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Abstract

This paper provides an overview of the results available on supervisory control in an adaptive
context, with special emphasis on estimator-based supervisory architectures. We cover both the
linear and nonlinear cases in a unified manner, highlighting the common properties and analysis
techniques. The style of the paper is tutorial and provides the reader with enough detail to
apply these techniques to general classes of linear and nonlinear systems.
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Background

This paper is mostly self-contained. However, the reader may want to also get familiar with the
following material:

1. Design of linear multi-estimators—This material is briefly summarized in Appendix A.

2. Linear Certainty Equivalence Stabilization and Output Stabilization Theorems [55].

3. (Average) Dwell-time Switching Theorem [32].
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1 Overview

Section Summary

In this section we present the basic supervisory control architecture and put it in perspective
with respect to related work. We also introduce key properties of the overall system and explain
how they are used to analyze it. This is done in a in a qualitative fashion appealing to the
intuition of the reader.

1.1 Supervisory control

The idea of integrating logic with continuous dynamics in the control of complex systems is certainly
not new. Consider for example an industrial setting where a human operator periodically adjusts
the set points of an array of PID controllers to account for changes in the environment. One can
recognize the human operator as a component of the feedback loop that adjusts the continuous
dynamics using logic-based decision rules.

The basic problem considered here is the control of complex systems for which traditional control
methodologies based on a single controller do not provide satisfactory performance. In switching
control, one builds a bank of alternative candidate controllers and switches among them based on
measurements collected online. The switching is orchestrated by a specially designed logic that uses
the measurements to assess the performance of the candidate controller currently in use and also the
potential performance of alternative controllers. Figure 1 shows the basic architecture employed by
switching control. In this figure u represents the control signal, w an exogenous disturbance and/or

process

supervisor

controller 1

controller n

u
y

w

σ

σ

Figure 1: Switching control

measurement noise, and y the measured output. The dashed box is as a conceptual representation
of a switching controller. In practice, switching controllers are implemented differently. Suppose
that we desire to switch among a family C of controllers parameterized by some variable q ∈ Q.
For example, we could have

C :=
{
żq = Fq(zq, y), u = Gq(zq, y) : q ∈ Q}

,

with the parameterizing set Q finite, infinite but countable, or not even countable (e.g., a ball
in R

m); and all the zq with the same dimension. Switching among the controllers in C can be
accomplished using the following multi-controller :

ẋC = Fσ(xC , y), u = Gσ(xC , y), (1)
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where the signal σ : [0,∞) → Q—called the switching signal—effectively determines which con-
troller is in the loop at each instant of time. The points of discontinuity of σ correspond to a
change in candidate controller and are therefore called switching times. The multi-controller in (1)
is far more efficient than the conceptual structure in Figure 1 as its dimension is independent of
the number of candidate controllers. Moreover, it avoids the difficulties that arise in Figure 1 when
some of the out-of-loop controllers are unstable [56]. In this section, we use a continuous-time multi-
controller such as (1) to keep the exposition concrete. However, the concepts presented generalize
to other types of candidate control laws, such as discrete-time [8] or hybrid controllers [25].

The top element in Figure 1 is the logic that controls the switch, or more precisely, that generates
the switching signal in (1). This logic is called the supervisor and its purpose is to monitor the
signals that can be measured (in this case u and y) and decide, at each instant of time, which
candidate controller should be put in the feedback loop with the process. The key difference
between the type of switching control proposed here and adaptive algorithms based on continuous
tuning is the use of logic within the supervisor to control the learning process. In fact, traditional
adaptive control could be viewed as a form of switching control where the “switching signal” σ is
generated by means of an ordinary differential equation of the form

ϕ̇ = Φ(σ, ϕ, u, y), σ̇ = Ψ(σ, ϕ, u, y). (2)

In supervisory control, the supervisor combines continuous dynamics with discrete logic and is
therefore an hybrid system. The modeling of such systems has received considerable attention in
the literature in the last few years [77]. A typical hybrid supervisor can be defined by a an ordinary
differential equation coupled with a recursive equation such as

ϕ̇ = fδ(ϕ, u, y), δ = φ(ϕ, δ−), t ≥ t0, (3)

where, for each t > t0, δ−(t) denotes the limit from the left of δ(τ) as τ ↑ t. The signal ϕ is called
the continuous state of the supervisor and δ the discrete state. The output σ ∈ Q of such a hybrid
system is defined by an output equation of the form

σ = ψδ(ϕ). (4)

More general models for hybrid systems can be found, e.g., in [77]. Algorithms that use supervisors
such as (3)–(4) are called supervisory controllers, whereas algorithms that use continuous tuning
laws such as (2) are called adaptive controllers. The use of supervisory control has several potential
advantages over traditional forms of adaptive control. These are discussed with some depth in [27]
and summarized below:

Rapid Adaptation. With supervisory control, online adaptation to sudden changes in the process or
the control objectives can occur very fast because the signal σ that controls which controller is
placed in the feedback loop is not restricted to vary in a continuous fashion. Rapid adaptation
is critical to deal with processes likely to undergo sudden changes in its dynamics (e.g., due to
faults or external interferences) that may render the system unstable or degrade its performance
significantly. We will see below that this is the case in some of our application areas.

Flexibility and Modularity. Supervisory control is based on a modular architecture that separates
the candidate controllers (implemented as a multi-controller) from the learning mechanism (i.e.,
the supervisor). This allows for the integration into supervisory control of off-the-shelf candidate
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controllers, designed using existing theories for nonadaptive systems. In adaptive control, on
the other hand, the candidate controllers usually have to be specially tailored to the tuning
mechanism, leaving little freedom to the controller designer.

The flexibility and modularity of supervisory control is particularly important for processes that
are difficult to control or for which the performance requirements call for advanced techniques to
design the candidate controllers. Supervisory control allows the use of candidate controllers de-
signed using techniques such as LQG/LQR [45], H∞ [6], µ-synthesis [91], feedback linearization
[35], backstepping [42], inverse optimality [19], etc. Flexibility in design is also important when
there are constrains on the structure of the candidate controllers, e.g., in many applications in
process control it is desirable to use PID controllers that are already in place. This feature of
supervisory control is crucial for the successful industrial integration of algorithms capable of
sophisticated forms of adaptation and learning.

Decoupling between Supervision and Control. Between switchings times the process is connected to
one of the candidate controllers and the dynamics of the supervisor play not role in the evolution
of the resulting closed-loop system. This simplifies the analysis of the overall algorithm consid-
erably. We will see below that, for analysis purposes, we can abstract the detailed behaviors
of the multi-controller and supervisor and concentrate on a small set of properties that these
systems exhibit. These properties can, in turn, be used to infer properties of the overall system.
This type of analysis provides an intuitive understanding of the behavior of the complex system
and guides the controller designer in the pursuit of higher performance.

This form of decoupling also adds robustness to the design because nonlinearities in the super-
visor do not affect directly the dynamics of the system. For example, when the process and each
candidate controller are linear, the overall system will be linear between switching times. This
is significantly different from adaptive control, in which the tuning equation (2) always renders
the closed-loop system nonlinear. Because of this, unmodeled dynamics may cause finite escape
time (i.e., signals that grow to infinity in finite time) in adaptive control, even when both the
process and the candidate controllers are linear. This is excluded from approaches based on
supervisory control.

1.2 Adaptive supervisory control

The introduction of adaptation and learning in the field of automatic control dates, at least, as far
back as the 1950s. However, it was not until the 1980s that the field was sufficiently well understood
to find application in the industry. Instrumental to this were the development of theoretical tools
to analyze the stability of adaptive systems. For an historical perspective on the early work on
adaptive control see [5]. The use of switching and logic to overcome the difficulties that arise in
the control of a poorly modeled processes has its roots in the pioneer work of Mårtenson [50].
Mårtenson showed that it is possible to build a switching controller capable of stabilizing every
process that can be stabilized by some controller with order no larger than a given integer n.
The controller proposed effectively “searched” for a stabilizing controller by switching among the
elements of an ordered set of candidate controllers that was dense on the set of all controllers of
order up to n. Mårtenson’s work was of a theoretical nature and the controller proposed has no
practical application due to its very poor performance.

Since [50], a sequential or “pre-routed” search among a set of controllers has been explored
in a several control algorithms proposed in the literature [21, 14, 52, 53, 13, 78, 20]. Many of
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these algorithms attempt to address the issue of performance but usually in an asymptotic sense,
ignoring the transient behavior. In fact, when the number of candidate controllers is large, these
algorithms tend to take a fair amount of time to find an acceptable controller because the search is
essentially blind. This often leads to long periods in which the closed-loop system is unstable and,
consequentially, to unacceptable transients. In practice, pre-routed supervision is usually restricted
to a small number of candidate controllers.

The switching algorithms that seem to be the most promising are those that evaluate online
the potential performance of each candidate controller and use this to direct their search, which no
longer follows a pre-computed order. These algorithms can roughly be divided into two categories:
those based in process estimation, using either Certainty Equivalence [7, 57, 63, 59, 44, 67, 8, 34,
31, 33, 25, 1, 30, 68, 12, 36, 64, 28] or Model Validation [38, 15, 39, 89]; and those based on
a direct performance evaluation of each candidate controller [74, 75, 73, 88, 40, 62]. Although
these algorithms originate from fundamentally different approaches, they share key structures and
exhibit important common properties. We proceed by presenting the basic types of supervisors
that appear in the literature. We shall use the formalism introduced in Section 1.1, which is not
always the one found in the papers referenced.

1.2.1 Estimator-based supervision

Estimator-based supervision was developed to overcome the poor performance that afflicts most pre-
routed supervisors. Estimator-based supervisors continuously compare the behavior of the process
with the behavior a several admissible process models to determine which model is more likely to
describe the actual process. This model is regarded as an “estimate” of the actual process. From
time to time, the supervisor then places in the loop that candidate controller that is more adequate
for the estimated model. This is a manifestation of the well known Certainty Equivalence Principle.
Some estimator-based supervisors follow a Model Validation paradigm towards identification [38,
15, 39, 89], instead of the “best-fit” type of estimation usually used in Certainty Equivalence. These
identification algorithms are usually able to take unmodeled dynamics directly into account but
their applicability is sometimes compromised by computational difficulties.

Typically, the family of admissible process models considered in estimator-based supervision is
of the form

M :=
⋃
p∈P

Mp (5)

where each Mp is a small set of admissible processes centered around a nominal model Np. Typi-
cally, each Np is a finite dimensional dynamical system modeled by an ordinary differential equation
and each set Mp is of the general form

Mp :=
{
Mp : d(Mp,Np) ≤ εp

}
, (6)

where d represents some metric defined on the set of process models, e.g., d could be defined using
the H∞ norm, the gap-metric [90, 16, 23], the Vinnicombe metric [86], or their generalizations to
nonlinear systems. Families of admissible models of the type described by (5)–(6) allow one to take
into account both parametric uncertainty and unmodeled dynamics.

For each admissible process model in M, there must exist at least one candidate controller
in C := {Cq : q ∈ Q} capable of providing satisfactory performance for that model. Usually,
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the same candidate controller provides satisfactory performance when connected to any process
model in one of the sets Mp. We can then define a controller selection function χ : P → Q that
maps each parameter value p ∈ P with the index q = χ(p) ∈ Q of the controller Cq that provides
satisfactory performance when connected to any process model in Mp. In accordance with certainty
equivalence, if at some point in time the process is believed to be in the family Mp for some p ∈ P
then the controller Cq with q := χ(p) should be used.

