
Game Theory
Lecture #10 – Strategic Form Games

Focus of Lecture:

• Strategic Form Games

• Dominant Strategies

• Best Response Sets

1 Introduction

The last lecture focused on investigating strategic decision-making in two-player zero-sum
games. A zero-sum game models a strategic environment with two players that have diamet-
rically opposed objectives. We asked the question of what constitutes reasonable strategic
behavior in such scenarios and explored the viability of security strategies for this purpose.
Recall, that the underpinning of security strategies is that each decision-maker assumes a
worst-case model of their opponent, and hence security strategies offer the highest possible
worst-case guarantees, which are known as security levels. While security strategies can
potentially be highly conservative, we demonstrated that security strategies are not conser-
vative in zero-sum games as both players are guaranteed to have the same security level when
considering mixed strategies. This means that if one player is playing a security strategy,
then the other player’s security strategy is also a best response.

In this lecture we will start to consider strategic environments beyond zero-sum games. We
term such environments as strategic form games. Here, we will focus on how to model and
analyze such strategic environments.

2 Strategic Form Games

In this section we introduce the formal model for strategic form games. These strategic
environments involve multiple (≥ 2) decision-makers, each with their own utility function.
The strategic component of such scenarios resides in the enmeshment of the players’ utility
functions, where the behavior of one player potentially impacts the utility of other players.
The specifics of the model are as follows:

• Decision-makers: There is a collection of decision-makers, i.e., N = {1, 2, 3, . . . , |N |}.
We will use the terms decision-makers, players, actors, and agents interchangeably
throughout the text.

• Choice Sets: Each decision-maker i ∈ N is associated with a given choice set Ai. We
will use the terms choices and actions interchangeably throughout the text.



• Joint Choice Sets: The set of joint choices is defined by A = A1 × · · · × An. We
will denote a joint choice by the tuple a = (a1, a2, . . . , an) ∈ A where ai ∈ Ai denotes
the choice of player i. Lastly, we will often express a joint choice profile a by (ai, a−i)
where a−i = (a1, . . . , ai−1, ai+1, . . . , an) encodes the choice of all decision-makers 6= i.
The set of joint choices for all agents 6= i is given by A−i =

∏
j 6=iAj

• Utility Function: Each decision-maker i ∈ N is associated with a given utility
function Ui : A → R that defines their preference over the joint actions A. We will
use the terms utilities, payoffs, rewards, and objectives interchangeably throughout the
text. Note that we now have to contend with |N | different utility functions.

As with zero-sum games, matrix form is a convenient representation for two player strategic
form games as well. An example of a strategic form game is given by

row

col
L C R

T v,w 1, 9 2, 8
M 3, 7 4, 6 5, 5
B 6, 4 x, y 7, 3

with the same interpretation as for zero-sum games. Here, the only distinction resides in
the fact that U1(a) + U2(a) 6= 0 for all a ∈ A. While simplistic, payoff matrices can model
complex strategies and interactions as the following examples highlight.

Example 2.1 (Prisoner’s Dilemma) Consider a scenario where two suspects are being
interrogated independently; the prosecutors believe they committed a crime together. The
interrogators, who lack significant evidence, are relying on these interrogations to determine
the extent of the penalty. Each suspect has two options during these interrogations: Cooperate
(C) with their partner and do not confess to the crime or Defect (D) from their partner and
confess to committing the crime (including all the details of the other suspect’s involvement).
If both cooperate and do not confess, then the prosecutors only have enough evidence to
sentence each to one year in jail. Alternatively, if both defect and confess then that will
provide the prosecutors with enough evidence to sentence each to three years in jail. Lastly,
if one cooperates and the other defects, then the suspect who defected is released immediately
for cooperating with prosecutors, while the partner receives an extensive four year sentence.
The resulting payoff matrix is

C D
C −1,−1 −4, 0
D 0,−4 −3,−3

Note that the suspects’ most desirable collective behavior is cooperation, as (C,C) which
yields a one year penalty to each suspect. Is this a reasonable prediction of the emergent
collective behavior?



Payoff matrices can also model far richer strategic environment encompassing multiple stages
and highly sophisticated strategies.

