
GRAPH OPTIMIZATION USING FRACTAL DECOMPOSITION

JAMES R. RIEHL AND JOÃO P. HESPANHA†

Abstract. We introduce a method of hierarchically decomposing graph optimization problems
to obtain approximate solutions with low computation. The method uses a partition on the graph
to convert the original problem to a high level problem and several lower level problems. On each
level, the resulting problems are in exactly the same form as the original one, so they can be further
decomposed. In this way, the problems become fractal in nature. We use best-case and worst-
case instances of the decomposed problems to establish upper and lower bounds on the optimal
criteria, and these bounds are achieved with significantly less computation than what is required
to solve the original problem. We show that as the number of hierarchical levels increases, the
computational complexity approaches O(n) at the expense of looser bounds on the optimal solution.
We demonstrate this method on three example problems: all-pairs shortest path, all-pairs maximum
flow, and cooperative search. Large-scale simulations show that this fractal decomposition method
is computationally fast and can yield good results for practical problems.

1. Introduction. Graph optimization problems such as shortest path, maxi-
mum flow, and search are essential to a large number of engineering applications
including navigation [9], path planning [5], and network routing [12], but for graphs
with many nodes, the computation required to solve these problems can be impracti-
cal. When the problem calls for cooperation between multiple agents over a network,
the complexity grows even more. In these situations when computation of an exact
solution would take too much time, it is useful to find fast methods of approximating
the solution. This paper introduces a framework of bounding the optimal solution
above and below by partitioning the graph and generating best-case and worst-case
solutions on a new smaller graph, whose vertices are subsets of the original vertex
set. Furthermore, one can use the worst-case solution to generate an approximate
solution on the original graph, and the best-case solution provides a bound on how
far this approximation is from optimal. The worst-case solution generally requires
the solution of several problems of smaller dimension. These smaller problems are in
exactly the same form as the original one so they can be further decomposed, giving
the algorithm a recursive hierarchical structure, which we describe as fractal . Fig-
ure 1.1 is a diagram of the recursive decomposition process on a very well-structured
graph. This graph was constructed specifically to illustrate the fractal decomposition
process, but the method works on any graph. Increasing the number of decomposition
levels reduces computation, but generally results in looser bounds.

(x 20)

(x 4)

(x 3)

Fig. 1.1. Example of recursive decomposition on a nicely structured graph (edges not shown).

The main goal of this paper is to introduce a methodology for recursive hierar-

†{jriehl,hespanha}@ece.ucsb.edu, Center for Control, Dynamical Systems, and Computation,
Electrical and Computer Engineering Department, University of California, Santa Barbara, CA
93106-9560.

chical decomposition of graph optimization problems and to implement it on three
well-known and practical problems. We will show that this fractal decomposition
algorithm greatly reduces computation, and as the number of decomposition levels
increases, the computational complexity approaches O(n). Furthermore, for each of
the three examples, we provide numerical simulations to demonstrate that the ap-
proximation can be quite accurate. First, we introduce the three problems along with
previous computational complexity results.

• Shortest path matrix. The shortest path matrix problem, also called all-
pairs shortest paths, involves finding the minimum-cost path between every
pair of vertices in a graph. There are a great number of applications of this
problem, including optimal route planning for groups of UAVs [11]. For a
weighted directed graph with n vertices and m edges, Karger et al. showed
that the all-pairs shortest path problem can be solved with computational
complexity O(nm + n2 log n) [10].

• Maximum flow matrix. The maximum flow matrix problem involves find-
ing the flow assigment on the edges of a capacitated graph that yields the
maximum flow intensity between every pair of vertices. Applications of this
problem include stochastic network routing [1] and vehicle routing [2]. Given
a directed graph G(V, E) with n vertices and m capacitated edges, Goldberg
and Tarjan [6] showed that one can compute the maximum flow between two

vertices in O(nm log n2

m
) time. To compute the max-flow between all pairs

of vertices in an undirected graph, Gomory and Hu showed that one only
needs to solve n−1 maximum flow problems [7], but since we are considering

directed graphs, we must compute the flow between all n(n−1)
2 vertices. This

results in a complexity of O(n3m log n2

m
) to generate the complete max-flow

matrix.
• Cooperative graph search. The objective of the cooperative graph search

problem is to find paths in a graph that maximize the probability that a team
of cooperating agents will find a hidden target, subject to a cost constraint on
the paths. The computational complexity of the search problem for a single
agent is known to be NP-Hard [17] on the number of vertices n. Reducing the
s-agent cooperative search problem to a single-agent search problem with ns

vertices results in a problem that is clearly also NP-Hard. In the worst case,
an exhaustive search on a complete graph would have complexity O(ns!).
Although there are some more efficient algorithms to solve this problem such
as the branch and bound methods of Eagle and Yee [4], this problem is still
computationally infeasible for large values of ns.

There is some previous literature on hierarchical decomposition applied to various
graph optimization problems, most prevalently the shortest path problem. Romeijn
and Smith proposed an algorithm to solve an aggregated all-pairs shortest path prob-
lem motivated by minimizing vehicle travel time [14]. Under the assumption that
graphs in each level of aggregation have the same structure, they showed the compu-
tational complexity of their approximation (using parallel processors) to be O(n log n)

for aggregation on two levels of sparse graphs, and O(n
2
L log n) for aggregation on L

levels. The results of our shortest path decomposition example will closely resem-
ble that of [14] with the addition of both upper and lower bounds on the costs of
the shortest paths. Also related, Shen and Caines presented results on hierarchically
accelerated dynamic programming [15]. Using state aggregation methods, they were

able to speed up dynamic programming algorithms for finite state machines by orders
of magnitude at the expense of some sub-optimality, for which they give bounds.

Towards approximating the maximum flow problem, Lim et al. developed a
technique to compute routing tables for stochastic network routing that involves a
two-level hierarchical decomposition of the network. They reduced computational
complexity from O(n5) to O(n3.1) with a performance that is in some cases as good
as the general flat max-flow routing problem [12]. Our maximim flow decomposition
improves the two-level computational complexity to O(n3) and adds the capability to
decompose on more levels using the fractal framework.

DasGupta et al. presented an approximate solution for the stationary target
search based on an aggregation of the search space using a graph partition [3]. We
used a similar approach in [13] while also allowing the partitioning process to be
implemented on multiple levels.

The remainder of this paper is organized as follows. Section 2 presents the idea
of partitions and metagraphs, introducing concepts and notation that will be used
throughout the paper. Section 3 gives an abstract overview of the fractal decomposi-
tion methodology, with generic computation results presented in section 4. Sections
5, 6, and 7 define three example problems and give procedures to construct upper
and lower bounds on the optimal criteria. These sections also include explicit proce-
dures for constructing the approximate shortest path matrix, maximum flow matrix,
and cooperative search paths. We include brief numerical examples for shortest path
and maximum flow, and a more extensive simulation study on the cooperative search
problem. The final section is a discussion of the results with suggestions for future
research.