An estimator-based supervisor can be represented by the diagram in Figure 2. This type of
supervisor consists of a multi-estimator responsible for evaluating which admissible model best
matches the process and a decision logic that generates σ and therefore effectively selects which
candidate controller should be used. Typically, the multi-estimator is a dynamical system of the

+

+

−

−

decision
logic

u

y

y

ep1

epn

yp1

ypn

σ multi-
estimator

Figure 2: Estimator-based Supervisor

form

ẋE = AE(xE , u, y), yp = CE(p, xE , u, y), ep = yp − y, p ∈ P, (7)

whose inputs are the signals that can be measured (in this case u and y) and whose outputs are
the estimation errors, ep, p ∈ P. A multi-estimator is designed according to the general principle
that if the actual process belongs to the ball Mp, p ∈ P, then the corresponding output estimate
yp should match the process output y and therefore the estimation error ep should be small. Each
ep can therefore be regarded as a measure of the likelihood that the actual process is inside the
ball Mp. Multi-estimators can be designed using Observer Theory [72] or identification filters from
Adaptive Control [70].

The decision logic, essentially compares the several estimation errors and, when a particular
error ep, p ∈ P, is small, it places in the feedback loop the corresponding candidate controller
Cq, q := χ(p). This is motivated by the fact that if ep is small then the actual process model is
likely to be in Mp and therefore the candidate controller Cq, q := χ(p) should perform satisfactory.
Although intuitive, this reasoning cannot be used to carry out a formal analysis. This is because,
smallness of ep is generally not sufficient to guarantee that the actual process is in Mp

1. It turns
out that smallness of ep is sufficient to guarantee that the candidate controller Cq, q := χ(p) will do
a good job at controlling the actual process. It was showed by Morse [55] for the linear case that,
while the controller Cq, q := χ(p) is in the feedback loop (i.e., while σ = χ(p)), the system formed
by the process, multi-controller, and multi-estimator is detectable through the estimation error
ep. This means that smallness of ep is indeed sufficient to guarantee that the state of the overall
system remains well behaved. Hespanha [24], Hespanha and Morse [31] extended this result to the

1Using persistence of excitation [70], it is possible to conclude from smallness of ep that the actual process model
is close to Np. However, this usually requires tracking of specific reference signals or the addition of dither noise,
which make this approach unattractive.
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nonlinear case. This was achieved by making use of the recently introduced notion of detectability
for nonlinear systems [56, 84].

The decision logic in Figure 2 will generally only need to compare the estimation errors. This
can be done directly using the state xE of the multi-estimator and therefore the input to the decision
logic only needs to contain the three signals xE, u, and y, regardless of how large P is. In fact,
estimator-based supervision can be used even when P is an infinite set, in which case the diagram
in Figure 2 is purely conceptual. This issue will be discussed in detail later.

1.2.2 Performance-based supervision

Performance-based supervision is characterized by the fact that the supervisor attempts to assess
directly the potential performance of every candidate controller, without trying to estimate the
model of the process [74, 75, 11, 73, 76, 62]. To achieve this, the supervisor computes performance
signals πq, q ∈ Q, that provide a measure of how well the controller Cq would perform in a
conceptual experiment in which the actual control signal u would be generated by Cq as a response
to the measured process output y. This conceptual experiment is usually formulated imagining
that the controller Cq is being used to achieve a control objective that would make u the response
to y (e.g., trying to track a particular reference signal). This type of supervision is inspired by the
idea of controller falsification introduced in [74]. When a particular performance signal πq, q ∈ Q,
is large we know that the controller Cq would behave poorly for a particular pair of signals u, y. A
supervisor should then avoid using such a controller because it has demonstrated poor performance
under the hypothetical conditions of the virtual experiment. In performance-based supervision, the
supervisor then only keeps in the feedback loop candidate controllers for which the corresponding
performance signals are small. We refer the reader to [73] for an in-depth review of the controller
falsification paradigm.

Figure 3 shows the block diagram of a performance-based supervisor. This type of supervisor
consists of a performance monitor that generates the performance signals πq, q ∈ Q, together with
a decision logic that generates the switching signal σ. The performance monitor is generally a
dynamical system that resembles the multi-estimator in (7).

decision
logic

u

y

πp1

πpn

σ performance
monitor

Figure 3: Performance-based Supervisor

1.3 Abstract supervision

Both estimator-based and performance-based supervision share the same basic control architecture
depicted in Figure 4. We will see next that it is convenient to abstract from the detailed imple-
mentation of each individual block in Figure 4 and take instead the diagram in this figure as an
abstract supervision problem, without regard to whether the top/right block is a multi-estimator
or a performance signal generator. In fact, the diagram in Figure 4 also generalizes to other types
of supervision, e.g., pre-routed algorithms. However, and to avoid introducing additional notation,
for now we assume that we have an estimator-based supervisor.
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Figure 4: Common architecture to Estimator/Performance-based Supervision

1.3.1 The switched system

We start by focusing our attention on the aggregate dynamics of the process, multi-controller, and
multi-estimator. The resulting system, called the switched system, can be modeled by a differential
equation of the form

ẋ = Aσ(x,w), (8)

where x denotes the aggregate state of the process, multi-controller, and multi-estimator; and w the
exogenous disturbance/measurement noise. From the perspective of the decision logic, the outputs
of this system are the estimation errors that can be generated by

ep = Cp(x,w), p ∈ P. (9)

The family of functions {Aq : q ∈ Q} that define the dynamics of the switched system in (8) and the
output functions {Cp : p ∈ P} in (9), can be easily constructed using the models of each subsystem.
The switched system has a few basic properties that are crucial for the understanding of the overall
system: the Matching Property and the Detectability Property. The former is essentially a property
of the multi-estimator, whereas the latter is a property of the multi-controller. We proceed to
qualitatively describe these properties and defer a formal presentation for later.

Matching Property The Matching Property refers to the fact that the multi-estimator should be
designed so that each particular yp provides a “good” approximation to the process output y—and
therefore ep is “small”—whenever the actual process model is inside the corresponding Mp. Since
the process is assumed to match one of the models in the set (5), we should then expect at least
one of the estimation errors, say ep∗ , to be small in some sense. For example, we may require that
in the absence of unmodeled dynamics, noise, and disturbances ep∗ converge to zero exponentially
fast for every control input u. It is also desirable to have an explicit characterization of ep∗ in the
presence of unmodeled dynamics, noise, and disturbances. For linear systems, a multi-estimator
satisfying such requirements can be obtained as explained in [57]. In that paper it is also shown
how the multi-estimator can be constructed in a state-shared fashion (so that it is finite-dimensional
even if P is infinite), using standard results from realization theory. Multi-estimators with similar
properties can also be designed for some useful classes of nonlinear systems, as discussed in [31].
State-sharing is always possible if the parameters enter the process model “separably” (but not
necessarily linearly).
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Detectability Property The Detectability Property that we impose on the candidate controllers
is that for every fixed p ∈ P, the switched system (8)–(9) must be detectable with respect to the
estimation error ep when the value of the switching signal is frozen at χ(p) ∈ Q. Adopted to
the present context, the results proved in [55] imply that in the linear case the Detectability
Property holds if the controller asymptotically stabilizes the multi-estimator and the process is
detectable (“Certainty Equivalence Stabilization Theorem”), or if the controller asymptotically
output-stabilizes the multi-estimator and the process is minimum-phase (“Certainty Equivalence
Output Stabilization Theorem”). These conditions are useful because they decouple the properties
that need to be satisfied by the parts of the system constructed by the designer from the properties of
the unknown process. Extensions of these results to nonlinear systems are discussed in [31, 28, 48].
In particular, it is shown in [31] that detectability, defined in a suitable way for nonlinear systems,
is guaranteed if the process is detectable and the controller input-to-state stabilizes the multi-
estimator with respect to the estimation error (in the sense of Sontag [79]). The design of candidate
controllers is thereby reduced to a disturbance attenuation problem well studied in the nonlinear
control literature. The paper [28] develops an integral variant of this result, and the recent work [48]
contains a nonlinear version of the certainty equivalence output stabilization theorem.

1.3.2 The switching logic

The index σ of the controller in the feedback loop is determined by the switching logic, whose inputs
are the estimation errors ep, p ∈ P. In accordance to certainty equivalence, when a particular output
estimation error ep, p ∈ P is the smallest—and therefore p seems to be the most likely value for
the parameter—the logic should select σ = χ(p) ∈ Q. To prevent chattering, one approximates
this mechanism by introducing a dwell-time [57] or hysteresis [24, 31, 30, 46]. Since the value p
that corresponds to the smallest ep varies, it is convenient to introduce a process switching signal
ρ : [0,∞) → P that for each time t indicates the current estimate ρ(t) ∈ P of the index p of the
family Mp where the actual process lies. Typically, σ = χ(ρ). Note that the actual output of the
switching logic is the switching signal σ that determines which candidate controller should be used.
Process switching signals are often just internal variables to the logic or simply “virtual” signals
used in the analysis2. Two properties need to be satisfied by the switching logic and the monitoring
signal generator: the Non-Destabilization Property and the Small Error Property.

Small Error Property The Small Error Property calls for a bound on eρ in terms of the smallest
of the signals ep, p ∈ P for a process switching signal ρ for which σ = χ(ρ). For example, if P is a
finite set and the monitoring signals are defined as µp(t) =

∫ t
0 e

2
p(s)ds, then the scale-independent

hysteresis switching logic of [24] guarantees that for every p ∈ P,∫ t

0
e2ρ(s)ds ≤ C

∫ t

0
e2p(s)ds (10)

where C is a constant (which depends on the number of controllers and the hysteresis parameter)
and the integral on the left is to be interpreted as the sum of integrals over intervals on which ρ
is constant. If ep∗ decays exponentially as discussed earlier, then (10) guarantees that the signal
eρ is in L2. At the heart of the switching logic, there is a conflict between the desire to switch to
the smallest estimation error to satisfy the Small Error Property and the concern that too much
switching may violate the Non-Destabilization Property.

2We see later shortly that in some cases σ = χ(ρ) does not uniquely define ρ and we can utilize this degree of
freedom in the definition of ρ to simplify the analysis.
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Non-Destabilization Property Recall that, in view of the Detectability Property, for every
fixed value of σ = χ(p), p ∈ P the system (8)–(9) is detectable with respect to the corresponding
estimation error ep. The switching signal σ is said to have the Non-Destabilization Property if it
preserves the detectability in a time-varying sense, i.e., if the switched system (8)–(9) is detectable
with respect to the switched output eρ, for a process switching signal ρ for which σ = χ(ρ). The
Non-Destabilization Property trivially holds if the switching stops in finite time (which is the case
if the scale-independent hysteresis switching logic of [24] or its variants proposed in [30, 46] are
applied in the absence of noise, disturbances, and unmodeled dynamics). In the linear case, a
standard output injection argument shows that detectability is not destroyed by switching if the
switching is sufficiently slow (so as not to destabilize the injected switched system). According to
the results of [32], it actually suffices to require that the switching be slow on the average. However,
it should be noted that the Non-Destabilization Property does not necessarily amount to a slow
switching condition; for example, the switching can be fast if the systems being switched are in
some sense “close” to each other. In [57, Section VIII] one can find another fast switching result
that exploits the structure of linear multi-controllers and multi-estimators.

