Putting Blind Sensor Networks In Touch Via Peripheral Measurements

By
Kaviyesh Doshi
Shiv Chandrasekaran
ECE Department, UCSB

OVERVIEW

- Problem statement
- Issues to be addressed
- Applications

Problem

1-D Network of Sensors

Problem

1-D Network of Sensors

Problem

1-D Network of Sensors

Problem (contd.)

- Observe samples of Y₁ and Y_N at different frequencies and
 - Identify the network (d_i's)
 - Extract information (X_i)

Inverse Scattering

$$Y_i(w) = H(w)[d_{i-1}Y_{i-1}(w) + d_iY_{i+1}(w) + F(X_i)]$$

$$y = HDy + H'x + b$$

Network Identification

Identify D

- Observations at 4N or more high frequencies
 - +y = HDy + b
 - ◆ Calculate d₁

$$Y_1 = H[Y_0 + d_1 Y_2]$$

Layer peeling to obtain D

◆Solve for X_i by making observations at N/2 or more low frequencies

$$\left[\overline{I - HD} \quad \overline{H}' \right] \left[\frac{\overline{y}}{x} \right] = \overline{b}$$

Solve for X_i by making observations at N/2 or more low frequencies

$$\left[\overline{I - HD} \quad \overline{H}' \right] \left[\frac{\overline{y}}{x} \right] = \overline{b}$$

$$\begin{bmatrix} I - H_1 D & & & \\ & \ddots & & \\ & & I - H_k D \end{bmatrix}$$

◆ Solve for X_i by making observations at N/2 or more low frequencies

$$\begin{bmatrix} \overline{I - HD} & \overline{H} \end{bmatrix} \begin{bmatrix} \overline{y} \\ x \end{bmatrix} = \overline{b}$$

$$\begin{bmatrix} (I - HD)_1 & & & \\ & \ddots & & \\ & & (I - HD)_k \end{bmatrix} \begin{bmatrix} (H')_1 \\ \vdots \\ (H')_k \end{bmatrix}$$

◆Solve for X_i by making observations at N/2 or more low frequencies

$$\begin{bmatrix}
I - HD & \overline{H} \\
\downarrow & \downarrow
\end{bmatrix} = \overline{b} \longrightarrow \begin{bmatrix} (b)_1 \\
\vdots \\
(b)_k \end{bmatrix}$$

$$\begin{bmatrix} (I-HD)_1 & \vdots \\
\vdots \\
(I-HD)_k \end{bmatrix} & \begin{bmatrix} (H')_1 \\
\vdots \\
(H')_k \end{bmatrix}$$

Issues to be solved

- Settling time of the system
- Stability analysis of the algorithm
- Optimal Transfer function
- Channel noise model
- Cross Talk between sensors

Applications

- Monitoring of borders
- Wired Networks
 - Examining pattern of stress on the wings of an airplane
 - Stress pattern on the beams in a building

Thank You!