2. Graphs, Metagraphs, and Subgraphs. This section introduces some no-
tation and terminology that we will use in the remainder of this paper. Given a graph
G := (V, E) with vertex set V and edge set E ⊂ V ×V , a partition V̄ := {v̄1, v̄2, . . . , v̄k}
of G is a set of disjoint subsets of V such that v̄1 ∩ v̄2 ∩ . . . ∩ v̄k = V . We call these
subsets v̄i metavertices. For a given metavertex v̄i ∈ V̄ , we define the subgraph of G
induced by v̄i to be the subgraph G|v̄i := (v̄i, E ∩ v̄i × v̄i).

v̄3

v̄4

G

v̄2

v̄1

Ḡ

G|v̄1
G|v̄2

G|v̄3
G|v̄4

Fig. 2.1. Example of a graph partitioned into 4 metavertices.

Figure 2.1 shows an example of the graph partitioning process, where the dashed
lines through G separate the partitioned subgraphs G|v̄i, which are represented by
metavertices in Ḡ.

Given a partition V̄ of the vertex set V , we define the metagraph of G induced by

the partition V̄ to be the graph Ḡ := (V̄ , Ē) with an edge ē ∈ Ē between metavertices

v̄i, v̄j ∈ V̄ if and only if G has at least one edge between vertices v and v′ for some
v ∈ v̄i and v′ ∈ v̄j . In general, there may exist several such edges e ∈ E and we call
these the edges associated with the metaedge ē.

3. Fractal Decomposition Method. We now describe a methodology for
bounding and approximating the solution to a graph optimization problem using
fractal decomposition. The ideas presented here will be applied to several example
problems in the following sections. The steps of the fractal decomposition method are
listed below.

1. Partition the graph
2. Construct bounding metaproblems and solve
3. Refine worst-case solution to approximate solution on original graph

3.1. Partition the graph. Although the algorithm will work for any partition,
some partitions will result in tighter bounds than others, and some will reduce compu-
tation more than others. These factors will depend on the specific problem and should
be taken into account in the choice of partitioning algorithm. In general, the first ob-
jective of the graph partition is to decompose the problem such that the difference
between upper and lower bounds is small. For example, in the shortest path problem,
this means grouping vertices that are connected by low-cost edges whereas in the max-
imum flow problem, this means grouping vertices connected by high-bandwidth edges.
The partitioning algorithm we use is the one in [8], which tries to minimize the total
cost of cut edges by clustering the eigenvectors of a (doubly stochastic) modification
of the adjacency matrix around the k most linearly independent eigenvectors.

3.2. Construct bounding metaproblems and solve. We now want to con-
struct two metagraphs using the results of the graph partition: a worst-case meta-
graph and a best-case metagraph. Both metagraphs share the metavertex set and
metaedge set defined by the partition. Optimization problems on the metagraphs
are called metaproblems. The metaproblems should be in the exact same form as the
original problem, so that we may apply any algorithm that solves the original problem
to the metaproblems. This property allows for recursive decomposition. The most
important step in the construction is assigning data (costs, rewards, bandwidths,
etc.) to the metavertices and metaedges such that the solutions to the metaprob-
lems are guaranteed to bound the solution to the original problem. For the best
case metaproblem, this step just means assigning the most optimistic values. For
the worst-case metaproblem, this step generally involves assigning the solution to
a smaller problem, defined on the subgraph associated with the metavertex, to the
metavertices, and giving a pessimistic assignment to the metaedges. The solution to
the worst-case metaproblem will yield the conservative bound and will facilitate the
construction of an approximate solution on the original graph. The solution to the
best-case metaproblem will tell us how far our approximate solution is from optimal.

3.3. Refine worst-case solution to approximate solution on original

graph. As mentioned above, the solution to the worst-case metaproblem will in-
volve solving a set of smaller subproblems. The approximate solution is generated by
a refinement process on the worst-case metagraph, using the solutions to these sub-
problems, to generate a feasible solution on the original graph. This is made possible
because the worst-case metaproblem is formulated in such a way that the resulting
approximation is guaranteed to be feasible.

4. Computational Complexity. For the purposes of this analysis, let f(n, k)
denote the computational complexity of a given graph optimization problem on n
vertices decomposed into k metavertices. Without decomposition, the complexity is
f(n, 1). Now, let us see what happens with one level of decomposition. Suppose that
we partition the graph into k subgraphs each containing roughly n

k
vertices. The

computational complexity of the worst-case decomposed problem is then

f(n, k) = f(k, 1) + kf(
n

k
, 1), (4.1)

where the first term comes from solving a problem on the metagraph, and the second
term comes from solving problems on the k subgraphs. Decomposing on a second
level yields

f(n, k0) = f(k0, k1) + k0f(
n

k0
, k2)

= f(k1, 1) + k1f(
k0

k1
, 1)

+ k0f(k2, 1) + k0k2f(
n

k0k2
, 1). (4.2)

A choice of k =
√

n in (4.1) makes the computation of the upper-level meta problem
equal to that of the k subproblems. For two levels, the analogous choices are k0 =

√
n,

and k1 = k2 =
√

k0 = 4
√

n. Continuing the recursive decomposition in this manner
gives the following computational complexity results:

Level 0 : f(n, 1)

Level 1 : (
√

n + 1)f(
√

n, 1)

Level 2 : (
√

n + 1)(4
√

n + 1)f(4
√

n, 1)

...

Level L :

2L−1
∑

i=0

n
i

2L f(n
1

2L , 1)

=

(

n − 1

n
1

2L − 1

)

f(n
1

2L , 1).

We can limit the number of decomposition levels to Lmax = ⌊log2(log2(n))⌋ because
there is no advantage to decomposing a graph with only two vertices. It follows
that as L approaches this maximum value, the computational complexity approaches
(n − 1)f(2, 1), which is equivalent to O(n) since f(2, 1) is a constant. Hence, as the
number of decomposition levels increases, the complexity approaches linearity.

Inherent to this analysis is the assumption that the computational complexity of
a given problem can be expressed solely as a function of the number of vertices in
the graph. This is not generally the case because the complexity of many algorithms
also depends on the number of edges m. However, we can obtain an upper bound
on the computational complexity by analyzing the results for dense graphs, where
O(m) = O(n2). Similarly, setting O(m) = O(n) yields the best-case complexity
for sparse graphs. Table 4.1 shows the computational reduction for various levels of
decomposition on the three problems presented in this paper.

In the cooperative search column, s is the number of searchers, and the com-
plexities listed are for an exhaustive search. For this analysis, we assume that the
complexity associated with graph partitioning is negligable compared to that of the
optimization problem, which may or may not be the case depending on the specific
partitioning algorithm used.

Table 4.1

Computational Complexity of Worst-Case Metaproblems for up to 3 Decomposition Levels on
Dense Graphs

Levels Shortest Path Matrix Maximum Flow Matrix Cooperative Search

0 O(n3) O(n5) O(ns!)

1 O(n2) O(n3) O(n
1
2 (n

s
2)!)

2 O(n
3
2) O(n2) O(n

3
4 (n

s
4)!)

3 O(n
5
4) O(n

3
2) O(n

7
8 (n

s
8)!)

