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Summary. This chapter addresses the control of spatially distributed processes via
communication networks with a fixed delay. A distributed architecture is utilized in
which multiple local controllers coordinate their efforts through a data network that
allows information exchange. We focus our work on linear time invariant processes
disturbed by Gaussian white noise and propose several logics to determine when the
local controllers should communicate. Necessary conditions are given under which
these logics guarantee boundedness and the trade-off is investigated between the
amount of information exchanged and the performance achieved. The theoretical
results are validated through Monte Carlo simulations. The resulting closed-loop
systems evolve according to stochastic differential equations with resets triggered
by stochastic counters. This type of stochastic hybrid system is interesting on its
own.

1 Introduction

The architectures for feedback control of spatially distributed processes gen-
erally fall in one of the three classes, centralized, decentralized or distributed.
Centralized architectures yield the best performance because they pose the
least constraints on the structure of the controller, whereas decentralized ar-
chitectures are the simplest to implement. We pursue here distributed archi-
tectures, as they provide a range of compromise solutions between the two
extremes. The communication among local controllers is supported by a data
network that allows information between local controllers to be exchanged at
discrete time instants.

Our objective is to understand the trade-off between the amount of in-
formation exchanged and the performance achieved. Several results can be
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found in the literature on how to reduce communication in networked con-
trol systems (NCS). The problem of stabilization with finite communication
bandwidth is introduced by [21, 22], and further pursued by [14, 18, 11, 6, 12].
An estimation problem is investigated in [21] under the constraint that ob-
servations must be coded digitally and transmitted over a channel with finite
capacity. The corresponding stabilization problem under similar limitations is
addressed in [22]. [18, 14] and [6] determine the minimum bandwidth (mea-
sured in discrete symbols per second) needed to stabilize a linear process. In
all these references a digital communication channel is assumed so that any
information transmitted has to be quantized. [3] focuses on the quantization
aspect and shows that the memoryless quantization scheme that minimizes
the product of quantization density times sampling rate follows a logarithmic
rule.

We depart from the work summarized above in that we only penalize the
number of times that information is exchanged. This is motivated by the fact
that in most widely used communication protocols there is a fixed overhead in-
curred by sending a packet over the network, which is not reduced by decreas-
ing the number of data-bits. For example, a fixed-size ATM (Asynchronous
Transfer Mode) cell consists of a 5-byte header and a 48-byte information
field, whereas an Ethernet frame has a 14-byte or 22-byte header and a data
field that must be at least 46 bytes long. In either case, one “pays” the same
price for sending a single bit or 48/46 bytes of data.

Several practical issues motivate us to reduce packet rate in NCS. Higher
data traffic may induce longer communication delay and more data dropouts,
which are undesirable in real-time systems [10]. In sensor network applica-
tions, an important criterion in assessing communication protocols is energy
efficiency and the primary source of energy consumption in the non-mobile
wireless settings is the radio [1]. A smart communication scheduling method
can extend the battery lifetime and therefore reduce the sensor network de-
ployment costs.

The systems of interest are spatially distributed processes whose dynamics
are decoupled but for which the control objectives are not, e.g., the control
of a group of autonomous aircraft flying in a geometric formation far enough
from each other so that their dynamics are decoupled. However, many of these
ideas could be extended to coupled processes.

Each process with an associated local controller is viewed as a node. The
overall control system consists of certain number of nodes connected via a
communication network. Fig 1 depicts the internal structure of the ith node.
It consists of a local process, a local controller, a bank of estimators and a
communication logic. The synchronized estimators are used by the local con-
troller to replace the state of remote processes that are not available locally.
They are simply computational models of the remote processes and the rea-
son to call them “synchronized” will become clear shortly. These estimators
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Fig. 1. One of the nodes in a networked control system.

run open-loop most of the time but are sometimes reset to “correct” values
when state measurements are received through the network. These resets do
not necessarily occur periodically and it is the responsibility of each node to
decide when to broadcast to the network the state of its local process. The
communication logic makes use of an internal estimator to determine how
well other nodes can “predict” the state of its local process and decides when
to broadcast it. In general, the communication network introduces delay and
therefore this data only becomes available to the other nodes some time later.
This type of architecture is proposed by Yook, Tilbury and Soparkar [24] for
the control of discrete-time distributed systems over delay-free networks.

Several algorithms can be used by the communication logic to determine
when the state of the local process should be broadcast. The quality of a com-
munication logic should be judged in terms of the performance it can achieve
for a given message broadcast rate. We measure performance in terms of the
statistical moments of the estimation errors associated with the synchronized
estimators, which provide a measure of the penalty introduce by the fact that
the state measurements of the remote processes are not available locally.

One simple algorithm that can be used by the communication logic consists
of broadcasting messages periodically. However, as we shall see, this is not
optimal because data may be transmitted with little new information. In [24],
it is proposed that a node should broadcast the true value of the state of
its local process when it differs from the estimate known to the remaining
nodes by more than a given threshold. For the linear discrete-time case, they
showed that this scheme results in a system that is BIBO stable. The relation
between the threshold level and the message exchange rate is investigated
through simulation in the context of examples.