1.3.3 Putting it all together

We now briefly explain how the above properties of the various blocks of the supervisory control
system can be put together to analyze its behavior. For simplicity, let us assume that the process,
as well as the multi-controller and the multi-estimator, are linear systems and that there are no
disturbances or noise. Then the switched closed-loop system can be represented in the form

ẋ = Aσx, ep = Cpx, p ∈ P. (11)

In view of the Detectability Property, (Cp, Aq), q := χ(p) is a detectable pair for each p ∈ P.
Choosing output injection matrices Kp, p ∈ P such that Aq − KpCp is stable for all p, we can
rewrite the dynamics of (11) as

ẋ = (Aσ −KρCρ)x+Kρeρ,

for any process switching signal ρ. Because of the Matching Property, there exists some p∗ ∈ P
for which ep∗ is small (e.g., converges to zero exponentially fast as above). This together with the
Small error Property guarantees that eρ is small in an appropriate sense (e.g., an L2 signal) for
some process switching signal ρ for which σ = χ(ρ). To establish boundedness of the overall system
all that remains to be verified is that the switched system

ẋ = (Aσ −KρCρ)x

is asymptotically stable. In view of stability of the individual matrices Aq −KpCp with q := χ(p),
this is guaranteed if σ has the additional Non-destabilization Property: For example, if the switching
stops in finite time or is slow on the average in the sense of [32]. Switching signals produced by
the dwell-time switching logic [57, 59] or by the scale-independent hysteresis switching logic of [24]
and its variants proposed in [30, 26] are known to possess these desired properties. Proceeding in
this fashion, it is possible to analyze stability and robustness of supervisory control algorithms for
quite general classes of uncertain systems [57, 59, 32, 30, 26]

Not surprisingly, the four properties that were just introduced for supervisory control have
direct counterparts in classical adaptive control. The Detectability Property was first recognized
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in the context of adaptive control in [54], where it was called tunability. The Matching Property
is usually implicit in the derivation of the error model equations, where one assumes that, for a
specific value of the parameter, the output estimate matches the true output. Both the Small
Error Property and the Non-Destabilization Property are pertinent to the tuning algorithms, being
typically stated in terms of the smallness (most often in the L2 sense) of the estimation error and
the derivative of the parameters estimate, respectively.
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2 Estimator-based linear supervisory control

Section Summary

In this section we specialize the estimator-based architecture of Section 1 to the case of a linear
process, linear candidate controllers, and linear multi-estimator. In this context we summarize
the results available and go through the main steps of the stability argument.

2.1 Class of admissible processes and candidate controllers

We assume that the uncertain process to be controlled admits the model of a finite-dimensional
stabilizable and detectable linear system with control input u and measured output y, perturbed
by a bounded disturbance input d and a bounded output noise signal n (cf. Figure 5). The distur-
bance/noise vector is then defined by w :=

[
d n

]′. It is assumed known that the process transfer

+

+

+

+
processu y

d n

Figure 5: Process

function from u to y belongs to a family of admissible process model transfer functions

M :=
⋃
p∈P

Mp

where p is a parameter taking values in some index set P. Here, for each p, Mp denotes a family
of transfer functions “centered” around some known nominal process model transfer function νp

(cf. below). Throughout the paper, we will take P to be a compact subset of a finite-dimensional
normed linear vector space.

The problem of interest is to design a feedback controller that achieves output regulation,
i.e., drives the process output y to zero, whenever the noise and disturbance signals are zero.
Moreover, all system signals must remain (uniformly) bounded in response to arbitrary bounded
noise and disturbance inputs. Everything that follows can be readily extended to the more general
problem of set-point control (i.e., tracking an arbitrary constant reference r) with the help of
adding an integrator in the feedback loop, as in [57, 59]. Such a modification would not introduce
any significant changes as far as the principal developments of this paper are concerned. Control
algorithms of the type described here can also be applied to the problem of disturbance suppression
[22].

The set P can be thought of as representing the range of parametric uncertainty, while for
each fixed p ∈ P the subfamily Mp accounts for unmodeled dynamics. There are several ways of
specifying allowable unmodeled dynamics around the nominal process model transfer functions νp.
For example, take two arbitrary numbers ε > 0 and λ ≥ 0. Then we can define

Mp := {νp(1 + δm) + δa : ‖δm‖∞,λ ≤ ε, ‖δa‖∞,λ ≤ ε}, p ∈ P (12)

where ‖ · ‖∞,λ denotes the eλt-weighted H∞ norm of a transfer function: ‖ν‖∞,λ = sup�[s]≥0 |ν(s−
λ)|. This yields the class of admissible process models treated in [57, 59] for the SISO case.
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Alternatively, one can define Mp to be the ball of radius ε around νp with respect to the Vinnicombe
metric [86]. Another possible definition for SISO processes is

Mp :=
{np + δn
dp + δd

: ‖δn‖∞,λ ≤ ε, ‖δd‖∞,λ ≤ ε
}
, p ∈ P (13)

where νp = np/dp is the normalized coprime factorization of νp (see, e.g., [91]). This is more general
than (12) in that it allows for uncertainty about the pole locations of the nominal process model
transfer functions. In the sequel, allowable unmodeled dynamics are assumed to be specified in
either one of the aforementioned ways. We will refer to the positive parameter ε as the unmodeled
dynamics bound.

Modeling uncertainty of the kind described above may be associated with unpredictable changes
in operating environment, component failure, or various external influences. Typically, no single
controller is capable of solving the regulation problem for the entire family of admissible process
models. Therefore, one needs to develop a controller whose dynamics can change on the basis of
available real-time data. Within the framework of supervisory control discussed here, this task is
carried out by the supervisor, whose purpose is to orchestrate the switching among a parameterized
family of candidate controller transfer functions

C := {κq : q ∈ Q}, (14)

where Q is an index set. We require this controller family to be sufficiently rich so that every
admissible process model can be stabilized by placing it in the feedback loop with some controller
in C. In particular, we assume that there exists a controller selection function χ : P → Q that
maps each parameter value p ∈ P with the index q = χ(p) ∈ Q of the controller κq that stabilizes
the nominal process model transfer function νp as well as all transfer functions in the family Mp

“centered” at νp. In accordance with certainty equivalence, if at some point in time the process is
believed to be in the family Mp for some p ∈ P then the controller κq with q := χ(p) should be
used.

2.2 Multi-estimator and multi-controller

We utilize here a state-shared multi-estimator of the form

ẋE = AExE +DEy +BEu, yp = CpxE , ep = yp − y, p ∈ P (15)

with AE an asymptotically stable matrix. This type of structure is quite common in adaptive
control. Note that even if P is an infinite set, the above dynamical system is finite-dimensional. In
this case the multi-estimator formally has an infinite number of outputs, however they can all be
computed from xE .

The key property of the of multi-estimator is the Matching Property, which refers to the fact that
if the process transfer function is within a particular family Mp∗ , p∗ ∈ P then the corresponding
output estimate yp∗ should be close to the process out y and therefore ep∗ should be small. It turns
out that it is always possible to design state-shared multi-estimators for linear systems with such
a property (cf. Appendix A). Formally, the Matching property can be stated as follows:

Property 1 (Matching). There exist positive constants c0, cw, cε, λ and some p∗ ∈ P such that

‖ep∗‖λ,[0,t) ≤ c0 + cw‖w‖λ,[0,t) + ε cε‖u‖λ,[0,t), ∀t ≥ 0.
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In the above property, ‖ · ‖λ,[0,t) denotes the eλt-weighted L2-norm truncated to the interval [0, t),

i.e., given a signal v ‖v‖λ,[0,t) =
( ∫ t

0 e
2λτv(τ)2dτ

) 1
2 . We will denote by L2(λ) the set of all signals

that have finite eλt-weighted L2-norm on [0,∞).

To build the multi-controller, we start by constructing a family {(Fq , Gq,Hq, Jq) : q ∈ Q}
of nC-dimensional stabilizable and detectable realizations for the candidate controllers, with the
understanding that (Fq, Gq,Hq, Jq) is a realization for the controller κq. The multi-controller is
then defined by

ẋC = FσxC +Gσy, u = HσxC + Jσy.

And therefore, when σ = q we effectively have the controller κq in feedback with the process. As
mentioned before the main requirement on the multi-controller is that it satisfy the Detectability
property. The best way to understand what this amounts to passes through the introduction of
what is called the “injected systems” that we introduce next.

2.3 The injected system

We recall that we called the aggregate system consisting of the process, multi-estimator, and multi-
controller the switched system. We propose now to actually regard the switched system as the
feedback interconnection of two subsystem: the process and the “injected system.” Formally, this
can be done as follows:

1. Take a piecewise constant process switching signal ρ : [0,∞) → P. It is useful to think of ρ(t)
as the estimate (at time t) of the parameter value p∗ ∈ P that indexes the family Mp∗ where
the process lies.

2. Define the signal

v(t) := eρ(t)(t) = yρ(t)(t) − y(t), t ≥ 0. (16)

3. Replace y in the equations of the multi-estimator and multi-controller by yρ−v. The resulting
system (with state x :=

[
x′E x′C

]′) is called the injected system and has input v and outputs
u and all the yp, p ∈ P. The name “injected” comes from the fact that to construct it we
inject the output yρ of the multi-estimator back into its input y.

We can then regard the switched system as the interconnection of two system: the process and the
injected system, with the interconnection defined by (16). (cf. Figure 6).

The state-space model of the injected system is of the form

ẋ = Aρσx+Bσv, u = Fρσx+Gσv, yp = Cpx, p ∈ P, (17)

for appropriately defined matrices Apq, Bq, Fpq, Gq, Cp, p ∈ P, q ∈ Q. By writing Apq explicitly,
one can see by inspection that the eigenvalues of this matrix are precisely the poles of the feedback
interconnection of the nominal process νp with the controller κq, together with some of the (stable)
eigenvalues of AE and any (stable) eigenvalues of κq’s realization (Fq, Gq,Hq, Jq) that are not
observable or controllable. To verify this, one uses the fact that (AE+DECp, BE , Cp) is a stabilizable
and detectable realization of νp, which is a necessary condition for the matching property to hold.

15



+

+

−

...

process

injected
system

u

y

v

w

yp1

ypk

ep1

epk

ρ

ρ

σ

Figure 6: The switched system as the interconnection of the process with the injected system.

An immediate consequence of the above is that when σ = q ∈ Q, ρ = p ∈ P, and the candidate
controller κq stabilizes the nominal process model νp, the injected system is asymptotically stable.
Therefore, if v := ep converges to zero, then so does the state and all the outputs of the injected
system. In particular, u and yp. But then y = yp − v also converges to zero. Since it has been
established that both the input u and output y of the process converge to zero, its internal state
must also converge to zero (assuming the process is detectable). This argument proves that the
switched system is detectable. This is because only for detectable (linear) systems it is possible to
argue that its state converge must converge to zero when it is observed that its output converges
to zero.

Property 2 (Detectability). Let p ∈ P and q ∈ Q be such that the candidate controller κq

stabilizes the nominal process model νp (e.g., q = χ(p) where χ denotes the controller selection
function defined before). Then, for σ = q ∈ Q and ρ = p ∈ P, the injected system is asymptotically
stable and the switched system is detectable through the output ep.

This result is also known as the Certainty Equivalence Stabilization Theorem [54]. The connection
with certainty equivalence stems from the fact that if the estimation error ep is small—and therefore
it seems reasonable to assume that the process is in Mp—we actually achieve detectability through
ep by using the controller κq that stabilizes νp. Because of detectability, smallness of ep will then
results in smallness of the overall state of the switched system whether or not the process is in Mp.