5. Shortest Path Matrix Problem. The shortest path matrix problem in-
volves constructing a n × n matrix of the minimum-cost path between all pairs of
vertices in a graph. Our formulation is a slight variation on the conventional APSP
problem because in addition to assigning a cost to each edge, we also assign a cost
to each vertex. This is crucial in facilitating the hierarchical decomposition of the
problem, as will be explained in section 5.1. Adding vertex costs does not increase
the computational complexity of the problem.

Data

G := (V, E) directed graph

ce : E → [0,∞) edge cost function

cv : V × O → [0,∞) vertex cost function

Path A path in G from vinit ∈ V to vfinal ∈ V is a sequence of vertices (where
v1 := vinit, vf := vfinal)

p := (v1, v2, . . . , vf−1, vf), (vi, vi+1) ∈ E.

The path-cost is given by

C(p) :=

f−1
∑

i=1

ce(vi, vi+1) +

f
∑

i=1

cv(vi).

Objective For every pair of vertices (vinit, vfinal), compute the path p that mini-
mizes the path-cost C(p). We denote this path by p∗ and the minimum cost C(p∗)
by J∗

G(vinit, vfinal). The largest minimum cost over all possible pairs of vertices
(vinit, vfinal) is called the diameter of the graph and is denoted by ‖G‖.

5.1. Worst-case meta-shortest path. Let Ḡworst := (V̄ , Ē) be a metagraph
of G, with edge cost and vertex cost defined by

c̄eworst(ē) := min
e∈ē

η(e) c̄vworst(v̄) :=
∥

∥G|v̄
∥

∥.

Note that to assign the vertex costs of Ḡworst one needs to compute the diameter
of all subgraphs and therefore solve k smaller shortest-path matrix problems. This is
the key step in the hierarchical decomposition of the problem.

5.2. Best-case meta-shortest path. Let Ḡbest := (V̄ , Ē) be a metagraph of
G, with edge cost and vertex cost defined by

c̄ebest
(ē) := min

e∈ē
ce(e) c̄vbest

(v̄) := min
v∈v̄

ν(v).

Theorem 1 For every partition V̄ of G

J∗
Ḡbest

(v̄init, v̄final) ≤ J∗
G(vinit, vfinal) ≤ J∗

Ḡworst
(v̄init, v̄final) (5.1)

where vinit ∈ v̄init, vfinal ∈ v̄final.

The construction of the upper bound provides a procedure for generating an
approximate shortest path between each pair of vertices in G, and the cost of this
path lies between J∗

G(vinit, vfinal) and J∗
Ḡworst

(v̄init, v̄final).

Proof. To verify the upper bound, we will show that one can easily use the
shortest path from v̄init to v̄final in Ḡworst to construct an approximate shortest path
from vinit to vfinal in G. We do this by sequentially connecting vinit, the endpoints of
the minimum cost edge between each metavertex in the optimal worst-case path, and
vfinal with the shortest path between them in G. The detailed procedure is described
below.

Let p̄∗w be the shortest path from v̄init to v̄final in Ḡworst, and p̃ be the approximate
shortest path in G being constructed. To begin, we want p̃ to include the minimum
cost edge of each metaedge in p̄∗w. Call this set of edges E∗

w. From the set of vertices
adjacent to these edges, let vjexit

be the exit vertex of v̄j , that is, the vertex in
v̄j adjacent to the edge in E∗

worst associated with the metaedge that connects v̄j

to v̄j+1 for j = (1, 2, . . . , f̄ − 1), and let vjentry
be the entry vertex of each v̄j for

j = (2, 3, . . . , f̄). The incomplete path is then

p̃ = (vinit, . . . , vexit1 , . . . , ventry2
, . . . , vexit2 , . . .

. . . , vexitf̄−1
, . . . , ventryf̄

, . . . , vfinal).

Now, simply fill in the gaps with the shortest path between the surrounding nodes.
Recall that we already computed the shortest paths between all pairs of vertices in
a metavertex when we found the diameter of each subgraph G|v̄j , so this data is
available without additional computation.

Let p̃j denote the portion of the path p̃ contained within the metavertex v̄j . We
can now compare the costs of the two paths p̃ and p̄∗w:

C(p̄∗w) =

f̄−1
∑

j=1

c̄eworst(v̄j , v̄j+1) +

f̄
∑

j=1

∥

∥G|v̄j

∥

∥ (5.2)

C(p̃) =

f̄−1
∑

j=1

c̄eworst(v̄j , v̄j+1) +

f̄
∑

j=1

C(p̄j) (5.3)

Because we have defined each p̃j to be a shortest path between two nodes in v̄j ,
the cost of this path C(p̃j) must be no greater than

∥

∥G|v̄j

∥

∥. Summing over the same
set of metavertices, the last term of (5.3) must be less than or equal to the last term
of (5.2). Since the edge cost terms are identical, we conclude that

C(p∗) ≤ C(p̃) ≤ C(p̄∗w), (5.4)

where p∗ is the shortest path in G from vinit to vfinal. The left inequality in (5.4)
holds because of the optimality of p∗, and the right inequality was discussed above.
Therefore, the upper bound in (5.1) holds.

We now check the lower bound by constructing a feasible path from v̄init to v̄final

in Ḡbest from the optimal path p∗ connecting vinit to vfinal in G.
The constructed path, which we will call p̄b, will consist of the sequence of

metavertices that contain vertices of p∗ in order but with no consecutive repetitions.
We can construct this path by first setting p̄best = p∗ and then replacing each vertex
vi with the metavertex v̄j in which it is contained. Deleting all repeated metavertices
yields the desired path p̄best = (v̄1, v̄2, . . . , v̄f̄), where f̄ is the length of p̄best.

Let Ep∗ denote the set of edges along the path p∗. Define Êp∗

j
as the set of these

edges having both endpoints in v̄j , and Êp∗ as the set of all edges totally contained
within metavertices, for j ∈ [1, f̄]. The remaining edges connecting consecutive v̄j

along p∗ are contained in the set difference Ẽp∗

j
:= Ep∗\Êp∗ .

We can express the cost of the two paths as follows:

C(p̄b) =

f̄−1
∑

j=1

c̄ebest(v̄j , v̄j+1) +

f̄
∑

j=1

c̄vbest(v̄j) (5.5)

C(p∗) =
∑

e∈Ẽp∗

ce(e) +
∑

e∈Êp∗

ce(e) +

f
∑

i=1

ν(vi), (5.6)

where f is the length of p∗.
The first term on the right side of (5.6) is the cost of the edges in p∗ between

metavertices and this is definitely greater than or equal to the sum of the minimum
edge costs between the same sequence of metavertices, which is the first term on the
right side of (5.5). Using this and the trivial fact that the sum of the minimum vertex
costs in each metavertex, which is the second term on the right of (5.5), is less than
or equal to the sum of total costs incurred by p∗ within metavertices, the second and
third terms on the right of (5.6), we see that the lower bound in 5.1 indeed holds.

5.3. Error Bounds for Simple Graphs. The approximation bounds discussed
thus far are problem dependent, that is, varying the graph, graph data, or partition
will also vary the resulting bounds. A natural question to ask is whether it is possible
to guarantee bounds that do not depend on the particular instance of the problem.
While this is quite a difficult problem for arbitrary graphs, we can generate con-
stant factor approximation bounds for some simple, highly structured graphs, such as
lattices.

