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Abstract. This paper deals with polynomial stochastic hybrid systems (pSHSs),
which generally correspond to stochastic hybrid systems with polynomial contin-
uous vector fields, reset maps, and transition intensities. For pSHSs, the dynamics
of the statistical moments of the continuous states evolve according to infinite-
dimensional linear ordinary differential equations (ODEs). We show that these
ODEs can be approximated by finite-dimensional nonlinear ODEs with arbitrary
precision. Based on this result, we provide a procedure to build this type of ap-
proximations for certain classes of pSHSs. We apply this procedure for several ex-
amples of pSHSs and evaluate the accuracy of the results obtained through com-
parisons with Monte Carlo simulations. These examples include: the modeling of
TCP congestion control both for long-lived and on-off flows; state-estimation for
networked control systems; and the stochastic modeling of chemical reactions.

1 Introduction

Hybrid systems are characterized by a state-space that can be partitioned into a con-
tinuous domain (typically R

n) and a discrete set (typically finite). For the stochastic
hybrid systems considered here, both the continuous and the discrete components of
the state are stochastic processes. The evolution of the continuous-state is determined
by a stochastic differential equation and the evolution of the discrete-state by a tran-
sition or reset map. The discrete transitions are triggered by stochastic events much
like transitions between states of a continuous-time Markov chains. However, the rate
at which these transitions occur may depend on the continuous-state. The model used
here for SHSs, whose formal definition can be found in Sec. 2, was introduced in [1]
and is heavily inspired by the Piecewise-Deterministic Markov Processes (PDPs) in [2].
Alternative models can be found in [3,4,5].

The extended generator of a stochastic hybrid system allows one to compute the
time-derivative of a “test function” of the state of the SHS along solutions to the system,
and can be viewed as a generalization of the Lie derivative for deterministic systems
[1,2]. Polynomial stochastic hybrid systems (pSHSs) are characterized by extended
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generators that map polynomial test functions into polynomials. This happens, e.g.,
when the continuous vector fields, the reset maps, and the transition intensities are all
polynomial functions of the continuous state. An important property of pSHSs is that if
one creates an infinite vector containing the probabilities of all discrete modes, as well
as all the multi-variable statistical moments of the continuous state, the dynamics of
this vector are governed by an infinite-dimensional linear ordinary differential equation
(ODE), which we call the infinite-dimensional moment dynamics and define formally
in Sec. 3.

SHSs can model large classes of systems but their formal analysis presents sig-
nificant challenges. Although it is straightforward to write partial differential equations
(PDEs) that express the evolution of the probability distribution function for their states,
generally these PDEs do not admit analytical solutions. The infinite-dimensional mo-
ment dynamics provides an alternative characterization for the distribution of the state
of a pSHS. Although generally statistical moments do not provide a description of a
stochastic process as accurate as the probability distribution, results such as Tcheby-
cheff, Markoff, or Bienaymé inequalities [6, pp. 114–115] can be used to infer proper-
ties of the distribution from its moments.

In general, the infinite-dimensional linear ODEs that describe the moment dynam-
ics for pSHSs are still not easy to solve analytically. However, sometimes they can
be accurately approximated by a finite-dimensional nonlinear ODE, which we call the
truncated moment dynamics. We show in Sec. 3 that, under suitable stability assump-
tions, it is in principle possible for a finite-dimensional nonlinear ODE to approximate
the infinite-dimensional moment dynamics, up to an error that can be made arbitrarily
small. This result is based on a Taylor series expansion that is used to prove that the
difference between the solutions to the finite- and infinite-dimensional ODEs can be
made arbitrarily small on a compact time interval [0,T ]. Subsequently, this is extended
to the unbounded time interval [0,∞) using an argument similar to that found in [7] to
analyze two time scale systems.

Aside from its theoretical interest, the above mentioned result motivates a proce-
dure to actually construct these finite-dimensional approximations for certain classes of
pSHSs. This procedure, which is described in Sec. 4, is applicable to pSHS for which
the (infinite) matrix that characterizes the moment dynamics exhibits a certain diagonal-
band structure and appropriate decoupling between certain moments of distinct discrete
modes. The details of this structure can be found in Lemma 1.

To illustrate the applicability of the results we consider several systems that ap-
peared in the literature and that can be modeled by pSHSs. For each example, we con-
struct in Sec. 5 truncated moment dynamics and evaluate how they compare with esti-
mates for the moments obtained from a large number of Monte Carlo simulations. The
examples considered include:

1. The modeling of the sending rate for network traffic under TCP congestion control.
We consider two distinct cases: long-lived traffic corresponding to the transfer of
files with infinite length; and on-off traffic consisting of file transfers with expo-
nentially distributed lengths, alternated by times of inactivity (also exponentially
distributed). These examples are motivated by [1,8].



2. The modeling of the state-estimation error in a networked control system that oc-
casionally receives state measurements over a communication network. The rate
at which the measurements are transmitted depends on the current estimation er-
ror. This type of scheme was shown to out-perform periodic transmission and can
actually be used to approximate an optimal transmission scheme [9,10].

3. Gillespie’s stochastic modeling for chemical reactions [11], which describes the
evolution of the number of particles involved in a set of reactions. The reactions
analyzed were taken from [12,13] and are particularly difficult to simulate due to
the existence of two very distinct time scales.

2 Polynomial Stochastic Hybrid Systems

A SHS is defined by a stochastic differential equation (SDE)

ẋ = f (q,x, t)+g(q,x, t)ṅ, f : Q×R
n× [0,∞) → R

n, (1)

g : Q×R
n× [0,∞) → R

n×k,

a family of m discrete transition/reset maps

(q,x) = φ`(q−,x−, t), φ` : Q×R
n × [0,∞)→ Q×R

n, (2)

∀` ∈ {1, . . . ,m}, and a family of m transition intensities

λ`(q,x, t), λ` : Q×R
n× [0,∞) → [0,∞), (3)

∀` ∈ {1, . . . ,m}, where n denotes a k-vector of independent Brownian motion pro-
cesses and Q a (typically finite) discrete set. A SHS characterizes a jump process
q : [0,∞)→Q called the discrete state; a stochastic process x : [0,∞) → R

n with piece-
wise continuous sample paths called the continuous state; and m stochastic counters
N` : [0,∞) → N≥0 called the transition counters.

In essence, between transition counter increments the discrete state remains con-
stant whereas the continuous state flows according to (1). At transition times, the con-
tinuous and discrete states are reset according to (2). Each transition counter N` counts
the number of times that the corresponding discrete transition/reset map φ` is “acti-
vated.” The frequency at which this occurs is determined by the transition intensities
(3). In particular, the probability that the counter N` will increment in an “elementary
interval” (t, t +dt], and therefore that the corresponding transition takes place, is given
by λ`(q(t),x(t), t)dt. In practice, one can think of the intensity of a transition as the
instantaneous rate at which that transition occurs. The reader is referred to [1] for a
mathematically precise characterization of this SHS.

