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Abstract— This paper constructs bounds on the expected
value of a scalar function of a random vector. The bounds are
obtained using an optimization method, which can be computed
efficiently using state-of-the-art solvers, and do not require
integration or sampling the random vector. This optimization
based approach is especially useful in stochastic programming,
where the criteria to be minimized takes the form of an expected
value. In particular, we minimize the bounds to solve problems
of discrete time finite horizon open-loop control with stochastic
perturbations and also uncertainty in the system’s parameters.
We illustrate this application with two numerical examples.

I. INTRODUCTION

This paper addresses the development of efficient methods
to estimate the expected value of a function of a random
variable and optimize it with respect to a set of (determinis-
tic) parameters that affect the function. The expected value
for continuous random variables is given by an integral,
and its exact computation is computationally intensive in
high dimensions. Hence, an array of techniques has been
developed to tackle this problem.

Numerical integration methods such as the trapezoid
method or the adaptive Gauss-Kronrod quadrature method
[1] provide a numerical solution, but do not scale well
with the dimension. Another approach is to use first or-
der approximations, where the expected value of the cost
function is substituted by the cost function of the expected
value. It is a simple method and when the cost function is
convex, it provides a lower bound on the expected value via
Jensen’s inequality. However, this method provides no formal
guarantees for more general optimization criteria.

Another set of methods is based on sampling. Markov
Chain Monte Carlo [2], [3] and Monte Carlo integration can
be used to estimate the expected value by computing the
empirical mean of samples. In the context of stochastic opti-
mization, stochastic search algorithms, like Recursive Least
Square and Stochastic Gradient Descent [4], provide algo-
rithms analogous to their deterministic counterpart. However,
such algorithms have slow rates of convergence. Methods
such as Scenario Approach [5] or Stochastic Average Ap-
proximation [6] substitutes minimizing the expected value
by minimizing, respectively, the maximum or the average of
the cost function in different ”scenarios”, obtained through
sampling the random variables. They require optimizations
with large numbers of samples and variables, which can
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make them slower. For all these methods, the sampling
process can be a computational bottleneck. While sampling
from unconditioned distributions is generally straightfor-
ward, sampling from conditional distributions (i.e., where
there is knowledge that a certain informative event has
occured) is more complicated. Few conditional distributions
have efficient samplers [7]–[10]. In the lack of these, one can
use generic samplers such as Metropolis Hastings algorithm
and Importance sampling, which can be less effective or
more computationally demanding. We refer to [3] for a
broader exposition of Monte Carlo methods.

As an alternative, this paper constructs bounds on an
expected value obtained without explicit integration or sam-
pling. The starting point is a result that provides a lower and
an upper bound on the expected value of a scalar function
V p¨q of a random vector Ψ in terms of a minimization
and maximization, respectively. The optimization penalizes a
criterion that consists of a combination of the function V pΨq,
the logarithm of the probability density function (p.d.f.) of
Ψ and its differential entropy. This result permits estimating
the value of the expected value through an optimization
(and thus optimality conditions that involve differentiation)
rather than through an integration. The results in Section II
actually provide a family of bounds parameterized by a scalar
parameter ε that can be optimized to improve tightness of the
bound.

Our optimization-based approach to compute upper/lower
bounds to expected values is especially useful in stochastic
programming problems, where the criteria to optimize ap-
pears in the form of an expected value. In such problems,
one can replace the minimization of the expected value by
the minimization of our lower or upper bounds, which results
in an optimization over a larger space or a min-max problem,
respectively. Using TensCalc [11], a high-performance
numerical solver that combines symbolic computations with
interior point methods, such problem can often be solved
very accurately with modest computation.

Our bounds on the expected value are used in Section III to
solve the problem of optimal Bayesian estimation [12], [13].
The goal is to find an estimator that minimizes the expected
value of a loss function given a set of measurements. For
this particular problem, we show that the approach outlined
above actually leads to the maximum a posteriori estimation
for a class of loss functions and probability density functions.

In Section IV the bounds are used to solve two problems
in discrete time finite horizon open-loop optimal stochastic
control. In both problems, the goal is to optimize a finite
horizon criteria that depends on the trajectory of a dynamical



system with stochastic uncertainty in the form of additive
perturbations and parametric uncertainties in the dynamics.