Although stability of the injected system is a simple mechanism to obtain detectability of the
switched system, it is not the only mechanism. For example, it is possible to show that output-
stability of the injected system together with minimum-phase of the process are also sufficient to
prove that the switched system is detectable. This is known as the Certainty Equivalence Output
Stabilization Theorem [54]. Cyclic switching is another mechanism to achieve detectability [66, 69].

2.4 Dwell-time switching logic

The decomposition of the switched system shown in Figure 6 provides insight into the challenges
in designing the switching logic that generates σ:

1. To achieve stability one wants v := eρ to be small. The simplest way to achieve this is to
select ρ to be the index in P for which ep is smallest.
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2. However, smallness of v is only useful if the injected system is stable. To achieve this one
wants σ = χ(ρ) to make sure that the injected system is stable. However, this only guarantees
that Aρ(t)σ(t) is a stability matrix for every time T and not that the time-varying system is
exponentially stable. In fact, it is well known that switching among stable matrices can easily
result in an unstable system [9, 47]. To avoid a possible loss of stability caused by switching
one should then require the switching logic to prevent “too much” switching. Unfortunately,
this may conflict with the requirement that v := eρ.

The items (1) and (2) above directly motivate the Small Error Property and the Non-destabilization
Property, respectively.

The dwell-time switching logic resolved the previous conflict by select ρ to be the index in P
for which ep is smallest, but “dwelling” on this particular choice for ρ and σ = χ(ρ) for at least a
pre-specified amount of time τD called the dwell-time [57, 59]. Figure 7 shows a simplified version
of this logic that we will utilize here. In this figure, the signals µp, p ∈ P are called the monitoring

start

ρ := arg min
p∈P

µp

σ := χ(ρ)

wait τD seconds

Figure 7: Dwell-time switching logic

signals and are defined by

µp(t) :=
∫ t

0
e−2λ(t−τ)‖ep(τ)‖2dτ, p ∈ P, (18)

where λ denotes a non-negative constant. For convenience, we make it the same as in (12) but we
could also take a strictly smaller value than that in (12). The reason for this will become clear
later. The monitoring signals should be viewed as measures of the size of the estimation errors over
a window whose length is defined by the forgetting factor λ. Thus smallness of a monitoring signal
µp, p ∈ P means that the corresponding estimation error ep has been small for some time interval
(on the order of 1/λ seconds). We opted here for an L2-type norm to measure the estimation
errors, but other norms would be possible. In fact, this extra flexibility will be needed for nonlinear
systems.

Note that the process switching signal ρ defined by the logic is actually not used by the super-
vision algorithm, as only σ is used by the multi-controller. The signal ρ is only used in the analysis
to define the injected system and does not actually need to be generated explicitly by the logic. In
fact, one can viewed ρ as a degree-of-freedom to be used in constructing a stability prove. However,
in the definition of the dwell-time switching logic in Figure 7 we are somewhat getting ahead of
ourselves and already specifying the process switching signal ρ that “makes sense” to use in light
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of the Detectability Property 2. However, this is certainly not the only choice and in fact we will
shortly be forced to use a slightly different process switching signal.

2.4.1 Dwell-time switching properties

By construction, the dwell-time switching logic guarantees that the interval between two consecutive
discontinuities of σ. We state this formally for later reference.

Property 3 (Non-destabilization). The minimum interval between consecutive discontinuities
of any switching signal σ generated by the dwell-time switching logic is equal to τD > 0.

The Small Error Property for the dwell-time switching logic is less trivial and we will state two
version of it. For simplicity, we start by considering the case of a finite set P. Let us start by
assuming that one of the estimation errors ep∗ ∈ L2(λ), i.e.,

‖ep∗‖2
[0,∞) =

∫ ∞

0
e2λτ‖ep∗(τ)‖2dτ ≤ C∗ <∞, (19)

(for example because we are ignoring noise and unmodeled dynamics, c.f the Matching Property
1). This means that e2λtµp∗(t) ≤ C∗, t ≥ 0 and therefore, whenever ρ is selected to be equal to
some p ∈ P at time t, we must have

∫ t

0
e2λτ‖ep(τ)‖2dτ = eλtµp(t) ≤ eλtµp∗(t) ≤ C∗. (20)

Two options are then possible:

1. Switching will stop in finite time T at some value p ∈ P for which (20) holds for t ≥ T . In
this case,

∫ ∞

0
e2λτ‖eρ(τ)(τ)‖2dτ =

∫ T

0
e2λτ‖eρ(τ)(τ)‖2dτ +

∫ ∞

T
e2λτ‖ep(τ)‖2dτ <∞.

2. Switching will not stop, but after some finite time T it must only occur among elements of
a subset P∗ of P, each appearing in ρ infinitely many times. Therefore (20) holds for all
elements of P∗ and we have

∫ ∞

0
e2λτ‖eρ(τ)(τ)‖2dτ =

∫ T

0
e2λτ‖eρ(τ)(τ)‖2dτ +

∑
p∈P∗

∫ ∞

T
e2λτ‖ep(τ)‖2dτ <∞.

The last inequality requires finiteness of P∗.

The following can then be stated:

Property 4 (Small Error—L2 case). Assume that P is a finite set. If there exists some p∗ ∈ P
for which ep∗ ∈ L2(λ) then eρ ∈ L2(λ), i.e.,

∫ ∞

0
e2λτ‖eρ(τ)(τ)‖2dτ <∞. (21)
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It turns out that, even when no p∗ ∈ P is necessarily L2(λ), it is possible to prove that a
suitable Small Error Property holds. The finiteness of P is also not needed and can be replaced by
finiteness of the set of candidate controllers:

Property 5 (Small Error—general case). Assume that Q is a finite set with m elements. For
every t ≥ 0 there exists a process switching signal ρt : [0, t) → P, such that σ = χ(ρt) except for at
most m time intervals of length τD, such that

∫ t

0
e2λτ‖eρt(τ)(τ)‖2dτ ≤ m

∫ t

0
e2λτ‖ep(τ)‖2dτ, ∀p ∈ P. (22)

The process switching signal ρt : [0, t) → P can be constructed as follows: For each q ∈ Q, let
[τq, τq + τD] be the last interval on [0, t) on which σ is equal to q and set ρt(τ) = ρ(τq) for any time
τ < τq for which σ(τ) = q = χ(ρ(τq)) = χ(ρt(τ)) and ρt(τ) = p for τ ∈ [τq, τq + τD]. With this
construction σ = χ(ρt) except for at most m intervals of length τD. We leave to the reader the
proof that (22) holds with ρt defined in this manner. This proof is essentially done in [60].

The Small Error Property can still be generalized to infinite sets of candidate controllers, under
suitable compactness assumptions [59, Lemma 5].

2.4.2 Implementation Issues

Before proceeding some discussion is needed regarding the implementation of the switching logic,
especially when P is an infinite set and therefore the generation of the monitoring signals in (18)
seems to require an infinite dimensional system. It turns out that the µp, p ∈ P can be efficiently
generated by a finite-dimensional system. To see why, note that it is always possible to write

‖ep‖2 = ‖CpxE − y‖2 = k(p)′h(y, xE), ∀p ∈ P, y, xE

where k(p) and h(y, xE) are appropriately defined vector functions. The monitoring signals can
then be generated by

ẋµ = −2λxµ + h(y, xE), xµ(0) = 0, µp = k(p)xµ, p ∈ P.

This can be checked by verifying that the µp so defined satisfy the differential equation µ̇p =
−2λµp + ‖ep‖2, µp(0) = 0, whose solution is given by (18) with ep as in (15). This also means that
the generation of ρ in the middle box of diagram in Figure 7 can be written as

ρ := arg min
p∈P

k(p)xµ (23)

and is, in fact, an optimization over the elements of P. This means that we never actually need to
explicitly compute all the estimation errors ep or the monitoring signals µp, as long as we know how
to solve the optimization problem (23). This is certainly true when Cp is linear on the parameter
p and therefore k(p) is quadratic on p, in which case closed form solutions can often be found. It
is interesting to point-out that most traditional adaptive control algorithms can only address this
case. The dwell-time logic, however, can still be efficiently implemented when this is not the case
but the optimization (23) is tractable. This happens when there is a closed-form solution or when
there are efficient numerical solution (e.g., due to convexity). These issues are further discussed in
[27].
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It is also worth noticing that the Small Error Properties above still hold if the optimization in
(23) is not instantaneous and takes some computation time τC > 0, i.e., if

ρ(t) := arg min
p∈P

k(p)xµ(t− τC).

The only change needed in Property (5) is that now σ = χ(ρt) except for at most m intervals of
length τD + τC .

2.4.3 Slow switching

In this section we provide the necessary details to prove the stability of the supervisory control
closed-loop system. We will do this under the simplifying assumption that the dwell-time constant
τD is large:

Assumption 1 (Slow switching). The dwell-time τD and the forgetting factor λ are chosen so
that there exist constants c > 0 and λ̄ > λ for which, for every process switching signal ρ̄ with
interval between consecutive discontinuities no smaller than τD,

‖Φρ̄(t, τ)‖ ≤ ce−λ̄(t−τ), t ≥ τ ≥ 0, (24)

where Φρ̄ denotes the state transition matrix of the time varying system ż = Aρ̄σ̄z, σ̄ := χ(ρ̄).

Since for every fixed time t ≥ 0 the controller κσ̄(t) stabilizes the nominal process model νρ̄(t)

and therefore the matrix Aρ̄(t)σ̄(t) is asymptotically stable. By choosing λ sufficiently small so that
all matrices Apχ(p) + λI, p ∈ P are asymptotically stable, it is then possible to make sure that
(24) holds by selecting τD sufficiently large (cf. [32]). We will see later that we can actually prove
stability for any arbitrarily small value of τD.

We start by considering the case in which there is no unmodeled dynamics and no noise, i.e.,
when ε = 0 and w(t) = 0, t ≥ 0. From the Matching Property 1 and the Small Error Property 4,
we then conclude that there is some p∗ ∈ P for which ep∗ is eλt-weighted L2 in the sense of (19) and
eρ is also eλt-weighted L2, now in the sense of (21). This means that the state transition matrix of
the injected system (17) decays to zero faster than e−λt (cf. Assumption 1) and its input v := eρ is
eλt-weighted L2. From this we conclude immediately that the state x all the outputs of the injected
system are also eλt-weighted L2 and even converge to zero. This is true, in particular, for u and
yρ. But then y := yρ − eρ is also eλt-weighted L2. Since the input and output of the process are
L2 then its state must converge to zero (assuming the process is detectable). The following was
proved:

Theorem 1. Assuming that P is finite, that the process is detectable, and in the absence of noise
and unmodeled dynamics (i.e., when ε = 0 and w(t) = 0, t ≥ 0), the states of the process, the
multi-estimator, and the multi-controller are all eλt-weighted L2 and converge to zero as t→ ∞.

We proceed now to consider the general case in which ep∗ is not known to be L2. In this case,
we have to use the Small Error Property 5 instead of 4. To do this, let us focus out attention on
an interval [0, t), t > 0. We start by “cheating” and pretending that σ = χ(ρt) on [0, t). In this
case, Assumption 1 guarantees that the injected system (17) obtained using the process switching
signal ρt has finite induced ‖ · ‖λ,[0,t)-norm, i.e., that there exists a finite constant γ such that

‖u‖λ,[0,t) ≤ γ‖v‖λ,[0,t) + c̄0, (25)
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where c0 only depends on the initial conditions x(0). Moreover, because of the Small Error Prop-
erty 5 and the Matching Property 1 we also have that

‖eρt‖λ,[0,t) ≤
√
m‖ep∗‖λ,[0,t) ≤ c0

√
m+ cw

√
m‖w‖λ,[0,t) + ε cε

√
m‖u‖λ,[0,t), (26)

But, since we constructed the injected system using the process switching signal ρt, v := eρt and
therefore we conclude from (26) and (25) that

‖v‖λ,[0,t) ≤
(c0 + ε cεc̄0)

√
m

1 − ε γ cε
√
m

+
cw

√
m

1 − ε γ cε
√
m
‖w‖λ,[0,t), (27)

assuming that

ε <
1

γ cε
√
m
.