The following result can be used to compute expectations on the state of a SHS. For
briefness, we omit a few technical assumptions that are straightforward to verify for the
SHSs considered here:



Theorem 1 ([1]). Given a function ψ : Q×R
n× [0,∞)→ R that is twice continuously

differentiable with respect to its second argument and once continuously differentiable
with respect to the third one, we have that

∂ E[ψ(q(t),x(t), t)]
∂ t

= E[(Lψ)(q(t),x(t), t)], (4)

where ∀(q,x, t) ∈ Q×R
n× [0,∞)

(Lψ)(q,x, t) :=
∂ψ(q,x, t)

∂x
f (q,x, t)+

∂ψ(q,x, t)
∂ t

+

+
1
2

trace
(∂ 2ψ(q,x)

∂x2 g(q,x, t)g(q,x, t)′
)

+

+
m

∑̀
=1

(

ψ
(

φ`(q,x, t), t
)

−ψ(q,x, t)
)

λ`(q,x, t), (5)

and ∂ ψ(q,x,t)
∂ t , ∂ ψ(q,x,t)

∂ x , and ∂ 2ψ(q,x)
∂ x2 denote the partial derivative of ψ(q,x, t) with re-

spect to t, the gradient of ψ(q,x, t) with respect to x, and the Hessian matrix of ψ with
respect to x, respectively. The operator ψ 7→ Lψ defined by (5) is called the extended
generator of the SHS. �

We say that a SHS is polynomial (pSHS) if its extended generator L is closed on
the set of finite-polynomials in x, i.e., (Lψ)(q,x, t) is a finite-polynomial in x for ev-
ery finite-polynomial ψ(q,x, t) in x. By a finite-polynomials in x we mean a function
ψ(q,x, t) such that x 7→ ψ(q,x, t) is a (multi-variable) polynomial of finite degree for
each fixed q ∈ Q, t ∈ [0,∞). A pSHS is obtained, e.g., when the vector fields f and g,
the reset maps φ`, and the transition intensities λ` are all finite-polynomials in x.

Examples of Polynomial Stochastic Hybrid Systems

Example 1 (Random walk). Let x ∈ R denote the velocity of a moving particle that is
instantaneously increased or decrease by a fixed amount

√
ε every so often. The interval

of time between increases (as well as between decreases) is exponentially distributed
with mean 2ε . The process x can be generated by a SHS with continuous dynamics
ẋ = −ax and two reset maps x 7→ φ1,2(x) := x± b

√
ε both with constant transitions

intensities λ1,2(x) := 1
2ε . The constant a ≥ 0 accounts for viscous friction. This SHS

has a single discrete mode that we omitted for simplicity. The generator for this SHS is
given by

(Lψ)(x) = −ax
∂ψ(x)

∂x
+

ψ(x+b
√

ε)+ψ(x−b
√

ε)−2ψ(x)
2ε

,

which is closed on the set of finite-polynomials in x. It is well known that as ε → 0,
x approaches the solution to the SDE ẋ = ax + bṅ, where n is a Brownian motion
process. This SDE is easy to solve analytically, at least when the initial distribution of x
is Gaussian. Our (somewhat academic) goal here would be to study what happens when
ε is not necessarily close to zero and for an arbitrary initial distribution. �



Example 2 (TCP long-lived [14]). The congestion window size w ∈ [0,∞) of a long-
lived TCP flow can be generated by a SHS with continuous dynamics ẇ = 1

RT T and a
reset map w 7→ w

2 , with intensity λ (w) := pw
RT T . The round-trip-time RTT and the drop-

rate p are parameters that we assume constant. This SHS has a single discrete mode that
we omitted for simplicity. The generator for this SHS is given by

(Lψ)(w) =
1

RTT
∂ψ(w)

∂w
+

pw
(

ψ(w/2)−ψ(w)
)

RTT
,

which is closed on the set of finite-polynomials in w. �

Example 3 (TCP on-off [14]). The congestion window size w ∈ [0,∞) for a stream of
TCP flows separated by inactivity periods can be generated by a SHS with three dis-
crete modes Q := {ss,ca,off}, one corresponding to slow-start, another to congestion
avoidance, and the final one to flow inactivity. Its continuous dynamics are defined by

ẇ =











(log2)w
RTT q = ss
1

RT T q = ca
0 q = off;

the reset maps associated with packet drops, end of flows, and start of flows are given by
(q,w) 7→ φ1(q,w) :=

(

ca, w
2

)

, (q,w) 7→ φ2(q,w) := (off,0), and (q,w) 7→ φ3(q,w) :=
(ss,w0), respectively; and the corresponding intensities are

λ1(q,w) :=

{

pw
RTT q ∈ {ss,ca}
0 q = off

λ2(q,w) :=

{

w
kRT T q ∈ {ss,ca}
0 q = off

λ3(q,w) :=

{

1
τoff

q = off

0 q ∈ {ss,ca}.

The round-trip-time RT T , the drop-rate p, the average file size k (exponentially dis-
tributed), the average off-time τoff (also exponentially distributed), and the initial win-
dow size w0 are parameters that we assume constant. The generator for this SHS is
given by

(Lψ)(q,w) =



















(log2)w
RTT

∂ψ(ss,w)
∂w +

pw
(

ψ(ca,w/2)−ψ(ss,w)
)

RT T +
w
(

ψ(off,0)−ψ(ss,w)
)

kRT T q = ss

1
RTT

∂ψ(ca,w)
∂w +

pw
(

ψ(ca,w/2)−ψ(ca,w)
)

RTT +
w
(

ψ(off,0)−ψ(ca,w)
)

kRT T q = ca
ψ(ss,w0)−ψ(off,w)

τoff
q = off,

which is closed on the set of finite-polynomials in w. �

Example 4 (Networked control system [9]). Suppose that the state of a stochastic scalar
linear system ẋ = ax + bṅ is estimated based on state-measurements received through
a network. For simplicity we assume that state measurements are noiseless and delay
free. The corresponding state estimation error e ∈ R can be generated by a SHS with
continuous dynamics ė = ae + bṅ and one reset map e 7→ 0 that is activated whenever
a state measurement is received. It was conjectured in [9] and later shown in [10] that



transmitting measurements at a rate that depends on the state-estimation error is opti-
mal if one wants to minimize the variance of the estimation error, while penalizing the
average rate at which messages are transmitted. This motivates considering the follow-
ing reset intensity λ (e) := e2ρ , ρ ∈ N≥0. This SHS has a single discrete mode that we
omitted for simplicity and its generator is given by

(Lψ)(e) := ae
∂ψ(e)

∂e
+

b2

2
∂ 2ψ(e)

∂e2 +
(

ψ(0)−ψ(e)
)

e2ρ ,

which is closed on the set of finite-polynomials in e. �

Example 5 (Decaying-dimerizing reaction set [12,13]). The number of particles x :=
(x1,x2,x3) of three species involved in the following set of decaying-dimerizing reac-
tions

S1
c1−−→ 0, 2S1

c2−−→ S2, S2
c3−−→ 2S1, S2

c4−−→ S3 (6)

can be generated by a SHS with continuous dynamics ẋ = 0 and four reset maps

x 7→ φ1(x) :=
[x1−1

x2
x3

]

x 7→ φ2(x) :=
[

x1−2
x2+1

x3

]

x 7→ φ3(x) :=
[

x1+2
x2−1

x3

]

x 7→ φ4(x) :=
[ x1

x2−1
x3+1

]

with intensities λ1(x) := c1x1, λ2(x) := c2
2 x1(x1−1), λ3(x) := c3x2, and λ4(x) := c4x2,

respectively. Since the numbers of particles take values in the discrete set of integers,
we can regard the xi as either part of the discrete or continuous state. We choose to re-
gard them as continuous variables because we are interested in studying their statistical
moments. In this case, the SHS has a single discrete mode that we omit for simplicity.
The generator for this SHS is given by