The first problem corresponds to a state-feedback scenario,
for which the initial state is known, whereas the second
problem corresponds to an output feedback scenario, for
which we have past noisy output measurements based on
which the initial state needs to be inferred.

A criterion similar to the one developed for the output
feedback can be found in [14]–[16], where it is used to
construct output feedback model predictive controllers. In
those references, this criterion was justified on the basis of
that it enabled formal stability proofs for the control scheme
in a purely deterministic setting. The results in the present
paper provide a formal justification for those criteria in a
stochastic control setting.

II. BOUNDS ON AN EXPECTED VALUE AND STOCHASTIC
PROGRAMMING

The following result provides upper and lower bounds on
the expected value of a random variable:

Theorem 1 (Bounds on the expected value): Let
V : IRN

Ñ IR be a scalar valued function, Ψ a random
vector taking values in IRN with probability density function
pΨ p¨q and EΨ rV pΨqs the expected value of V pΨq. For every
scalar ε1, ε2 P IR:

inf
ψ

Jpψ, ε1q ď EΨ rV pΨqs ď sup
ψ

Jpψ, ε2q (1)

with Jpψ, εq– V pψq ` ε logppΨ pψqq ` εHΨ and where

HΨ “ ´

ż

log ppΨ pψqqpΨ pψqdψ “ EΨ r´ log ppΨ pΨqqs

is the differential entropy of Ψ .

Proof. Starting with the upper bound, let us define

Vuppεq– sup
ψ

V pψq ` ε logppΨ pψqq.

Then, by definition of supremum,

V pψq ` ε logppΨ pψqq ď Vuppεq @ψ,@ε

ñ V pψq ď Vuppεq ´ ε logppΨ pψqq @ψ,@ε

ñ V pψq pΨ pψq ď pVuppεq ´ ε logppΨ pψqqq pΨ pψq @ψ,@ε

and integrating in both sides yields

EΨ rV pΨqs ď Vuppεq ` εHΨ @ε.

The lower bound can be obtained analogously l

Remark 1 (Conditional expected value): In the setting of
Theorem 1 and given a particular realization y from another
random vector Y , an almost identical deduction can be done
for conditional expected values. In this case, Jpψ, εq –

V pψq ` ε log
`

pΨ |Ypψ | yq
˘

` εH̃Ψ |Ypyq, where

H̃Ψ |Ypyq–

ż

´ log ppΨ |Ypψ | yqqpΨ |Ypψ | yqdψ

is a pseudo conditional differential entropy.

Remark 2 (Discrete case): Analogous bounds hold for
discrete random variables when substituting p.d.f. and differ-
ential entropy by probability mass function and entropy.
Optimizing over ε: Theorem 1 defines families of upper
and lower bounds parameterized by ε. The tightest bounds
of these families are obtained by optimizing over ε, i.e.,

sup
ε

inf
ψ
Jpψ, εq ď EΨ rV pΨqs ď inf

ε
sup
ψ
Jpψ, εq. (2)

As ε is a scalar, optimizing with respect to it is simple, and
one could use methods such as bisection, the golden-section
search [17] or a linear search. Now we construct a useful
stopping criterion for the optimization over ε.

We will focus our exposition on the upper bound, as
the lower bound has equivalent properties. We define the
function Upεq– supψ Jpψ, εq which is convex [18, §5.1.2]
and ε˚ – mintarg infε Upεqu.

Assumption 1: Consider the following conditions
i) There exists an ε P IR such that supψ Jpψ, εq ă 8.

ii) supψ logppΨ pψqq ă 8.
iii) The functions V p¨q and pΨ p¨q are continuously differ-

entiable, and @ε such that Upεq is finite, the supremum
takes place at a unique point, defining a continuously
differentiable function ψ˚pεq– arg supψ Jpψ, εq.

Lemma 1: Let Upεq be finite. If logppΨ pψ
˚pεqqq `HΨ ě

0, then ε ě ε˚. Otherwise, ε ă ε˚.

