
Game Theory
Lecture #13 – Mixed Nash and Correlated Equilibria

Focus of Lecture:

� Mixed Nash Equilibria

� Connection Between Security Strategies and Nash Equilibria

� Correlated Equilibria

1 Introduction

Last lecture focused on investigating the implication of mixed strategies in decision-making.
While a Nash equilibrium need not exist in general, last lecture demonstrated that by con-
sidering mixed strategies and vNM preferences then a Nash equilibrium is always guaranteed
to exist. We will begin this lecture by revisiting mixed strategies in zero-sum games, drawing
a connection between security strategies and mixed Nash equilibria. Next, we will turn our
attention to studying the efficacy of Nash equilibria from a societal perspective. What are
the mechanisms available to an engineer to improve upon the efficiency of Nash equilibria?
The second part of this lecture will focus on the use a coordinating mechanisms for this
purpose. The use of such coordinating mechanisms requires new equilibrium concepts for
analyzing strategic behavior in such contexts.

2 Strategic Form Games with Mixed Strategies

Recall the framework of strategic form games with vNM preferences as introduced in the
last lecture. The specific components are as follows:

� Decision-makers: There are a collection of decision-makers, i.e., N = {1, 2, 3, . . . , |N |}.

� Choice Sets and Mixed Strategies: Each decision-maker i ∈ N is associated with
a given choice set Ai. Each decision-maker i ∈ N is now able to employ a probabilistic
mixed strategy pi ∈ ∆(Ai).

� vNM Utility Functions: Each decision-maker i ∈ N is associated with a given utility
function Ui : A → R that defines her preference over the joint actions A. The utility
of each agent i ∈ N given a mixed strategy profile p = (p1, . . . , pn) where pi ∈ ∆(Ai)
for each agent i ∈ N is defined as

Ui(p1, . . . , pn) =
∑
a∈A

Ui(a)× pa11 × · · · × pann . (1)



A central part of the last lecture was on extending the definition of best response sets and
Nash equilibria to the case of mixed strategies, which is summarized as follows.

Definition 2.1 (Best Response) The best response of player i to the collective strategy of
the other players α−i ∈ ∆(A−i) is of the form

Bi(α−i) = {αi : Ui(αi, α−i) ≥ Ui(α
′
i, α−i) for all α′i ∈ ∆(Ai)} (2)

Once again, note that the best response function is actually a set.

Definition 2.2 (Mixed Strategy Nash equilibrium) A mixed strategy profile α∗ = (α∗1, ..., α
∗
n)

is a mixed strategy Nash equilibrium if for every player i ∈ N

α∗i ∈ Bi(α
∗
−i)

The main takeaway for the last lecture was John Nash’s famous result that proved that every
game has a Nash equilibrium when considering mixed strategies.

Theorem 2.1 (Nash, 1950) Every strategic form game with vNM preferences in which
each player has finitely many actions has a mixed strategy Nash equilibrium.

This lecture will begin by re-visiting the framework of zero-sum games where we will identify
an important connection between security strategies and Nash equilibria. Next, we will re-
visit our Hawk Dove example of the previous lecture with a specific interest in analyzing the
efficiency of Nash equilibria. In particular, we will seek to identify whether or not there are
alternative forms of collective behaviors that are more desirable from a societal perspective.
If so, how can we facilitate the emergence of such behavior?

3 Zero-Sum Games – Revisited

Recall the framework of zero-sum games where we have a payoff matrix M with rows I,
columns J , and game matrix elements mij which corresponds to the entry M(i, j). Given
this notation, the computation of the security levels of the two players over pure strategies
is of the form

v = max
i∈I

min
j∈J

mij, (3)

v = min
j∈J

max
i∈I

mij, (4)

Recall that v ≥ v and there are game instances where v = v, i.e., the game has a value. The
computation of security levels over mixed strategies takes on a similar form where we are
now guaranteed that v = v.

The question that we want to explore in this section is whether or not these security strategies
constitutes a Nash equilibrium. We state the following proposition (with regards to pure
strategies) to make this connection clear.