We proposed new communication logics that can be analyzed to deter-
mine stability as well as the trade-off between communication (in terms of
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average message exchange rates) and performance. We start by considering
stochastic communication logics for which the probability of a node broad-
casting a message is a function of the current estimation error. Deterministic
communication logics similar to the ones proposed in [24] are also considered.
We will see that the latter can be viewed as limiting cases of the former. We
also simulate different communication logics, including periodic, stochastic
and deterministic, and compare their performances.

The stochastic communication logics are based on doubly stochastic Pois-
son processes (DSPPs) [2]. In essence, the state of the local process is broad-
cast according to a Poisson process whose rate depends on the estimation
error. This type of stochastic hybrid system seems to be interesting on its
own. For stochastic communication logics, our stability analysis uses tools
from jump diffusion processes. Deterministic logics are analyzed in context of
first exit time problems.

In Section 2, the control-communication architecture is formally described
for the case of two linear time-invariant processes. Stochastic communication
logics are analyzed in Section 3, first for delay-free networks and later for
networks that introduce a delay of τ time units. Deterministic logics are ad-
dressed in Section 4 for delay-free systems. Simulation results are presented in
Section 5 for a second order leader-follower problem. We also provide trade-
off curves showing the average communication rate versus the variance of the
estimation error for an unstable process. Section 6 contains conclusions and
directions for future work.

2 Networked control system model

In this section we propose an estimator based architecture for distributed
control. For simplicity of presentation we consider only two nodes like the
ones in Fig 1.

2.1 An estimator based control architecture

The processes are assumed linear time-invariant with an exogenous distur-
bance input,

ẋi = Aixi + Biui + σiẇi

yi = xi + ζi ∀i ∈ {1, 2},

where xi ∈ R
ni denotes the state, ui ∈ R

mi the control input, yi ∈ R
ni the

state measurement, ẇi `i-dimensional standard Gaussian white noise, and
ζi zero-mean measurement noise and/or quantization errors. The two noise
processes are assumed independent and all matrices are real and of appropriate
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dimensions. The process ζi is also assumed stationary with known probability
distribution µ(·).

We assume given state-feedback control laws

ui = Ki1x1 + Ki2x2, ∀i ∈ {1, 2} (1)

that would provide adequate performance in a centralized configuration, i.e.,
if the states of both processes were available to both local controllers. In a
centralized configuration, the closed-loop system would be

ẋ1 = (A1 + B1K11)x1 + B1K12x2 + σ1ẇ1

ẋ2 = (A2 + B2K22)x2 + B2K21x1 + σ2ẇ2.
(2)

Since the state of the ith process is not directly available at the jth node
(j 6= i, i, j ∈ {1, 2}), we build at the node j an estimate x̂i of the state xi. In
the distributed architecture, the centralized laws (1) are replaced by

u1 = K11x1 + K12x̂2

u2 = K21x̂1 + K22x2.
(3)

The distributed control laws (3) result in a closed-loop dynamics given by

ẋ1 = (A1 + B1K11)x1 + B1K12x̂2 + σ1ẇ1

ẋ2 = (A2 + B2K22)x2 + B2K21x̂1 + σ2ẇ2,
(4)

to be contrasted with (2). To understand the effect of the distributed architec-
ture on the performance of the closed-loop system, we write the closed-loop
dynamics (4) in terms of the estimation errors,

ẋ1 = (A1 + B1K11)x1 + B1K12x2 + σ1ẇ1 + B1K12e2,

ẋ2 = (A2 + B2K22)x2 + B2K21x1 + σ2ẇ2 + B2K21e1,

where the estimation error is defined as ei := x̂i − xi. Comparing these equa-
tions with (2), we observe that the penalty paid for a distributed architecture
is expressed by the additive “disturbance” terms BiKijej . The estimation
error term ei is the focus of our investigation.

2.2 Estimators

Since remote state information is not directly available, each node needs to
construct synchronized state-estimates to be used in (3), based on the data
received via the network, which is assumed to introduce a delay of τ time
units. Moreover, each node also needs to send its own state to the remote
nodes to allow them to construct their synchronized estimates. Each node’s
communication logic is responsible for determining when data transmission
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should take place and makes this decision based on an internal estimate of
its own state. The difference between this internal state-estimate and the
measured state provides a criterion to judge the quality of the synchronized
estimates currently being used at the remote nodes.

To simplify the presentation, we only write the equations for the synchro-
nized state-estimators inside node 2 and the internal estimator used by the
communication logic inside node 1. These estimators are relevant to investi-
gate the impact of the rate at which measurements are sent from node 1 to
node 2. The flow of data in the opposite direction is determined by completely
symmetric structures.

Node 2’s synchronized state-estimates at some time t are based on all
information received from node 1 up to time t:

{

y1(tj) : tj ≤ t − τ
}

(5)

where 0 =: t0 < t1 < t2 < · · · are the times at which node 1 sends its
state measurement y1(tk) to node 2. The corresponding minimum-variance
estimate is given by a Kalman filter for (4) with discrete measurements [13].
For simplicity we shall assume that the measurement noise ζi(t) is negligible,
in which case the filter takes a particularly simple form because one does not
need to propagate the covariance matrix and the optimal estimator is given
by the following open-loop “computational model”

˙̂x1 = (A1 + B1K11)x̂1 + B1K12x̂2, (6)

which, upon receiving y1(tk) at time tk + τ , is updated according to

x̂1(tk + τ) = z1(tk + τ) := exp{(A1 + B1K11)τ}y1(tk)+

+

∫ tk+τ

tk

exp{(A1 + B1K11)(tk + τ − r)}B1K12x̂2(r)dr. (7)