Proof. In view of item (iii) of Assumption 1, taking the
derivative of Upεq, one obtains

dUpεq

dε
“

dV pψ˚pεqq ` ε logppΨ pψ
˚pεqqq ` εHΨ

dε

“
dψ˚pεq

dε

1
dV pψq ` ε logppΨ pψqq

dψ

∣∣∣∣
ψ“ψ˚pεq

` logppΨ pψ
˚pεqqq `HΨ .

As ψ˚pεq is determined in an open set, the gradient of Jpψ, εq
is zero at that point, i.e.

dJpψ, εq

dψ

∣∣∣∣
ψ“ψ˚pεq

“
dV pψq ` ε logppΨ pψqq

dψ

∣∣∣∣
ψ“ψ˚pεq

“ 0.

Therefore dUpεq{dε “ logppΨ pψ
˚pεqqq ` HΨ . As Upεq is

convex, one can use the sign of its derivative to determine
the relation of ε to ε˚, which finishes the proof. l

Proposition 1 (Linear error on the upper bound): Let
εlow and εup such that εlow ď ε˚ ď εup, obtained using
Lemma 1. Then Upεupq ´ Upε˚q ď pεup ´ εlowqC, where
C is a finite non-negative constant.

Proof. Using the definition of Upεq we obtain

Upεupq “ sup
ψ

V pψq ` pεup ` ε
˚ ´ ε˚qplogppΨ pψqq `HΨ q

ď sup
ψ
rV pψq ` ε˚ logppΨ pψqq ` ε

˚HΨ s

` pεup ´ ε
˚q sup

ψ
rlogppΨ pψqq `HΨ s

ďUpε˚q ` pεup ´ εlowq sup
ψ
rlogppΨ pψqq `HΨ s;



from which the results follows with C –

supψ
“

logppΨ pψqq ` HΨ

‰

, which is finite in view of
item (ii) in Assumption 1 and non-negative as HΨ “

´EΨ rlogppΨ pΨqqs ñ supψ rlogppΨ pψqq `HΨ s ě 0. l

Notice that Proposition 1 implies that if Upεq “ `8, then
ε ă ε˚ (item (i) in Assumption 1 implies Upε˚q ă `8).

We illustrate how Proposition 1 can be used as a stopping
criteria for the bisection algorithm.

Algorithm 1 Bisection algorithm
Require: a tolerance T ą 0, εlow ď ε˚ ď εup

1: C Ð supψ logppΨ pψqq `HΨ

2: k Ð 0
3: while pεup ´ εlowqC ą T do
4: ε̄Ð 1

2 pεup ` εlowq
5: k Ð k ` 1
6: if Upε̄q “ `8 or logppΨ pψ

˚pε̄qqq `HΨ ă 0 then
7: εlow Ð ε̄
8: else
9: εup Ð ε̄

10: end if
11: end while

return εup and k

Proposition 2: We denote tεp0qlow, ε
p0q
up u and tεpkqlow, ε

pkq
up u as

the initial and final values of tεlow, εupu. Algorithm 1 con-
verges to ε˚ and the error obtained by using εpkqup in lieu of ε˚

satisfies U
`

ε
pkq
up

˘

´U
`

ε˚
˘

ď p0.5qk pε
p0q
up ´ε

p0q
lowqC ď T .

Proof. The bisection algorithm converges as ε˚ P rεp0qlow, ε
p0q
up s

and as we can use Lemma 1 to classify ε̄ [17]. As each step
reduces pεup ´ εlowq by half, pεpkqup ´ ε

pkq
lowq “ p0.5q

k pε
p0q
up ´

ε
p0q
lowq. Applying Proposition 1 finishes the proof. l

Stochastic Programming: Let V : IRN
ˆ IRM

Ñ IRě0 be a
scalar function, u P IRM a variable and Ψ a random vector
taking values in IRN . Suppose one wants to solve

u˚ – arg min
u

EΨ rV pΨ, uqs, (3)

where we assume that Ψ does not depend on u. Let us define

J pψ, ε, uq– V pψ, uq ` ε logppΨ pψqq ` εHΨ .