Proposition 3.1 Consider a zero-sum game with payoff matrix M , rows I, and columns
J . The following statements are true:

(i) If the choice profile (i∗, j∗) is a Nash equilibrium, then the game value and v = v =
mi∗j∗.

(ii) If the game has a value, i.e., v = v, then the maximizing and minimizing security
strategies, i∗ and j∗, are a Nash equilibrium.

This proposition demonstrates the equivalence between security strategies and Nash equi-
libria in cases where the game has a value. The proof of this proposition is given as follows:

Proof 3.1 We will begin with the proof of (i). Since (i∗, j∗) is a Nash equilibrium, then we
know that i∗ is a best response to j∗ and vice versa. Since j∗ is a best response to i∗, we
know that for all j ∈ J

mi∗j∗ ≤ mi∗j

i.e., mi∗j∗ is the smallest element in row i∗. Accordingly,

mi∗j∗ ≤ min
j
mi∗j ≤ max

i
min
j
mij = v.

Since i∗ is a best response to j∗, we know that for all i ∈ I

mi∗j∗ ≥ mij∗

i.e., mi∗j∗ is the largest element in column j∗. Accordingly,

mi∗j∗ ≥ max
i
mij∗ ≥ min

j
max

i
mij∗ = v.

Consequently,
mi∗j∗ ≤ v ≤ v ≤ mi∗j∗ ,

which completes the proof of (i).

We will now move on to the proof of (ii). Let i∗, j∗ be security strategies of row and col.
Then we know that for all i ∈ I and j ∈ J

mi∗j ≥ v, ∀j ∈ J , (5)

mij∗ ≤ v, ∀i ∈ I. (6)

Since v = v by hypothesis, we know that

mB(j∗)j∗ ≤ v = v ≤ mi∗B(i∗)

where B(·) is best response response function for each player. Hence, it follows that i∗ ∈
B(j∗) and j∗ ∈ B(i∗) which completes the proof.



The above proposition demonstrates that if a zero-sum game has a value, then the security
strategies constitutes a Nash equilibrium. However, not all zero-sum games have a value
and hence the equivalence is incomplete over pure strategies. However, by the Minimax
Theorem we know that every zero-sum game does in fact have a value when considering
mixed strategies. Hence, security strategies over mixed strategies always represents a mixed
Nash equilibrium!

Theorem 3.1 Consider a zero-sum game with payoff matrix M , rows I, and columns J .
A set of mixed strategies p∗ ∈ ∆(I) and q∗ ∈ ∆(J ) are security strategies if and only if
(p∗, q∗) is a mixed Nash equilibrium.

The proof of this theorem directly follows the proof of Proposition 3.1. Since security strate-
gies always exist, this result was the first result of a well-defined class of games where a
(mixed) Nash equilibrium was guaranteed to exists. For historical perspective, it is impor-
tant to note that the Minimax Theorem predated Nash’s Theorem by over 20 years!

4 Hawk versus Dove – Revisited

We will now shift away from analyzing strategic behavior in zero-sum games to investigating
the efficacy of Nash equilibria from a societal perspective. To do that we will revisit the
Hawk Dove game discussed in last lecture. Recall that the payoff matrix for the Hawk Dove
game is as follows

H D
H 0, 0 6, 1
D 1, 6 3, 3

where the action H, or hawk, represents aggressive behavior and D, or dove, represents
passive behavior. Our analysis in the last lecture identified the following three mixed Nash
equilibrium.

(i) (p = 1, q = 0) – This mixed Nash equilibrium captures the behavior where row always
chooses Hawk, and results in an equilibrium payoff of (6, 1).

(ii) (p = 0, q = 1) – This mixed Nash equilibrium captures the behavior where col always
chooses Hawk, and results in an equilibrium payoff of (1, 6).

(iii) (p = 3/4, q = 3/4) – This mixed Nash equilibrium captures the behavior where both
players choose hawk with probability 3/4. These strategies induce the following joint
distribution of play

H D
H 9/16 3/16
D 3/16 1/16



and each player’s expected payoff is given by 1.5.