To implement (6), node 2 also needs to compute x̂2 based on the information
that it has been sending to node 1. This is done using equations completely
symmetric to (6)–(7):

˙̂x2 = (A2 + B2K22)x̂2 + B2K21x̂1 (8)

x̂2(t̄k + τ) = z2(t̄k + τ) := exp{(A2 + B2K22)τ}y2(t̄k)+

+

∫ t̄k+τ

t̄k

exp{(A2 + B2K22)(t̄k + τ − r)}B2K21x̂1(r)dr, (9)

where each t̄k denotes a time at which node 2 sends the measurement y2(t̄k)
to node 1, and t̄k +τ the time at which this measurement is expected to arrive
at its destination. Although node 2 has x2 always available, in building this
estimate, it only does the discrete updates of x̂2 τ time units after it sends
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the state measurement y2 to node 1, because only at that time will node 1
be able to update its estimate. By construction, the estimators inside node 2
defined by (6)–(9) will always remain equal to the corresponding estimators
inside node 1. For this reason, we call them synchronized state-estimators.

2.3 Estimation error processes

The estimator equations (6)–(7) can be formally written as the following jump
diffusion process

dx̂1(t) = Ax̂1(t)dt + B1K12x̂2(t)dt +
(

z1(t) − x̂1(t)
)

dN1(t − τ) (10)

where A := A1 + B1K11 and N1(t) is an integer counting process that is
constant almost everywhere except at the times tk, k ≥ 0 when it is increased
by 1. Moreover, at any time t when the measurement y1(t− τ) = x1(t− τ) +
ζ1(t − τ) is received, we have that

z1(t) − x̂1(t) = exp{Aτ}ζ1(t − τ) + exp{Aτ}x1(t − τ)

+

∫ t

t−τ

exp{A(t − r)}B1K12x̂2(r)dr − x1(t) − e1(t)

= η1(t) − e1(t), (11)

where

η1(t) = exp{Aτ}ζ1(t − τ) −

∫ t

t−τ

exp{A(t − r)}σ1dw1(r), (12)

with the integral defined in the Itô sense [16, 9]. It is straightforward to show
that the stochastic moments of η1(t) are finite for any delay of τ .

¿From (4), (10) and (11) we conclude that the estimation error e1 satisfies

de1(t) = Ae1(t)dt − σ1dw1(t) +
(

η1(t) − e1(t)
)

dN1(t − τ). (13)

Periodic communication is not optimal to reduce network utilization be-
cause a node does not need to send its measured state to the network if the
other nodes have a good estimate of it. An optimal communication logic prob-
lem is solved in [23] for discrete-time systems, in which it is shown that the
optimal communication decision for node 1 is a function of the estimation
error associated with an additional estimate of its local state x1 that should
be updated in a delay-free fashion right after data is transmitted [i.e., without
waiting τ time units in the discrete update (7)], even though the network may
exhibit significant delay. This internal estimate x̃1 is constructed inside node
1 as follows

dx̃1(t) = Ax̃1(t)dt + B1K12x̂2(t)dt +
(

y1(t) − x̃1(t)
)

dN1(t) (14)



8 Y. Xu and J.P. Hespanha

in which N1(t) is determined by node 1’s communication logic. Inspired by
the results in [23], we consider communication logics that base their decision
on the internal estimation error ẽi := x̃i − xi, whose dynamics are given by

dẽ1(t) = Aẽ1(t)dt − σ1dw1(t) +
(

ζ1 − ẽ1(t)
)

dN1(t) (15)

For simplicity of notation, in the sequel we drop the subscript 1 in all the
signals and rewrite (15) and (13) as follows

dẽ(t) = Aẽ(t)dt − σdw(t) +
(

ζ − ẽ(t)
)

dN(t) (16)

de(t) = Ae(t)dt − σdw(t) +
(

η(t) − e(t)
)

dN(t − τ) (17)

in which the integer process N(t) is determined by the communication logic
based on ẽ(t). For networks with negligible delay, (16) and (17) are identical
and we can simply write

de(t) = Ae(t)dt − σdw(t) + (ζ − e(t))dN(t). (18)

The reader is reminded that the equations above have analogous counterparts
for all nodes in the network.

2.4 Communication measure

The “communication cost” of a particular communication logic is measured
in terms of the communication rate, defined to be the asymptotic rate that
messages are sent, i.e.,

R := lim
k→∞

E
[ k

tk

]

.

Define Tk := tk − tk−1 to be the intercommunication time between the (k −
1)th and the kth messages. If all the Tk are i.i.d., it is straightforward to
show that

R = lim
k→∞

E
[ k
∑k

i=1 Tk

]

=
1

E[Tk]
. (19)

For several communication logics we proceed to investigate the relation be-
tween performance, measured in terms of the statistical moments of the esti-
mation error e, and communication cost, measured in terms of the communi-
cation rate R.