Example 2.2 (Iterated Prisoner’s Dilemma) For example, suppose the prisoner’s dilemma
game highlighted above is repeated M consecutive stages and the resulting payoff is the sum
of the payoffs received in each stage. Now, the actions of a particular player do not represent
a single choice of Cooperate or Defect, but rather comprehensive plan of action depending on
the behavior of the other player. Example of such comprehensive strategies include:

• GT “grim trigger”: Play C until the opponent plays D, then play D forever afterwards

• TfT “tit for tat”: At stage k, repeat the opponent’s move at stage k − 1

• Cy “cycle”: Play sequence {C,D,C, ...}

We can recast new setup in the standard framework where the “action” set for each player
is now of the form

{GT, TfT, Cy}

and the resulting payoff is the cumulative payoff which clearly depends on the strategies of
the two opposing players. Accordingly, this requires filling in the new matrix game

GT TfT Cy

GT ?, ? ?, ? ?, ?
TfT ?, ? ?, ? ?, ?
Cy ?, ? ?, ? ?, ?

Hence, payoff matrices can capture highly sophisticated strategies in complex environments.

Example 2.3 (Routing Problem) Consider a routing problem where |N | players are tasked
with traversing over a given network from the source to the destination over one of two pos-
sible edges, H and L.

S D

High road

Low road

Each edge is associated with a given congestion function (or latency function) that specifies
the level of congestion as a function of the level of utilization. The latency of the H (L) edge
is given by cH : N → R (cL : N → R), where cH(k) denotes the latency on edge H when
there are k ≥ 0 players on that edge. In the case where |N | = 2, this results in the follow
cost matrix (as opposed to payoff matrix) of the form



H L
H cH(2), cH(2) cH(1), cL(1)
L cL(1), cH(1) cL(2), cL(2)

Here, we adopt the convention that players focus on minimizing costs as opposed to maxi-
mizing negative utility.

Example 2.4 (First Price Auction) Consider a situation where there are N = {1, 2, . . . , |N |}
individuals participating in an auction for a given good. Each individual i ∈ N has its own
valuation vi ≥ 0 for the good and is tasked with making a bid bi ≥ 0 for the underlying
auction. The auction specifies a protocol that determines the winner and payments associ-
ated with a given collection of bids b = (b1, . . . , b|N |). Informally, in a first price auction the
winner is the individual with the highest bid and the winner is charged their bid. Given a
bidding profile b = (b1, . . . , bn) with no ties (i.e., bi 6= bj for any i 6= j), the payoff to each
player i ∈ N is of the form

Ui(bi, b−i) =

{
vi − bi if bi = maxj∈N bj
0 if bi < maxj∈N bj

(1)

The top condition, i.e., bi = maxj∈N bj represents the scenario where player i had the highest
bid and won the good and had to pay the price bi, hence the net benefit to player i is vi − bi.
Note that the utility functions, i.e., preferences, are dependent on the bidding profile b =
(b1, . . . , b|N |) and this bidding profile is what determines the outcome of the auction.

Example 2.5 (Second Price Auction) Different auctions can vary by the protocol that
determines the winner and payments associated with a given collection of bids b = (b1, . . . , b|N |).
In a 2nd-price auction, the winner is the individual with the highest bid; in contrast to the
1st-price auction, here the winner is charged the amount of the 2nd-highest bid. Given a
bidding profile b = (b1, . . . , bn) with no ties (i.e., bi 6= bj for any i 6= j), the payoff to each
player i ∈ N is of the form

Ui(bi, b−i) =

{
vi −maxj 6=i bj if bi = maxj∈N bj
0 if bi < maxj∈N bj

(2)

3 Strategic Behavior

The only difference between the first price and second price auction is the payment rule.
Clearly, this payment rule will impact the strategic behavior of the players and the resulting
social behavior. Which auction leads to more efficient societal behavior? How do you even
measure the quality of social behavior? To answer these questions we first need to investigate
what is a reasonable prediction of social behavior in a given game.



3.1 Security Strategies

Do security strategies represent a reasonable prediction of behavior in strategic form games?
To investigate this question, consider the following two player game

L R
T 0, 0 1, 1
B 1, 1 0, 0

Here, in pure strategies, the security levels of both players are 0 and any pure strategy
constitutes a security strategy. Hence, if both players play pure security strategies, a possible
outcome is (T, L) which would yield a payoff of 0 to both players. Mixed security strategies
help a little; here, the mixed security strategies are (1/2, 1/2) for each player, and if both
play these strategies the payoffs to each player are 1/2.