To begin, let us consider the shortest-path problem on a two-dimensional rect-
angular lattice graph, where each of the edge costs is 1, and all the vertex costs are
0. For simplicity of the partition, we look at square lattices of size n = i2 × i2,
where i ∈ N. The diameter of such a graph is 2(n

1
2 − 1). Now, we apply one level

of decomposition to the problem, dividing the graph into n
1
2 blocks each having n

1
2

vertices, and construct the worst-case metagraph. The diameter of this metagraph is
4(n

1
2 − n

1
4). The ratio of these diameters is

∣

∣

∣

∣Ḡworst(n)
∣

∣

∣

∣

||G(n)|| =
4(n

1
2 − n

1
4)

2(n
1
2 − 1)

=
2n

1
4

n
1
4 + 1

Taking the limit as n → ∞ above, we obtain the following constant factor approxi-
mation result:

∣

∣

∣

∣Ḡworst(n)
∣

∣

∣

∣ ≤ 2 ||G(n)|| .

It is straightforward to show that the approximation factor is 4 for two levels of
decomposition, 8 for three, and 2L for L.

5.4. Case Study on Diameter Approximation. This section presents some
results of the fractal decomposition approximation on the diameters of two test graphs:
a Delaunay graph with clustered vertices, and a lattice graph with some added diag-
onals. One would expect a better approximation for the first graph than the second
because in the clustered graph, we can use the partition to generate a metagraph in
which the metaedges have much higher cost than the edges within subgraphs, while
this is not the case in the lattice graph.

(a) Delaunay graph on 16 ver-
tex groups

(b) 16 × 16 lattice graph.

Fig. 5.1. The graph on the left was created by randomly distributing vertices over 16 1 unit
× 1 unit regions centered in a block pattern and generating a Delaunay graph over this vertex set.
The graph on the right is a two-dimensional rectangular lattice graph. Dashed lines indicate the
partition.

The diameter is an appropriate metric for the tightness of the meta-shortest path
bounds, because for each hierarchical level below the top, subgraph diameters are
computed to assign the metavertex costs. Table 5.1 shows the results for best-case,
worst-case, approximate, and actual diameters for each test graph partitioned into 16
vertex groups. The approximate diameter is computed using the procedure outlined
in the proof of Theorem 1, and will always lie between the actual and worst-case
diameters.

Table 5.1

Results of Diameter Approximation for Test

Best-case Actual Approximate Worst-case

Grouped 9.0 14.1 14.5 15.1

Lattice 5 30 30 48

As expected, the worst-case bounds are fairly tight for the clustered graph, but
worse for the lattice graph. The worst-case metagraph diameter of 48 lies within
the constant factor bound of 2 derived in section 5.3. Although the approximation
is exact for the lattice graph, there is a large uncertainty due to the best-case lower
bound. We conclude that using fractal decomposition to approximate the shortest
path matrix problem works best on graph with some inherent clustered structure.

6. Maximum Flow Matrix Problem. In the maximum flow matrix problem,
the goal is to construct an n × n matrix containing the maximum flow intensities
between all pairs of vertices in a graph. The flow through each edge is limited by the
bandwidth or capacity of that edge. In this formulation, the vertices are also assigned
bandwidths. The vertex bandwidth is what allows for the hierarchical decomposition
of this problem.

Data

G := (V, E) directed graph

be : E → [0,∞) edge bandwidth function

bv : V × O → [0,∞) vertex bandwidth function

Flow A flow in G from vinit ∈ V to vfinal ∈ V is a function f : E → [0,∞) for which
there exist some µ ≥ 0 such that

fout(v) − fin(v) =











µ v = vinit

−µ v = vfinal

0 otherwise,

∀v ∈ V, (6.1)

0 ≤ f(e) ≤ be(e), ∀e ∈ E (6.2)

0 ≤ fin(v) ≤ ν(v), ∀v ∈ V (6.3)

0 ≤ fout(v) ≤ ν(v), ∀v ∈ V (6.4)

In the above,

fin(v) :=
∑

e∈In[v]

f(e), fout(v) :=
∑

e∈Out[v]

f(e), (6.5)

where In[v] denotes the set of edges that enter the vertex v and Out[v] the set of edges
that exit v. The constant µ is called the intensity of the flow.

Objective For every pair of vertexes (vinit, vfinal), compute the flow f∗ with maxi-
mum intensity µ from vinit to vfinal. The maximum intensity is denoted by J∗

G(vinit, vfinal)
and is called the maximum flow from vinit to vfinal. The smallest maximum flow over
all possible pairs of vertices is called the bandwidth of the graph and is denoted by
‖G‖.

6.1. Worst-case meta-max flow. Let Ḡworst := (V̄ , Ē) be a metagraph of G,
with edge bandwidth and vertex bandwidth defined by

b̄eworst(ē) :=
∑

e∈ē

be(e) b̄vworst(v̄) :=
∥

∥G|v̄
∥

∥. (6.6)

Note that to construct the graph Ḡworst one needs to compute the bandwidth of
all subgraphs and therefore solve several smaller max-flow matrix problems.

6.2. Best-case meta-max flow. Let Ḡbest := (V̄ , Ē) be a metagraph of G,
with edge bandwidth and vertex bandwidth defined by

b̄ebest(ē) :=
∑

e∈ē

be(e) b̄vbest(v̄) := +∞. (6.7)

Theorem 2 For every partition V̄ of G

J∗
Ḡworst

(v̄init, v̄final) ≤ J∗
G(vinit, vfinal) ≤ J∗

Ḡbest
(v̄init, v̄final)

where vinit ∈ v̄init, vfinal ∈ v̄final.

In the proof of Theorem 2, the construction of the lower bound contains a pro-
cedure for generating an approximate maximum flow between each pair of vertices in
G, and the intensity of this flow lies between J∗

Ḡworst
(v̄init, v̄final) and J∗

G(vinit, vfinal).

To verify the lower bound, the idea is to construct a flow f̃(e) in G that satisfies
(6.1)–(6.4) out of the worst-case maximum flow f̄∗

worst(ē) in Ḡworst. This is possible
because the subgraphs associated with each metavertex are connected and the total
flow into and out of a metavertex is always no greater than the bandwidth of that
metavertex. The intensity of this approximate maximum flow is bounded below by
J∗

Ḡworst
(v̄init, v̄final), and above by J∗

G(vinit, vfinal).

Proof. Let f̄w(ē) be the maximum flow assignment of Ḡworst. Out of f̄w(ē), we
now construct a flow f̃(e) in G that satisfies (6.1)–(6.4).

For every ē ∈ Ē, decompose the flow in the worst-case metagraph as a flow in the
original graph as follows:

f̄w(ē) = f̃(ē1) + f̃(ē2) + · · · + f̃(ēp), (6.8)

where the notation ēi is used to index the edges associated with the metaedge ē, and
p is the total number of these edges.

Since (6.2) holds for the worst-case metagraph, that is

0 ≤ f̄∗
w(ē) ≤ b̄eworst(ē) =

∑

e∈ē

be(e),

we know that a decomposition (6.8) exists whose flows satisfy condition (6.2) for the
original graph.