From this bound it is then straightforward to conclude that there is a finite induced ‖ · ‖λ,[0,t)-
norm from w to any other signal; that all signals remain bounded, provided that w(t) is uniformly
bounded for t ∈ [0,∞); and that all signals converge to zero when w(t) = 0, t ≥ 0.

The key insight to be taken from the reasoning above is that one can apply a small-gain argument
to the switched system in Figure 6 by regarding the switch as a system with a finite induced ‖·‖λ,[0,t)-
norm specified by Small Error Property. It turns out that a similar argument can be made even if
σ is not equal to χ(ρt) all over [0, t).

For time instants τ ∈ [0, t) on which σ(τ) = χ
(
ρt(τ)

)
, the matrix Aρt(τ)σ(τ) is asymptotically

stable. However, when σ(τ) �= χ
(
ρt(τ)

)
, Aρt(τ)σ(τ) may be unstable. Fortunately, this will only

occur for a union of time intervals with total length no larger than mτD. Therefore the time-
varying system ż = Aρtσz is still exponentially stable and its state transition matrix Φρtσ can still
be bounded by an equation like (24), in fact it is straightforward to show that

‖Φρtσ(t, τ)‖ ≤ cea m τDe−λ̄(t−τ), t ≥ τ ≥ 0, (28)

where a := maxp∈P,q∈Q ‖Apq‖. We can therefore still use the argument above to establish the
bound (27) but keeping in mind that γ must now be replaced by an upper-bound γ̄ on the induced
‖ · ‖λ,[0,t)-norm from v to u of the injected system obtained using the process switching signal ρt.
Such an upper bound can be easily derived from (28) and (17):

γ̄ :=
cea m τD

λ̄− λ

(
max

p∈P,q∈Q
‖Fpq‖.‖Bq‖

)
+ max

q∈Q
‖Gq‖ (29)

[32]. This leads to the following result:

Theorem 2. Assuming that the set Q is finite, that the process is detectable, that assumption 1
holds, and that

ε <
1

γ̄ cε
√
m
,

the ‖ · ‖λ,[0,t)-norm of the state of the multi-estimator, the state of the multi-controller, and of the
input and output of the process can all be bounded by expressions of the form

c̄0 + c̄w‖w‖λ,[0,t),

where c̄0 and c̄w are finite constants, with c̄0 depending on initial conditions and c̄w not. Moreover,
all signals remain bounded, provided that w(t) is uniformly bounded for t ∈ [0,∞); and that all
signals converge to zero as t→ ∞ when w(t) = 0, t ≥ 0.
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The reader is referred to [59] for a generalization of Theorem 2 to infinite sets of candidate con-
trollers.

2.4.4 Fast switching

As mentioned before Assumption 1 can be made significantly less restrictive and, in particular the
dwell-time τD can be made arbitrarily small without compromising stability. In fact, we can replace
this assumption simply the following one.

Assumption 2 (Fast switching). The forgetting factor λ is chosen so that all matrices Apχ(p)+λI,
p ∈ P are asymptotically stable.

The following was then proved in [59]:

Theorem 3. Assuming that the process is SISO, that assumption 2 holds, and that the multi-
controller is of the form

ẋC = (AC + dCfσ)xC + bCy, u = fσxC + jσy,

there exists a constant ε∗ such that when

ε < ε∗,

the ‖ · ‖λ,[0,t)-norm of the state of the multi-estimator, the state of the multi-controller, and of the
input and output of the process can all be bounded by expressions of the form

c̄0 + c̄w‖w‖λ,[0,t),

where c̄0 and c̄w are finite constants, with c̄0 depending on initial conditions and c̄w not. Moreover,
all signals remain bounded, provided that w(t) is uniformly bounded for t ∈ [0,∞); and that all
signals converge to zero as t→ ∞ when w(t) = 0, t ≥ 0.

We do not prove this result here for lack of space.

2.5 Other switching logics

In the sequel we describe a few other switching logics that can be used to generate the switching
signal in estimator-based supervision.

2.5.1 Scale-independent hysteresis switching logic

The idea behind hysteresis-based switching logics is to slowdown switching based on the observed
growth of the estimation errors instead of forcing a fixed dwell-time. Although hysteresis logics do
not enforce a minimum interval between consecutive switchings, they can still be used to achieve
non-destabilization of the switched system. The Scale-independence hysteresis switching logic [24,
26, 28] presented here is inspired by its non-scale-independent counter part introduced in [51, 61].
Figure 8 shows a graphical representation of this logic, where h is a positive hysteresis constant ;
the signals µp, p ∈ P are called the monitoring signals and are defined by

µp(t) := ε+ e−λtε0 +
∫ t

0
e−2λ(t−τ)‖ep(τ)‖2dτ, p ∈ P;
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Figure 8: Scale-independent hysteresis switching logic

λ is a constant non-negative forgetting factor ; and ε, ε0 nonnegative constants, with at least one of
them strictly positive. positive.

The denomination “scale-independent” comes from the fact that the switching signal σ gener-
ated by the logic would not change if all the monitoring signals we simultaneously scaled, i.e., if
all µp(t), p ∈ P were replaced by ϑ(t)µp(t), p ∈ P for some positive signal ϑ(t). This property is
crucial to the proof of the Scale-Independent Hysteresis Switching Theorem [28] that provides the
type of bounds needed to establish the Non-destabilization and Small Error Properties. We state
below a version of this theorem adapted to the monitoring signal defined in (53). The following
notation is needed: given a switching signal σ, we denote by Nσ(τ, t), t > τ ≥ 0 the number of
discontinuities of σ in the open interval (τ, t).

Theorem 4 (Scale-Independent Hysteresis Switching). Let P be a finite set with m elements.
For any p ∈ P we have that

Nσ(τ, t) ≤ 1 +m+
m log

( µp(t)
ε+e−λtε0

)
log(1 + h)

+
mλ(t− τ)
log(1 + h)

, ∀t > τ ≥ 0, (30)

and
∫ t

0
e−λ(t−τ)‖eρ(τ)‖2dτ ≤ (1 + h)mµp(t), ∀t > 0. (31)

Equations (56) and (31) can be used to establish suitable Non-destabilization and Small Error
Properties, respectively. We refer the reader to [26] for details of the stability analysis .

2.5.2 Hierarchical hysteresis switching logic

A key assumption of the Scale-Independent Hysteresis Switching Theorem 4 was the finiteness of
the parameter set P. In fact, when P has infinitely many elements the scale-independent hysteresis
switching logic could, in principle, produce an arbitrarily large number of switchings in a finite
interval (τ, t) ⊂ [0,∞). This difficulty is avoided by the hierarchical hysteresis switching logic
introduced in [46, 29]. Figure 8 shows a graphical representation of this logic, where h is a positive
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Figure 9: Hierarchical hysteresis switching logic

hysteresis constant ; the signals µp, p ∈ P are called the monitoring signals and are defined by

µp(t) := ε+ e−λtε0 +
∫ t

0
e−2λ(t−τ)‖ep(τ)‖2dτ, p ∈ P;

λ is a constant non-negative forgetting factor ; and ε, ε0 nonnegative constants, with at least one of
them strictly positive.

The hierarchical hysteresis switching logic guarantees bounds like the ones in the Scale-Independent
Hysteresis Switching Theorem 4 even when the parameter set P is infinite, provided that the set
of candidate controllers is finite.

Theorem 5 (Hierarchical Hysteresis Switching). Let Q be a finite set with m elements. For
any p ∈ P we have that

Nσ(τ, t) ≤ 1 +m+
m log

( µp(t)
ε+e−λtε0

)
log(1 + h)

+
mλ(t− τ)
log(1 + h)

, ∀t > τ ≥ 0, (32)

and for every t ≥ 0, there exists a process switching signal ρt : [0, t) → P such that σ = χ(ρt) on
[0, t) and

∫ t

0
e−λ(t−τ)‖eρt(τ)‖2dτ ≤ (1 + h)mµp(t). (33)

A noticeable difference between the Scale-Independent Hysteresis Switching Theorem 4 and the
Hierarchical Hysteresis Switching Theorem 5 is that the process switching signal ρt that appear in
the integral bound on the estimation error is not the signal ρ defined by the logic (cf. middle box
in Figure 9). However, for each t ≥ 0, the process switching signal ρt still satisfies σ = χ(ρt) on
[0, t) and therefore each candidate controller κσ(τ), τ ∈ [0, t) stabilizes the nominal process model
νρt(τ). The use of process switching signal ρt that depends on the interval [0, t) on which we want
to establish boundedness does not introduce any particular difficulty (in fact, this was already done
in Section 2.4.3).

To use the Hierarchical Hysteresis Switching Theorem 5 one needs to work with a finite family
of candidate controllers, even if the process parameter set P has infinitely many elements. This
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raises the question of whether or not it is possible to stabilize an infinite family of process models
M :=

⋃
p∈P Mp with a finite set of controllers {νq : q ∈ Q}. It turns out that the answer to this

question is affirmative provided that P is compact and under mild continuity assumptions hold [1].

The reader is referred to [44, 34, 67, 68, 71] for several alternative switching logics.
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3 Estimator-based nonlinear supervisory control

Section Summary

In this section we consider the general nonlinear case. We introduce several classes of systems
for which it is known how to build multi-estimators and multi-controller. We also present the
main stability results available and go through the arguments of the proof.

3.1 Class of admissible processes and candidate controllers

We assume that the uncertain process to be controlled admits a state-space model of the form

ẋP = A(xP , w, u), y = C(xP , w), (34)

where u denotes the control input, w an exogenous disturbance and/or measurement noise, and y
the measured output. The process model is assumed to belong to a family of the form

M :=
⋃
p∈P

Mp,

where p is a parameter taking values on the set P and each Mp denotes a family of models centered
around a nominal state-space model Np of the form

ż = Ap(z,w, u), y = Cp(z,w), p ∈ P.

Typically,

Mp :=
{
Mp : d(Mp,Np) ≤ εp

}
,

where d represents some metric defined on the set of state-space models. Most of the results
resented here are either independent of the metric d used (e.g., those related to the Detectability
property) or just consider the case εp = 0, p ∈ P (e.g., those related to the Matching property).

The problem of interest is to stably design a feedback controller that drives the output y to zero.
All that follows could be easily extended to the more general set-point control problem, in which one
attempts to track an arbitrary constant reference r. Within the framework of supervisory control,
this will be achieved by switching among a parameterized family of candidate feedback-controllers

C :=
{
żq = Fq(zq, y), u = Gq(zq, y) : q ∈ Q}

,

Without loss of generality, we assume that all the state-space models in C have the same dimension
and therefore switching among the controllers in C can be accomplished using the multi-controller:

ẋC = Fσ(xC , y), u = Gσ(xC , y),

where σ : [0,∞) → Q denotes the switching signal.