(Lψ)(x) = c1x1
(

ψ(x1 −1,x2,x3)−ψ(x)
)

+
c2

2
x1(x1 −1)

(

ψ(x1 −2,x2 +1,x3)−ψ(x)
)

+ c3x2
(

ψ(x1 +2,x2 −1,x3)−ψ(x)
)

+ c4x2
(

ψ(x1,x2 −1,x3 +1)−ψ(x)
)

,

which is closed on the set of finite-polynomials in x. �

3 Moment Dynamics

To fully characterize the dynamics of a SHS one would like to determine the evolution
of the probability distribution for its state (q,x). In general, this is difficult so a more
reasonable goal is to determine the evolution of (i) the probability of q(t) being on each
mode and (ii) the moments of x(t) conditioned to q(t). In fact, often one can even get
away with only determining a few low-order moments and then using results such as
Tchebycheff, Markoff, or Bienaymé inequalities [6, pp. 114–115] to infer properties of
the overall distribution.



Given a discrete state q̄ ∈Q and a vector of n integers m = (m1,m2, . . . ,mn) ∈ N
n
≥0,

we define the test-function associated with q̄ and m to be

ψ(m)
q̄ (q,x) :=

{

x(m) q = q̄
0 q 6= q̄,

∀q ∈ Q,x ∈ R
n

and the (uncentered) moment associated with q̄ and m to be

µ(m)
q̄ (t) := E

[

ψ(m)
q̄
(

q(t),x(t)
)]

∀t ≥ 0. (7)

Here and in the sequel, given a vector x = (x1,x2, . . . ,xn), we use x(m) to denote the
monomial xm1

1 xm2
2 · · ·xmn

n .
PSHSs have the property that if one stacks all moments in an infinite vector µ∞, its

dynamics can be written as

µ̇∞ = A∞(t)µ∞ ∀t ≥ 0, (8)

for some appropriately defined infinite matrix A∞(t). This is because ∀q̄ ∈ Q,m =

(m1, . . . ,mn)∈N
n
≥0, the expression (Lψ (m)

q̄ )(q,x, t) is a finite-polynomial in x and there-
fore can be written as a finite linear combination of test-functions (possibly with time-
varying coefficients). Taking expectations on this linear combination and using (4), (7),
we conclude that µ̇(m)

q̄ can be written as linear combination of uncentered moments in
µ∞, leading to (8). In the sequel, we refer to (8) as the infinite-dimensional moment
dynamics. Analyzing (and even simulating) (8) is generally difficult. However, as men-
tioned above one can often get away with just computing a few low-order moments. One
would therefore like to determine a finite-dimensional system of ODEs that describes
the evolution of a few low-order models, perhaps only approximately.

When the matrix A∞ is lower triangular (e.g., as in Example 1 and Example 4 with
ρ = 0), one can simply truncate the vector µ∞ by dropping all but its first k elements and
obtain a finite-dimensional system that exactly describes the evolution of the moments1.
However, in general A∞ has nonzero elements above the main diagonal and therefore if
one defines µ ∈ R

k to contain the top k elements of µ∞, one obtains from (8) that

µ̇ = Ik×∞A∞(t)µ∞ = A(t)µ +B(t)µ̄, µ̄ = Cµ∞, (9)

where Ik×∞ denotes a matrix composed of the first k rows of the infinite identity matrix,
µ̄ ∈ R

r contains all the moments that appear in the first k elements of A∞(t)µ∞ but that
do not appear in µ , and C is the projection matrix that extracts µ̄ from µ∞. Our goal
is to approximate the infinite dimensional system (8) by a finite-dimensional nonlinear
ODE of the form

ν̇ = A(t)ν +B(t)ν̄(t), ν̄ = ϕ(ν , t), (10)

where the map ϕ : R
k × [0,∞) → R

r should be chosen so as to keep ν(t) close to µ(t).
We call (10) the truncated moment dynamics and ϕ the truncation function. We need
the following two stability assumptions to establish sufficient conditions on ϕ for the
approximation to be valid.

1 Other truncations are possible, but it is often convenient to keep the low-order moments of x
as the states of the truncated system because these are physically meaningful.



Assumption 1 (Boundedness). There exist sets Ωµ and Ων such that all solutions to
(8) and (10) starting at some time t0 ≥ 0 in Ωµ and Ων , respectively, exist and are
smooth on [t0,∞) with all derivatives of their first k elements uniformly bounded by the
same constant. The set Ων is assumed to be forward invariant. �

Assumption 2 (Incremental Stability). There exists a function2 β ∈ K L such that,
for every solution µ∞ to (8) starting in Ωµ at some time t0 ≥ 0, and every t1 ≥ t0, ν1 ∈Ων
there exists some µ̂∞(t1) ∈ Ωµ whose first k elements match ν1 and

‖µ(t)− µ̂(t)‖ ≤ β (‖µ(t1)− µ̂(t1)‖, t − t1), ∀t ≥ t1, (11)

where µ(t) and µ̂(t) denote the first k elements of the solutions to (8) starting at µ∞(t1)
and µ̂∞(t1), respectively. �

Remark 1. Assumption 2 is essentially a requirement of uniform stability for (8), but
it was purposely formulated without requiring Ωµ to be a subset of a normed space.
This avoids having to choose a norm under which the (infinite) vectors of moments
are bounded. Note, e.g., that the usual `p-norms, p ∈ [1,∞] would not work for most
“interesting” distributions. It is also important to emphasize that a certain “richness” of
Ωµ is implicit in this assumption. Indeed, for the existence of µ̂∞(t1) ∈ Ωµ whose first
components match an arbitrary ν1 ∈ Ων one needs Ων to be contained in the projection
of Ωµ into its first k components. �

The result that follows establishes that the difference between solutions to (8) and
(10) converges to an arbitrarily small ball, provided that a sufficiently large but finite
number of derivatives of these signals match point-wise. To state this result, the follow-
ing notation is needed: We define the matrices Ci(t), i ∈ N≥0 recursively by

C0(t) = C, Ci+1(t) = Ci(t)A∞(t)+Ċi(t), ∀t ≥ 0, i ∈ N≥0,

and the family of functions Liϕ : R
k × [0,∞)→ R

r, i ∈ N≥0 recursively by

(L0ϕ)(ν,t) = ϕ(ν,t), (Li+1ϕ)(ν,t) =
∂ (Liϕ)(ν,t)

∂ν
(

A(t)ν +B(t)ϕ(ν,t)
)

+
∂ (Liϕ)(ν,t)

∂ t
,

∀t ≥ 0, ν ∈ R
k, i ∈N≥0. These definitions allow us to compute time derivatives of µ̄(τ)

and ν̄(τ) along solutions to (8) and (10), respectively, because

diµ̄(t)
dt i = Ci(t)µ∞(t),

diν̄(t)
dt i = (Liϕ)(ν(t), t), ∀t ≥ 0, i ∈ N≥0. (12)