Now we have assigned flows to the subset of edges of G that connect metavertices
of Ḡworst, but we still have to consider the edges of G that lie inside metavertices.

For every v̄ ∈ V̄ , there exist sets v′in and v′out defined by

v′in = {v ∈ v̄ : (u, v) ∈ E, u /∈ v̄, v ∈ v̄} ∪ ({vinit} ∩ v̄)

v′out = {v ∈ v̄ : (u, v) ∈ E, u ∈ v̄, v /∈ v̄} ∪ ({vfinal} ∩ v̄)

The set vin consists of all vertices in v̄ to which an edge originating outside the
metavertex is directed, plus the source vertex if v̄ = v̄init. Similarly, the set vout con-
sists of all vertices in v̄ from which an edge directed outside the metavertex originates,
plus the sink vertex if v̄ = v̄final. Some vertices may be contained in both vin and
vout. To separate these vertices, we define the following disjoint sets:

vin =
{

v ∈ v′in : f̃in(v) − f̃out(v) > 0
}

vout =
{

v ∈ v′out : f̃in(v) − f̃out(v) < 0
}

,

where f̃in and f̃out are as defined in (6.5). Recall that we have only assigned f̃(e) to
edges connecting metavertices. For all other edges, f̃(e) is temporarily set to zero.

We can now define a set of k subproblems, one for each v̄ ∈ V̄ , where the goal is
to find a feasible flow from vin to vout.

The following procedure will find such a flow. For simplicity, assume that flow
originating at the source vinit is an inflow, and the flow terminating at the sink vfinal

is an outflow.

1. Enumerate the sets vin =
{

vin1
, vin2

, . . . , vinp

}

and vout =
{

vout1 , vout2 , . . . , voutq

}

2. Initially, i = 1 and j = 1.
3. Since each subgraph G|v̄ is connected, there exists at least one path from

vini
to voutj

. Assign the flow along one such path to be the minimum of the
flow into vini

and the flow out of voutj
. Subtract this value from the flow

intensities of both vertices.
4. If i = p and j = q then stop. The procedure is complete.
5. If the flow into vini

is still greater than the flow out, repeat step 3 for vini

and voutj+1
. Otherwise execute step 3 for vini+1

and voutj
.

By construction, assigning flows in this manner preserves condition (6.1) because
at the end of the procedure the net flow is zero at all vertices excluding vinit and vfinal,
for which it is µ̃ and −µ̃, respectively. Also, since the flow through a metavertex v̄
is bounded above by the bandwidth of the subgraph G|v̄, the flows generated by this
procedure will satisfy (6.2)-(6.4).

This completes our construction of a feasible flow f̃(e) in the original graph based
on the worst-case flow f̄∗

w(ē) in the metagraph. Therefore,

J∗
G(vinit, vfinal) ≥ J∗

Ḡworst
(v̄init, v̄final). (6.9)

The proof for the best-case upper bound is straightforward because we can easily
construct a flow in Ḡbest from an optimal flow f∗(e) in G.

Let f̂best(ē) be a not necessarily optimal flow in Ḡbest, where

f̂best(ē) =
∑

e∈ē

f∗(e)

Since we know that f∗(e) satisfies (6.1) and (6.2), it follows from (6.7) and the

above equation that f̂best(ē) satisfies (6.1) and (6.2). Since b̄vbest(v̄) = ∞, (6.3) and
(6.4) hold also.

Let ĴḠbest
(v̄init, v̄final) be the intensity of the flow f̂best(ē).

As expected,

J∗
Ḡbest

(v̄init, v̄final) ≥ ĴḠbest
(v̄init, v̄final) = J∗

G(vinit, vfinal)

The equality on the right holds from our construction of f̂best(ē). The inequality
on the left holds by definition of optimality. This result combined with (6.9) proves
Theorem 2.

6.3. Case Study on Bandwidth Approximation. To test the fractal decom-
position algorithm on the maximum flow matrix problem, we used a graph generated
from the Verio internet service provider (ISP) topology computed in [16]. It is one of
the same graphs that was used in [12]. The method of game theoretic stochastic rout-
ing (GTSR) was introduced by Bohacek et al. [1] to increase robustness of network
routing. Suppose that in the event of a fault on a link l, a percentage pl of packets are
dropped. The main result of GTSR is that the routing policy that minimizes packet
drop under these conditions is the one given by solving a maximum flow problem on
a graph whose edge bandwidths are 1

pl
.

(a) Original graph (b) Partition applied to graph

Fig. 6.1. Graph of the Verio ISP topology (left) partitioned into 10 subgraphs (right).

Graph bandwidth is an appropriate metric for comparison here, because for each
hierarchical level below the top, subgraph bandwidths are computed to assign the
metavertex bandwidths. Partitioning the graph in Figure 6.1(a) into 10 parts and
applying the fractal decomposition algorithm described in the previous section yielded
the results given in Table 6.1. In this case, the approximation is exact with respect to
graph bandwidth, but it is not necessarily true that the maximum flow approximation
between a given pair of source and destination vertices is exact. However, similar to
the result in [12], if the metvertex bandwidths along the optimal flow in the worst-
case metagraph not limiting the flow, i.e. the constraints corresponding to these
metavertices are not active, the approximation will be exact. Generally, this means
that if the metavertices have high bandwidths compared to the metaedges, the fractal
decomposition algorithm generates the optimal flow values.

Table 6.1

Fractal Decomposition Results for the Max-Flow Routing Problem on the Verio ISP Topology

Bandwidth

Worst-case 0.1432

Actual 0.1432

Best-case 0.1432

7. Cooperative Graph Search Problem. Consider a team of s agents search-
ing for one or more objects in a bounded region represented by a graph. Each vertex
has a reward, generally relating to the probability of finding an object at that vertex,
and a cost representing a quantity such as time or energy spent searching that vertex.
Each edge also has a cost, representing the cost incurred in transit between vertices.

The team’s goal is to find paths on the graph for each searcher that maximize the total
reward collected by the team subject to a cost constraint on the individual agents.

Data

G := (V, E) directed location graph

O := {1, . . . , omax} vertex occupancy set

r : V × O → [0,∞) vertex reward function

cv : V × O → [0,∞) vertex cost function

ce : E → [0,∞) edge cost function

L ∈ [0,∞) cost bound

In the above, omax ∈ {1, 2 . . . , s} is the maximum number of searchers allowed to
occupy a single vertex. Note that the vertex cost and reward functions depend on the
occupancy of the vertex. The reason for this will be made clear in section 7.1.

Search Path A search path in G is a sequence of vertices,

p := (v1, v2, . . . , vf−1, vf), (vi, vi+1) ∈ E,

where f is the length of the path. The path-cost is given by

C(p) :=

f−1
∑

i=1

ce(vi, vi+1) +

f
∑

i=1

cv(vi),

and the path-reward is given by

R(p) :=
∑

v∈p

r(v), (7.1)

where the sum in (7.1) is taken with no repetitions, that is, if a vertex appears in p
more than once, it is only included in the summation once. This represents the fact
that the reward of a vertex can only be collected once.