3.2 Multi-estimator

Currently, a general methodology to design multi-estimators for any class of admissible nonlinear
processes does not seem to exist. However, we can design multi-estimators for important specific
classes of nonlinear processes. We present some of these next.
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3.2.1 State accessible and no exogenous disturbances

Suppose that the nominal state-space models Np, p ∈ P are of the form

ż = Ap(z, u), y = z, p ∈ P, (35)

and therefore that the state is accessible and there is no exogenous disturbance w. One simple
multi-estimator for this family of processes is given by

żp = A(zp − y) +Ap(y, u), yp = zp, p ∈ P, (36)

where A can be any asymptotically stable matrix. In principle, the state of this multi-estimator
would then be xE := {zp : p ∈ P}. However, we shall see shortly that it is often possible to
implement this type of multi-estimator using “state-sharing,” which results in multi-estimators
with much smaller dimension.

Using the multi-estimator in (36), when the process model is given by Np∗ for some p∗ ∈ P,
ep∗ := yp∗ − y converges to zero exponentially fast at a rate determined by the eigenvalues of A.
This is because ep∗ = zp∗ − z and therefore ėp∗ = Aep∗. The Matching Property can then be stated
as follows:

Property 6 (Matching). Assume that M := {Np : p ∈ P}, with Np as in (35). There exist
positive constants c0, λ∗ and some p∗ ∈ P such that

‖ep∗(t)‖ ≤ c0e
−λ∗t, t ≥ 0. (37)

Also with nonlinear systems, it is often possible to state-share the multi-estimator, i.e., generate
a large number of estimation errors using a state with small dimension. The condition needed here
is separability of Ap(·, ·), in the sense that this function can be written as

Ap(y, u) = M(y, u)k(p), ∀p ∈ P, u, y

for an appropriately defined matrix-valued function M(y, u) and a vector-valued function k(p). In
this case the multi-estimator (36) can be realized as

ẊE = A(XE − Y ) +M(y, u), yp = XEk(p), p ∈ P (38)

where Y is a matrix with the same size as M(y, u) and all columns equal and y. Note that the
separability conditions holds trivially when the unknown parameters enter linearly in the nominal
models (35). This is usually required by adaptive control algorithms based on continuous tuning.

3.2.2 Output-injection away from a stable linear system

Suppose that the nominal state-space models Np, p ∈ P are of the form

ż = Apz +Bpw +Hp(y, u), y = Cpz +Dpw, p ∈ P, (39)

where each Ap is an asymptotically stable matrix. This is actually a generalization (35). One
simple multi-estimator for this family of processes is given by

żp = Apzp +Hp(y, u), yp = Cpzp, p ∈ P. (40)
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In this case, when the process model is given by Np∗ for some p∗ ∈ P, defining z̃p∗ := zp∗ − z we
have

˙̃zp∗ = Apz̃p∗ −Bpw, ep∗ = Cpz̃p∗ −Dpw.

The Matching Property can then be stated as follows:

Property 7 (Matching). Assume that M := {Np : p ∈ P}, with Np as in (39) and all Ap + λ∗I
asymptotically stable for some λ∗ > 0. There exist positive constants c0, cw and some p∗ ∈ P such
that

‖ep∗(t)‖ ≤ c0e
−λ∗t + cw, t ≥ 0.

In case w = 0, cw can be chosen equal to zero.

The multi-estimator (40) can be state-shared if the matrices Ap are independent of p, i.e.,
Ap = A, ∀p ∈ P and the function Hp(y, u) is separable in the sense that is can be written as

Hp(y, u) = M(y, u)k(p), ∀p ∈ P, u, y

for an appropriately defined matrix-valued function M(y, u) and a vector-valued function k(p). In
this case the multi-estimator (40) can be realized as

ẊE = A(XE − Y ) +M(y, u), yp = CpXEkp, p ∈ P

where Y is a matrix with the same size as M(y, u) and all columns equal and y.

3.2.3 Output-injection and coordinate transformation away from a stable linear sys-
tem

The nominal state-space models Np in (39) can still be generalized by considering coordinate trans-
formations z̄ = ξp(z), possibly dependent of the unknown parameter p ∈ P. In particular, the
nominal state-space models Np, p ∈ P can also be of the form

˙̄z = ζp(z̄)
(
Apξ

−1
p (z̄) +Bpw +Hp

(
Cpξ

−1
p (z̄) +Dpw, u

))
, y = Cpξ

−1
p (z̄) +Dpw, p ∈ P,

where each Ap is an asymptotically stable matrix, each ξp is a continuously differentiable function
with continuous inverse ξ−1

p , and ζp := ξ′p ◦ ξ−1
p . Since from an input-output perspective these

models are similar to those in (39), the multi-estimator (40) can also be used here and the Matching
Property 7 also holds.

The above classes of nominal state-space models are not the only ones for which multi-estimators
can be designed. For example in [12], we can find a multi-estimator that does not fall in any of the
above classes. It is also possible to design multi-estimators for any class of processes for which it is
known how to design state observers. The reader is referred to [65, 4, 2] for work on this area that
is particularly relevant to our purposes.
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Figure 10: The injected system obtained by replacing y in the multi-estimator and multi-controller
by yρ − v.

3.3 The injected system

Also for nonlinear systems it is useful to regard the switched system— defined to be the intercon-
nection of process, multi-estimator, and multi-controller—as the interconnection in Figure 6 of the
process and the injected system. As in the linear case, we define the injected system by replacing
y in the equations of the multi-estimator and multi-controller by yρ − v, where ρ : [−0,∞) → P
is a process switching signal and v := yρ − y. A block diagram of the injected system is shown in
Figure 10 and its state-space model is of the form

ẋ = Aρσ(x, v), u = Fρσ(x, v), yp = Cp(x), p ∈ P. (41)

Also here, the simplest mechanism to achieve detectability of the switched system is make sure
that the injected system is stable. However, to prove this we need appropriate extensions of these
concepts to nonlinear systems. Before proceeding we make a brief detour to recall the relevant
definitions of stability and detectability for a nonlinear systems.

3.3.1 Input-to-state stability and detectability

We start be recalling a few definition: We say that a function α : [0,∞) → [0,∞) is of class K, and
write α ∈ K, if it is continuous, strictly increasing, and α(0) = 0. If α is also unbounded, then we
say it is of class K∞ and write α ∈ K∞. We say that a function β : [0,∞) × [0,∞) → [0,∞) is of
class KL, and write β ∈ KL if β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to 0 as
t→ ∞ for each fixed s ≥ 0.

Consider a general nonlinear system

ẋ = A(x, u), y = C(x, u), (42)

with state x, piecewise-continuous input u, and output y, where A is assumed locally Lipschitz and
A(0, 0) = 0, C(0, 0) = 0. Although in this paper we take the equilibrium state of the system (42)
to be the origin, the subsequent definitions and results can be extended to the case of nonzero
equilibrium states [31, 33].

Following [79], we say that (42) is input-to-state stable (ISS) if there exist functions β ∈ KL,
γ ∈ K such that

‖x(t)‖ ≤ β(‖x(0)‖, t) + sup
τ∈[0,t)

γ(‖u(τ)‖), t ≥ 0,
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along solutions to (42). The system (42) is said to be integral input-to-state stable (iISS) if there
exist functions α ∈ K∞, β ∈ KL, γ ∈ K such that

α(‖x(t)‖) ≤ β(‖x(0)‖, t) +
∫

τ∈[0,t)
γ(‖u(τ)‖), t ≥ 0,

along solutions to (42). Integral input-to-state stability was introduced in [80] and is a weaker
version of stability than input-to-state stability. In fact, every ISS system is iISS. This is immediate
from the characterizations of input-to-state stability and integral input-to-state stability in terms
of dissipation inequalities, which can be found in [82] and [3], respectively. It turns out that iISS
is a strictly weaker property as there are iISS systems that are not ISS [80].

The system (42) is said to be detectable (or input/output-to-state stable IOSS [85]) if there
exist functions β ∈ KL, γu, γy ∈ K such that

‖x(t)‖ ≤ β(‖x(0)‖, t) + sup
τ∈[0,t)

γu(‖u(τ)‖) + sup
τ∈[0,t)

γy(‖y(τ)‖), t ≥ 0,

along solutions to (42). An equivalent characterization of detectability in terms of dissipation
inequalities can be found in [41]. Similarly, (42) is said to be integrable detectable (or integral
input/output-to-state stable iIOSS) if there exist functions α ∈ K∞, β ∈ KL, γu, γy ∈ K and such
that

α(‖x(t)‖) ≤ β(‖x(0)‖, t) +
∫

τ∈[0,t)
γu(‖u(τ)‖) +

∫
τ∈[0,t)

γy(‖y(τ)‖), t ≥ 0,

along solutions to (42). Both notions of detectability are consistent with the usual definition of
detectability for linear systems, which basically says that the state eventually becomes small if
the inputs and outputs are small. In fact, a detectable linear system (in the usual sense) is both
detectable and integral detectable in the above senses. However, in general integral detectability is
a weaker property than detectability. Indeed, every detectable system is integral detectable. This
can be shown using the characterization of detectability in terms of the exponentially decaying
dissipation inequality in [41, Section 5.1]. The following result will be needed [80, Proposition 6].

Lemma 1. Suppose that the system (42) is integral detectable and that the initial state x(0) and
the input u are such that the corresponding solution of (42) is globally defined and∫ ∞

0
γu(‖u(τ)‖)dτ <∞,

∫ ∞

0
γy(‖y(τ)‖)dτ <∞.

Then x(t) → 0 as t→ ∞.

system 1 system 2

cascade

Figure 11: Cascade connection

The following are well-known properties of the interconnections between input-to-state stable and
detectable systems.
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system 1

output-feedback

Figure 12: Output-feedback connection

Lemma 2 (Cascade). Consider the cascade connection in Figure 11:

1. If system Σ1 is input-to-state stable and system Σ2 is detectable, then the cascade is detectable.

2. If system Σ1 is integral input-to-state stable and system Σ2 is detectable, then the cascade is
integral detectable.

Lemma 3 (Feedback). Consider the output-feedback connection in Figure 12.

1. If system Σ1 is detectable, then the output-feedback connection is detectable.

2. If system Σ1 is integral detectable, then the output-feedback connection is integral detectable.

The proof that the cascade of an input-to-state stable with a detectable system is detectable
can be found in [31, Appendix] and its integral version in [28, Proof of Theorem 3]. These proofs
use fairly standard techniques that were developed to analyze the cascade of input-to-state stable
systems [79, 81] (see also [37, Section 5.3]). Lemma 3 is a straightforward consequence of the
detectability definitions.

3.3.2 Nonlinear Certainty Equivalence Stabilization Theorems

We are now ready to state the nonlinear version of the Certainty Equivalence Stabilization Theorem
that establishes the detectability of the switched system from the input-to-state stability of the
injected system:

Theorem 6 (Certainty Equivalence Stabilization). Suppose that the process (34) is detectable
and take a fixed ρ = p ∈ P and σ = q ∈ Q. Then

1. If the injected system is input-to-state stable then the switched system is detectable [31].

2. If the injected system is integral input-to-state stable then the switched system is integral
detectable [28].

To prove this result we redraw in Figure 13 the diagram from Figure 6 that shows the switched
system as the interconnection of the process and the injected system. Since we are setting ρ = p ∈ P,
we only show the output estimate yp.

Figure 13 shows that the switched system can be obtained by first cascading the injected system
Σ1 with input v and output (u, yp) with a system Σ2 with input (w, u, yp) and output ep (whose
dynamics are essentially those of the process) and then closing the loop with the output-feedback
v := ep.
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Figure 13: The switched system as the interconnection of the process with the injected system
(version 2).

