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Outline:

� Individual Optimization

� Security Strategies

1 Introduction

Up to this point in the course, we have investigated several types of group decision-making,
and uncovered several issues which can make group decision-making challenging. However,
one thing that has been absent in our discussion so far is the role that individual decisions
may play in the collective outcomes reached by the group. In other words, individual strategy
has so far been absent.

For example, in discussing the Social Choice problem, we always considered the individual
opinions as given – thus deliberately avoiding the additional challenges of tactical voting. In
a real election, a voter is not required to vote for the candidate which they actually want to
win – rather, they may assess which of the candidates are actually likely to win and vote for
their favorite among those.

As another example, the Matching lectures discussed the matching problem in detail and
showed how to perform bipartite matching using the Gale-Shapley algorithm in a way that
accounts for individual preferences, but we never asked whether the structure imposed by
the Gale-Shapley algorithm actually incentivizes the individuals to report their preferences
truthfully.

These kinds of issues prompt the next section of this course, in which we will focus on the
role that individual strategy plays in collective outcomes associated with group behavior.
We will ask questions such as

� If all individuals behave in a self-interested way, how does this affect the collective
behavior of the group?

� What are the right models and conceptual frameworks for analyzing self-interested
behavior?

2 Self-Interested Behavior

If we are to understand the effects of individual strategy on collective behavior, we first need
a mathematical framework that captures individual strategy. Throughout the remainder



of this course, we will adopt the modeling convention that each individual i has a utility
function, which is a function Ui that takes in a “state of the world” as input and returns
a real number that encodes how much the individual “likes” that state of the world. As a
very simple example, suppose there are two states of the world: “rainy” (denoted R) and
“sunny” (denoted S). Then a person’s utility function would assign a number to each of
these states; a bigger number means the person likes it more. For instance, if individual i
has a utility function of

Ui(x) =

{
5 if x = R
3 if x = S,

this would be one way of representing the idea that person i likes rainy weather better than
sunny weather, since Ui(R) > Ui(S). We would say that person i receives a “payoff” of 5
when it rains, and a “payoff” of 3 when it is sunny. In essence, this says that if person i had
the opportunity to choose between rain or sun, she would choose rain.

2.1 Umbrellas: Individual Choice

In reality, a person does not get to choose between rain or sun – the weather is out of an
individual’s control. However, this does not mean an individual has no choices to make.
Importantly, in many circumstances, a person can make choices that affect her preferences
over states of the world. Put differently, the choices made by a person are themselves part
of the state of the world.

To see how this works in the rain/sun scenario, suppose that our person (call her Alice) owns
an umbrella, and each day she has to make a choice: bring the umbrella or leave the umbrella
at home? By including her choice in our description of the state of the world, we grow the
number of states to 4: it either rains or is sunny, and Alice either brings her umbrella or she
doesn’t. Now, to fully express Alice’s preferences, her utility function needs to be defined
for each of these 4 possibilities. A convenient way to represent this is with a payoff matrix :

Alice’s Choice:

The Weather
Rain Sun

Umbrella 5 2
No Umbrella 0 3

Now that we see these expanded payoffs, we see that Alice’s enjoyment of rain versus sun
depends on whether she brought her umbrella. If it’s sunny, she’d prefer to leave her umbrella
at home. If it’s rainy, she’d prefer to bring her umbrella with her. To understand Alice’s
preferences as encoded by this payoff matrix, it is useful to differentiate between the things
under Alice’s control and the things that are out of her control: all Alice can do is decide
whether or not to bring her umbrella; she cannot decide whether it is rainy or sunny. Alice
only has control over the row of the payoff matrix – she simply must accept the column as
given.

Let us ask a new question: “Should Alice bring her umbrella, or leave it at home?” By reading
the payoff matrix carefully, we see that the answer depends on the state of the weather! If



it is raining, Alice prefers to bring her umbrella since Ui(U,R) > Ui(¬U,R) (specifically,
5 > 0). If it is sunny, Alice prefers not to bring her umbrella since Ui(U, S) < Ui(¬U, S)
(specifically, 2 < 3).

At this stage, one of the most crucial things to understand is that when Alice is trying to
decide what to do, she only has control over the rows of the payoff matrix. Simply put,
she only ever reasonably compares numbers across rows (that is, up-and-down) – there is
no point in comparing numbers across columns. To see this, suppose she has her umbrella
and it is sunny (so her payoff is 2 – she is lugging the umbrella around for no reason). She
can reasonably say “I wish I hadn’t brought my umbrella, because then my payoff would be
3.” She could have left her umbrella at home, and she is solely responsible for the regret she
feels for bringing it. However, if she says “I wish it were raining, because then I would be
getting a payoff of 5” she is just whining. She has no control over the weather (that is, no
control over the column of the matrix), so the fact that she prefers rain to sun is just wishful
thinking. In a practical sense, it doesn’t matter that there is a hypothetical way for her to
be getting a payoff of 5, since she has no ability to get there herself.

