above SHS, the time evolution of the first and second
order moments of the population count is given by (4.9) where

µ̄ =
[
E[x3

1], E[x2
1x2]

]T
(4.12)
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Table 2. Moment closure approximation for third order moments

Third order moment Moment closure approximation

E[x3
1]

(
E[x2

1]
E[x1]

)3

E[x2
1x2]

(
E[x2

1]
E[x2]

)(
E[x1x2]
E[x1]

)2

E[x1x2x3]
E[x1x2]E[x2x3]E[x1x3]

E[x1]E[x2]E[x3]

and is dependent on the third order moments of the population count. This example il-
lustrates the general principle that nonlinear propensity functions result in a “non-closed”
system of moment equations, where the dynamics of the lower order moments depends on
higher order moments. For analysis purposes, the time evolution of the vector µ is often
made to be closed by approximating the higher order moments µ̄ as nonlinear functions
of lower order moments in µ , as in µ̄ ≈ ϕ(µ). This procedure is referred to in literature
as moment closure, (Nasell 2003, Gillespie 2009) and results in a nonlinear approximated
moment dynamics given by

ν̇ = â+Aν +Bϕ(ν), (4.13)

where the state of this closed system ν(t) can be viewed as an approximation for µ(t).
Recent work has proposed a novel moment closure technique based on derivative-

matching, where the moment closure is done by matching time derivatives of the exact
(not closed) moment equations with that of the approximate (closed) moment equations at
some initial time t0 and set of initial conditions (Hespanha & Singh 2005). In particular,
this derivative matching approach attempt to determine nonlinear functions ϕ for which

diµ(t)
dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

(4.14)

holds for deterministic initial conditions x(t0) = x0 with probability one. The main ratio-
nale for doing so is that, if a sufficiently large number of derivatives of µ(t) and ν(t) match
point-wise at an initial time t0, then from a Taylor series argument the trajectories of µ(t)
and ν(t) will remain close at least locally in time. Singh & Hespanha (2006, 2007) provide
explicit formulas to construct a class of functions ϕ for which equation (4.14) holds ap-
proximately for all i≥ 1, i.e., all time derivatives of ν(t) and µ(t) match at t = t0 with small
errors. Table 2 provides the nonlinear approximations for all possible third order moments
as a function of the first and second order moments based on the above derivative matching
moment closure technique. We close the dynamics of the first and second order moments
for the reaction set (4.10) by using the corresponding nonlinear approximations for the
third order moments E[x3

1] and E[x2
1x2]. Numerical solutions of the resulting approximated

moment dynamics is shown in Figure 3. The procedure described here to generate approxi-
mated moment dynamics can be fully automated. The software StochDynTools (Hespanha
2006) is available to compute the approximated moment dynamics starting from a simple
ASCII description of the chemical reactions involved.

A striking feature of the above moment closure technique is that its accuracy can be
arbitrarily increased by reducing the error in matching the time derivative between the
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Figure 3. The left plots show the time evolution of the means (solid line)±one standard deviations
(dashed lines) obtained from the approximated moment dynamics (4.13) corresponding to M = 2
(dm,2) and M = 3 (dm,3) for the reaction set (4.10). The legends shows the values of the mean±one
standard deviation at the final time. The distributions, means and standard deviations shown on the
right correspond to 20,000 Monte Carlo simulations done using the stochastic simulation algorithm
(Gillespie 1976). The left plots include a typical Monte Carlo run. Reaction parameters were taken
as c1 = 100 molecules hour−1, c2 = 30 molecules−1 hour−1 and c3 = 20 hour−1. As one increases
M there is an improvement in the moment estimates for species X. However, there is no significant
change in the moment estimates of Y, and the moment trajectories corresponding to M = 2 and
M = 3 lie on top of each other.

exact and the approximate moment dynamics. More specifically, if we close the dynamics
of the first M order moments, then the derivative matching error given by∥∥∥∥∥∥

diµ(t)
dt i

∣∣
t=t0

− diν(t)
dt i

∣∣
t=t0

diµ(t)
dt i

∣∣
t=t0

∥∥∥∥∥∥ (4.15)

scales as ||x0||−M (Singh & Hespanha 2006). Thus by increasing M, which corresponds
to including higher order moments in the vector µ , the approximated moment dynamics
(4.13) provides more accurate approximations to the exact moment dynamics (4.9), as long
as the elements of x0 are larger than one.

