Power-aware Query Processing over Sensor Networks

Fatih Emekci
Hailing Yu
Divyakant Agrawal
Amr El Abbadi

Properties of Sensors and Sensor Networks

- Full-fledge computers
 - Computation, communication and sensing.
- Inherent properties of sensor networks
 - Limited power
 - high communication cost
 - low bandwidth
 - low computation capability
 - noise in readings
- New information processing techniques are needed.
- Privacy and Security

Proposed Information Processing Techniques

- The cost of query processing is different than database management systems and data stream.
 - Data is already avaliable
- The cost of query execution in sensor network is the cost of data collection.
 - Reduce energy consumption
- Several proposals aiming to reduce data collection cost:
 - TAG and COUGAR use in-network aggregation

TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks

- In-network processing of aggregates
- Queries posed at base station
- Query tree is built
- Synchronize the sensors:
 divide time into slots and
 assign a slot for each level
 of the tree
- Pach node takes the partial results for the subtrees rooted at its children and sends the partial result for subtree rooted at itself to its parent

TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks

- In-network processing of aggregates
- Queries posed at base station
- Query tree is built
- Synchronize the sensors:
 divide time into slots and
 assign a slot for each level
 of the tree
- Each node takes the partial results for the subtrees rooted at its children and sends the partial result for subtree rooted at itself to its parent

TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks

- In-network processing of aggregates
- Queries posed at base station
- · Query tree is built
- Synchronize the sensors: divide time into slots and assign a slot for each level of the tree
- Pach node takes the partial results for the subtrees rooted at its children and sends the partial result for subtree rooted at itself to its parent

Power-aware Queries

- Declarative SQL queries over data generated by sensors
- Give the tradeoff between energy usage and precision to the user.

SELECT AggregateFunction FROM Sensordata s WHERE s.loc in R DURATION D EVERY t PRECISION P

An example:

SELECT AVG(s.temperature)
FROM Sensordata s
WHERE s.loc in R
DURATION D
EVERY t
PRECISION P

Calculate the average temperature in region R with precision P, and run this query for D duration once every t time interval. -the result for the query can differ from the actual result at most P.

Idea Behind Power-aware Query Processing

- Basic idea "It is not news if one can predict it".
- Based on prediction
- If the base station can predict the result of the query, there is no need for communication.
- Naive solution:
 - Each sensor sends its prediction function to the base station and base station starts to predict the sensor's value
 - Each sensor sends new prediction function when base station's prediction is out of precision.
- Question: "Can we push this in-network?"
 - Challenge: "final answer to the query has to be within a user specified precision"
- Power-aware query processing uses in-network prediction.

Power-aware Query Processing Technique

- Construct a query tree.
- Each node in the tree sends a prediction function for the subtree rooted at itself to its parent.
- Each parent tries to predict the values for the subtrees rooted at its children.

Each child sends a new prediction function when the parent's prediction is out of precision.

Experiment Results

- Comparison of naive and power-aware query processing technique in terms of the number of bits sent in communication.
- Place sensors on NxN grid, each sensor can communicate with its direct 8 neighbors.
- Base station is in the middle of the grid
- Query: "SELECT AVG FROM Sensordata & WHERE & loc in GRID N XN DURATION 1000 EVERY 1 PRECISION P"
- Below graph shows the effect of precision and prediction on communication.
 - Average number of bits sent by each sensor

Experiment Results

- ·Below graphs show the number of bits sent by each sensor in 10x10 grid
 - Energy usage is much more balanced in power-aware query processing technique

Future Direction I: Power-aware Multi-Query Processing

·Multiple gueries each of which has different user specified precision

Future Direction II: Discovery of Physical Rules

- There is a physical rule between readings of sensors:
 - Can we model these rules?
 - Can we use that model in query processing?

Future Direction III: Security and Privacy Support

- Preserve privacy during in-network communication
 - Do not let others know partial results.
- Secure computation of answers to queries
 - Do not let others corrupt partial computation of results.

A3Q

Thank You!