3 Stochastic communication logics

The idea behind stochastic communication logics is for each node to broadcast
at an average rate that depends on the current value of the internal estima-
tion error ẽ, as in (16). To this effect, we define N(t) to be a DSPP, whose
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increments are associated with message exchanges. The instantaneous rate at
which increments occur is a function of the estimation error ẽ(t). In particular
we take N(t) to be a DSPP with intensity λ

(

ẽ(t)
)

, which has the property
that

E
[

N(t) −N(s)
]

= E
[

∫ t

s

λ(ẽ(r))dr
]

, ∀t > s ≥ 0,

where λ : R
n → [0,∞) is called the intensity function. For this type of com-

munication logic, the communication rate R is given by

R = lim
t→∞

E[N(t) −N(0)]

t
= lim

t→∞

∫ t

0
E

[

λ(ẽ(r))
]

dr

t
, (20)

which shows that when E[λ(ẽ(t))] converges as t → ∞, its limit is precisely
the communication rate R.

We start by considering the delay-free case (18) and provide sufficient con-
ditions for stochastic stability for both constant and state-dependent intensity
functions. These results are later generalized for the case of a τ time units
delay network expressed by (16)–(17).

3.1 Infinitesimal generators

For the stability analysis of (18), it is convenient to consider its infinitesimal
generator : Given a twice continuously differentiable function V : R

n → R, the
generator L of a jump diffusion process e is defined by

(LV )(e) := lim
t→s

E
[

V (e(t)|e(s) = e
]

− V (e)

t − s
, ∀e ∈ R

n, t > s ≥ 0, (21)

where E
[

V (e(t)|e(s) = e
]

denotes the expectation of V (e(t)) given e(s) = e

[15, 5]. The generator for the jump diffusion process described by (18) is given
by

LV (e) =
∂V (e)

∂e
· Ae +

1

2
tr

[

σ′ ∂
2V (e)

∂e2
σ
]

+ λ(e)
(

∫

V (ζ) dµ(ζ) − V (e)
)

, (22)

where ∂V (e)
∂e

and ∂2V (e)
∂e2 denote the gradient vector and Hessian matrix of V ,

respectively [9]. Setting e = e(t) in (21) and taking expectation, one obtains

d

dt
E[V (e(t))] = E[(LV )(e(t))], (23)

from which the stochastic stability properties of the process e(t) can be de-
duced by appropriate choices of V .
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3.2 Constant intensity

Consider a constant intensity function λ(e) = γ for the DSPP. From (20), the
corresponding communication rate is R = γ. The following statements hold.

Theorem 1. Let e be the jump diffusion process defined by (18) with λ(e) = γ,
∀e.

1. If γ > <{λi(A)}, for every eigenvalue λi(A) of A, then E[e(t)] converges
to zero exponentially fast.

2. If γ > 2 m<{λi(A)}, for every eigenvalue λi(A) of A and some m ≥ 1,
then E[(e(t) · e(t))m] is bounded.

3. If γ > 2<{λi(A)}, for every eigenvalue λi(A) of A, and P , Q are n × n

positive definite matrices and c a positive constant such that

P
(

A −
γ

2
I
)

+
(

A −
γ

2
I
)′

P ≤ −Q, Q ≥ cP,

then E[e(t) · e(t)] is uniformly bounded and

lim
t→∞

E[e(t) · Pe(t)] ≤
γρ2 + θ

c
, (24)

where ρ2 :=
∫

ζ · Pζ dµ(ζ), and θ := tr(σ′Pσ).

To prove this theorem, we need the following Lemma, which relates the
expectations of different moments of a positive random variable.

Lemma 1. Given a scalar random variable x that is nonnegative with prob-
ability one, a positive constant δ, and positive integers k > ` > 0, E[xk] ≥
δ`E[xk−`] − δk.

Proof (Lemma 1). Suppose x has distribution µ(x). For every δ > 0, the
following inequalities hold

E[xk] ≥

∫

x≥δ

xk dµ(x) ≥ δ`

∫

x≥δ

xk−` dµ(x)

= δ`
(

∫

x≥0

xk−` dµ(x) −

∫

x<δ

xk−` dµ(x)
)

≥ δ`(E[xk−`] − δk−`). ut

Proof (Theorem 1). To prove 1, put V (e) = e. From (22),

LV (e) = Ae − γe

because
∫

V (ζ)dµ(ζ) = 0. Therefore (23) takes the form

d

dt
E[e(t)] = (A − γI)E[e(t)],
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and statement 1 follows since A − γI is stable. To prove 2, let P and Q be

n × n positive definite matrices and c a positive constant such that

P
(

A −
γ

2m
I
)

+
(

A −
γ

2m
I
)′

P ≤ −Q, Q ≥ cP.

Such matrices exist as long as γ > 2 m max{<[eig(A)]}. For m ≥ 1, define

V (e) := (e · Pe)m. (25)

We conclude from (22) that

LV (e) = m(e · Pe)m−1 e · (PA + A′P )e + λ(e)ρ2m − λ(e)V (e)

+ 2m(m − 1)(e · Pe)m−2 e · Pσσ′Pe + m(e · Pe)m−1θ

= m(e · Pe)m−1 e · [P (A −
γ

2m
I) + (A −

γ

2m
I)′P ]e + γ ρ2m

+ 2m(m − 1)(e · Pe)m−2 e · Pσσ′Pe + m(e · Pe)m−1θ

≤ −m(e · Pe)m−1 e · Qe + γ ρ2m

+ 2m(m − 1)(e · Pe)m−2 e · Pσσ′Pe + m(e · Pe)m−1θ

≤ −cmV (e) + γ ρ2m + m
(

2c2(m − 1) + θ
)

(e · Pe)m−1,

where ρ2m :=
∫

(ζ · Pζ)mdµ(ζ) and c2 > 0 is such that Pσσ′P ≤ c2P . From
this and (23), we conclude that

d

dt
E[V (e)] ≤ −cmE[V (e)] + γ ρ2m + m

(

2c2(m − 1) + θ
)

E[(e · Pe)m−1].