Theorem 2 (Bounds on Stochastic Programming): Let u˝

be the solution to the optimization problem

u˝ – arg min
u

inf
ε

sup
ψ

J pψ, ε, uq (4)

The following bounds hold:

sup
ε

min
u

inf
ψ

J pψ, ε, uq (5a)

ď EΨ rV pΨ, u
˚qs (5b)

ď EΨ rV pΨ, u
˝qs (5c)

ď inf
ε

sup
ψ

J pψ, ε, u˝q. (5d)

Proof. The proof follows from applying the bounds obtained
in Theorem 1. l

Theorem 2 provides the formal justification to use the
solution u˝ from (4) in lieu of the actual optimum u˚ from
(3) by giving performance guarantees. On one hand, the
expected value using u˝ in (5c) will not exceed the optimal
expected value in (5b) by more than the upper bound in (5d).
On the other hand, the control u˚ can never do better than
the lower bound in (5a).

Notice that since HΨ does not depend on the optimization
variables, one can obtain its value prior to the optimizations.

Remark 3: In the case where one can sample from Ψ ,
one could estimate (5c) using Monte Carlo integration [3],
providing a better confidence interval for (5b). This would
still require fewer samples than to solve (5b) and determine
u˚ using sample based stochastic optimization methods.

III. OPTIMAL BAYESIAN ESTIMATION

A common Bayesian formulation [12], [13] for estimating
an unknown parameter Θ based on a set of measurements Y
consists on finding the estimate φ that minimizes the condi-
tional expectation of a semi-positive loss function LpΘ,φq
given the measurements:

φ˚ “ arg min
φ

EΘ|Y rLpΘ,φqs. (6)

Motivated by Theorem 2, one could replace the conditional
expectation in the right-hand side of (6) and solve instead:

φ˝ – arg min
φ,ε

sup
θ
Lpθ, φq`ε log

`

pΘ|Ypθ | yq
˘

`εHΘ|Ypyq.

(7)

Such estimate φ˝ has a strong relationship with the maximum
a posteriori estimation, as we state in the next proposition.

Proposition 3 (Relationship with maximum a posteriori):
Suppose that for ε “ ε˚ the min and the sup in the definition
of (7) commute. For any semi-positive loss function such
that Lpθ, φq “ 0 ô θ “ φ, the estimate φ˝ corresponds to
the maximum a posteriori estimate of θ.

Proof. If the min and sup commute, then

min
φ

sup
θ

Lpθ, φq ` ε˚ log
`

pΘ|Ypθ | yq
˘

` ε˚HΘ|Ypyq

“ sup
θ

min
φ

Lpθ, φq ` ε˚ log
`

pΘ|Ypθ | yq
˘

` ε˚HΘ|Ypyq.

As Lpθ, φq is minimized by setting φ “ θ, the minimizer
will necessarily pick φ˝pθq “ θ, and we conclude that

sup
θ

min
φ

Lpθ, φq ` ε˚ log
`

pΘ|Ypθ | yq
˘

` ε˚HΘ|Ypyq

“ sup
θ
ε˚ log

`

pΘ|Ypθ | yq
˘

` ε˚HΘ|Ypyq,

achieved at the maximum a posteriori estimate of θ. l

IV. OPEN-LOOP OPTIMAL STOCHASTIC CONTROL

This section addresses the use of Theorem 2 to solve
discrete time finite horizon open-loop optimal stochastic
control problem. The key challenge is to determine the
probability density function (p.d.f.) and differential entropy
of the states.



A. State-feedback
Consider the dynamical system

Xt`1 “ fpXt, ut, Θq `Dt, (8)

where Xt takes values in IRNx and is the state of the system,
Θ is a random vector representing unknown parameters, ut P
IRNu is the control signal and Dt is a zero mean random
vector taking values in IRNx called disturbance. The random
parameter Θ and the random process Dt are all independent
and have p.d.f. pΘp¨q and pDt

p¨q and differential entropies
HΘ and HDt

, respectively.
For simplicity, we assume full knowledge of the initial

state X0, but the results could be generalized to the case
where we only know its distribution. Given a time horizon T ,
a cost function V p¨q that depends on the unknown parameter
θ, on the sequence of states X0:T – tX0,X1, . . . ,XT u
and control inputs u0:T´1 – tu0, u1, . . . , uT´1u and an
admissible set U for u0:T´1, our goal is to solve the finite
horizon optimal control problem

u˚0:T´1 – arg min
u0:T´1

EX1:T ,ΘrV pX0:T , Θ, u0:T´1qs

s.t u0:T´1 P U ,
For this problem, the function J p¨q in Theorem 2 is

J px0:T , θ, ε, u0:T´1q “ V px0:T , θ, u0:T´1q

` εpX1:T ,Θpx0:T , θq ` εHX1:T ,Θ.

