
Game Theory
Lecture #14 — Congestion and Potential Games

Outline:

� Congestion Games

� Identical Interest Games

� Potential Games

1 Introduction

Nash equilibrium is a simple model of emergent behavior in social systems (and distributed
decision systems more generally), but we have seen already that in general, a pure Nash
equilibrium need not exist. While existence is guaranteed if we allow mixed strategies, these
types of equilibria are computationally challenging to find and can be less predictive of
societal behavior, e.g., the mixed strategy Nash equilibrium in the Hawk Dove game. The
question of this lecture is the following: Are there relevant classes of games for where a pure
Nash equilibrium is guaranteed to exist?

1.1 Congestion Games

We have seen congestion games informally several times so far, but in this lecture we will
address them in more depth. The defining characteristic of a congestion game is that we
can express the players’ strategies by considering a set of resources or elements R and each
resource r ∈ R is associated with a congestion function cr : N → R, where cr(k) denotes
the congestion on resource r with k ≥ 0 players. A player’s permissible actions are defined
as various subsets of R, which make up the agent’s action set Ai ⊆ 2R. Lastly, the player’s
individual cost function given a joint action a = (ai, a−i) is given by

Ji(ai, a−i) =
∑
r∈ai

cr(|a|r)

where |a|r := |j ∈ N : r ∈ aj| expresses the number of agents selecting resource r. That is,
the defining characteristic of a congestion game is that a player’s cost on a given resource
depends on

1. The identity of the resource itself, and

2. The number of other players selecting that resource, but



not the identities of the other players selecting the resource. To find the player’s overall
individual cost, we simply sum the costs of that player’s selected resources.

When considering congestion games, we will often ask how “efficient” a given action profile
is with respect to the following system-level objective function:

C(a) :=
∑
i∈N

Ji(a) =
∑
r∈R

|a|r · cr(|a|r).

The term C(·) is commonly referred to as the social welfare which is defined as the sum of
the agents’ payoff. In a congestion / transportation network the social welfare equates to
the total congestion in the network.

Our questions moving forward are

� Is a PNE guaranteed to exist?

� How efficient is a PNE with respect to the system-level objective C(a)?

� How can we influence players to improve system-level behavior if a PNE can be ineffi-
cient?

1.2 Existence of PNE in parallel-link congestion games

First, consider a simple congestion game with only two resources R = {r1, r2}, with each
of two players selecting between either resource so that Ai = {{r1}, {r2}} for both players
i ∈ {1, 2}. Each resource has a congestion function cr : {1, 2} → R; note that any such
function is allowable here. For an example this simple, we may write out the full (abstract)
cost matrix:

Player 1

Player 2
r1 r2

r1 cr1(2), cr1(2) cr1(1), cr2(1)
r2 cr2(1), cr1(1) cr2(2), cr2(2)

Cost Matrix

Note that for this simplified example, a cost matrix captures the whole pictures regardless
of the specific congestion functions. Surprisingly, for any choice of congestion functions cr,
a pure Nash equilibria exists. We can investigate the existence of pure Nash equilibria on
this example in a completely abstract way due to its simplicity, but as we shall see, these
arguments generalize quite broadly.

To prove there exists a PNE in the above game, let us assume (for the sake of contradiction)
that there does not: suppose no action profile in the game is a PNE. Specifically, this means
that (r1, r1) is not a PNE. This means one of the players has a strict incentive to deviate to
resource r2; by inspection, we see that this implies cr2(1) < cr1(2).



Similarly, since (r2, r1) is not a PNE, then cr2(2) < cr1(1). Finally, since (r2, r2) is not a NE,
then cr1(1) < cr2(2). However, this directly contradicts the statement that cr2(2) < cr1(1),
which must be true if there is no PNE. Therefore, there must be a PNE.

The simple conclusion here is that in any parallel-link congestion game with 2 players, for
any possible choice of cost functions for the links, a pure Nash equilibrium exists. However,
the question remains: does this fact extend to broader classes of congestion games?

2 Potential Games

Clearly, we need more tools to successfully answer the question of equilibrium existence
in general congestion games. Accordingly, in this section we will introduce the extremely
powerful concept of potential games which will be invaluable for this direction.

2.1 Identical Interest Games

One simple class of games in which PNE are always guaranteed to exist is known as the class
of “identical interest games.” The defining feature of games in this class is that all players
share a common utility function. Here, with player set N = {1, . . . , n} and player action
sets Ai, we express this common utility function simply as U : A → R, and we assign this
as the utility function for each player so that for each i, j ∈ N and each action profile a ∈ A
it holds that

Ui(a) = Uj(a) = U(a).

For concreteness, consider the following 2-player identical interest game:

Player 1

Player 2
y1 y2 y3

x1 1, 1 2, 2 4, 4
x2 5, 5 9, 9 −1,−1
x3 7, 7 8, 8 3, 3

Payoff Matrix

Figure 1: An identical interest game.

Several questions arise:

1. Does there exist a PNE?

2. How “good” are the PNE?

3. Do the numbers in the matrix matter for this property?



By inspection, we see that the above game has exactly 2 PNE: (x2, y2) with utility 9 and
(x1, y3) with utility 4. In this game, we have that the utility-maximizing action profile
(x2, y2) is a Nash equilibrium; in fact, this is the case in every identical interest game. To
see this, denote a utility-maximizing action profile as a∗ ∈ arg maxa∈A U(a). Since this is a
utility-maximizing action profile, it must satisfy for every i and every a′i that

Ui(a
∗
i , a
∗
−i) ≥ Ui(a

′
i, a
∗
−i).