However, given this payoff matrix, it seems highly likely that either the pure action profiles
(B,L) or (T,R) would emerge as the result of intelligent strategic behavior. For instance,
suppose the row player selected action T ; the column player’s best response is clearly to play
R, which would yield a payoff of 1 to each player.

An even more extreme example is the following:

L C R
T 0, 0 1, 1 0,−1
M 1, 1 0, 0 −1, 0
B −1, 0 0,−1 0, 0

Here, the players’ pure security strategies are unique; the row and column players’ pure
security strategies are T and L, respectively, with security levels of v = v = 0. If both
play pure security strategies, the outcome is always (T, L), whereas just as in the above
example, the players would both be far happier with outcomes (T,C) or (M,L). Hence,
security strategies are not necessarily indicative of reasonable and rational play in games
beyond zero-sum games.

3.2 Dominant and Dominated Strategies

Reasoning about what constitutes a reasonable description of societal behavior can be a
challenging task. Accordingly, in this section we start to see if we can reason about what
should not constitute a reasonable description of behavior.

Example 3.1 (Prisoner’s Dilemma) Recall the payoff matrix for the prisoner’s dilemma
game discussed above which is of the form

C D
C −1,−1 −4, 0
D 0,−4 −3,−3



Is (C,C) a reasonable prediction of the emergent collective behavior? Note that if (C,C) is
choses, each player has a unilateral incentive to switch from C to D which would increase
their payoff from −1 to 0. Further, note that a player always has an incentive to play D
regardless of the behavior of the other player. Accordingly, would a player ever select C is
this game was played just a single time?

We now introduce the concept of weakly and strictly dominant strategies which formalize
the intuition highlighted above for the prisoner’s dilemma game.

Definition 3.1 (Strictly Dominant Strategy) The action a′i strictly dominates action
ai if Ui(a

′
i, a−i) > Ui(ai, a−i) for all a−i ∈ A−i. Alternatively, we will say that ai is strictly

dominated by a′i.

Definition 3.2 (Weakly Dominant Strategy) The action a′i weakly dominates ac-
tion ai if Ui(a

′
i, a−i) ≥ Ui(ai, a−i) for all a−i ∈ A−i and there exists at least one a−i ∈ A−i

such that Ui(a
′
i, a−i) > Ui(ai, a−i). Alternatively, we will say that ai is weakly dominated by

a′i.

Given the above definitions, a strategy a′i (strictly) dominates a strategy ai if the strategy
a′i performs strictly better than the strategy ai for all possible choices of the other players
a−i. Accordingly, if a strategy is strictly dominated by some other strategy it seems highly
unlikely that this strategy would be employed by a strategic decision-maker. While not all
games possess a strictly dominant or dominated strategy, the existence of such a strategy
could be extremely valuable in reasoning about the likely emergent behavior. In the above
prisoner’s dilemma game, note that D strictly dominates C.

The takeaway from this section is that one can remove strictly dominated actions from
consideration when arguing about reasonable strategic behavior. Iteratively eliminating
such strategies can greatly simplify the analysis of a given game as shown in the following
example.

Example 3.2 (Successive Iteration of Strictly Dominated Strategies) Consider the
following two player strategic form game with utility functions

L C R
T 4, 3 5, 1 6, 2
M 2, 1 8, 4 3, 6
B 3, 0 9, 6 2, 8

Note that row player has no strictly dominated strategies. However, the same does not hold
true for col as the choice C is strictly dominated by R. Accordingly, we can remove the
choice C from the choice set of col which results in the following reduced payoff matrix



L R
T 4, 3 6, 2
M 2, 1 3, 6
B 3, 0 2, 8

Since C should never be played by col, we can now focus on the remaining payoff matrix and
see if there are now any further strictly dominated strategies in this reduced payoff matrix.
Observer, that row now has two strictly dominated strategies, as T strictly dominates both
M and B. Accordingly, since col will not play C, we can then argue that row will not play
either M or B, which results in the following reduced payoff matrix

L R
T 4, 3 6, 2

Continuing in the same fashion, observe that col will not player R, which suggests that
(T, L) is the most reasonable description of societal behavior.