Another striking feature of the above moment closure technique is that the nonlinear
functions ϕ , that express high order moments as functions of lower order moments, are
consistent with lognormal distributions. Singh & Hespanha (2010) perform a systematic
comparison of the derivative matching moment closure technique to an alternative proce-
dure, where moment closure is performed by setting the third and higher order cumulants
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of x equal to zero (Goutsias 2007, Gomez-Uribe and Verghese 2007, Lee et al. 2009).
As for a gaussian distribution all cumulants of order three and higher are equal to zero,
the zero-cumulant moment closure is consistent with gaussian distributions. Singh & Hes-
panha (2010) show that at low population counts the derivative matching moment closure
technique provides more accurate estimates of the lower order moments than both the
zero-cumulant moment closure. Intuitively, this occurs because at low population regimes
molecular counts have highly skewed distributions that are much closer to a lognormal
distribution than to a gaussian distribution. In fact, using the zero cumulant moment clo-
sure technique for low population species often results in unstable approximated moment
dynamics with unbounded solutions (Nasell 2003).

In summary, moment closure allows one to approximate the moment dynamics of a
chemically reacting system by an ordinary differential equation, which provides fast and
efficient computation of stochasticity in a given reaction network.

5. Modeling gene regulatory networks and other biological processes

In this section we briefly review how SHSs have been used to model uncertainties arising
from different sources in biochemical processes.

(a) Modeling Gene regulatory networks

Gene regulatory networks consists of a collection of genes that regulate the transcrip-
tional activity of each other through their expressed proteins. SHSs have frequently been
used to model the uncertainties associated with activation/inactivation of a gene in re-
sponse to binding/unbinding of protein complexes to its promoter. We illustrate this with
the simplest possible network: an autoregulatory gene network where a protein inhibits or
activates its own gene expression (Figure 4a). Zeiser et al. (2009) models autoregulatory
gene networks as a SHS with two discrete states, which represent a gene in an “ON” or
“OFF” state (Figure 4b). The protein count represents the continuous state of the SHS and
evolves according to a linear differential equation with production and degradation in the
“ON” state, and only degradation in the “OFF” state. For simplicity, the authors combine
transcription and translation into a single protein production term, and do not explicitly
consider the mRNA dynamics. Random gene activation/inactivation is modeled through
stochastic transitions between the discrete states with frequencies that are dependent on
the protein count. In this SHS model, noise in protein levels only comes from stochastic
promoter transitions between different transcriptional states, which is likely to be true when
these transitions occur at a much slower time scales than those of the protein production
and decay.

Mathematical models of autoregulatory gene networks have been extensively used to
study negative feedback regulation, where a protein inhibits its own expression. Such neg-
ative feedback loops occur commonly in many cellular genes (Alon 2007), and have been
hypothesized as a mechanism to reduce stochastic fluctuations in protein levels (Becskei
& Serrano 2000). A negative feedback can be easily implement in the above SHS model
by assuming that the promoter is more likely to transition to the OFF state if the protein
count increases within the cell. Analysis of these models not only predict conditions under
which feedback will provide the best suppression of gene expression noise but also deter-
mine the fundamental limits of noise suppression possible through negative autoregulation
(Singh & Hespanha 2009a, 2009b). Counter intuitively, these models also show, that in

Article submitted to Royal Society



Stochastic hybrid systems for studying biochemical processes 11

“OFF”

“ON”

GenePromoter 

GenePromoter 

“OFF”

mRNA

a) b)

“ON”

c)

Time

P
ro

te
in

 c
o
u
n
t

“ON”

“OFF”

Protein

Figure 4. a) An autoregulatory gene network where a protein regulates its own expression; b) A
SHS model of the autoregulatory gene network with two discrete states representing gene “ON”
and “OFF” states. The protein count x exponentially increases to c1/c2 in the gene “ON” state and
decrease exponentially to zero in the gene “OFF” state. Transitions between transcriptionally “ON”
and “OFF” states occurs with transition intensities that are dependent on the protein count. As there
are no changes in the protein population when the gene turns “ON” or “OFF”, the rest maps for
this SHS are the identity map. c) A singe realization of the protein count which shows increase and
decrease in protein levels as the SHS transitions between “ON” and “OFF” states.

some cases, introducing negative feedback may actually increase gene expression noise
rather than decreasing it (Zeiser et al. 2009, Stekel & Jenkins 2008).

The autoregulatory gene network model presented above can be easily extended to a
network of N genes. Assuming each gene can be either “ON” or “OFF”, then the SHS
will have 2N discrete states with each discrete state corresponding to some set of genes
being in the “ON” state and others being in the “OFF” state. As in Figure 4b, the protein
population either exponentially grows or decays depending on the transcriptional status of
its gene. SHS models of gene networks, in which genes stochastically transition between
transcriptional states and protein counts evolve according to linear differential equations,
have proven to be very useful for both parameter identification and modeling of subtilin
production in Bacillus subtilis (Cinquemani et al. 2008a) and nutrient stress response in
Escherichia coli (Cinquemani et al. 2008b). An important caveat of using these models is
that many mRNA species occur at very low molecular counts within cells (Bar-Even et
al. 2006). Thus by modeling transcription as a completely deterministic process, one may
fail to capture the stochasticity in protein levels due to thermal fluctuations in the corre-
sponding mRNA counts. However, this limitation can be obviated by incorporating mRNA
production and degradation as stochastic events, while still modeling protein translation
and degradation as ordinary differential equations.
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Chemical reaction