Given some δ > 0, from Lemma 1,

E[(e · Pe)m−1] ≤
1

δ
E[V (e)] + δm−1,

and therefore

d

dt
E[V (e)] (26)

≤ −cmE[V (e)] + γρ2m + m
(

2c2(m − 1) + θ
)

(1

δ
E[V (e)] + δm−1

)

= −m
(

c −
2c2(m − 1) + θ

δ

)

E[V (e)] + γρ2m + mδm−1
(

2c2(m − 1) + θ
)

.

For sufficiently large δ, c − 2c2(m−1)+θ

δ
> 0 and the boundedness of E[V (e)]

and consequently that of E[(e · e)m] follows.

To prove 3, we re-write (26) for m = 1 and obtain

d

dt
E[V (e)] ≤ −

(

c −
θ

δ

)

E[V (e)] + γρ2 + θ.
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Applying the Comparison Lemma [7], we conclude that

lim
t→∞

E[V (e)] ≤
γρ2 + θ

c − θ
δ

,

from which (24) follows as we make δ → ∞. ut

3.3 Error-dependent intensity

We now consider an intensity for the DSPP that depends on the current
estimation error. The rationale is that a larger estimation error should more
rapidly lead to a message exchange. We consider intensities of the form

λ(e) = (e · Pe)k, ∀e ∈ R
n, (27)

where P is some positive definite matrix and k a positive integer.

Theorem 2. Let e be the jump diffusion process defined by (18) with intensity
(27). For every k > 0, the communication rate and all finite moments of e(t)
are bounded.

Proof (Theorem 2). Choose c1 sufficiently large so that A− c1

2 I is asymptot-
ically stable. Then there exists a matrix P > 0 such that

P
(

A −
c1

2
I
)

+
(

A −
c1

2
I
)

P < 0,

i.e., PA + A′P < c1P . Moreover Pσσ′P ≤ c2P for sufficiently large c2 > 0.

We start by proving that the mth moment of e(t) is bounded for m > k. Let
V be as in (25) and ρ2m :=

∫

(ζ · Pζ)mdµ(ζ). From, (22) we obtain

LV (e) = m(e · Pe)m−1 e · (PA + A′P )e + λ(e)ρ2m − λ(e)V (e)

+ 2m(m − 1)(e · Pe)m−2 e · Pσσ′Pe + m(e · Pe)m−1θ

= m(e · Pe)m−1 e · (PA + A′P )e + ρ2m(e · Pe)k − (e · Pe)m+k

+ 2m(m − 1)(e · Pe)m−2 e · Pσσ′Pe + m(e · Pe)m−1θ

≤ c1m(e · Pe)m + ρ2m(e · Pe)k − (e · Pe)m+k

+ m
(

2c2(m − 1) + θ
)

(e · Pe)m−1.

From this and (23), we conclude that

d

dt
E[V (e)] ≤ c1mE[V (e)] + ρ2mE[(e · Pe)k] −E[(e · Pe)m+k]

+ m
(

2c2(m − 1) + θ
)

E[(e · Pe)m−1].

Given some δ1, δ2, δ3 > 0, we conclude from Lemma 1 that
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E[(e · Pe)k] ≤
E[V (e)]

δm−k
1

+ δk
1 ,

E[(e · Pe)m+k] ≥ δk
2E[V (e)] − δm+k

2 ,

E[(e · Pe)m−1] ≤
1

δ3
E[V (e)] + δm−1

3 ,

therefore

d

dt
E[V (e)] ≤ c1mE[V (e)] + ρ2m

(E[V (e)]

δm−k
1

+ δk
1

)

− (δk
2E[V (e)] − δm+k

2 )

+ m
(

2c2(m − 1) + θ
)

(E[V (e)]

δ3
+ δm−1

3

)

≤
(

c1m +
ρ2m

δm−k
1

− δk
2 + m

2c2(m − 1) + θ

δ3

)

E[V (e)]

+ ρ2mδk
1 + δm+k

2 + m
(

2c2(m − 1) + θ
)

δm−1
3 .

For sufficiently large δ2,

c1m +
ρ2m

δm−k
1

− δk
2 +

m
(

2c2(m − 1) + θ
)

δ3
< 0,

and the boundedness of E[V (e)] and consequently of E[(e · e)m] follows.

To prove the boundedness of the mth moment of e(t) for m ≤ k, we use
Lemma 1 to bound

E[(e · e)m] ≤
E[(e · e)k+1]

δk+1−m
4

+ δm
4 (28)

where δ4 > 0. Since the boundedness of the (k+1)th moment has already been
established, we conclude that the mth moment is also bounded for m ≤ k.

ut

3.4 τ -delayed network

We now extend the stochastic stability results to networks with τ time units
delay. For constant intensity functions, the estimation error process in (17) is
driven by a constant intensity Poisson process N(t − τ) and Theorem 1 still
holds. It turns out that, for intensity functions like (27), a result analogous to
Theorem 2 but for delayed networks can also be proved.