Note that the above example pertains to the elimination of strictly dominated strategies,
which seems reasonable given the above definition. However, it need not be the case that
weakly dominated strategies should removed from consideration; nonetheless, they still can
be valuable in reasoning about the emergent collective behavior.

Example 3.3 (Second Price Auction) Recall the framework of second price auctions dis-
cussed above where there are N = {1, 2, . . . , |N |} individuals participating in an auction for
a given good. Recall that given a bidding profile b = (b1, . . . , bn) with no ties (i.e., bi 6= bj for
any i 6= j), the payoff to each player i ∈ N is of the form

Ui(bi, b−i) =

{
vi −maxj 6=i bj if bi = maxj∈N bj
0 if bi < maxj∈N bj

(3)

Now we will show that the bidding strategy where each player bids its true valuation, i.e.,
bi = vi, is a weakly dominant strategy. To see this, we will show that for all bidding profiles
b−i and bids bi we have

Ui(bi = vi, b−i) ≥ Ui(bi, b−i). (4)

There are several cases that one needs to consider for this problem relating to the terms bi,
vi, and b−i to show that bi = vi is a weakly dominant strategy. First note that the entire
bid profile b−i is not necessarily important as only the maximum bid in this collection is
necessary, which we define as b̄ = maxj 6=i b. Now, lets consider whether having a bid bi > vi
could ever be beneficial. Given the set of parameters, there are three possible options that
one needs to consider: (i) bi > vi > b̄, (ii) bi > b̄ > vi, and (iii) b̄ > bi > vi. For each
of these scenarios, we are tasked with showing that (4) holds. Consider situation (ii) as an
illustration where we have

Ui(bi = vi, b−i) = 0

Ui(bi, b−i) = vi − b̄ < 0



where the first expression is 0 because individual i did not win the object while the second
expression is vi − b̄ since individual i wins the object at a price b̄ > vi. Continuing on in
this fashion shows that individual i does not ever have an incentive to submit a bid bi > vi.
A similar analysis can be conducted to show that individual i also does not ever have an
incentive to submit a bid bi < vi.

Here, we’ve seen two examples of games that have a dominant strategy, either strict or weak.
The following is an example of a game where a dominant strategy does not exist.

Example 3.4 (First Price Auction) Recall the framework of first price auctions discussed
above where there are N = {1, 2, . . . , |N |} individuals participating in an auction for a given
good. Recall that given a bidding profile b = (b1, . . . , bn) with no ties (i.e., bi 6= bj for any
i 6= j), the payoff to each player i ∈ N is of the form

Ui(bi, b−i) =

{
vi − bi if bi = maxj∈N bj
0 if bi < maxj∈N bj

(5)

Here, lets explore whether is bi = vi a weakly or strictly dominant strategy for this scenario.
To that end, lets consider whether having a bid bi < vi could ever be beneficial. Given the
set of parameters, there are three possible options that one needs to consider: (i) bi < vi < b̄,
(ii) bi < b̄ < vi, and (iii) b̄ < bi < vi. Focusing on scenario (iii), we have that

Ui(bi = vi, b−i) = 0

Ui(bi, b−i) = vi − bi > 0

Hence, having bi < vi is strictly better than bi = vi. This implies that bi = vi is not a
dominant strategy. Continuing in a same fashion could show that there are no dominant
strategies (either weakly or strictly) in first price auctions.

3.3 Best Response Sets

Not all games have a dominant strategy as we saw in the case of first price auctions. Hence, we
need to refine our belief of what constitutes reasonable and strategic play. Given that players
are seeking to optimize their utility functions, a crucial component of strategic decision-
making in games has to center around the notion of a best response, defined as follows:

Definition 3.3 (Best Response) The best response of player i to the action of the other
players a−i is

Bi(a−i) = {ai : Ui(ai, a−i) ≥ Ui(a
′
i, a−i) for all a′i ∈ Ai} . (6)

Note that the best response is actually a “set”.



The best response function defined above highlights the optimal choice for a player condi-
tioned on the choices of the other players. Best response sets will play a pivotal role in
analyzing strategic behavior in forthcoming lectures. Here, we will provide some examples
to make sure this concept is clear.

Example 3.5 (Second Price Auction) Recall the framework of second price auctions dis-
cussed above. The above analysis shows that vi ∈ Bi(b−i) for all b−i. Note that there may in
fact be other bids in the best response set of player.