Note that all three of these mixed Nash equilibria are undesirable from a societal perspective.
In particular, the first two Nash equilibria have a fairness issue (one individual is always given
the right away) while the last Nash equilibria suffers from a performance issue as each player’s
expected payoff is only 1.5. A more desirable form of collective behavior would be

H D
H 0 1/2
D 1/2 0

which provides each player an expected payoff of 3.5. This behavior essentially boils down
to players taking turns in the (H,D) and (D,H) configurations. Clearly, this form of collec-
tive behavior requires a degree of collaboration between the players as independent mixed
strategies are unable to result in such a joint distribution of play.

As an engineer, it is important that we identify how can we achieve this socially optimal
behavior in situations where players are making decisions in a self-interested fashion. In-
terestingly, we actually observe data in line with this desired distribution of play when we
think about actual driver patterns at a traffic intersection. How is that possible? Are there
any systems employed to help self-interested drivers coordinate their behavior for the social
benefit? Of course there are as we have traffic lights!

Lets start to think a little deeper about the role of traffic lights. Do traffic lights dictate
travel patterns? While most people would say yes, the answer is actually no. The traffic
light provides a suggestion for driver behavior, with green suggesting go and red suggesting
stop. Whether or not a self-interested driver actually follows these suggestion requires a
more thorough investigation of whether or not it is in the driver’s best interest to do so.

Our solution concept of mixed Nash equilibria is not sufficient to investigate the role of
correlating devices on strategic behavior in games. To that end, we introduce the concept of
correlated equilibria which captures this phenomena. Informally, there is a “referee” (e.g.,
traffic signal) that chooses the distribution of play z ∈ ∆(A). Each of the players can either
go along with the referee suggestions, at which point the expected utility of each player
i ∈ N would be ∑

a∈A

za · Ui(a)

where za is the probability of action profile a in the distribution z. A player could also forgo
the referees suggestion and commit to an action ãi ∈ A which would result in an expected
payoff ∑

a∈A

za · Ui(ãi, a−i),

provided all the other players go along with the referees suggestions. Informally, a (coarse)
correlated equilibria is a joint distribution of play z ∈ ∆(A) where it is better to follow the
recommendation of the referee than to commit to a given action.



Definition 4.1 (Coarse Correlated Equilibrium) A joint distribution z ∈ ∆(A) is a
coarse correlated equilibrium if for every player i ∈ N we have∑

a∈A

za · Ui(a) ≥
∑
a∈A

za · Ui(ãi, a−i), ∀ãi ∈ Ai.

Note that this definition of coarse correlated equilibrium implies blind following of the referee.
That is, a player completely hands over the decision-making to the referee. In more general
scenario, such as traffic lights at an intersection, the referee signals the choice that it wants
each agent to take and the agent has a decision about whether or not to go along with the
signaled choice. This setup is analyzed by a stricter equilibrium concept, termed correlated
equilibrium, that gives players the option to condition whether or not they follow the referee
recommendation on the dictated choice. More formally, suppose the referee selects an action
profile from the joint distribution z ∈ ∆(A). Once the referee selects a joint profile ã from
z, the referee informs each player i ∈ N the choice they should play ãi, which allows each
player to form their conditional belief about the distribution z, i.e.,

z(ai,a−i)|ãi =

{
z(ãi,a−i)∑

a−i∈A−i
z(ãi,a−i)

if ai = ãi

0 otherwise

as the player in unaware of the dictate choices ã−i the other players. Informally, a correlated
equilibria z ∈ ∆(A) is any distribution of play where it is always better to follow the
recommendation of the referee irrespective of the dictated action.

Definition 4.2 (Correlated Equilibrium) A joint distribution z ∈ ∆(A) is a correlated
equilibrium if for every player i ∈ N∑

a−i∈A−i

za|ai · Ui(ai, a−i) ≥
∑

a−i∈A−i

za|ai · Ui(ãi, a−i), ∀ai, ãi ∈ Ai.

Note that in order for za|ai to be defined, zã > 0 for some action profile of the form ã =
(ai, ã−i). If this is not the case, we will let za|ai = 0 for all a ∈ A.