Theorem 2 (cf. Appendix). For every δ > 0, there exists an integer N sufficiently large
for which the following result holds: Assuming that for every τ ≥ 0, µ∞ ∈ Ωµ

Ci(τ)µ∞ = (Liϕ)(µ ,τ), ∀i ∈ {0,1, . . . ,N}, (13)

2 A function β : [0,∞)× [0,∞) → [0,∞) is said to be of class K L if β (0,t) = 0, ∀t ≥ 0; β (s,t)
is continuous and strictly increasing on s for each fixed t ≥ 0; and limt→∞ β (s,t) = 0, ∀s ≥ 0.



where µ denotes the first k elements of µ∞, then

‖µ(t)−ν(t)‖≤ β (‖µ(t0)−ν(t0)‖, t − t0)+δ , ∀t ≥ t0 ≥ 0, (14)

along all solutions to (8) and (10) with initial conditions µ∞(t0) ∈ Ωµ and ν(t0) ∈ Ων ,
respectively, where µ(t) denotes the first k elements of µ∞(t). �

The proof of this theorem is technical and therefore we leave it for the appendix.
The idea behind it is that the conditions (13) guarantees that when the solution µ∞
to the infinite-dimensional system (8) starts in Ωµ , the N + 1 derivatives of its first k
elements µ match those of the solution ν to the truncated system (10). Using a standard
argument based on a Taylor series expansion, we thus conclude that these two solutions
will remain close in a bounded interval of length T . To extend this to the unbounded
interval [0,∞), we use the stability of the infinite-dimensional (8): After the first interval
[0,T ], we can start another solution µ̂∞ to (8) on Ωµ , whose first k elements µ̂ match ν
at time T , and conclude from (13) that µ̂ and ν will remain close on [T,2T ]. But because
of stability µ and µ̂ will converge to each other and therefore µ and ν also remain close.
This argument can be repeated to obtain the bound (14) on the unbounded time interval
[0,∞). A similar argument was used in the proof of [7, Theorem 1] to analyze two time
scale systems. It is important to emphasize that for this argument to hold, Ωµ need not
be forward invariant because we only use (13) for the solutions µ̂ that are always “re-
started” in Ωµ . This explains why one may get good matches between the original and
the truncated systems, even if (13) only holds for fairly small subsets Ωµ of the overall
infinite-dimensional state-space.

4 Construction of Approximate Truncations

Given a constant δ > 0 and sets Ωµ , Ων , it may be very difficult to determine the in-
teger N for which the approximation bound (14) holds. This is because, although the
proof of Theorem 2 is constructive, the computation of N requires explicit knowledge
of the function β ∈K L in Assumption 2 and, at least for most of the examples consid-
ered here, this assumption is difficult to verify. Nevertheless, Theorem 2 is still useful
because it provides the explicit conditions (13) that the truncation function ϕ should
satisfy for the solution to the truncated system to approximate the one of the original
system. For the problems considered here we require (13) to hold for N = 1, which
corresponds to a second Taylor expansions of the solution. Note that for N = 1, (13)
simply becomes

Cµ∞ = ϕ(µ ,τ), CA∞(τ)µ∞ =
∂ϕ(µ ,τ)

∂ µ
Ik×∞A∞(τ)µ∞ +

∂ϕ(µ ,τ)

∂ t
, (15)

∀µ∞ ∈ Ωµ , τ ≥ 0. Lacking knowledge of β , we will not be able to explicitly compute
for which values of δ (14) will hold, but we will show by simulation that the truncation
obtained provides a very accurate approximation to the infinite-dimensional system (8),
even for such a small choice of N. We restrict our attention to functions ϕ and sets Ωµ
for which it is simple to use (15) to explicitly compute truncated systems.



Separable truncation functions: For all the examples considered, we consider functions
ϕ of the form

ϕ(ν , t) = Λν (Γ ) := Λ









νγ11
1 νγ12

2 ···νγ1k
k

νγ21
1 νγ22

2 ···νγ2k
k

...
νγr1

1 νγr2
2 ···νγrk

k









, (16)

for appropriately chosen constant matrices Γ := [γi j] ∈ R
r×k and Λ ∈ R

r×r, with Λ
diagonal. In this case,

∂ϕ(ν)

∂ν
= Λ











νγ11
1 νγ12

2 · · ·νγ1k
k γ11ν−1

1 νγ11
1 νγ12

2 · · ·νγ1k
k γ12ν−1

2 · · · νγ11
1 νγ12

2 · · ·νγ1k
k γ1kν−1

k
νγ21

1 νγ22
2 · · ·νγ2k

k γ21ν−1
1 νγ21

1 νγ22
2 · · ·νγ2k

k γ22ν−1
2 · · · νγ21

1 νγ22
2 · · ·νγ2k

k γ2kν−1
k

...
...

. . .
...

νγr1
1 νγr2

2 · · ·νγrk
k γr1ν−1

1 νγr1
1 νγr2

2 · · ·νγrk
k γr2ν−1

2 · · · νγr1
1 νγr2

2 · · ·νγrk
k γrkν−1

k











= Λ diag[ν (Γ )]Γ diag[ν−1
1 ,ν−1

2 , . . . ,ν−1
k ]

and therefore (15) becomes

Cµ∞ = Λ µ(Γ ), (17a)

CA∞(τ)µ∞ = Λ diag[Cµ∞]Γ diag[µ−1
1 ,µ−1

2 , . . . ,µ−1
k ]Ik×∞A∞(τ)µ∞. (17b)

This particular form for ϕ is convenient because (17a) often uniquely defines Λ and
then (17b) provides a linear system of equations on Γ , for which it is straightforward to
determine if a solution exists.

Deterministic distributions: A set Ωµ that is particularly tractable corresponds to deter-
ministic distributions Fdet := {P(· ; q,x) : x ∈ Ωx,q ∈ Q}, where P(· ; q,x) denotes the
distribution of (q,x) for which q = q and x = x with probability one; and Ωx a subset of
the continuous state space R

n. For a particular distribution P(· ; q,x), the (uncentered)
moment associated with q̄ and m ∈ N

n
≥0 is given by

µ(m)
q̄ :=

∫

ψ(m)
q̄ (q̃, x̃)P(dq̃dx̃;q,x) = ψ (m)

q̄ (q,x) :=

{

x(m) q = q̄
0 q 6= q̄,

and therefore the vectors µ∞ in Ωµ have this form. Although this family of distributions
may seem very restrictive, it will provide us with truncations that are accurate even
when the pSHSs evolve towards very “nondeterministic” distributions, i.e., with signif-
icant variance. For this set Ωµ , (17) takes a particularly simple form and the following
result provides a simple set of conditions to test if a truncation is possible.

Lemma 1 (cf. Appendix). Let Ωµ be the set of deterministic distributions Fdet with
Ωx containing some open ball in R

n and consider truncation functions ϕ of the form
(16). The matrices Λ and Γ must satisfy:

1. Λ must be the identity matrix.



2. For every moment µ (m`)
q`

in µ̄ and every moment µ (mi)
qi in µ for which qi 6= q`, one

must have γ`,i = 0.
3. For every moment µ (m`)

q` in µ̄, one must have ∑k
i=1

qi=q`

γ`,imi = m`.