Example 3.6 Consider the following two player strategic form game with utility functions

L C R
T 4, 3 5, 1 6, 2
M 2, 1 9, 4 3, 6
B 3, 0 9, 6 2, 8

The best response for the row player is of the form

Brow(L) = {T}
Brow(C) = {M,B}
Brow(R) = {T}

and the best response for the col player is of the form

Bcol(T ) = {L}
Bcol(M) = {R}
Bcol(B) = {R}

Note that the input to the best response function is the behavior of the other agents, which
the output corresponds to the action choices that maximize the player’s payoff given this
behavior. Focusing on Brow(C) above, note that if col is playing C, then row could obtain
a payoff of 5 for playing T , 9 for playing M , and 9 for playing B. Hence, either M or B
constitute an optimal choice for this scenario, hence Brow(C) = {M,B}.

4 Conclusion

This lecture focused on strategic decision-making in strategic form games. We demonstrated
that security strategies are not necessarily reasonable strategies in scenarios beyond zero-
sum games. We then turned the question from what constitutes reasonable behavior to
what does not constitute reasonable behavior. Along this line, we introduced the notion
of dominant strategies and demonstrated how ruling out dominated strategies can be an
extremely valuable tool for analyzing strategic behavior. We concluded by looking at best
response sets and will learn in the next lecture how these can be used to provide a reasonable
model of the emergent social behavior.



5 Exercises

1. Consider a three player game where each player has two moves, i.e., ai ∈ {0, 1}, and
the payoff to the first player is

u1(a1, a2, a3)

Suppose each player independently uses a mixed strategy (pi, 1 − pi), where pi is the
probability of player i selecting 0. Write an expression for the expected utility for
player 1.

2. Consider a two player game where the action sets are A1 = {T,M,B} and A2 =
{L,C,R} and a payoff matrix of the form

L C R
T 1,2 3,1 1,2
M 1,1 0,0 3,2
C 2,2 1,2 0,1

(a) Suppose player two is using a strategy p2 = (pL2 = 1/3, pC2 = 1/3, pR2 = 1/3) ∈
∆(A2), i.e., player 2 uses a strategy that selects each action with probability 1/3.
What is the expected utility of player 1 when playing each of the three actions T ,
M , and B conditioned on player two playing the strategy p2?

(b) What is the probability mass function over the joint action space A when player
1 uses the strategy p1 = (1/2, 1/4, 1/4) and player 2 uses the strategy p2 above?

(c) What is the expected utility of player 1 and player 2 when player 1 and player 2
use the strategies p1 and p2 highlighted above?

3. Consider a two player game where the action sets are A1 = {T,M,B} and A2 =
{L,C,R}. Consider the following distribution over the joint action set A

L C R
T 1/16 1/24 1/48
M 1/4 1/6 1/12
C 3/16 1/8 1/16

Can the above joint distribution be realized by mixed strategies p1 ∈ ∆(A1) and
p2 ∈ ∆(A2) where each player selects the action independently in accordance with
their strategy? If so, what are the players’ strategies?

4. Dividing money: Two people have $10 to divide between themselves. They use the
following procedure. Each person names a number of dollars (a nonnegative integer),
at most equal to 10. If the sum of the amounts that the people names is at most
10, then each person receives the amount of money she named (and the remainder
is destroyed). If the sum of the amounts that the people name exceeds 10 and the
amounts named are different, then the person who named the smaller amount receives



that amount and the other person receives the remaining money. If the sum of the
amounts that the people name exceeds 10 and the amounts named are the same, then
each person receives 5. Model this scenario as a strategic form game and provide the
payoff matrix.

5. Grad School Competition: Two students sign up to prepare an honors thesis with
a professor. Each can invest time in his own project: either no time, one week, or
two weeks (these are the only three options). The cost of time is 0 for no time, and
each week costs 1 unit of payoff. The more time a student puts in the better his work
will be, so that if one student puts in more time than the other there will be a clear
“leader.” If they put in the same amount of time then their thesis projects will have
the same quality. The professor, however, will give out only one grade of A. If there is
a clear leader, then he will get the A, while if they are equally good then the professor
will toss a fair coin to decide who gets the A. The other student will get a B. Since
both wish to continue on to graduate school, a grade of A is worth 3 while a grade
of B is worth 0. Model this scenario as a strategic form game and provide the payoff
matrix.
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