From the definition of detectability it is immediate that Σ2 is detectable because the process
is detectable. Suppose now that the injected system Σ1 is input-to-state stable. It turns out that
the cascade of an input-to-state stable with a detectable system is detectable, therefore the cascade
of Σ1 and Σ2 (with input (w, v) and output ep) is detectable (cf. Lemma 2). Moreover, output-
feedback preserves detectability so the overall switched system is detectable (cf. Lemma 3). This
proves part 1 of Theorem 6. As for part 2 we can use the same argument but keeping in mind that
the cascade of an integral input-to-state stable with a detectable system is integral detectable.

As for the linear case, (integral) input-to-state stability of the injected system is not the only
mechanism to obtain detectability of the switched system. For example, a nonlinear version of
the Certainty Equivalence Output Stabilization Theorem is given in [48], where it is shown that
input-to-output stability of the injected system together with “minimum-phase” of the process and
detectability of both the multi-controller and multi-estimator are also sufficient to prove that the
switched system is detectable. Minimum-phase here should be understood in the sense defined in
[48].

3.3.3 Achieving detectability

To use the Certainty Equivalence Stabilization Theorem 6 to prove detectability one needs to design
candidate controllers that (integral) input-to-state stabilize the injected system, i.e., that make the
feedback connection in Figure (10) at least integral input-to-state stable with respect to the input
v. In particular, one would like to determine a family of candidate controllers

C :=
{
żq = Fq(zq, y), u = Gq(zq, y) : q ∈ Q}

,

and a controller selection function χ : P → Q such that for each p ∈ P the injected system in
Figure (10) with ρ = p and σ = χ(p) is integral input-to-state stable.

The input v in Figure (10) can be viewed as a form of measurement noise. Therefore the design
of candidate controllers for supervisory control fall into the general problem of designing “robust”
controllers for nonlinear systems. There are however, a few simplifying assumptions:

1. The disturbance v can be measured and used for control (recall that v is noting more than
the output estimation error eρ := yρ − y.

2. The state of the injected system can also be measured and used for control (recall that the
state of the injected system is nothing but the combined state of the multi-estimator and
multi-controller).
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We present next a few cases for which it is known how to solve the candidate controller design
problem.

Feedback fully linearizable multi-estimator Suppose that the multi-estimator is of the form

ẋE = AxE +B(Ψ(xE, y) + u) +Dy, yp = CpxE , p ∈ P, (43)

with each pair (A+DCp, B) stabilizable. By setting y := yρ − v, ρ = p ∈ P we obtain the system
that needs to be stabilized by the candidate controller q := χ(p):

ẋE = (A+DCp)xE +B
(
Ψ(xE , CpxE − v) + u

) −Dv.

To achieve this we can simply set χ(p) := p, p ∈ P := Q and define the candidate controller
q := χ(p) = p to be

u = −Ψ(xE , CpxE − v) + FpxE , (44)

where Fp is any matrix for which A + DCp + BFp is asymptotically stable. The corresponding
injected system is given by

ẋE = (A+DCp +BFp)xE −Dv,

and is therefore input-to-state stable.

Even when the multi-estimator is feedback linearizable, more often than not is will not be in the
“canonical form” (43)—for example, it may be in the strict-feedback or the pure-feedback forms
[42]—, in which case a coordinate transformation is needed to put the system in the form (43).
Suppose then that the multi-estimator is of the form

˙̄Ex = ζ(x̄E)
(
Aξ−1(x̄E) +B

(
Ψ(ξ−1(x̄E), y) + u

)
+Dy

)
, yp = Cpξ

−1(x̄E), p ∈ P, (45)

where each the pair (A + DCp, B) is stabilizable, ξ is a continuously differentiable function with
continuous inverse ξ−1, and ζ := ξ′ ◦ ξ−1. The multi-estimator (45) results from applying the
coordinate transformation x̄E = ξ(xE) to (43). By setting y := yρ − v, ρ = p ∈ P we obtain the
system that needs to be stabilized by the candidate controller q := χ(p):

˙̄Ex = ζ(x̄E)
(
(A+DCp)ξ−1(x̄E) +B

(
Ψ(ξ−1(x̄E), Cpξ

−1(x̄E) − v) + u
) −Dv

)

In this case, we could set χ(p) := p, p ∈ P := Q and define the candidate controller q := χ(p) = p
to be

u = −Ψ(ξ−1(x̄E), Cpξ
−1(x̄E) − v) + Fpξ

−1(x̄E), (46)

where Fp is any matrix for which A + DCp + BFp is asymptotically stable. The corresponding
injected system is given by

˙̄Ex = ζ(x̄E)
(
(A+DCp +BFp)ξ−1(x̄E) −Dv

)
. (47)

To check the stability of this system, we do the change of coordinates xE := ξ−1(x̄E) and obtain

ẋE = (A+DCp +BFp)xE −Dv.

Since this system is input-to-state stable, so is the injected system (47).
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Input-output feedback linearizable multi-estimator Suppose that for each p ∈ P we can
partition the state xE of the multi-estimator as xE = (xp, x̄p) and that its dynamics are of the form

ẋp = Apxp +Bp(Ψp(xE , y) + u) +Dpy, yp = Cpxp, (48)
˙̄xp = Āp(x̄p, xp, u, y), (49)

where each pair (Ap +DpCp, Bp) is stabilizable and (49) is input-to-state stable when (xp, u, y) is
viewed as a disturbance input. In this case, we could set χ(p) := p, p ∈ P := Q and define the
candidate controller q := χ(p) = p to be

u = −Ψ(xE, Cpxp − v) + Fpxp, (50)

where Fp is any matrix for which Ap +DpCp + BpFp is asymptotically stable. The corresponding
injected system is given by

ẋp = (Ap +DpCp +BpFp)xp −Dpv,

˙̄xp = Āp(x̄p, xp,−Ψ(xE , Cpxp − v) + Fpxp, Cpxp − v),

which is input-to-state stable because it can be viewed as the cascade of two input-to-state stable
systems [79, 81].

This generalization is important because typically the multi-estimator is “non-minimal” (due
to state-sharing) and it is often possible to linearize its dynamics from its inputs to one particular
output yp but not to all its outputs simultaneously. This typically happens when every nominal
process model is feedback linearizable but the coordinate transformation needed to achieve the
linearization depends on the unknown parameter and is therefore not the same for every nominal
model. A typical example is the family of nominal models:

[
ẋ1

ẋ2

]
=

[
p1x

3
1 + p2x2

u

]
, y =

[
x1

x2

]
, (p1, p2) ∈ P.

Also here we could consider (possibly p-dependent) coordinate transformation from the canonical
form (48)–(49) to more general forms. We leave this as an exercise to the reader.

Using the candidate controllers defined above and making use of the Certainty Equivalence
Stabilization Theorem 6 we obtain the desired Detectability Property:

Property 8 (Detectability). Suppose that the process is detectable, the multi-estimator is of
the form (48)–(49) and P := Q with the candidate controller q = χ(p) := p given by (50). Then,
for ρ = p ∈ P and σ = χ(p) = p the injected system (41) is input-to-state stable (and consequently
integral input-to-state stable), therefore there exist functions β̄p ∈ KL, ᾱp, γ̄p ∈ K such that

ᾱp(‖x(t)‖) ≤ β̄p(‖x(0)‖, t) +
∫

τ∈[0,t)
γ̄p(‖v(τ)‖), t ≥ 0. (51)

Moreover, the switched system is detectable (and consequently integral detectable) through the
output ep, therefore there exist functions β ∈ KL, αp, γp, ϕp ∈ K such that

αp(‖x̄(t)‖) ≤ βp(‖x̄(0)‖, t) +
∫

τ∈[0,t)
γp(‖ep(τ)‖) +

∫
τ∈[0,t)

ϕp(‖w(τ)‖), t ≥ 0, (52)

where x̄ denotes the aggregate state of the process, multi-estimator, and multi-controller.
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Note that the candidate controllers (44), (46), (50) are not the only ones that would lead
to detectability for the given multi-estimators. Another option would be to used these feedback
linearizing control laws to determine a ISS control Lyapunov function and then use it to construct
more suitable controllers that still make the injected system input-to-state stable [18, 83, 87, 43, 49].
In [18, 43] it is shown that these control laws often correspond to meaningful inverse optimal robust
stabilization problems for nonlinear systems with disturbances. The pointwise min-norm control
laws proposed in [18] were used in the context of supervisory control in [24, 27].

Feedback linearizability in the above senses is a property of a multi-estimator that can be used
to achieve detectability. However, it is not the only one and, e.g., [25, 12] one can find candidate
controllers for non-feedback linearizable multi-estimators. The [25] is particularly interesting be-
cause the nominal process models (and by extension the multi-estimator) cannot be stabilized by
any continuous time-invariant feedback control law due to their nonholonomic nature [10]. In [25],
the candidate controllers are then themselves hybrid systems, leading to a two-layer hierarchical
supervisory control structure.

3.4 Scale-independent hysteresis switching logic

Although dwell-time switching logics are extremely successful in linear supervisory, they are gen-
erally not adequate in the context of nonlinear supervision because of finite escape. Indeed, when
the switched system is not globally Lipschitz, “dwelling” on a non-stabilizing controller for a fixed
interval of time τD may lead to state unboundedness in finite time.

Hysteresis-based switching logics have been proposed to address this difficulty. The idea behind
these logics is to slowdown switching based on the observed growth of the estimation errors instead
of forcing a fixed dwell-time. Although hysteresis logics do not enforce a minimum interval between
consecutive switchings, they can still be used to achieve non-destabilization of the switched system.

The Scale-independence hysteresis switching logic [24, 26, 28] presented here is inspired by its
non-scale-independent counter part introduced in [51, 61]. Figure 8 shows a graphical representation
of this logic, where h is a positive hysteresis constant and the signals µp, p ∈ P are called the
monitoring signals and are defined by

µp(t) := ε+ e−λtε0 +
∫ t

0
e−λ(t−τ)γp(‖ep(τ)‖)dτ, p ∈ P, (53)

where λ denotes a constant non-negative forgetting factor ; ε, ε0 nonnegative constants, with at least
one of them strictly positive; and the γp, p ∈ P class K functions.

When the maps p �→ γp(‖ep(τ)‖) have adequate separability properties, it is possible it is
possible to efficiently generate a large number (or even a continuum) of monitoring signals with a
low-dimensional dynamical system. This happens when we can write

γp(‖ep‖) = k(p)′h(y, u, xE), ∀p ∈ P, u, y, xE ,

where xE is the state of the multi-estimator and k(p), h(y, u, xE) are appropriately defined vector-
valued functions. In this case, the monitoring signals could be generated by

ẋµ = −λxµ + h(y, u, xE), µp = k(p)′xµ, p ∈ P.
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This means that the generation of ρ in the middle box of diagram in Figure 8 can be written as

ρ := arg min
p∈P

k(p)xµ, (54)

and the condition in the lower box as

k(ρ)xµ ≤ (1 + h)k(p)xµ, ∀p ∈ P. (55)

This means that we never actually need to explicitly compute all the estimation errors ep or the
monitoring signals µp, as long as we know how to solve the optimization problem (54) and the
feasibility problem (55).