Proposition 4: In J px0,T , θ, ε, u0:T´1q’s expression,

pX1:T ,Θpx0:T , θq“pΘpθq
T´1
ź

t“0

pDtpxt`1 ´ fpxt, ut, θqq,

and HX1:T ,Θ “ HΘ `
řT´1
t“0 HDt

.

Proof. Using the Markov Chain property of stochastic dy-
namic systems

pX1:T ,Θpx0:T , θq“pΘpθq
T´1
ź

t“0

pXt`1|Xt,Θpxt`1, | xt, θq.

Using the property of change of variable of probability
density functions,

pXt`1,|Xt,Θpxt`1, | xt, θq

“

∣∣∣∣det

ˆ

dpxt`1 ´ fpxt, ut, θqq

dxt`1

˙∣∣∣∣pDtpxt`1 ´ fpxt, ut, θqq

“pDtpxt`1 ´ fpxt, ut, θqq.

For the differential entropy, we use the chain rule

HX1:T ,Θ “ HΘ `

T´1
ÿ

t“0

HXt`1|Xt,Θ.

Calculating HXt`1|Xt,Θ:

´

ż

pXt`1Xt,Θpxt`1, xt, θq

log
`

pXt`1|Xt,Θpxt`1 | xt, θq
˘

dxt`1dxtdθ

“´

ż

pXt`1|Xt,Θpxt`1 | xt, θqpXtpxtqpΘpθq

log
`

pXt`1|Xt,Θpxt`1 | xt, θq
˘

dxt`1dxtdθ
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Fig. 1. Results for Example 1 comparing u˝
0:T´1 and the analytical

solution u˚
0:T´1 obtained solving (10). The solutions are so similar that

u˚
0:T´1 had to be represented with dots otherwise u˝

0:T´1 was hidden.

“´

ż

pDt
pxt`1 ´ fpxt, ut, θqqpXt

pxtqpΘpθq

logppDtpxt`1 ´ fpxt, ut, θqqqdxt`1dxtdθ

“

ż

HDtpXtpxtqpΘpθqdxtdθ “ HDt . l

Example 1: We illustrate the use of Theorem 2 to open-
loop control with state-feedback with the following example,
which was selected so that we could compute the solution
analytically and compare it with the control obtained using
Theorem 2. Consider a linear time invariant system given by

Xt`1 “ AXt `B ut `Dt, (9)

where Dt is an independent zero mean Gaussian random
vector and a quadratic cost function V pX0:T , u0:T´1q “
řT´1
t“0 pX 1tQXt ` u1tRutq`X 1TFXT . The expected value has

an analytical expression given by

EX1:T
rV pX0:T , u0:T´1qs (10)

“

T´1
ÿ

t“0

`

x̄1tQx̄t ` u
1
tRut

˘

` x̄1TFx̄T `
T´1
ÿ

t“0

tr
`

QS̄t
˘

` tr
`

FS̄T
˘

,

where x̄t is the state of the nominal system (i.e., with no
perturbations) and S̄t is the covariance matrix of Xt.

We chose a horizon T “ 10, and dynamics

A “

„

1 2
0 1



, B “

„

0
1



,

Figure 1 shows the controls u˝0:T´1 given by Theorem 2
as well as the true optimum, obtained by solving (10). They
turn out to be essentially the same.

B. Output-feedback

Considered the system in (8) complemented by an obser-
vation equation:

Xt`1 “ fpXt, ut, Θq `Dt
Yt “ hpXt, θq `Nt,

(11)

where Yt is the observation vector and Nt is a zero mean
random vector called noise, both taking values in IRNy . The



random processes Nt is independent of Dt and Θ and has
p.d.f. pNtp¨q.