Theorem 3. Let ẽ and e be the jump diffusion processes defined by (16) and
(17) with the intensity of the DSPP N(t) given by λ

(

ẽ(t)
)

, with

λ(ẽ) = (ẽ · P ẽ)k, ∀ẽ ∈ R
n,

for some k > 0. The communication rate and all the finite moments of both
ẽ(t) and e(t) are bounded.
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For a given time t ≥ 0, let s(t) be the time at which the communication logic
sends the last measurement before or at t, i.e.,

s(t) := max
{

r ≤ t : dN(r) > 0
}

.

The random variable s(t) is a stopping time [15], which is independent of
any event after time t. Since no data is sent during the time interval (s(t), t],
the processes N and ẽ in (16) have no jumps on this interval. Consequently,
because of the network delay of τ , the remote node does not receive any data
on (s(t)+ τ, t+ τ ] and during this interval the process e in (17) has no jumps.

Proof (Theorem 3). Since the process ẽ is not affected by the delay, the bound-
edness of all moments of this process as well as the communication rate follows
directly from the proof of Theorem 2. It remains to prove boundedness of all
moments of the estimation error e associated with the synchronized state-
estimators. To this effect, we consider the function V : R

n → R defined in
(25) and show that for an arbitrary time t, E

[

V
(

e(t + τ)
)]

is bounded. Note
that once we prove boundedness of E[V (e)], the boundedness of E[(e · e)m]
follows. At time s(t)+τ , e is reset to η(s(t)+τ) defined by (12), and therefore

e(s(t) + τ) = exp{Aτ}ζ −

∫ s(t)+τ

s(t)

exp{A(s(t) + τ − r)}σ dw(r). (29)

On the other hand, since the process ẽ is reset to ζ at time s(t) and this
process has no jumps on (s(t), t], we conclude from (16) that

ẽ(t) = exp{A(t − s(t))}ζ −

∫ t

s(t)

exp{A(t − r)}σ dw(r),

which is equivalent to

ζ = exp{A(−t + s(t))}ẽ(t) +

∫ t

s(t)

exp{A(s(t) − r)}σ dw(r). (30)

Using (30) to eliminate ζ in (29), we conclude that

e(s(t) + τ) = exp{A(τ + s(t) − t)}ẽ(t)

−

∫ s(t)+τ

t

exp{A(s(t) + τ − r)}σ dw(r). (31)

Moreover, since the process e has no jumps on (s(t) + τ, t + τ ], we conclude
from (17) that

e(t + τ) = exp{A(t − s(t))}e(s(t) + τ) −

∫ t+τ

s(t)+τ

exp{A(t + τ − r)}σ dw(r).

From this and (31), we obtain
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e(t + τ) = exp{Aτ}ẽ(t) −

∫ t+τ

t

exp{A(t + τ − r)}σ dw(r).

Since V (a + b) ≤ 22mV (a) + 22mV (b), ∀a, b ∈ R
n, we conclude that

V (e(t + τ)) ≤ 22mV
(

exp{Aτ}ẽ(t)
)

+ 22mV
(

∫ t+τ

t

exp{A(t + τ − r)}σ dw(r)
)

.

Since the process that appears in the integral is a Gaussian white noise, in-
dependent of s(t), we conclude that there exist finite constants c5, c6 such
that

E
[

V (e(t + τ))
]

≤ c5E
[

V
(

ẽ(t)
)]

+ c6.

The boundedness of E
[

V
(

e(t + τ)
)

] then follows from the already established
boundedness of E[V (ẽ(t))]. ut

4 Deterministic communication logics

We now consider communication logics that utilize deterministic rules but
restrict our attention to delay-free networks, whose estimation error satisfies
(18). The communication logic monitors a continuous positive and radially
unbounded communication index S : R

n → R
+ and force a node to broad-

cast its state when S(e) ≥ 1. In particular, a message broadcast occurs at
time tk when limt↑tk

S
(

e(t)
)

≥ 1. To avoid chattering, the post-reset value

ζ(tk) should satisfy S
(

ζ(tk)
)

< 1 with probability one. This type of resetting
guarantees that e(t) is bounded, since

e(t) ∈ D := {e ∈ R
n|S(e) ≤ 1}, ∀t ≥ 0, (32)

with probability one.

To determine the communication rate, suppose that a message exchange oc-
curred at time tk−1 and e(tk−1) was reset to ζ(tk−1). From tk−1 to the next
reset time tk, e(t) is a pure diffusion process

ė = Ae − σẇ. (33)

Given ζ(tk−1), define Tk(ζ) to be the inter-communication time, i.e.,

Tk(ζ) = inf{t − tk−1 ≥ 0 : e(t) ∈ ∂D, e(tk−1) = ζ},

where e(t) is governed by (33) for t ≥ tk−1 and ∂D denotes the boundary
of D. The random variable Tk(ζ) is called the first exit time of e(t) from D.
It is in general not easy to obtain the distribution of Tk(ζ) in closed form,



16 Y. Xu and J.P. Hespanha

but its expected value can be obtained from Dynkin’s equation. In particular,
defining g(ζ) := E[Tk(ζ)], it is known that g(ζ) is a solution to the following
boundary value problem:

∂g(ζ)

∂ζ
· Aζ +

1

2
tr

[

σ′ ∂
2g(ζ)

∂ζ2
σ
]

= −1, (34)

∀ζ ∈ D, g(ζ) = 0, ∀ζ ∈ ∂D,

where ∂g(ζ)
∂ζ

and ∂2g(ζ)
∂ζ2 denote the gradient vector and Hessian matrix of g

respectively [17]. Once g(ζ) is known, the expected intercommunication time
Tk can be obtained from

E[Tk] = E[g(ζk−1)] =

∫

g(ζ)dµ(ζ),

and the communication rate follows from (19)

R =
1

∫

g(ζ)dµ(ζ)
.