3.4.1 Scale-independent hysteresis switching properties

The denomination “scale-independent” comes from the fact that the switching signal σ generated
by the logic would not change if all the monitoring signals we simultaneously scaled, i.e., if all µp(t),
p ∈ P were replaced by ϑ(t)µp(t), p ∈ P for some positive signal ϑ(t). This property is crucial
to the proof of the Scale-Independent Hysteresis Switching Theorem [28] that provides the type of
bounds needed to establish the Non-destabilization and Small Error Properties. We state below a
version of this theorem adapted to the monitoring signal defined in (53). The following notation is
needed: given a switching signal σ, we denote by Nσ(τ, t), t > τ ≥ 0 the number of discontinuities
of σ in the open interval (τ, t).

Theorem 7 (Scale-Independent Hysteresis Switching). Let P be a finite set with m elements.
For any p ∈ P we have that

Nσ(τ, t) ≤ 1 +m+
m log

( µp(t)
ε+e−λtε0

)
log(1 + h)

+
mλ(t− τ)
log(1 + h)

, ∀t > τ ≥ 0, (56)

and
∫ t

0
e−λ(t−τ)γρ(‖eρ(τ)‖)dτ ≤ (1 + h)mµp(t), ∀t > 0. (57)

To derive the Non-destabilization and the Small Error Properties, let [0, T ) be the maximum
interval on which the solution to the switched system supervised by the scale-independent hysteresis
logic is defined. Since we are dealing with systems that may not be globally Lipschitz, we must
consider the possibility that Tmax <∞.

Equation (56) provides an upper bound on the maximum number of switchings that can occur
in an arbitrary interval (τ, t), 0 ≤ τ < t < Tmax. Not surprisingly, this number decreases as the
hysteresis constant h increases or the forgetting factor λ decreases. From (56) we can obtain the
desired Non-destabilization Property as follows: Set ε = 0, ε0 > 0 and assume that the norm one
of the estimation errors ep∗(t), p∗ ∈ P can be bounded by c0e−λ∗t, t ∈ [0, Tmax) with λ∗ > λ > 0,
c0 > 0. Then, assuming that γp∗ in (53) is locally Lipschitz, γp∗(‖ep∗(τ)‖) can also be bounded
by a similar expression. From this it is straightforward to conclude that µp∗(t) can be bounded
by c̄0e

−λt, t ∈ [0, Tmax) with λ > 0, c̄0 > 0. This means that Nσ(0, t) is uniformly bounded for
t ∈ [0, Tmax), or equivalently, that there is only a finite number of switching times on [0, Tmax) (even
if Tmax = ∞). The following can then be stated:
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Property 9 (Non-destabilization). Assume that P is finite, that all the γp, p ∈ P in (53) are
locally Lipschitz, and that ε = 0, ε0 > 0. If one of the norm one of the estimation errors ep∗(t),
p∗ ∈ P can be bounded by c0e−λ∗t, t ∈ [0, Tmax) with λ∗ > λ > 0, c0 > 0 then switching will stop
after some finite time T ∗ < Tmax.

Equation (57), on the other hand, provides and upper bound on a integral-norm of the switched
estimation error eρ that can be used to establish the desired Small Error Property. Indeed, under
the assumptions of the Non-destabilization Property 9, eλtµp∗(t) is uniformly bounded. From this
and (57) we conclude that the following property holds:

Property 10 (Small Error). Assume that P is finite, that all the γp, p ∈ P in (53) are locally
Lipschitz, and that ε = 0, ε0 > 0. If one of the norm one of the estimation errors ep∗(t), p∗ ∈ P
can be bounded by c0e−λ∗t, t ∈ [0, Tmax) with λ∗ > λ > 0, c0 > 0 then the signal

∫ t

0
eλτγρ(‖eρ(τ)‖)dτ

is uniformly bounded for t ∈ [0, Tmax).

3.4.2 Analysis

With the four Properties—Matching 6, Detectability 8, Non-destabilization 9, and Small error
10—at hand it is then straightforward to prove the following:

Theorem 8. Consider a detectable process, a multi-estimator as in the Matching Property 6 (or
the Matching Property 7 with w = 0); candidate controllers as in the Detectability Property 8; and
a scale-independent hysteresis supervisor with ε = 0, ε0 > 0, λ < λ∗ (with λ∗ as in the Matching
Property), and the γp, p ∈ P from (52). Assuming that P is finite and that all the γp are locally
Lipschitz, then the state of the process, multi-estimator, multi-controller, and all other signals
converge to zero as t→ ∞.

To prove this result we simply have to note that the Matching Property guarantees that the
norm one of the estimation errors ep∗(t), p∗ ∈ P can be bounded by c0e

−λ∗t, t ∈ [0, Tmax) with
λ∗ > λ > 0, c0 > 0. Therefore, because of the Non-destabilization Property, switching will stop after
some finite time T ∗ < Tmax. Let then p ∈ P denote the (constant) value of ρ(t) for t ∈ [T ∗, Tmax).
Because of the Small error Property, we must have

∫ Tmax

T ∗
γp(‖ep(τ)‖)dτ <∞.

From this and the Detectability Property (recall that w = 0), we conclude that the state x̄ of
the switched system with σ = χ(ρ) = p, t ≥ T ∗ must by bounded on [T ∗, Tmax) and therefore
Tmax = ∞. Moreover, because of Lemma 1, we actually have that x̄(t) converges to 0 as t→ ∞.

It is often convenient to use the class K functions γ̄p, p ∈ P in (51) instead of the functions γp

in (52) to define the monitoring signals µp. This is because the γ̄p do not depend on the unknown
process model. Reasoning as above, in this case we conclude that after some finite time T ∗ < Tmax,
ρ(t) will become constant and equal to some p ∈ P for which

∫ Tmax

T ∗
γ̄p(‖ep(τ)‖)dτ <∞.
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From this and the Detectability Property, we now conclude that the state x of the injected system
with σ = χ(ρ) = p, t ≥ T ∗ must by bounded on [T ∗, Tmax). Therefore u and yp∗. From this and the
boundedness of ep∗ , we conclude that both the input u and the output y = yp∗ − ep∗ of the process
are bounded. Since the process is detectable, its state must also be bounded. Once boundedness of
all signals has been established we conclude that Tmax = ∞. Also here, using Lemma 1, we could
conclude that all signals actually converges to 0 as t→ ∞.

Corollary 1. The results in Theorem 8 also holds if one uses in (53) the class K functions γ̄p from
(51) instead of the γp from (52).
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Appendix

A Linear multi-estimator design

The basic requirement behind the multi-estimator is that a particular yp, p ∈ P be “small” when
the process model matches one element of the family Mp. Both linear and nonlinear control theory
provide numerous procedures to design systems with this property that can be used in the context
of supervisory control.

Let us start by considering families Mp, p ∈ P each consisting of a single linear time-invariant
process with transfer matrix νp and minimal realization

ż = Apz +Bp(u+ d), y = Cpz +Dpu+ n,

where n and d denote measurement noise and an input disturbance, respectively. We are assuming
here that P is a finite set. The extension of these ideas to sets P that have infinitely many elements
will be addressed shortly.

One of the simplest multi-estimator for this process utilizes the following family of Luenberger
observers

żp = (Ap −KpCp)zp +Bpu+Kpy, yp = Cpzp +Dpu, p ∈ P, (58)

where the Kp are chosen so that Ap − KpCp are asymptotically stable matrices. From observer
theory we know that if the process transfer matrix is νp∗, p∗ ∈ P and in the absence of noise and
disturbances (n = d = 0) then yp∗ converges exponentially fast to y. In case n and/or d are non
zero then the estimation error ep∗ := yp∗ − y is simply bounded. The Matching Property can then
be formally stated as

Property 11 (Matching–1). There exist positive constants c0, cw, λ and some p∗ ∈ P such that

‖ep∗(t)‖ ≤ c0e
−λt + cw, t ≥ 0.

In case n = d = 0, cw can be chosen equal to zero.

Another method to build multi-estimators is based on coprime factorizations over the ring RH∞
of stable transfer matrices. For a given p ∈ P, consider the following factorization

νp = D−1
p Np,

with Dp, Np ∈ RH∞ coprime over RH∞. Without loss of generality we can write

Dp =
1
ωp
ηp, Np =

1
ωp
µp,
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where ωp is a stable polynomial and ηp, µp matrices of polynomials. We therefore conclude that
when the process transfer matrix is equal to µp∗, p∗ ∈ P 3

ηp∗(y − n) = µp∗(u+ d).

Therefore, generating the yp by the family of differential equations

ωpyp = (ωpI − ηp)y + µpu, p ∈ P (59)

we conclude that, when the process transfer matrix is equal to νp∗,

ωpyp∗ = ωp∗y − ηp∗n− µp∗d

and therefore, in the absence of noise and disturbances, yp∗ converges exponentially fast to y, at
a rate determined by the roots of ωp∗. Also here, when either d or n are non zero then ep∗ is
uniformly bounded and the Matching Property 11 holds.

An interesting feature of the multi-estimator (59) is that if all the νp have McMillan degree
smaller than m, then we can choose all the ωp to be equal to some polynomial ω with degree m
and (59) can be realized as

ẇ1 = A1w1 +B1u, ẇ2 = A2w2 +B2y, yp = Cp

[
w′

1 w′
2

]′
, p ∈ P, (60)

where A1 a km × km matrix with characteristic polynomial ωk and A2 a lm × lm matrix with
characteristic polynomial ωl. Here, k and l are the number of process inputs and outputs, respec-
tively. What makes the multi-estimator (60) particularly attractive is the fact that a large number
of output estimates yp (possibly infinitely many) can be generated by a low-dimensional system.
Moreover, since all the estimation errors ep, p ∈ P can be computed directly from w and y, we
can actually take these two signals to be the output of the multi-estimator. When this happens
we call the multi-estimator state-shared. It is worth mentioning that structures like (60) appear in
traditional adaptive control, where w1 and w2 are often called regression vectors.

Let us consider now the more general case in which the Mp, p ∈ P are infinite dimensional
balls of unmodeled dynamics around a nominal process νp, e.g.,

Mp := {νp(1 + δm) + δa : ‖δm‖∞,λ ≤ ε, ‖δa‖∞,λ ≤ ε}, p ∈ P
where ε and λ are nonnegative constants and ‖ · ‖∞,λ denotes the eλt-weighted H∞ norm of a
transfer function: ‖ν‖∞,λ = supω∈R |ν(jω−λ)|. If we now still use the multi-estimator (59)—or its
state-shared version (60)—it is straightforward to show that is the process transfer matrix is equal
to νp∗(1 + δm) + δa, then

ωpyp∗ = ωp∗y − ηp∗n− µp∗d− (µp∗δm + ηp∗δa) ◦ (u+ d), (61)

where δm ◦ u and δa ◦ u denote the convolution of u with the impulse responses of δm and δa,
respectively. In this case the Matching Property can be stated as

Property 12 (Matching–2). There exist positive constants c0, cd, cn, cε, λ and some p∗ ∈ P such
that

‖ep∗‖λ,[0,t) ≤ c0 + cd‖d‖λ,[0,t) + cn‖n‖λ,[0,t) + ε cε‖u‖λ,[0,t), ∀t ≥ 0,

where ‖ · ‖λ,[0,t) denotes the eλt-weighted L2-norm truncated to the interval [0, t): ‖u‖λ,[0,t) =∫ t
0 e

λτu(τ)2dτ .

3Given a l × k polynomial matrix ρ and a signal a : [0,∞) → R
k, we denote by ρw the signal b : [0,∞) → R

l

defined by applying the differential operator ρ
(

d
dt

)
to a.
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[19] R. A. Freeman and P. V. Kokotović. Robust Nonlinear Control Design: State-Space and
Lyapunov Techniques. Systems & Control: Foundations & Applications. Birkhäuser, Boston
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