We assume given a past window of size K with a set of
controls u´K:´1 – tu´K , u´K`1, . . . , u´1u applied before
time t “ 0 and outputs y´K:0 – ty´K , y´K`1, . . . , y0u
a realization of Y´K:0, observed before time 0. Given
a time horizon T , a function V p¨q that depends on
the unknown parameter Θ, on the sequence of states
X0:T – tX0,X1, . . . ,XT u and control inputs u0:T´1 –

tu0, u1, . . . , uT´1u from time 0 to time T ´ 1 and an
admissible set U for u0:T´1, our goal is to solve the finite
horizon optimal control problem

u˚0:T´1 – arg min EX´K:T ,Θ|Y´K:0
rV pX0:T , Θ, u0:T´1qs

s.t u0:T´1 P U ,

Different from the problem in §IV-A, the expected value is
now also taken with respect to past values of Xt and is
conditioned to the observations.

For this problem, the function J p¨q in Theorem 2 is

J px´K:T , θ, ε, u0:T´1q “ V px0:T , θ, u0:T´1q

` εpX´K:T ,Θ|Y´K:0
px´K:T , θ | y´K:0q

` εH̃X´K:T ,Θ|Y´K:0
py´K:0q

Proposition 5: In J px´K:T , θ, ε, u0:T´1q’s expression,

pX´K:T ,Θ|Y´K:0
px´K:T , θ | y´K:0q “

0
ź

t“´K

pNt
pyt ´ hpxt, θqq

pX´K
px´Kq

T´1
ź

t“´K

pDt
pxt`1´fpxt, ut, θqqpΘpθq{pY´K:0

py´K:0q

and

H̃X´K:T ,Θ|Y´K:0
py´K:0q“

T´1
ÿ

t“0

HDt̀
H̃X´K:0,Θ|Y´K:0

py´K:0q,

which does not depend on u0:T´1.

Proof. Using Bayes Theorem we can determine the p.d.f.

pX´K:T ,Θ|Y´K:0
px´K:T , θ | y´K:0q “

pY´K:0|X´K:T ,Θpy´K:0 |x´K:T , θqpX´K:T |Θpx´K:T |θqpΘpθq

pY´K:0
py´K:0q

.

Proving that

pX´K:T |Θpx´K:T | θq

“ pX´K
px´Kq

T´1
ź

t“´K

pDt
pxt`1 ´ fpxt, ut, θqq

is analogous to what was done in the proof in Proposition 4.
As the observations are conditionally independent,

pY´K:0|X´K:0,Θpy´K:0 | x´K:0, θq“
0
ź

t“´K

pYt|Xt,Θpyt | xt, θq,

from which a change of variable gives the result

pYt|Xt,Θpyt | xt, θq “ pNtpyt ´ hpxt, θqq.

Therefore, the p.d.f. of X´K:T can be determined from the
p.d.f. of X´K , Θ, Dt and Nt.

The second part of the proof is to show that
H̃X´K:T ,Θ|Y´K:0

py´K:0q does not depend on u0:T´1. The
key element is to separate H̃X´K:T ,Θ|Y´K:0

py´K:0q into past
and future values and show that the future values depend
only on the differential entropy of the disturbance HDt

.

H̃X´K:T ,Θ|Y´K:0
py´K:0q

“ ´

ż

pX´K:T ,Θ|Y´K:0
px´K:T , θ | y´K:0q

log
`

pX´K:T ,Θ|Y´K:0
px´K:T , θ | y´K:0q

˘

dx´K:T dθ

“´

ż

pX´K:T ,Θ|Y´K:0
px´K:T , θ | y´K:0q

log
`

pX1:T ,Θ|X0
px1:T , θ | x0q

˘

dx´K:T dθ

´

ż

pX´K:T ,Θ|Y´K:0
px´K:T , θ | y´K:0q

log
`

pX´K:0,Θ|Y´K:0
px´K:0, θ | y´K:0q

˘

dx´K:T dθ

“´

ż

pX1:T ,Θ|X0
px1:T , θ | x0q

log
`

pX1:T ,Θ|X0
px1:T , θ | x0q

˘

dx1:T dθ

´

ż

pX´K:0,Θ|Y´K:0
px´K:0, θ | y´K:0q

log
`

pX´K:0,Θ|Y´K:0
px´K:0, θ | y´K:0q

˘

dx´K:0dθ

“

T´1
ÿ

t“0

HDt ` H̃X´K:0,Θ|Y´K:0
py´K:0q,

where the last line follows from the expression of
HX1:T

deduced in Proposition 4. From that proof,
řT´1
t“0 HDt does not depend on u0:T´1 and, by