The search problem for a single agent is to find the path p that maximizes the
reward R(p) subject to the cost constraint C(p) ≤ L.

Cooperative Framework As discussed in the introduction, there is significant
existing literature on the single-agent search problem, but the cooperative search
problem is inherently more complex. One way to approach the multiple-agent problem
would be to set up s identical single-agent search problems on the location graph G
and have the agents start in different strategic positions, but this is not a cooperative
solution and could result in overlapping search paths. For the team to fully cooperate,
we must consider the problem as a whole. We can do this by creating a graph in which
a vertex represents the locations of all agents, i.e. the full graph will consist of up to
ns nodes. We call this new expanded graph the team-graph induced by G and denote
it by G := (V,E) (Bold face notation is used for all data and functions related to the
team-graph).

The team-vertex set V consists of s-length vectors whose entries are the vertex
locations in V of each member of the team. We write the expanded team-vertex as
v = (v(1),v(2), . . . ,v(s)), where v(a) ∈ V is the location of agent a when the team is
at team-vertex v. We construct the set V by including team-vertices for all possible

configurations of searchers in V such that the vertex occupancy omax is not exceeded.
An edge connects vertices v and v′ if there is an edge in E between v(a) and v′(a) for
each agent a. We also allow members of the team to stay at a vertex. This is useful
in the case that some searchers reach their cost limit before others. We can write the
team-edge set as

E := {(v,v′) : ∀a (v(a),v′(a)) ∈ E ∪ (v(a),v(a))} ,

where v,v′ ∈ V.

Team Search Path We now describe how to construct and evaluate paths in the
team-graph based on data for the location graph. A team search path in G is a
sequence of vertices,

p := (v1,v2, . . . ,vf−1,vf), (vi,vi+1) ∈ E, (7.2)

where f is the length of the path. Let pa denote the path of agent a, that is pa :=
(v1(a), . . . ,vf (a)). The team path-cost is the maximum path-cost of any agent in the
team and is given by

C(p) := max
a

C(pa)

The team path-reward is the total reward collected by the search team on the path,
which we can express as

R(p) :=

f
∑

i=1

∑

v∈vi

r(v, ov
vi

)κ(v, i), (7.3)

where ov
vi

is the occupancy of v when the team is at vi. The function

κ(v, i) :=

{

1, v /∈ ⋃i−1
j=1 vj

0, otherwise
.

encodes the property that the reward for a vertex in G may only be collected once by
the search team.

Objective Given a cost bound L, denote the maximum reward that s searchers
can collect on G by J∗

G(s, L). We can write the objective for the cooperative search
problem as follows:

J∗
G(s, L) := max

p

R(p) s. t. C(p) ≤ L (7.4)

7.1. Fractal Decomposition. We have now formulated the cooperative search
problem, and although there are known methods to solve it, the computational com-
plexity is very high (see Section 4). In this section of the paper, we propose a method
of decomposing the problem to generate lower and upper bounds on the optimal re-
ward. Additionally, the method is designed to generate problems that are exactly in
the form described above. Hence, it may be applied recursively on as many levels as
the problem will allow.

7.2. Worst-case cooperative metagraph search. Let Ḡworst := (V̄ , Ē) be
a metagraph of G. Our goal is to formulate the worst-case problem such that its
solution will be a lower bound on the optimal reward of (7.4).

We first choose a metavertex maximum occupancy ōmax, yielding the occupancy
set Ō := {1, . . . , ōmax}, and then choose a cost assignment l : V̄ × Ō → [0,∞). These
choices are a degree of freedom for the user, but they should be chosen carefully
as they may significantly affect the tightness of the bounds on the optimal reward.
The best choices will depend on the structure of the graph as well as the number of
decomposition levels.

The metavertex cost and reward functions are defined by solving cooperative
search problems on their corresponding subgraphs:

rworst(v̄, ō) := J∗
G|v̄(ō, l), (7.5)

cvworst
(v̄, ō) := C(p∗(v̄, ō)), ∀ō ∈ Ō, ∀v̄ ∈ V̄ , (7.6)

where p∗(v̄, ō) is the optimal team search path in G|v̄ that generates the maximum
reward J∗

G|v̄(ō, l). Let p∗a(v̄, ō, i) denote the ith vertex in agent a’s optimal path on

metavertex v̄, having occupancy ō. We define the cost of an edge from v̄ to v̄′ by
pairing all final vertices of paths computed in v̄ with all starting vertices of paths
computed in v̄′, computing the costs of the shortest paths between them, and taking
the maximum of these costs. Figure 7.1 diagrams this process for two metavertices for
which omax = 2. Suppose that the dotted lines represent optimal paths computed on
both metavertices for an occupancy of 1, and the dashed lines are the paths computed
for an occupancy of 2. The highlighted vertices represent the pair of ({final vertices
in v̄}, {starting vertices in v̄′}) that are farthest apart. The cost of the shortest path
between these vertices is 7, hence ceworst

(v̄, v̄′) = 7 in this example. We can formally

2
1 1

7

G|v G|v’

Fig. 7.1. Example showing the worst-case edge-cost between two metavertices. Edge-costs are
1 for edges within subgraphs, 2 for edges between subgraphs and all vertex costs are 0.

write the worst case metaedge cost function for all (v̄, v̄′) ∈ Ē, as

ceworst
(v̄, v̄′) = max

ō,ō′

max
a,a′

d [p∗a(v̄, ō, f), p∗a′(v̄′, ō′, 1)] , (7.7)

where ō, ō′ ∈ Ō, a ∈ {1, . . . , ō}, a ∈ {1, . . . , ō′}, and d[v, v′] is the cost of the shortest
path in G from v to v′. In implementation, there are ways to make this less conser-
vative. For example, one could create a team edge-cost function that depends on the
occupancies of adjacent vertices. However, for simplicity of notation, we choose an
edge-cost on the location metagraph that does not depend on the vertex occupancies.

Now let Ḡworst := (V̄, Ē) be the team metagraph induced by Ḡworst. The team
path-cost and path-reward functions for the metagraph are defined exactly the same
as they were for the original graph in (7.2) and (7.3). The objective in the worst-case
cooperative metagraph search problem is to solve the cooperative search problem (7.4)
on Ḡworst and thus find the reward J∗

Ḡworst
(s, L).

7.3. Best-case cooperative metagraph search. We construct the best-case
problem such that its solution will be an upper bound on the optimal reward of (7.4).
Let Ḡbest := (V̄ , Ē) be a metagraph of G with edge cost function defined by

cebest
(v̄, v̄′) = min

v∈v̄,v′∈v̄′

d[v, v′], ∀(v̄, v̄′) ∈ Ē. (7.8)

where d[v, v′] is the cost of the shortest path in G from v to v′ (for the example in
Figure 7.1, cebest

(v̄, v̄′) = 2). Now, set omax = 1 and define the metavertex reward
and cost functions as

rbest(v̄, 1) :=
∑

v∈v̄

max
o

r(v, o) (7.9)

cvbest
(v̄, 1) := min

v∈v̄
cv(v, 1). (7.10)

Let Ḡbest := (V̄, Ē) be the team metagraph constructed from Ḡbest. The objective in
the best-case cooperative metagraph search problem is to solve the cooperative search
problem (7.4) on Ḡbest and thus find the reward J∗

Ḡbest
(s, L).