Moreover, the following conditions are necessary for the existence of a function ϕ of
the form (16) that satisfies (15):

4. For every moment µ (m`)
q` in µ̄ the polynomial3 ∑∞

i=1
qi=q`

a`,i x(mi) must belong to the

linear subspace generated by the polynomials

{ ∞

∑
i=1

qi=q`

a j,i x(m`−m j+mi) : 1 ≤ j ≤ k, q j = q`

}

.

5. For every moment µ (m`)
q` in µ̄ and every moment µ (mi)

qi in µ∞ with qi 6= q`, we must
have a`,i = 0. Here we are denoting by a j,i the jth row, ith column entry of A∞.

�

Condition 4 imposes a diagonal-band-like structure on the submatrices of A∞ con-
sisting of the rows/columns that correspond to each moment that appears in µ̄ . This
condition holds for Examples 2, 3, and 4, but not for Example 5. However, we will
see that the moment dynamics of this example can be simplified so as to satisfy this
condition without introducing a significant error.

Condition 5 imposes a form of decoupling between different modes in the equations
for ˙̄µ . This condition holds trivially for all examples that have a single discrete mode.
It does not hold for Example 3, but also here it is possible to simplify the moment
dynamics to satisfy this condition without introducing a significant error.

5 Examples of Truncations

We now present truncated systems for the several examples considered before and dis-
cuss how the truncated models compare to estimates of the moments obtained from
Monte Carlo simulations. All Monte Carlo simulations were carried out using the al-
gorithm described in [1]. Estimates of the moments were obtained by averaging a large
number of Monte Carlo simulations. In most plots, we used a sufficiently large number
of simulations so that the 99% confidence intervals for the mean cannot be distinguished
from the point estimates at the resolution used for the plots. Ir is worth to emphasize
that the results obtained through Monte Carlo simulations required computational ef-
forts orders of magnitude higher than those obtained using the truncated systems.

Example 1 (Random walk). For this system ψ (m)(x) = xm, ∀m ∈ N≥0 and we conclude
that

(Lψ(m))(x) = −maxm +
(x+b

√
ε)m +(x−b

√
ε)m −2xm

2ε
3 We are considering polynomials with integer (both positive and negative) powers.



= −maxm +
m

∑
i=2

i even

(

m
i

)

biε
i−2

2 ψ(m−i)(x).

Therefore
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










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


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
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















0
b
0

b2ε
0
...
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


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
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

+



















−a 0 · · ·
0 −2a 0 · · ·

3b 0 −3a 0 · · ·
0 6b 0 −4a 0 · · ·

5b2ε 0 10b 0 −5a 0 · · ·
...

...
. . . . . . . . . . . . . . .
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




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











µ(1)

µ(2)

µ(3)

µ(4)

µ(5)

...



















Since µ (0)(t) = 1, ∀t ≥ 0 we excluded µ (0) from the vector µ , resulting in an affine
system (as opposed to linear).

Because the infinite-dimensional moment dynamics are lower-triangular, this sys-
tem can be truncated exactly. For example, a third order truncation yields





µ̇(1)

µ̇(2)

µ̇(3)



=





−a 0 0
0 −2a 0

3b 0 −3a









µ(1)

µ(2)

µ(3)



+





0
b
0





which can be solved explicitly:

µ(1)(t) = e−at µ(1)(0), µ(2)(t) =
b
2a

(1− e−2at)+ e−2atµ(2)(0),

µ(3)(t) =
3b
2a

(e−at − e−3at)µ(1)(0)+ e−3at µ(3)(0),

for a 6= 0, and

µ(1)(t) = µ(1)(0), µ(2)(t) = bt + µ (2)(0), µ(3)(t) = 3btµ (1)(0)+ µ (3)(0),

for a = 0. It is interesting to note that these equations do not depend on ε because this
parameter only appears in the equation for µ̇(4). This means that up to the third order
moments this pSHS is indistinguishable from the SDE ẋ = ax+bṅ. �

Example 2 (TCP long-lived). Since for this system it is particularly meaningful to
consider moments of the packet sending rate r := w

RT T , we choose ψ (m)(w) = wm

RTT m ,
∀m ∈ N≥0 and conclude that

(Lψ(m))(w) =
mwm−1

RT T m+1 − 2m −1
2m

pwm+1

RT T m+1 =
mψ(m−1)(w)

RTT 2 − p
2m −1

2m ψ(m+1)(w).

Therefore
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






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...
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
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











1
RT T 2

0
0
0
...















+

















0 − p
2 0 · · ·

2
RTT 2 0 − 3p

4 0 · · ·
0 3

RT T 2 0 − 7p
8 0 · · ·

0 0 4
RT T 2 0 − 15p

16 0 · · ·
...

...
. . . . . . . . . . . . . . .































µ(1)
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µ(3)

µ(4)

µ(5)
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
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


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(a) Truncated model (18), (19)
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(b) Truncated model (18), (20)

Fig. 1. Comparison between Monte Carlo simulations and two truncated models for
Example 2, with RTT = 50ms and a step in the drop-rate p from 2% to 10% at time
t = 5sec.

Since µ (0)(t) = 1, ∀t ≥ 0 we excluded µ (0) from the vector µ , resulting in an affine
system (as opposed to linear).

We consider a truncation whose state contains the first and second moments of the
sending rate. In this case, (9) can be written as follows:

[

µ̇(1)

µ̇(2)

]

=

[

0 − p
2

2
RTT2 0

]

[

µ(1)

µ(2)

]

+

[ 1
RT T 2

0

]

+
[

0
− 3p

4

]

µ̄, (18)

where µ̄ := µ(3) evolves according to µ̇(3) = 3µ(2)

RTT 2 − 7pµ(4)

8 . In this case, (17) has a
unique solution ϕ , resulting in a truncated system given by (18) and

µ̄ = ϕ(µ(1),µ(2)) :=
(µ(2))

5
2

(µ(1))2 . (19)

Figure 1(a) shows a comparison between Monte Carlo simulations and this truncated
model. The dynamics of the first moment of the sending rate is very accurately pre-
dicted by the truncated model and there is roughly a 10% error in the steady-state value
of the standard deviation. In the simulations, a step in the drop probability was intro-
duced at time t = 5sec to show that the truncated model also captures well transient
behavior. Figure 1(b) refers to a more accurate truncated model proposed in [1], which
corresponds to

µ̄ = ϕ(µ(1),µ(2)) :=
(µ(2)

µ(1)

)3
. (20)

Its construction relied on the experimental observation that the steady-state distribution
of the sending rate appears to be approximately Log-Normal. It turns out that this model



could also have been obtained using the procedure described in Sec. 3 by requiring (13)
to hold only for N = 0 but for a set Ωµ consisting of all Log-Normal distributions,
which is richer than the set Fdet of deterministic distributions used to construct (19).