In practice, (34) needs to be solved numerically. Since D is compact, (32)
provides an upper bound on e(t) and consequently on its statistical moments.
To obtain tighter bounds one can use Kolmogorov’s forward equation with
appropriate boundary conditions to compute the probability density function
of the error e(t). However, this method is computationally intensive for higher-
order systems.

5 Simulation results

In this section we validate the theoretical results through Monte Carlo sim-
ulations. All the simulations are done in Matlab/Simulink. The DSPP N(t)
is realized by a single binomial test. Specifically, for a fixed time step h, a
message exchange is triggered at time t := k h, k ∈ N, if a binomial test char-
acterized by a probability of success p = 1− e−hλ(e(t)) succeeds. Convergence
results for similar procedures can be found in [4] and references therein.

5.1 Leader-follower

A leader-follower problem is used to illustrate the distributed control archi-
tecture with different communication logics. The two processes have identical
dynamics and are disturbed by uncorrelated white Gaussian noise processes.
The dynamics of the leading and following vehicles are given by

leader: ẋ1(t) = Ax1(t) + Br(t) + σẇ1(t) (35)

follower: ẋ2(t) = Ax2(t) + Bu2(t) + σẇ2(t), (36)
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where each state xi contains the position and velocity of one of the vehicles,
ui are the controls, r is an external reference, each ẇi(t) is standard Gaussian

white noise, and A =
[

0 1
0 −0.5

]

, σ = [ 1 0
0 1 ], B =

[

0 1
]′

. The follower’s control
objective is to follow the leader’s position. The reference r is also known by
the follower. The open-loop state estimator for the leader’s state is given by

˙̂x1 = Ax̂1 + Br, x̂1(tk) = y1(tk) := x1(tk) + ζk,

where the tk denote the times at which the leader broadcasts its state x(tk) to
the follower, and the ζk are zero-mean uniformly distributed random vectors
over an interval of about 5% of the maximum estimation error. The follower
uses the following controller

u2 = −K(x2 − x̂1).

where K = [32.6 8.07] is obtained from an LQR design.

Tab. 1 summarizes the communication rates and the variances of both the
estimation and the tracking errors for three communication logics: periodic,
DSPP with quadratic intensity λ(e) and deterministic with a quadratic com-
munication index S(e) := e · Pe, where P = [ 1 0

0 0.1 ]. For fair comparison, the
parameters are selected to achieve communication rates approximately equal
to 0.2 for all logics. We see that both the deterministic logic outperforms both
the DSPP logic and the periodic communication.

Table 1. Communication rate versus variance of the estimation and tracking errors

Logics Parameters Comm. rate Est. err. var. Trck. err. var.

Determ. S(e) ≤ 0.070 0.19 0.011 0.017

DSPP λ(e) := 0.5 e·Pe

0.070
0.22 0.029 0.037

Period. period = 5 0.20 0.037 0.042

Fig. 2 shows sample trajectories of the position tracking and estimation errors
for a 20-second period, in which r(t) is a sinusoid. The communication instants
are indicated by markings in the horizontal lines at the bottom of the left
figure. Under similar communication rates, both the deterministic and the
DSPP logics show advantage over that of periodic communication, as they
both exhibit lower error variances. Aperiodic transmission in the stochastic
updating rules requires data to be time-stamped.

5.2 Rate-variance curves

To study the trade-off between communication rate and estimation error vari-
ance, we consider the remote state estimator of a first order unstable process
dx = xdt + dw. This corresponds to a jump diffusion process defined by (18)
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Fig. 2. Leader and follower positions (left) and leader estimation error (right) ob-
tained with the different logics: deterministic, DSPP, and Periodic. The message
exchange time instants are indicated with bars in the left plot.

with A = 1, σ = 1. The results presented refer to a simulation time of 1000
seconds. The system’s instability presents an added challenge to a distributed
architecture.

Fig. 3 (left) depicts the trade-off between the communication rate and the vari-
ance of the estimation error for four different communication logics: periodic,
DSPP with constant intensity, DSPP with quadratic intensity, and determin-
istic with quadratic communication index. The curves are obtained by varying
the parameters that define these logics. For a given communication rate, the
DSPP logic with constant intensity results in the largest error, whereas the
deterministic logic results in the smallest. The communication rate obtained
with the DSPP logic for the quadratic λ(e) is significantly smaller than the
upper bound provided by (28), which for this example numerically equals 1.

Fig. 3 (right) provides a comparison between deterministic and DSPP logics.

The deterministic logics have a communication index of form S(e) := e2

∆
≤ 1,

and the different points on the curve are generated by changing ∆. The

DSPP logics have intensities of the form λ(e) = ( e2

∆
)k, where ∆ is a posi-

tive parameter and k ∈ {1, 2, 3, 4, 5}. For large k, λ(e) essentially provides a
barrier at e2 = ∆, which acts as the bound in the deterministic logics. It is
therefore not surprising to see that as k increases, the DSPP logics converge
to the deterministic logics. As proved for discrete systems, the determinis-
tic curve provides optimal trade-off between communication cost and control
performance [23].