2.2 Security Strategies

Now we know how to think about Alice’s choices in retrospect : if she decides to bring the
umbrella and the weather turns out to be rainy, she’s happy. If she decided to leave the
umbrella at home and it turns out to be sunny, she’s happy. But how should Alice make
these decisions in the first place? In other words, if Alice wakes up in the morning and has
no idea whether it will rain today, should she bring her umbrella or not?

It turns out the answers to this question are varied and nuanced. However, as a starting
point, let’s think about how Alice would make her decision if she is very pessimistic. In
other words, suppose Alice’s main goal is to avoid low payoffs. To do this, she can look
at her choices, and for each one ask “if I choose this option, what is the worst that could
happen to me?” Then, having thought about worst-case scenarios for each choice, she can
just pick the one with the best worst-case scenario. One way to think about this in terms
of payoff matrices is that she writes down the smallest number in each row of the payoff
matrix, and then treats that number as the payoff for that particular action. Here, we write
the original payoff matrix on the left, and on the right we write the worst-case payoff (the
smallest number in each payoff row) for each of her potential choices:

Alice’s Choice:

The Weather
Rain Sun

Umbrella 5 2
No Umbrella 0 3

Worst-case payoff

Umbrella 2
No Umbrella 0

Using this technique, Alice can hedge her bets and always choose to bring her umbrella,
knowing that her payoff will never be worse than 2 no matter what the weather is.

Is this the best Alice can do? It depends. If Alice is committed to choosing just one option
always, then yes – she can’t ever guarantee that she’ll ever get more than 2. However, notice



that if Alice has committed to always bring her umbrella, an odd thing happens with this
example: on days when it is sunny and she actually gets a payoff of 2, she experiences some
regret – she wishes she’d left her umbrella at home. Alice would like to exploit this fact
somehow and improve her worst-case payoffs.

To do so, she needs to think bigger: she needs to think in terms of average or expected
payoffs. The idea here is that she knows that some days are sunny, so sometimes she’ll leave
her umbrella at home. Perhaps not too often, because leaving her umbrella at home puts
her at risk of getting rained on. But if she can properly balance the risk of being rained
on with the benefits of getting to walk around in the sun without an umbrella weighing her
down, then on average she could potentially be better off than if she simply always brought
the umbrella.

To analyze this, we need a notion of average payoffs, which requires a notion of randomized
choices. Suppose Alice brings her umbrella a p fraction of the time, and leaves it at home
a (1 − p) fraction of the time. That is, if p = 1/3, this means that on average, she has
her umbrella with her a third of the days. Then Alice can continue to apply her worst-case
analysis: just as with the simple deterministic case, she will ask for each possible value of p,
what is the worst thing that could happen? In other words, what is her expected payoff as
a function of p, for each of the possible states of weather? Figure 1 captures this.

Figure 1: Plot depicting Alice’s expected payoff as a function of p, the fraction of days on which she
brings her umbrella. The blue line corresponds to her expected payoff when it rains, and the orange line
corresponds to her expected payoff when it is sunny. Note that when she always brings her umbrella (i.e.,
p = 1), she receives a payoff of 5 when it is rainy and 2 when it is sunny. This means that her worst-case
guaranteed minimum payoff is only 2. However, if she brings her umbrella only half the time (i.e., p = 1/2),
her worst-case (expected) guaranteed minimum payoff increases to 2.5. This is because regardless of whether
it rains or is sunny, her expected payoff is always exactly 2.5 when she brings her umbrella half the time.

For each p, our pessimistic Alice wants to know what is the worst thing that could happen.
To find out what this is, Alice plugs in values of p, and then checks whether the orange



(sunny) line or the blue (rainy) line results in a lower expected payoff. For instance, it is
useful to consider the deterministic case (i.e., p ∈ {0, 1}). When p = 0 (Alice always leaves
her umbrella at home), her expected payoff is equal to 0 when rainy and 3 when sunny, so
the worst thing that could happen is rain. Likewise, when p = 1 (Alice always brings her
umbrella), her expected payoff is equal to 5 when rainy and 2 when sunny, so the worst thing
that could happen is sun.

The interesting and less-intuitive case is when Alice starts to decrease p from 1; that is, she
starts to leave her umbrella at home occasionally. Why would Alice do this? Remember that
Alice is focused on worst-case outcomes; when p = 1, the worst thing that could happen is
a sunny day. What she finds is that when she occasionally leaves her umbrella at home, the
worst thing that could happen is still a sunny day, but now she enjoys more sunny days. It
happens that she also enjoys her rainy days a little less – but rainy days are still far from
being the worst thing that could happen, so she doesn’t worry about that potential loss of
enjoyment.

To see this on the plot in Figure 1, for each p simply find the minimum of the Rain (blue)
and Sun (orange) traces; this value is Alice’s minimum expected payoff for that value of p.
Since Alice’s goal is to maximize her minimum expected payoff, she wants to select p such
that the minimum of the two lines is the largest-possible; for this particular problem, this
“maxi-min” payoff occurs at p = 0.5, and is marked in Figure 1 by the dashed black line.
That is, a pessimistic Alice should bring her umbrella exactly half the time on average – and
this will result in an expected payoff no less than 2.5.