causality, neither does H̃X´K:0,Θ|Y´K:0
py´K:0q. Therefore,

H̃X´K:T ,Θ|Y´K:0
py´K:0q does not depend on u0:T´1. l

Remark 4: Solving the upper bound optimization from
Theorem 2 provides both a control u˝0:T´1 and a corre-
sponding state trajectory x˝´K:T . When the min and the sup
commute, one can interpret x˝´K:0 as a state estimate of the
past values and x˝1:T as a state estimate of the future values
for the control u˝0:T´1. In the absence of a control objective,
this would correspond to a maximum a posteriori estimate,
as we saw in Section III.

Example 2: We illustrate the use of Theorem 2 to open-
loop control with output-feedback with the following exam-
ple which, to the best of our knowledge, cannot be solved
in closed form. Consider a linear system

Xt`1 “ AXt `B ut `Dt
Yt “ C Xt `Nt,

(12)

where Dt and Nt are independent zero mean Gaussian
processes. The system is time-invariant, C is an identity
matrix, but the matrices A and B are unknown stochastic
parameters such that we have the following priors on them

A “

„

N p1, 1q N p1, 1q
0 N p1, 1q



B “

„

0
N p1, 1q



,
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(a) First component of the state.
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(b) Second component of the state.

Fig. 2. Results from Example 2. We compare the state trajectories for x˝
´K:T , obtained solving the min-max and xMCi, obtained with Monte Carlo

integration for the control u˝
0:T´1. We can see how both are similar, reinforcing that x˝

´K:T can be seen as an estimation.

where N pµ, σ2q is a Gaussian random variable with mean µ
and variance σ2. We chose a quadratic cost, a future horizon
T “ 10 and a past horizon K “ 20.

The problem was solved on MATLAB R© using TensCalc
[11], which compiles an efficient optimization code based
on symbolic computation and interior point methods. We
obtained the controls u˝0:T´1.

We now apply Theorem 2. The optimal expected value
(that we do not know) is larger than 22 according to (5a),
and smaller than 4.5 ˆ 105 (5d). In light of Remark 3, we
can refine the confidence interval on the optimal expected
value by using Monte Carlo integration to estimate the condi-
tional expected value EX´K:T ,Θ|Y´K:0

“

V pX0:T , Θ, u
˝
0:T´1q

‰

,
i.e. equation (5c), which is equal to 250.

Figure 2 compares the trajectories from x˝´K:T , obtained
solving the min-max upper bound optimization of Theorem
2, and the estimated expected value of the trajectory for the
control u˝0:T´1, obtained using Monte Carlo integration. As
we can see, they match closely, reinforcing the interpretation
that x˝´K:T can be seen as an estimation of the states
trajectory (see Remark 4). Furthermore, although we do not
have any guarantee on the optimality of u˝0:T´1, it does drive
the expected value of the trajectory towards the origin.

V. CONCLUSION AND FUTURE WORK

We presented a method to determine lower and upper
bounds on the expected value of a scalar function of a
random vector and how it can be used in stochastic program-
ming. The bounds are computed through an optimization
requiring only the probability density function of the underly-
ing random vector and its differential entropy. These bounds
can be applied to the problem of Bayesian estimation and
how they relate to maximum a posteriori estimation.They can
also be used to solve optimization arising in open-loop con-
trol of finite horizon stochastic dynamical systems with either
state or output feedback. We were able to efficiently compute
the control using solvers generated from TensCalc.

Directions for future research include further investiga-
tions on under each conditions the bounds are finite and
on the possibility of using a convex combination of the
lower and upper bound to solve the stochastic programming
problem. In the context of optimal control, extension of

our bounds to stochastic model predictive control or infinite
horizon optimal stochastic control could also be investigated.
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