The Challenges that Society Brings to Engineering Designs...

...and the games they play...

Jason R. Marden
Department of Electrical and Computer Engineering
University of California, Santa Barbara
(ECE 149 - Game Theory)
Field of Dreams...

if you build it, they will come...
if you build it, they will come...
Field of Dreams...

if you build it, they will come...
if you build it, they will come...
Field of Dreams...

if you build it, they will come...

but will they use it efficiently?
Goal: Determine “most” beautiful contestant

Experiment: Beauty contest
Experiment: Beauty contest

Goal: Determine “most” beautiful contestant

Game Theory = Study/Influence Social Behavior
Game Theory = Analysis/Influence Social Behavior

microscopic interactions → macroscopic phenomena
Game Theory = Analysis/Influence Social Behavior

microscopic interactions → macroscopic phenomena

decision makers
choices
conditional preferences

“game”
Game theory: Broader view

Game Theory = Analysis/Influence Social Behavior

microscopic interactions → macroscopic phenomena

decision makers
choices
conditional preferences

“game”

DMs = white/black
choices = moves
preferences = win
Game theory: Broader view

Game Theory = Analysis/Influence Social Behavior

microscopic interactions \rightarrow macroscopic phenomena

decision makers
choices
conditional preferences

“game”

DMs = drivers
choices = routes
preferences = minimize time
Game theory: Broader view

Game Theory = Analysis/Influence Social Behavior

microscopic interactions → macroscopic phenomena

decision makers
choices
conditional preferences

“game”

Social Norms?

QWERTY vs DVORAK

traditional keyboard
optimized keyboard
Game Theory = Analysis/Influence Social Behavior

Microscopic interactions \rightarrow macroscopic phenomena

<table>
<thead>
<tr>
<th>decision makers</th>
<th>choices</th>
<th>conditional preferences</th>
</tr>
</thead>
</table>

"game"
Game Theory = Analysis/Influence Social Behavior

microscopic interactions → macroscopic phenomena

decision makers
choices
conditional preferences

“game”

?
Game Theory = Analysis/Influence Social Behavior

microscopic interactions \rightarrow macroscopic phenomena

decision makers
choices
conditional preferences

“game”

John Nash
(Nobel Prize 1994)
Game Theory = Analysis/Influence Social Behavior

microscopic interactions → macroscopic phenomena

decision makers
choices
conditional preferences

“game”

John Nash
(Nobel Prize 1994)

eBay

A Beautiful Mind
Beautiful mind

microscopic interactions \(\uparrow\) macroscopic phenomena
\(\downarrow\) decision makers
choices
preferences

emergent behavior? efficient? coordination?
emergent behavior?
efficient?
coordination?
Nash equilibrium

“Nash equilibrium”
Emergent behavior = Conditionally optimal choices
(i.e., best choice given choices of other DMs)

John Nash
(Nobel Prize 1994)
“Nash equilibrium”

Emergent behavior = Conditionally optimal choices
(i.e., best choice given choices of other DMs)

John Nash
(Nobel Prize 1994)
Grand Banks Fisheries

- 1950s: Endless supply of cod fish
- 1960-1970: Advancements in fishing technology
- 1990s: Collapse due to low cod populations

emergent behavior? efficient? coordination?
Tragedy of the commons

Grand Banks Fisheries

• 1950s: Endless supply of cod fish
• 1960-1970: Advancements in fishing technology
• 1990s: Collapse due to low cod populations

Social Norms

society could adopt inferior convention

emergent behavior? efficient? coordination?
Tragedy of the commons

Grand Banks Fisheries

- 1950s: Endless supply of cod fish
- 1960-1970: Advancements in fishing technology
- 1990s: Collapse due to low cod populations

Social Norms

Transportation Systems

uninfluenced traffic
(can be suboptimal
(tolls not necessarily for $)

emergent behavior? efficient? coordination?
Tragedy of the commons

Grand Banks Fisheries

- 1950s: Endless supply of cod fish
- 1960-1970: Advancements in fishing technology
- 1990s: Collapse due to low cod populations

Social Norms

Transportation Systems

uninfluenced traffic can be suboptimal (tolls not necessarily for $)

Not Efficient Behavior!

efficient? coordination?
Grand Banks Fisheries

- 1950s: Endless supply of cod fish
- 1960-1970: Advancements in fishing technology
- 1990s: Collapse due to low cod populations

Social Norms

Transportation Systems

uninfluenced traffic can be suboptimal (tolls not necessarily for $)

Not Efficient Behavior!

efficient? coordination?
There are many mechanisms you are exposed to on a daily basis that are in place to influence your behavior.