In game-theoretic terms, we call this type of strategy is a security strategy, or a maximin
strategy: Alice is playing so as to maximize her guaranteed expected payoff. Note that in
computing her security strategy, Alice made no assumptions on the weather – her strategy
is completely independent of what the weather actually does. It depends only on her own
payoffs.

2.3 The Math

To model these things formally, we will write Ai to denote the set of choices (or pure strate-
gies) that player i can select, and A−i to denote the set of states of the world other than the
ones that player i controls. With this, we write A := Ai×A−i to denote the complete state
of the world. Given this, player i’s utility function is defined as Ui : A → R. We think of
player i as an individual optimizer; that is, player i attempts to select an action ai ∈ Ai that
maximizes her utility function, given the state of the world. We will often speak of player
i’s best response function, Bi : A−i → 2Ai which takes a state of the world as an input and
returns the set of actions which maximize the player’s utility function:

Bi(a−i) := arg max
ai∈Ai

Ui(ai, a−i). (1)

Now, to describe randomized strategies for player i, let si denote a vector of probabilities
with which player i selects each of her actions. That is, si denotes a probability distribution



over Ai, so each component of si lies in the interval [0, 1] and the sum of si’s components
is equal to 1. We call si a mixed strategy for player i. We write the set of possible mixed
strategies as ∆(Ai); likewise, we write the set of probability distributions over states of the
world as ∆(A−i). When a player selects a mixed strategy si and the probability distribution
over states of the world is given by s−i, player i’s expected payoff is written

Ui(si, s−i) = E(si,s−i)Ui(ai, a−i). (2)

The goal of a pessimistic player i (such as Alice in our example in the text) is to select a
mixed strategy which maximizes her worst-case expected payoff; we call such a strategy a
security strategy s∗i , given by

s∗i ∈ arg max
si∈∆(Ai)

min
s−i∈∆(A−i)

Ui(si, s−i). (3)

When player i uses security strategy s∗i , we say that the player obtains a value of

v = max
si∈∆(Ai)

min
s−i∈∆(A−i)

Ui(si, s−i). (4)

To encode the example with Alice and the weather, we identify Alice with index i and write
Alice’s action set as Ai = {U,¬U} and the other states of the world as A−i = {R, S}. Then
the complete state of the world is a member of the set A = {(U,R), (U, S), (¬U,R), (¬U, S)}.
Alice’s utility function is conveniently written as a payoff matrix:

Alice

Weather
R S

U 5 2
¬U 0 3

Now, let Alice’s mixed strategy be given by si = (p, 1− p); that is, she brings her umbrella
with probability p and leaves it at home with probability 1− p. Likewise, suppose the state
of the weather is drawn from a probability distribution s−i = (q, 1− q); that is, it rains with
probability q and is sunny with probability 1− q. Then Alice’s expected utility is given by

Ui(si, s−i) = 5pq + 2p(1− q) + 3(1− p)(1− q). (5)

For any fixed p, note that Alice’s expected utility is a linear-affine function of q; this guar-
antees that her worst-case expected utility occurs either when q = 0 or when q = 1 (that
is, when the weather is either always sunny or always rainy, respectively). Thus, Alice may
compute her security strategy s∗i by considering only the q = 1 and q = 0 cases of (5):

s∗i ∈ arg max
p∈[0,1]

min{5p, 2p + 3(1− p)}, (6)

and her value is
v = max

p∈[0,1]
min{5p, 2p + 3(1− p)}. (7)

To see this math in action, see Figure 1, and note that the blue (rainy) line is given by the
expression 5p, and the orange (sunny) line is given by the expression 2p + 3(1− p) = 3− p.



3 Conclusion

In this lecture we started to look at the problem of strategic decision-making in uncertain
environments. Any decision-making process for such scenarios must incorporate an under-
lying model for how the environment will make its decision. This lecture focused on the
most pessimistic of models, i.e., a worst-case model. One of the advantages of this model
is its universality; performance guarantees for a worst-case model immediately extend to
any other model of the environment. While these performance guarantees could be low in
general, we demonstrated that randomization can be exploited to improve these worst-case
performance guarantees.

4 Questions

1. Consider the following payoff matrix. As in the Alice/Umbrella example, the decision-
maker’s actions correspond to the rows of the matrix, while the other possible states
of the world correspond to the columns:(

1 3
4 2

)
(a) What is the decision-maker’s mixed security strategy for this payoff matrix?

(b) What is the decision-maker’s value?

2. Consider the following payoff matrix. As in the Alice/Umbrella example, the decision-
maker’s actions correspond to the rows of the matrix, while the other possible states of
the world correspond to the columns. Note that here, there are 3 other possible states
of the world. (

0 3 1
4 1 2

)
(a) What is the decision-maker’s mixed security strategy for this payoff matrix?

(b) What is the decision-maker’s value?