Theorem 3 For every partition V̄ of G

J∗
Ḡworst

(s, L) ≤ J∗
G(s, L) ≤ J∗

Ḡbest
(s, L) (7.11)

The proof of the lower bound contains a procedure for generating an approximately
optimal team search path on G whose total reward lies between J∗

Ḡworst
(s, L) and

J∗
G(s, L).

Proof. To verify the lower bound, we use the optimal worst-case team path
p̄∗ = (v̄1, v̄2, . . . , v̄f) on Ḡworst to construct a feasible team path p̂ on G such that
C(p̂) ≤ L. First, let us expand the team path to show the paths of each agent,

p̄∗ =













p̄∗
1

p̄∗
2

...

p̄∗
s













=













(v̄1(1), v̄2(1), . . . , v̄f (1))

(v̄1(2), v̄2(2), . . . , v̄f (2))
...

(v̄1(s), v̄2(s), . . . , v̄f (s))













Now, we begin constructing the lower-level paths p̂(a) by setting p̂ = p̄∗ and then
replacing the metavertices v̄i(a) with the paths computed by solving the worst-case
cooperative search problem on the corresponding subgraphs G|v̄i(a). This involves
grouping any agents occupying the same metavertex and assigning their paths based
on the optimal team-path on that metavertex with the appropriate occupancy ō. For
each agent a,

p̂a = (p∗
a(v̄1(a), ō), . . . ,p∗

a(v̄2(a), ō)), . . . ,

. . . ,p∗
a(v̄f−1(a), ō)), . . . ,p∗

a(v̄f (a), ō)),

Because of (7.6), the sum of the costs of these disconnected sub-paths in p̂ is
equal to the sum of the vertex costs in p̄∗. Also, the total reward collected on these
sub-paths is equal to the total reward collected on p̄∗ due to (7.5), so we know that
J∗

Ḡworst
(s, L) = R(p̄∗) ≤ R(p̂). We now fill in the gaps between consecutive sub-paths

p∗
a(v̄, ō)) by connecting the last vertex in each previous sub-path to the first vertex

in the next sub-path with the shortest path in G between them. We know from
(7.7) that the cost of these connections is less than or equal to the edge costs in p̄∗.
Hence, C(p̂) ≤ C(p̄∗) ≤ L and p̂ is a feasible path in G. Since p∗ is optimal on G,
R(p̂) ≤ J∗

G(s, L), and the lower bound in 7.11 holds.
To verify the upper bound, we construct a feasible path p̃ in Ḡbest out of the

optimal search path p∗ = (v1,v2, . . . ,vf) in G that generates reward R∗
G(s, L). We

begin by setting p̃ equal to p∗ and then replacing each vi(a) with the v̄i(a) that
contains it. Now, we remove any consecutive repetitions from each p̃a, and then pad
the end of agent’s paths with repeated metavertices where necessary to make the
paths of all agents the same length. This allows us to form the team-vertices that
make up p̃, making a feasible path in Ḡbest without adding to the path-cost. We infer
from (7.8) and (7.10) that C(p̃) ≤ C(p∗), so p̃ meets the cost constraint. Finally,
due to (7.9), all reward is collected from each metavertex visited by p̃, and the upper
bound J∗

G(s, L) ≤ J∗
Ḡbest

(s, L) holds.

7.4. Error Bounds for Simple Graphs. Although we can not expect to obtain
constant factor approximation bounds for arbitrary graphs, here we investigate the
accuracy of the fractal decomposition algorithm for the search problem on certain
simple graphs. Suppose a single agent is searching a rectangular lattice of size n =
i2×i2, for i ∈ N, with a cost bound γn. The vertices all have zero cost and a reward of
one and all the edge costs are one. On this simple graph, the searcher can collect the
optimal reward of γn+1 in many ways, for example, by moving along the length of the
first row and then proceeding row-by-row until the cost bound has been reached. We
now apply the fractal decomposition algorithm by partitioning the graph evenly into√

n square subgraphs each containing
√

n metavertices and choosing a meta-vertex
cost bound of

√
n. The lower bound on the optimal search reward, determined by the

reward collected on the worst-case meta-graph, is

√
n

⌊

γn
√

n + 3n
1
4 − 3

⌋

,

where the term
√

n on the left indicates the reward colected in each meta-vertex, and
the term on the right is the conservative worst-case estimate of the number of meta-
vertices the searcher can visit. The resulting ratio of worst-case reward to optimal
reward is

√
n
⌊

γn
√

n+3n
1
4 −3

⌋

γn − 1
.

Notice that as n gets large, the ratio approaches one. This is because the cost incurred
in searching a meta-vertex grows as n2 while the cost incurred in transit between
meta-vertices only grows as fast as n. This result extends recursively for multiple de-
compostion levels. We conclude that for large graphs, where the transit cost between
metavertices is small compared to the cost of searching a metavertex, the lower-bound
on the search reward may be very close to optimal.

7.5. Cooperative Search Test Results. We now apply the methods described
above to a test case, simulating the search for an object in a large building with many
rooms. Figure 7.2 shows a model of the third floor of Harold Frank Hall at UCSB,
where a known initial probability distribution for the object is indicated by the shaded
regions (dark represents high probability). The floor has been divided into 646 cells,

each about 4 square meters in size. There is a graph vertex on each cell and pairs of
vertices lying on adjacent cells are connected by an edge in the graph. We assign each
edge a cost of 1, modeling a one second transit time between cells, and each vertex a
cost of 2, supposing that it takes 2 seconds to search a cell.

Fig. 7.2. Model of third floor of UCSB’s Harold Frank Hall divided into 646 cells and overlaid
with a graph. Dark cells indicate high target probability.

In this test case, we have 4 searchers and only two minutes to find the object. The
goal is to find the path for each agent that approximately maximizes the probability
of finding the object in 120 seconds. To get an idea of the magnitude of computation
posed by this problem, consider a solution by total enumeration of feasible paths. The
average degree of a vertex in this graph is about 3, meaning that the average degree
of a vertex in the team graph is 34 = 81, that is, there are about 81 possible moves
for the team at each vertex. A cost bound of 120 allows the searchers to visit up to
40 vertices along their paths. This translates to roughly 8140 ≈ 1076 paths that must
be evaluated to find the optimal search path by total enumeration.

We now apply the fractal decomposition method to this problem. Using two
levels of decomposition, we partition the top level into 7 groups and each of the lower-
levels into 8, because there are roughly 56 rooms on the floor. We use the automated
graph partitioning algorithm in [8], which tries to minimize the total cost of cut edges
by clustering the eigenvectors of a (doubly stochastic) modification of the edge-cost
matrix around the k most linearly independent eigenvectors. For our purposes, we
define cost of cutting an edge between adjacent vertices with rewards r1 and r2 to
be e−|r1−r2|. This causes the algorithm to favor cutting edges with very different
rewards, and thus grouping vertices with similar rewards. Figure 7.3(a) shows the
top-level partition on our test graph, with vertices of the same color belonging to the
same partitioned subgraph. Figure 7.3(b) shows the second-level partition applied to
the subgraph in the upper left corner of Figure 7.3(a). The remaining subgraphs are
similarly partitioned.