- eBay (auctions)
- United (overbooked flights)
- Boulder Valley School District (school assignments)
Incentivizing behavior

There are many mechanisms you are exposed to on a daily basis that are in place to influence your behavior.

success story

- eBay (auctions)
- United (overbooked flights)
- Boulder Valley School District (school assignments)
Auctions

choices = how much $ to bid
preference = win tickets at lowest possible cost
objective = optimize surplus or revenue (uncertainty)

system choice = report? who wins? payments?
Auctions

BIDS

100 80

150 70

250 175
Auctions

BIDS

100

80

150

70

175

250

WINNER
WINNER

PAYS: $80 (second highest price)
Auctions

Why not have Ned pay his bid $175?
Incentivizing behavior

There are many mechanisms you are exposed to on a daily basis that are in place to influence your behavior. One such mechanism is the eBay auction system, which is a success story:

- (i) optimizes social surplus
- (ii) optimal to bid true value

Incentivizing behavior

There are many mechanisms you are exposed to on a daily basis that are in place to influence your behavior.

(i) not efficient for BVSD
(ii) not efficient for parents
Incentivizing behavior

There are many mechanisms you are exposed to on a daily basis that are in place to influence your behavior.

- eBay (auctions)
- United Airlines (overbooked flights)
- Boulder Valley School District (school assignments)
There are many mechanisms you are exposed to on a daily basis that are in place to influence your behavior.
Incentivizing behavior

There are many mechanisms you are exposed to on a daily basis that are in place to influence your behavior.

United Airlines

United’s way of bumping ‘is very inefficient,’ says auction expert

By Ethan Wolff-Mann

m.yahoo.com — United’s way of bumping ‘is very inefficient,’ says auction expert Yahoo Finance Wednesday, April 12, 2017 Ethan Wolff-Mann With a proper auction, there is no such thing as involuntary bumping. Source: APAfter a viral video emerged this week of United Airlines (UAL) dragging a paying customer off a plane, some outraged consumers attacked the airline industry’s practice of overbooking. Not all airlines overbook, with JetBlue (JBLU) being a notable exception.

3 MONTHS AGO f | in | twitter | Who shared?
microscopic interactions \[\uparrow\] decision makers \[\downarrow\] choices preferences

\[\uparrow\] emergent behavior? efficient? coordination?

macroscopic phenomena \[\downarrow\]
emergent behavior?

efficient?

coordination?

simplifying assumptions
transportation network
driver behavior models

emergent behavior?

efficient?

coordination?
simplifying assumptions
transportation network
driver behavior models

\[c_h(x) = x \]

\[c_l(x) = 1 \]

system demand
unit flow of traffic
congestion functions
simplifying assumptions
transportation network
driver behavior models

\[c_h(1) = 1 \]

\[c_h(x) = x \]

\[c_l(x) = 1 \]
simplifying assumptions
transportation network
driver behavior models

\[c_h(0.5) = 0.5 \]
\[c_h(x) = x \]

system demand

\[c_l(x) = 1 \]
\[c_l(0.5) = 1 \]
simplifying assumptions
transportation network
driver behavior models

drivers seek to minimize
own experienced congestion

unit flow of traffic

\[c_h(0.5) = 0.5 \]
\[c_h(x) = x \]

system demand

\[c_l(x) = 1 \]
\[c_l(0.5) = 1 \]
Motivation:

- Uninfluenced systems often exhibit poor system behavior
Motivation:
- Uninfluenced systems often exhibit poor system behavior

\[c_h(x) = x \]
\[c_l(x) = 1 \]

system optimal outcome vs. self-interested outcome
Motivation:

- Uninfluenced systems often exhibit poor system behavior

\[c_h(x) = x \]
\[c_l(x) = 1 \]
Motivation:

- Uninfluenced systems often exhibit poor system behavior

\[c_h(x) = x \]

\[c_l(x) = 1 \]

system optimal outcome vs. self-interested outcome
Motivation:
- Uninfluenced systems often exhibit poor system behavior

\[
\begin{align*}
 c_h(x) &= x \\
 c_l(x) &= 1
\end{align*}
\]

system optimal outcome vs. self-interested outcome
Motivation:

- Uninfluenced systems often exhibit poor system behavior

\[c_h(x) = x \]
\[c_l(x) = 1 \]

system optimal outcome vs. self-interested outcome

\[3/4 \]
Motivation:

- Uninfluenced systems often exhibit poor system behavior

\[c_h(x) = x \]

\[c_l(x) = 1 \]

System optimal outcome vs. self-interested outcome

3/4 vs. 1
Motivation:
- Uninfluenced systems often exhibit poor system behavior

Pigou’s network

\[c_h(x) = x \]
\[c_l(x) = 1 \]

System optimal outcome vs. self-interested outcome

Self-interested outcome 33% worse than optimal outcome
Motivation:

- Uninfluenced systems often exhibit poor system behavior
- Natural influencing mechanisms need not lead to intuitive outcomes
Motivation:
- Uninfluenced systems often exhibit poor system behavior
- Natural influencing mechanisms need not lead to intuitive outcomes

\[
c(x) = x \quad c(x) = 1
\]

\[
c(x) = 1 \quad c(x) = x
\]

Braess Paradox

original network vs. original network + extra edge
Motivation:

- Uninfluenced systems often exhibit poor system behavior
- Natural influencing mechanisms need not lead to intuitive outcomes

\[c(x) = x \quad c(x) = 1 \]

original network vs. original network + extra edge

1.5

Braess Paradox
Motivation:
- Uninfluenced systems often exhibit poor system behavior
- Natural influencing mechanisms need not lead to intuitive outcomes

Original network vs. original network + extra edge

\[c(x) = x \]
\[c(x) = 1 \]
\[c(x) = 1 \]
\[c(x) = x \]

\[\frac{1}{2} \]

Original network

\[c(x) = x \]
\[c(x) = 1 \]
\[c(x) = 0 \]
\[c(x) = x \]

\[\frac{1}{2} \]

Original network + extra edge

\[\frac{1}{2} \]

\[1 \]

\[1.5 \]

\[2 \]
Motivation:

- Uninfluenced systems often exhibit poor system behavior
- Natural influencing mechanisms need not lead to intuitive outcomes

original network vs. original network + extra edge

additional resources resulted in 33% worse system performance
Motivation:
- Uninfluenced systems often exhibit poor system behavior
- Natural influencing mechanisms need not lead to intuitive outcomes

Research Thrust: Develop methodologies for robust social coordination to improve system-level performance (taxes)
Motivation:

- Uninfluenced systems often exhibit poor system behavior
- Natural influencing mechanisms need not lead to intuitive outcomes

Research Thrust: Develop methodologies for robust social coordination to improve system-level performance (taxes)

simplified models provide us insight to challenges and opportunities in realistic setting
Motivation:
- Uninfluenced systems often exhibit poor system behavior
- Natural influencing mechanisms need not lead to intuitive outcomes

Research Thrust: Develop methodologies for robust social coordination to improve system-level performance (taxes)

Identify salient features of robust coordinating mechanisms
Field of Dreams...

if you build it, they will come...

but will they use it efficiently?
Field of Dreams...

if you build it, they will come...
but will they use it efficiently?
Field of Dreams...

if you build it, they will come...

but will they use it efficiently?
Field of Dreams...

if you build it, they will come...

but will they use it efficiently?
Field of Dreams...

Take away points:

- Ensuring “systems” utilized efficiently is challenging
- Natural choice need not be good choice
- Deriving mechanism requires thorough theoretical analysis
- Game theory is instrumental in the design of good mechanisms
- Engineers need awareness of Game Theory to design such systems

if you build it, they will come...
but will they use it efficiently?
Take away points:

- Ensuring “systems” utilized efficiently is challenging
- Natural choice need not be good choice
- Deriving mechanism requires thorough theoretical analysis
- Game theory is instrumental in the design of good mechanisms
- Engineers need awareness of Game Theory to design such systems

(avoid situations like this)
Take away points:
- Ensuring “systems” utilized efficiently is challenging
- Natural choice need not be good choice
- Deriving mechanism requires thorough theoretical analysis
- Game theory is instrumental in the design of good mechanisms
- Engineers need awareness of Game Theory to design such systems

i never realized i was a player in a game

Thank You