The definition of correlated equilibrium essentially states that a player’s expected utility
when the referee recommends actions ai is optimized when the player actually play ai as
opposed to any other choice ãi. While this definition looks complicated, it merely extends
the definition of coarse correlated equilibria through this extra conditioning on the joint
distributions and expectations.

The following example will shed some light onto these solution concepts.

Example 4.1 Recall the Hawk Dove example given above. Here we will show that the joint
distribution z ∈ ∆(A) of the form

H D
H 0 1/2
D 1/2 0



is in fact both a coarse correlated equilibrium and a correlated equilibrium. To show that it
is a coarse correlated equilibrium, note that∑

a∈A

za · U1(a) =
∑
a∈A

za · U2(a) = 1/2 · 6 + 1/2 · 1 = 3.5

Focusing on player 1, if player 1 is committed to either H or D and player 2 follows the
referee’s recommendation, then the player’s expected payoff would be∑

a∈A

za · U1(H, a−i) = 1/2 · U1(H,H) + 1/2 · U1(H,D) = 3∑
a∈A

za · U1(D, a−i) = 1/2 · U1(D,H) + 1/2 · U1(D,D) = 2

The analysis of player 2 would provide the same distribution. Hence, this distribution is a
coarse correlated equilibrium.

Now lets focus on showing that this distribution is also a correlated equilibrium. Suppose
player 1 is told to play H. Given this information, the conditional belief of the distribution
z|a1=H is

H D
H 0 1
D 0 0

and the expected utility would be∑
a−i∈A−i

za|a1=H · U1(H, a−i) = U1(H,D) = 6.

The expected utility for disobeying any choosing D instead would be∑
a−i∈A−i

za|a1=H · U1(D, a−i) = U1(D,D) = 3.

Hence, if player 1 is informed to play H, then it is in the player’s best interest to obey.
Now, suppose player 1 is told to play D. Given this information, the conditional belief of the
distribution z|a1=H is

H D
H 0 0
D 1 0

and the expected utility would be∑
a−i∈A−i

za|a1=D · U1(D, a−i) = U1(D,H) = 1.



The expected utility for disobeying and choosing H instead would be∑
a−i∈A−i

za|a1=D · U1(H, a−i) = U1(H,H) = 0.

Hence, if player 1 is informed to play D, then it is in the player’s best interest to obey.
Hence, z is also a correlated equilibrium.

5 Conclusion

This lecture covered two main topics. First, we revisited the framework of zero-sum games
and demonstrated that if the game has a value, then the security strategies form a Nash
equilibrium. Since every zero-sum game has a value over mixed strategies, this means that
every zero-sum game has a (mixed) Nash equilibrium. This was the first class of games for
which a Nash equilibrium was proven to always exist and predated Nash’s famous result by
over 20 years.

Our second topic focused on the efficiency of Nash equilibria. Here, we demonstrated that
Nash equilibria need not be efficient from a societal perspective. More interestingly, we
demonstrating how correlating devices could potentially be employed to try and stabilize
self-interested behavior that is more socially desirable. Accordingly, we introduced a solu-
tion concept that covers such behaviors termed correlated equilibrium. The take away here
is two-fold: (i) self-interested behavior can be highly inefficient from a system-level perspec-
tive; (ii) one way to influence societal behavior is to provide a correlating signal. However,
understanding the potential impact of such a design choices requires an in depth analysis of
the interplay between strategic behavior and these correlating devices which can be modeled
through the solution concept of correlated equilibria.

6 Exercises

1. Consider the following two player game. Characterize the set of Nash equilibria, cor-
related equilibria, and coarse correlated equilibria.

H D
H 0, 0 6, 1
D 1, 6 4, 4

This should boil down to constraints on the components of the joint distribution z.

2. Derive the relationship between Nash equilibria, correlated equilibria, and coarse cor-
related equilibria, illustrating the results using a Venn diagram.


	Introduction
	Strategic Form Games with Mixed Strategies
	Zero-Sum Games – Revisited
	Hawk versus Dove – Revisited
	Conclusion
	Exercises