�

Example 3 (TCP on-off). For this system we also consider moments of the sending rate
r := w

RT T on the ss and ca modes, and therefore we use

ψ(0)
off (q,w) =

{

1 q = off
0 q ∈ {ca,ss}

ψ(m)
ss (q,w) =

{

wm

RT T m q = ss
0 q ∈ {ca,off}

ψ(m)
ca (q,w) =

{

wm

RT T m q = ca
0 q ∈ {ss,off}

which yields

(Lψ(0)
off )(q,w) = −τ−1

off ψ(0)
off (q,w)+

1
k

ψ(1)
ss (q,w)+

1
k

ψ(1)
ca (q,w)

(Lψ(m)
ss )(q,w) =

τ−1
off wm

0
RTT m ψ(0)

off (q,w)+
m log2
RTT

ψ(m)
ss (q,w)− (p+

1
k
)ψ(m+1)

ss (q,w)

(Lψ(m)
ca )(q,w) =

p
2m ψ(m+1)

ss (q,w)+
m

RTT 2 ψ(m−1)
ca (q,w)− (

1
k

+ p− p
2m )ψ(m+1)

ca (q,w).

Therefore
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Since µ (0)
off , µ(0)

ss , and µ (0)
ca are the probabilities that q is equal to off, ss, and ca, respec-

tively, these quantities must add up to one. We could therefore exclude one of them
from µ .

We consider a truncation whose state contains the zeroth, first, and second moments
of the sending rate. In this case, (9) can be written as follows:
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µ̄, (21)



where µ̄ := [ µ(3)
ss µ(3)

ca ]′ evolves according to

µ̇(3)
ss =

τ−1
off w3

0
RTT 3 µ(0)

off +
log8
RTT

µ(3)
ss − (

1
k

+ p)µ (4)
ss , (22a)

µ̇(3)
ca =

3
RTT 2 µ(2)

ca +
p
8

µ(4)
ss − (

1
k

+
7p
8

)µ(4)
ca . (22b)

However, (22) does not satisfy condition 5 in Lemma 1 because the different discrete
modes do not appear decoupled: µ̇(3)

ss depends on µ (0)
off , and µ̇(3)

ca depends on µ (4)
ss . For

the purpose of determining ϕ , we ignore the cross coupling terms and approximate (22)
by

µ̇(3)
ss ≈ log8

RT T
µ(3)

ss − (
1
k

+ p)µ (4)
ss , µ̇(3)

ca ≈ 3
RT T 2 µ(2)

ca − (
1
k

+
7p
8

)µ(4)
ca . (23)

The validity of these approximations generally depends on the network parameters.
When (23) is used, it is straightforward to verify that (17) has a unique solution ϕ ,
resulting in a truncated system given by (21) and

µ̄ = ϕ(µ) =

[

µ(0)
ss (µ(2)

ss )3

(µ(1)
ss )3

(µ(0)
ca )

1
2 (µ(2)

ca )
5
2

(µ(1)
ca )2

]′
. (24)

Since µ (0)
off , µ(0)

ss , and µ (0)
ca correspond to the probabilities that q is equal to off, ss, and

ca, respectively, these quantities must add up to one and we can exclude one of them
from the state.

Figure 2 shows a comparison between Monte Carlo simulations and the truncated
model (21), (24). The dynamics of the first and second order moments are accurately
predicted by the truncated model. There is some steady-state error in the probabilities
of each mode, especially after the drop-rate p dropped to 2%. This corresponds to a
situation in which the sending rate in the ss mode exceeds that of the ca mode and
therefore the µ (4)

ss term dropped from (23) in the µ̇(3)
ca equation may actually have a

significant effect. Somewhat surprisingly, even in this case the first and second order
moments are very well approximated. In preparing this paper, several simulation were
executed for different network parameters and initial conditions. Figure 2 shows typical
best-case (before t = 1) and worst-case (after t = 1) results.

The average file size used to produce Fig. 2 is consistent with the one observed in the
UNIX file system reported in [15]. It should be emphasized that the overall distribution
of the UNIX file system and more importantly of files transmitted over the Internet is
not well approximated by an exponential distribution. More reasonable distributions are
Pareto or mixtures of exponentials. Both could be modeled by pSHSs, but for simplicity
here we focused our attention on the simplest case of a single exponential distribution.

�

Example 4 (Networked control system). For this system ψ (m)(e) = em, ∀m ∈ N≥0 and

(Lψ(m))(e) = amem +
m(m−1)b2

2
em−2 − em+2ρ



Fig. 2. (left) Comparison between Monte Carlo simulations (solid lines) and the trun-
cated model (21), (24) (dashed lines) for Example 3, with RTT = 50ms, τoff = 1sec,
k = 20.39 packets (corresponding to 30.58KB files broken into 1500bytes packets,
which is consistent with the file-size distribution of the UNIX file system reported in
[15]), and a step in the drop-rate p from 10% to 2% at t = 1sec.
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Fig. 3. (right) Comparison between Monte Carlo simulations (solid lines) and the trun-
cated model (25), (26) (dashed lines) for Example 4, with a = 1, q = 1, and a step in
the parameter b from 10 to 2 at time t = 0.5sec.

= amψ (m)(e)+
m(m−1)b2

2
ψ(m−2)(e)−ψ (m+2ρ)(e).
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In particular, for ρ = 0 we get
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and for ρ = 1 we get
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Since µ (0)(t) = 1, ∀t ≥ 0 we excluded µ (0) from the vector µ , resulting in an affine
system (as opposed to linear).

For ρ = 0, the infinite-dimensional dynamics have a lower-triangular structure and
therefore an exact truncation is possible. However, this case is less interesting because it
corresponds to a reset-rate that does not depend on the continuous state and is therefore
farther from the optimal [9,10]. We consider here ρ = 1. In this case, the odd and even
moments are decoupled and can be studied independently. It is straightforward to check
that if the initial distribution of e is symmetric around zero, it will remain so for all
times and therefore all odd moments are constant and equal to zero. Regarding the even
moments, the smallest truncation for which condition 4 in Lemma 1 holds is a third
order one, for which (9) can be written as follows:

[

µ̇(2)

µ̇(4)

µ̇(6)

]

=

[

2a −1 0
6b2 4a −1
0 15b2 6a

]

[

µ(2)

µ(4)

µ(6)

]

+
[

b2

0
0

]

+
[ 0

0
−1

]

µ̄, (25)

where µ̄ := µ(8) evolves according to µ̇(8) =−28b2µ(6) +8aµ (8)−µ(10). It is straight-
forward to verify that (17) has a unique solution ϕ , resulting in a truncated system given
by (25) and

µ̄ = ϕ(µ(2),µ(4),µ(6)) = µ(2)
(µ(6)

µ(4)

)3
. (26)

Figure 3 shows a comparison between Monte Carlo simulations and the truncated model
(25), (26). The dynamics of the all the moments are accurately predicted by the trun-
cated model. The nonlinearity of the underlying model is apparent by the fact that halv-
ing b at time t = 0.5sec, which corresponds to dividing the variance of the noise by 4,
only results in approximately dividing the variance of the estimation error by 2. �

Example 5 (Decaying-dimerizing reaction set). For this system the test functions are of
the form ψ (m1,m2,m2)(x) = xm1

1 xm2
2 xm3

3 , ∀m1,m2,m3 ∈ N≥0 and we conclude that

(Lψ(m1,m2,m2))(x) = c1x1
(

(x1 −1)m1 − xm1
1
)

xm2
2 xm3

3

+
c2

2
x1(x1 −1)

(

(x1 −2)m1 (x2 +1)m2 − xm1
1 xm2

2
)

xm3
3

+ c3x2
(

(x1 +2)m1 (x2 −1)m2 − xm1
1 xm2

2
)

xm3
3 + c4x2

(

(x2 −1)m2(x3 +1)m3 − xm2
2 xm3

3
)

xm1
1

= c1

m1−1

∑
i=0

(m1
i
)

(−1)m1−iψ(i+1,m2 ,m3)(x)



+
c2

2

m1,m2

∑
i, j=0

(i, j)6=(m1,m2)

(m1
i
)(m2

j
)

(−2)m1−i(ψ(i+2, j,m3)(x)−ψ(i+1, j,m3)(x)
)

+ c3

m1,m2

∑
i, j=0

(i, j)6=(m1,m2)

(m1
i
)(m2

j
)

2m1−i(−1)m2− jψ(i, j+1,m3)(x)

+ c4

m2,m3

∑
i, j=0

(i, j)6=(m2,m3)

(m2
i
)(m3

j
)

(−1)m2−iψ(m1,i+1, j)(x), (27)

where the summations result from the power expansions of the terms (xi −c)mi . There-
fore
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.