6 Conclusion and future work

Deterministic and stochastic communication logics are proposed to determine
when local controllers should communicate in a distributed control architec-
ture. Using tools from jump diffusion processes and the Dynkin’s equation,
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Fig. 3. Communication rate versus variance of the estimation error: for different
communication logics (left), and for deterministic and polynomial-intensity DSPP
logics (right).

we investigated conditions under which these logics guarantee boundedness as
well as the trade-off between the amount of information exchanged and the
performance achieved. Monte Carlo simulations confirm that these communi-
cation logics can save communication resources over periodic schemes.

In this work, a linear certainty equivalence controller structure (3) is assumed,
which may not achieve optimal control performance in the distributed settings.
In fact, the counter example in [19] shows that optimal LQG controllers for
distributed linear processes are in general nonlinear. Our problem falls under
the class of delayed sharing information patterns for which a general sepa-
ration theorem for controller and estimator design does not appear to exist
[8, 20]. We are currently investigating if some form of separation can hold for
this specific problem under consideration.

Other future work includes studying the impact of modeling errors on the
system’s performance as well as the impact of a non-ideal networks that drop
packets.

References

1. Coleri S, Puri A, Varaiya P (2003) Power efficient system for sensor networks p.
837–842. In: Eighth IEEE International Symposium on Computers and Com-
munication

2. Cox D. R (1955) Some statistical methods connected with series of events.
Journal of the Royal Statistical Society, 17(2):129–164

3. Elia N, Mitter S. K (2001) Stabilization of linear systems with limited infor-
mation. IEEE Trans. on Automat. Contr., 46(9):1384–1400

4. Glasserman P, Merener. N (2003) Numerical solution of jump-diffusion LIBOR
market models. Finance and Stochastics, 7:1–27

5. Hespanha J. P (2004) Stochastic hybrid systems: Applications to communica-
tion networks In: Alur R, Pappas G. J (eds), Hybrid Systems: Computation



20 Y. Xu and J.P. Hespanha

and Control, , number 2993 in Lect. Notes in Comput. Science, p. 387–401.
Springer-Verlag, Berlin

6. Hespanha J. P, Ortega A, Vasudevan L (2002) Towards the control of linear
systems with minimum bit-rate In: Proc. of the Int. Symp. on the Math. Theory
of Networks and Syst.

7. Khalil H. K (1996) Nonlinear systems. Prentice Hall, Upper Saddle River, NJ
8. Kurtaran B (1979) Corrections and extensions to ”decentralized stochas-

tic control with delayed sharing information pattern”. IEEE Trans. on Au-
tomat. Contr. AC-24(4):656–657

9. Kushner H (2001) Heavy traffic analysis of controlled queueing and communi-
cation networks, vol. 47 of Applications of Mathematics. Springer, Berlin

10. Lian F.-L (2001) Analysis, Design, Modeling , and Control of Networked Con-
trol Systems PhD thesis University of Michigan Ann Arbor, MI

11. Liberzon D (2002) A note on stabilization of linear systems using coding and
limited communication p. 836–841. In: Proc. of the 41st Conf. on Decision and
Contr.

12. Liberzon D, Hespanha J. P (2004) Stabilization of nonlinear systems with
limited information feedback To appear in the IEEE Trans. on Automatic
Control

13. Matveev A. S, Savkin A. V (2003) The problem of state estimation via asyn-
chronous communication channels with irregular transmission times. IEEE
Trans. on Automat. Contr., 48(4):670–676

14. Nair G. N, Evans R. J (2000) Communication-limited stabilization of linear
systems p. 1005–1010., In: Proc. of the 39th Conf. on Decision and Contr.

15. Oksendal B (2000) Stochastic Differential Equations: An Introduction with
Applications. Springer, Berlin

16. Revuz D, Yor M (1999) Continuous Martingales and Brownian Motion.
Springer, Berlin

17. Schuss Z (1980) Theory and Applications of Stochastic Differential Equations.
Wiley Series in Probability and mathematical statistics. John Wiley and Sons

18. Tatikonda S (2000) Control Under Communication Constrains PhD thesis MIT
Cambridge, MA

19. Witsenhausen H. S (1968) A counterexample in stochastic optimum control.
SIAM J. Contr. 6(1):131–147

20. Witsenhausen H. S (1971) Separation of estimation and control for discrete
time systems. Proceedings of the IEEE 59(11):1557–1566

21. Wong W. S, Brockett R. W (1997) Systems with finite communication band-
width constraints–part I: State estimation problems. IEEE Trans. on Au-
tomat. Contr. 42(9)

22. Wong W. S, Brockett R. W (1999) Systems with finite communication band-
width constraints–II: Stabilization with limited information feedback. IEEE
Trans. on Automat. Contr. 44(5)

23. Xu Y, Hespanha J. P (2004) Optimal communication logics for networked
control systems In: Proc. of the 43rd Conf. on Decision and Contr. to appear

24. Yook J. K, Tilbury D. M, , Soparkar N. R (2002) Trading computation for
bandwidth: Reducing communication in distributed control systems using state
estimators. IEEE Trans. Contr. Syst. Technol, 10(4):503–518