We choose a cost bound allocation of 25 seconds on each of the 56 lower-level
subgraphs and 120 seconds on the 7 top-level subgraphs. The maximum vertex oc-
cupancy on all levels in set to 1. Now we are ready to run the algorithm. Figure 7.4
shows the approximately optimal paths computed for four searchers. The cost of these
paths is 110 seconds, and the searchers collect a reward of 0.29, which lies between the
worst-case lower bound of 0.26 and best-case upper bound of 1.0. Table 7.1 shows the
results of the algorithm for one to four searchers. The fact that s searchers are able
to collect almost s times the reward of 1 searcher shows that this algorithm achieves
good cooperation between agents. In all four tests, the best-case upper bounds are
equal to the total reward contained in the graph. This is not ideal, but when using
multiple decomposition levels, it is difficult to avoid a very optimistic upper bound

(a) Top-level partition on the graph into 7 subgraphs. (b) The subgraph in the
upper-left corner of the graph
to the left, partitioned on
a second level into 8 sub-
subgraphs.

Fig. 7.3. Two levels of partitioning on the search graph.

Fig. 7.4. Results of 4-agent cooperative search simulation.

unless the metaedge costs are significantly larger than the metavertex costs. This is
one issue for future research.

There is also some backtracking along the paths in Figure 7.4, some of which
could be eliminated with a simple algorithm implemented in post-processing. Once
this is done, there will be some unused cost available, and the path could be further
improved with a greedy algorithm, for example.

Although the initial searcher positions were not fixed in this example, it is straight-
forward to apply this algorithm to a problem where they are fixed, by preselecting
the initial (meta-)vertices in the top-level search paths as well as those for paths on
any subgraphs where the searchers are initially located.

8. Conclusions and Future Work. We have introduced a method of decom-
posing graph optimization problems to achieve upper and lower bounds on the optimal
criteria with much less computation than what is required to solve the complete prob-
lems. Additionally, the problems are formulated in such a way that allows for multiple
levels of hierarchical decomposition. As the number of levels increases, the compu-
tational complexity approaches O(n) at the expense of looser bounds on the optimal
solution. We gave three example problems to demonstrate the implementation of
this algorithm: shortest path matrix, maximum flow matrix, and cooperative search.
Although we cannot guarantee constant factor approximation bounds for arbitrary
graphs, we provide some such results for simple graphs. For the shortest path matrix
problem on two-dimensional rectangular lattice graphs, we showed that the two-level
decomposition algorithm always approximates the diameter to within 2 of the actual
diameter. For the maximum flow problem, the bandwidth approximation is exact if
we can find a partition which results in a metagraph whose metavertex bandwidths are

Table 7.1

Results of Cooperative Search for 1-4 Agents

Searchers Cost Reward J∗
Ḡworst

(s, 120) J∗
Ḡbest

(s, 120)

1 107 0.081 0.072 1.0

2 107 0.15 0.14 1.0

3 110 0.22 0.20 1.0

4 110 0.29 0.26 1.0

high compared to the metaedge bandwidths. If we apply the cooperative search ap-
proximation to a lattice graph, the expected reward collected approaches the optimal
reward as we increase the size of the lattice.

We provided numerical case studies for the three example problems. The results
of the shortest path matrix tests showed that the algorithm performs best on graphs
with clustered vertices but for lattices, still approximates the diameters to within a
factor of 2. We tested the maximum flow approximation on a graph generated from
an actual internet topology and it resulted in an exact bandwidth approximation.
We also ran the cooperative search algorithm on a floor model of a large university
building, and showed that the fractal decomposition algorithm is computationally
fast, yields good results, and achieves true cooperation between agents.

There are several potential directions for future work on the fractal decompo-
sition method. One is to generate distributed versions of the algorithms. For the
cooperative search problem, we would like to generalize to the moving target case, a
somewhat more difficult problem because the target probability distribution is con-
stantly changing as time passes and new information is collected.

REFERENCES

[1] Stephan Bohacek, Joo Pedro Hespanha, Junsoo Lee, Chansook Lim, and Katia Obraczka.
Game theoretic stochastic routing for fault tolerance on computer networks. Submitted to
publication, August 2005.

[2] Zhiqiang Chen, Andrew T. Holle, Bernard M. E. Moret, Jared Saia, and Ali Boroujerdi. Network
routing models applied to aircraft routing problems. In Winter Simulation Conference,
pages 1200–1206, 1995.

[3] B. DasGupta, J. Hespanha, J. Riehl, and E. Sontag. Honey-pot constrained searching with local
sensory information. Nonlinear Analysis: Hybrid Systems and Applications, 65(9):1773–
1793, Nov. 2006.

[4] J. Eagle and J. Yee. An optimal branch-and-bound procedure for the constrained path, moving
target search problem. Operations Research, 28(1), 1990.

[5] J. A. Fernandez and J. Gonzales. Hierarchical path search for mobile robot path planning. In
Proc. IEEE Int’l Conf. Robotics and Automation, 1998.

[6] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. Journal of
the ACM, 35:921–940, 1988.

[7] R. E. Gomory and T. C. Hu. Multi-terminal network flows. SIAM J. Appl. Math, 9:551–570,
1961.

[8] J. P. Hespanha. An efficient matlab algorithm for graph partitioning. Technical report, Uni-
versity of California, Santa Barbara, CA, Oct. 2004. Available at http://www.ece.ucsb.

edu/∼hespanha/techreps.html.
[9] N. Jing, Y. Huang, and E. Rundensteiner. Hierarchical optimization of optimal path finding

for transportation aplications. In Proc. Fifth Int’l Conf. Info. and Know. Mgmt., pages
261–268, 1996.

[10] D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: Time bounds for all-pairs
shortest paths. SIAM Journal on Comput., 22:1199–1217, 1993.

[11] J. Kim and J. Hespanha. Discrete approximations to continuous shortest-path: Application to
minimum-risk path planning for groups of UAVs. In Proc. of the 42nd IEEE Conference
on Decision and Control, 2003.

[12] C. Lim, S. Bohacek, J. Hespanham, and K. Obraczka. Hierarchical max-flow routing. In Proc.
of the IEEE GLOBECOM, 2005.

[13] J. R. Riehl and J. P. Hespanha. Fractal graph optimization algorithms. In Proceedings of the
44th Conference on Decision and Control, 2005.

[14] H. E. Romeijn and R. L. Smith. Parallel algorithms for solving aggregated shortest path
problems. Computers and Operations Research, 26:941–953, 1999.

[15] G. Shen and P. E. Caines. Hierarchically accelerated dynamic programming for finite-state
machines. IEEE Transactions on Automatic Control, 47(2):271–283, 2002.

[16] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring isp topologies with rocket-
fuel. Transactions on Networking, 12, 2004.

[17] K. E. Trummel and J.R. Weisinger. The complexity of the optimal searcher path problem.
Operations Research, 34(2):324–327, 1986.