network with no drug

Chemical reaction

network with drug

Drug removal

Drug addition

Figure 5. Modeling perturbations of chemical kinetics using stochastic hybrid systems. The discrete
mode q1 represents a set of chemical reactions where some reactions are modeled deterministically
as differential equations while others are modeled stochastically through transitional intensities and
reset maps. The discrete mode q2 represents the same set of reactions under a perturbation (such
as additions of a drug) which can alter the vector field f and the transition intensities/reset maps.
Drug addition and removal are modeled via stochastic transitions between the discrete modes which
are governed by the transition intensities λ3(q1,x) and λ4(q2,x) and their corresponding reset maps.
SHSs such as the one illustrated here have recently been used to study disease progression under
intermittent drug treatment (see Riley et al. 2009).

(b) Modeling perturbations of stochastic chemical kinetics

The SHS framework for chemical reacting systems introduced above provides a con-
venient model to investigate perturbations to the system caused by discrete events (Figure
5). This point is best illustrated by the recent work of Riley et al. 2009 that investigates
the effect of drug treatment on the sugar cataract development process. This process can
be expressed as a set of biochemical reactions, and hence modeled as a SHS with a single
discrete state (Figure 2). To study the effects of drug treatment, the authors introduce a new
discrete state, which models the time evolution of the biochemical reactions in the presence
of the drug. The transitions between the two discrete states of the SHS are determined by
the criterion used to add or remove the drug from the system. Using stochastic reachability
analysis methods for SHSs the authors were able to compute the probability that a patient
will develop a cataract with no drug treatment and with an intermittent drug treatment.

(c) Modeling complex dynamics with multistability

SHSs have also been used to model random transitions between different stable-states
of a multi-stable biological network. These transitions occur due to noise in protein lev-
els, which causes the system to move from the region of attraction of one stable-state to
another. Noise-induced transitions between alternative stable states play a key role in me-
diating cell fate decisions in stem cells (Losick & Desplan 2008) and viruses (Singh &
Weinberger 2009). A well-known example of this is the lactose regulation system in Es-
cherichia coli, where in response to external lactose, a colony of identical cells bifurcate
into two distinct populations: either fully induced with high lactose metabolizing enzyme
levels or uninduced, with no enzymes (Novick & Weiner 1957). This bifurcation at the
population level occurs due to an underlying bistability in the lactose metabolic network,
with stochastic fluctuations in regulatory molecules causing single cells to converge to ei-
ther one of the two stable steady-states. Starting from a full SHS model of the lactose
metabolic network, Julius et al. (2008) builds a reduced model that can quickly predict the
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fraction of induced and uninduced cells in response to a given concentration of lactose.
This reduced model allowed the design of control feedback laws that can robustly steer
a colony of cells to a desired fraction of induced cell, using external lactose as a control
input. Perhaps, one day, similar reduced SHS models of multi-stable networks underlying
cell fate decisions in stem cells can be controlled for possible therapeutic benefit.

6. Conclusions

Intracellular processes are driven by reactant molecules randomly diffusing and colliding
within the cell and are thus inherently stochastic. We showed that the time evolution of the
number of molecules of different species involved in an arbitrary system of biochemical
reactions can be modeled as a SHS. The SHS framework is useful as it provides the flexi-
bility of modeling fast reactions deterministically, using differential equations, while slow
reactions can evolve stochastically using stochastic transitions that reset the population
count based on the stoichiometry of the reaction (Figure 2).

The SHS framework also provides a method to compute the moment dynamics for a
given set of chemical reactions. We illustrated a novel moment closure scheme based on
derivative matching, which allows one to approximate the time evolution of the statistical
moments by a nonlinear ordinary differential equation. These equations not only provide
quick computations of the means, standard deviation, correlation etc., but can also be used
for investigating how stochasticity in molecular counts is affected by the parameters of
the reaction network. Comparisons with alternative techniques showed that this moment
closure scheme performs best at low population counts, where stochastic effects are most
likely to be manifested.

Given the recent evidence that proteins involved in various cellular pathways exhibit
stochastic fluctuations in their copy numbers (Bar-Even et al., 2006), SHSs will likely find
increased use to answer fundamental questions in noise biology. For example, what mech-
anisms ensure that, in spite of noise in protein levels, signal transmission and information
processing occurs with sufficiently high fidelity inside cells? How is noise at the cellular
level exploited to create variability at the population level for dealing with environmental
uncertainties? Finally, SHS models will also likely play an important role in parameter
identification as has been illustrated by Cinquemani et al. 2008b. Models that take into
account the inherent stochastic nature of biochemical reactions will likely provide better
parameter estimates from biological data, than purely deterministic models that consider
all variation as measurement noise.
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