For this example we consider a truncation whose state contains all the first and second
order moments for the number of particles of the first and second species. To keep the
formulas small, we omit from the truncation the second moments of the third species,
which does not appear as a reactant in any reaction and therefore its higher order statis-
tics do not affect the first two. In this case, (9) can be written as follows:
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where µ̄ := [ µ(3,0,0) µ(2,1,0) ]′ evolves according to

µ̇(3,0,0) = (−c1 +4c2)µ(1,0,0) +8c3µ(0,1,0) +(3c1 −10c2)µ(2,0,0) +12c3µ(1,1,0)

+(−3c1 +9c2)µ(3,0,0) +6c3µ(2,1,0)−3c2µ(4,0,0) (29a)

µ̇(2,1,0) = −2c2µ(1,0,0)−4c3µ(0,1,0) +4c2µ(2,0,0) +4c3µ(0,2,0) +(c1 −2c2 −4c3)µ(1,1,0)

− 5c2µ(3,0,0)

2
+(4c2 −2c1 − c3 − c4)µ(2,1,0) +4c3µ(1,2,0) +

c2µ(4,0,0)

2
−2c2µ(3,1,0).

(29b)

This system does not satisfy condition 4 in Lemma 1 because the µ (1,0,0), µ(0,1,0) terms
in the right-hand sides of (29) lead to monomials in x1 and x2 in ∑∞

i=1 a`,i x(mi) that do
not exist in any of the polynomials

{

∑∞
i=1 a j,i x(m`−m j+mi) : 1 ≤ j ≤ 6

}

. These terms
can be easily traced back to the lowest-order terms in power expansions in (27) and
disappear if we only keep the three highest powers of x1 in the expansion of (x1 −
1)m1 that corresponds to the first reaction and the two highest powers of x1 and x2 in
the expansions of (x1 ± 2)m1 and (x2 ± 1)m2 that correspond to the second and third
reactions. In practice, this leads to the following simplified version of (28)
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(30)

where now µ̄ := [ µ(3,0,0) µ(2,1,0) ]′ evolves according to

µ̇(3,0,0) = 3c1µ(2,0,0) +(−3c1 +3c2)µ(3,0,0) +6c3µ(2,1,0)−3c2µ(4,0,0)

µ̇(2,1,0) = 2c2µ(2,0,0) +(c1 −4c3)µ(1,1,0)− 5c2µ(3,0,0)

2

+(−2c1 +2c2 − c3 − c4)µ(2,1,0) +4c3µ(1,2,0) +
c2µ(4,0,0)

2
−2c2µ(3,1,0),

for which condition 4 in Lemma 1 does hold, allowing us to find a unique solution ϕ
to (17), resulting in a truncated system given (28) and

µ̄ = ϕ(µ) =
[

(

µ(2,0,0)

µ(1,0,0)

)3 µ(2,0,0)

µ(0,1,0)

(

µ(1,1,0)

µ(1,0,0)

)2
]′

. (31)

Ignoring the lowest-order powers of x1 and x2 in the power expansions is valid when
the populations of these species are high. In practice, the approximation still seems to
yield good results even when the populations are fairly small as shown by the Monte
Carlo simulations.

Figure 4 shows a comparison between Monte Carlo simulations and the truncated
model (28), (31). The coefficients used were taken from [13, Example 1]: c1 = 1, c2 =
10, c3 = 1000, c4 = 10−1. In Fig. 4(a), we used the same initial conditions as in [13,
Example 1]:

x1(0) = 400, x2(0) = 798, x3(0) = 0. (32)



Table 1. Comparison between estimates obtained from Monte Carlo simulations and
the truncated model for Example 5. The Monte Carlo simulation data was taken from
[13].

Source for the estimates E[x1(0.2)] E[x2(0.2)] StdDev[x1(0.2)] StdDev[x2(0.2)]

10,000 MC. simul. 387.3 749.5 18.42 10.49
model (28), (31) 387.2 749.6 18.54 10.60

The match is very accurate, as can be confirmed from Table 1. The values of the pa-
rameters chosen result in a pSHS with two distinct time scales, which makes this pSHS
computationally difficult to simulate (“stiff” in the terminology of [13]). The initial con-
ditions (32) start in the “slow manifold” x2 = 5

1000 x1(x1 − 1) and Fig. 4(a) essentially
shows the evolution of the system on this manifold. Figure 4(b) zooms in on the interval
[0,5×10−4] and shows the evolution of the system towards the manifold when it starts
away from it at

x1(0) = 800, x2(0) = 100, x3(0) = 200. (33)

Figures 4(c)–4(d) shows another simulation of the same reactions but for much smaller
initial populations:

x1(0) = 10, x2(0) = 10, x3(0) = 5. (34)

The truncated model still provides an extremely good approximation, with significant
error only in the covariance between x1 and x2 when the averages and standard deviation
of these variables get below one. This happens in spite of having used (30) instead of
(29) to compute ϕ . �

6 Conclusions and Future Work

In this paper, we showed that the infinite-dimensional linear moment dynamics of a
pSHS can be approximated by a finite-dimensional nonlinear ODE with arbitrary pre-
cision. Moreover, we provided a procedure to build this type of approximation. The
methodology was illustrated using a varied pool of examples, demonstrating its wide
applicability. Several observations arise from these examples, which point to directions
for future research:

1. Surprisingly, in all the examples considered the truncation function ϕ does not
depend on the parameters of the vector fields or the transition intensities. Clearly,
this cannot be a general property of pSHSs and apparently we were simply “lucky”
in the examples for which we applied our procedure. However, there may be deeper
reasons for this independence that require further investigation.

2. The computation of the truncation function does not directly take into account the
steady-state distribution of the pSHS. This is desirable because for all the examples
presented it is difficult to compute the steady-state values of the moments. How-
ever, when steady-state distributions are available, they can improve the steady-
state accuracy of the truncated system. This was done in Example 2, for which
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scale with initial condition (33)
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Fig. 4. Comparison between Monte Carlo simulations (solid lines) and the truncated
model (28), (31) (dashed lines) for Example 5.

experimental observations indicate that the steady-state distribution of the sending
rate appears to be approximately Log-Normal. However, it would be desirable to
devise constructions that improve the steady-state accuracy even when this type of
insight is not readily available.

3. In all the examples presented, we restricted our attention to truncation functions ϕ
of the form (16) and we only used deterministic distributions to compute ϕ . Mostly
likely, better results could be obtained by considering more general distributions,
which may require more general forms for ϕ .



4. The truncation of pSHSs that model chemical reactions proved especially accurate.
This motivates the search for systematic procedures to automatically construct a
truncated system from chemical equations such as (6). Another direction for future
research consists of comparing the truncated models obtains here with those in [16].

An additional direction for future research consists of establishing computable bounds
on the error between solutions to the infinite-dimensional moments dynamics and to its
finite-dimensional truncations.

Appendix

Proof (Theorem 2). For a given δ > 0, let T > 0 and N > 0 be sufficiently large so
that for every solution µ∞ and ν to (8) and (10) starting at some t0 ≥ 0 in Ωµ and Ων ,
respectively, we have4

β (‖µ(t1)−ν(t1)‖,τ) ≤ δ
2

, ∀τ ≥ T, t1 ≥ t0 (35)

(2T )N+2

(N +2)!

(

sup
τ≥t0

∥

∥

∥

∥

dN+2µ(τ)

dtN+2

∥

∥

∥

∥

+ sup
τ≥t0

∥

∥

∥

∥

dN+2ν(τ)

dtN+2

∥

∥

∥

∥

)

≤ δ
2

. (36)

The existence of T is guaranteed by the fact that β ∈K L and by the boundedness of ν
and µ , as per Assumption 1. For the chosen T , the existence of N is guaranteed by As-
sumption 1 and the fact that limN→∞

(2T)N+2

(N+2)! = 0. The justification for these definitions
will become clear shortly.
Let µ∞ and ν be solutions to (8) and (10) starting in Ωµ and Ων , respectively, at some
time t0 ≥ 0. For a given t1 ≥ t0, since Ων is forward invariant, ν1 := ν(t1) ∈ Ων and
therefore, because of Assumption 2, there exists some µ̂∞(t1) ∈ Ωµ whose first k ele-
ments match ν1 and for which (11) holds. Therefore

‖µ(t)−ν(t)‖≤ ‖µ(t)− µ̂(t)‖+‖µ̂(t)−ν(t)‖
≤ β (‖µ(t1)−ν(t1)‖, t − t1)+‖µ̂(t)−ν(t)‖, ∀t ≥ t1. (37)

We now show by induction on i that

diµ̂(t1)
dt i =

diν(t1)
dt i , ∀i ∈ {0,1, . . . ,N +1}. (38)

The base of induction (i = 0) holds trivially by the way µ̂(t1) was selected. Suppose
now that the statement hold for some i ≤ N. Taking i+1 derivatives of µ̂(t)−ν(t) with
respect to t, one obtains

di+1(µ̂(t)−ν(t)
)

dt i+1 =
di

dt i

(

˙̂µ(t)− ν̇(t)
)

=
di

dt i

(

A(t)
(

µ̂(t)−ν(t)
)

)

+
di

dt i

(

B(t)
(

Cµ̂∞(t)− ν̄(t)
)

)

4 The left-hand-sides of (35) and (36) need to add up to δ but other options are possible.



=
i

∑
j=0

(

i
j

)

di− jA(t)
dt i− j

d j
(

µ̂(t)−ν(t)
)

dt j +
i

∑
j=0

(

i
j

)

di− jB(t)
dt i− j

d j
(

Cµ̂∞(t)− ν̄(t)
)

dt j . (39)

All the terms
d j
(

µ̂(t)−ν(t)
)

dt j in the first summation are equal to zero at t = t1 because of
the induction hypothesis. Moreover, from (12) and (13) we conclude that

d jCµ̂∞(t1)
dt j = C j(t1)µ̂∞(t1) = (L jϕ)(µ̂(t1), t1) = (L jϕ)(ν(t1), t1) =

d jν̄(t1)
dt j .

This means that all the terms
d j
(

Cµ̂∞(t)−ν̄(t)
)

dt j in (39) are also equal to zero at t = t1,
which finishes the proof of (38).
Expanding µ̂(t) and ν(t) as an Nth-order Taylor series around the point t1 ≥ 0 and using
(38) and (36), conclude that ‖µ̂(t)− ν(t)‖ ≤ δ

2 , ∀t ∈ [t1, t1 + 2T ]. From this and (37),
we obtain

‖µ(t)−ν(t)‖≤ β (‖µ(t1)−ν(t1)‖, t − t1)+
δ
2

, ∀t ∈ [t1, t1 +2T ]. (40)

We show next by induction that for every i ∈ N≥1,

‖µ(t)−ν(t)‖≤ δ , ∀t ∈ [t0 + iT, t0 +(i+1)T ]. (41)

The basis of induction (i = 1) is a direct consequence of (40) with t1 := t0 and (35).
Assuming now that (41) holds for some i ≥ 1, we conclude from (40) with t1 := t0 + iT
that

‖µ(t)−ν(t)‖≤ β (‖µ(t0 + iT )−ν(t0 + iT )‖, t − t0 − iT )+
δ
2
≤ δ ,

∀t ∈ [t0 +(i+1)T, t0+(i+2)T ], which finishes the proof of (41). From (40) with t1 := t0
and (41) if follows that

‖µ(t)−ν(t)‖≤ β (‖µ(t0)−ν(t0)‖, t − t0)+δ , ∀t ≥ t0,

which completes the proof.

Proof (Lemma 1). Take a vector µ∞ ∈ Ωµ corresponding to the distribution P(· ; q,x)

and let µ (mi)
qi be the moment corresponding to the ith row of µ∞. Considering a partic-

ular row of C that has a one at the `th columns and zero at every other column, the
corresponding row in the vector equality (17a) can be written as

µ(m`)
q`

= λ`

k

∏
i=1

(µ(mi)
qi )γ`,i ⇔

{

x(m`) q` = q
0 q` 6= q

= λ`

k

∏
i=1











1 γ`,i = 0
x(γ`,imi) γ`,i 6= 0, qi = q
0 γ`,i 6= 0, qi 6= q

where λ` 6= 0 is the diagonal entry of Λ that corresponds this particular row of C. For
q` = q and x 6= 0 the left-hand-side is nonzero and therefore we must have γ`,i = 0



whenever qi 6= q, because otherwise the right-hand-side would be zero, which proves

2. Moreover, we must also have x(m`) = λ`x
(

∑k
i=1,qi=q`

miγ`,i

)

, ∀x ∈ Ωx, which proves 1
and 3. Consider now the corresponding row in the vector equality (17b), which can be
written as

∞

∑
i=1

a`,iµ
(mi)
qi = µ(m`)

q`

k

∑
j=1

γ`, j

µ(m j)
q j

∞

∑
i=1

a j,iµ
(mi)
qi (42)

For q` = q, since γ`, j = 0 whenever q j 6= q = q` (because of 2), we conclude that

∞

∑
i=1

qi=q

a`,i x(mi) =
k

∑
j=1

q j=q

γ`, j

∞

∑
i=1

qi=q

a j,i x(m`−m j+mi), ∀x ∈ Ωx,

which proves 4. For q` 6= q, the right-hand-side of (42) is zero and therefore ∑∞
i=1

qi=q
a`,i x(mi) =

0, ∀x ∈ Ωx which proves 5.
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