This is simply the definition of a Nash equilibrium; that is, a∗ is a PNE.

Thus, our example is not “special” — every identical interest game must have at least one
PNE; namely, the action profile which maximizes the common utility function. Our example
illustrates another important fact: Nash equilibria need not be unique, and there can easily
be inefficient equilibria as evidenced by the action profile (x1, y3) with utility 4.

2.2 Shifting the Payoffs

Identical interest games lie at the core of a fascinating class of games called “potential
games,” which we formally introduce in the next section. The key idea of a potential game
is that in a specific and detailed sense, every potential game behaves exactly like a related
identical interest game. Before we introduce potential games rigorously, consider the follow-
ing question. Consider the following game, constructed from the game in Figure 1 above
simply by adding the constant a ∈ R to Player 1’s utility in the y2 column:

Player 1

Player 2
y1 y2 y3

x1 1 + a, 1 2, 2 4, 4
x2 5 + a, 5 9, 9 −1,−1
x3 7 + a, 7 8, 8 3, 3

Payoff Matrix

Figure 2: An identical interest game with shifted payoffs.

What are the Nash equilibria of this game? Careful inspection reveals that they are exactly
the same as those of the game in Figure 1. Adding a to Player 1’s payoffs in those particular
action profiles changes nothing about Player 1’s relative preferences between x1, x2, and
x3, and it clearly changes nothing about Player 2’s preferences. Hence, the equilibria in
Figures 1 and 2 are the same.

Unsurprisingly, there was nothing special about Player 1 or action y1 when we performed
the shift in Figure 2, and we could have done the same thing for some action of Player 2
without changing equilibria:

Here, it becomes slightly harder to see that the equilibria are unchanged, but we can convince
ourselves of this fact by noticing that compared with Figure 2, only Player 2’s payoffs have



Player 1

Player 2
y1 y2 y3

x1 1 + a, 1 2, 2 4, 4
x2 5 + a, 5 +B 9, 9 +B −1,−1 +B
x3 7 + a, 7 8, 8 3, 3

Payoff Matrix

Figure 3: An identical interest game with more shifted payoffs.

been shifted; thus, only Player 2’s preferences have changed. However, since the same
constant B ∈ R was added to each of Player 2’s payoffs across the entire x2 row, Player 2’s
relative preferences are intact and thus the set of equilibria could not have changed.

In fact, we could perform a procedure like this, change every payoff in the game, and still
maintain exactly the same relative preferences and exactly the same set of equilibria:

Player 1

Player 2
y1 y2 y3

x1 1 + a, 1 + A 2 + b, 2 + A 4 + c, 4 + A
x2 5 + a, 5 +B 9 + b, 9 +B −1 + c,−1 +B
x3 7 + a, 7 + C 8 + b, 8 + C 3 + c, 3 + C

Payoff Matrix

Figure 4: An identical interest game with all payoffs shifted.

By the same arguments we made above, since we added numbers uniformly across the
columns of Player 1’s utility function and across the rows of Player 2’s utility function,
no agent’s relative preferences have been modified in any way. However, by adding these
numbers, we can create a new game that has no immediate or obvious connection to the
original identical interest game despite the fact that it is guaranteed to have the same set of
Nash equilibria. For instance, consider the game with constants selected as

a = −1
b = −2
c = 1
A = −1
B = 1
C = −3,

(1)

to yield the payoff matrix

Considering Figure 5, we may verify by standard techniques that the only Nash equilibria
are (x2, y2) and (x1, y3) just as in the original game in Figure 1. Moreover, note that there
is an exact “alignment” between the relative preferences in the two games. For instance,
consider the action profile (x2, y1). In either game, if Player 1 deviates to action x3, her



Player 1

Player 2
y1 y2 y3

x1 0, 0 0, 1 5, 3
x2 4, 6 7, 10 0, 0
x3 6, 4 6, 5 4, 0

Payoff Matrix

Figure 5: A game derived from the identical interest game in Figure 1 by shifting payoffs
according to the formula in Figure 4 and values provided in equation 1.

payoff increases by exactly 2. Likewise, if Player 2 deviates to action y3, her payoff decreases
by exactly 6.

2.3 Potential Games

In formal terms, the game in Figure 5 is called a potential game. A game with player set
N = {1, 2, ..., n}, action sets (Ai)i∈N , and utility functions Ui : A → R is called a potential
game if there exists a function φ : A → R such that for every action profile a ∈ A, agent
i ∈ N , and alternative choice a′i ∈ Ai

Ui(a
′
i, a−i)− Ui(ai, a−i) = φ(a′i, a−i)− φ(ai, a−i). (2)

This function φ is called the potential function.

To compare with our examples above, we say that any of the games in Figures 2– 5 is a
potential game with potential function equal to the common utility function U(a) appearing
in Figure 1.

There are several equivalent and correct ways to think about potential games:

� From a local perspective, every agent in a potential game acts as though they are
playing an identical interest game in which the common utility function is φ. That
is, the relative payoffs experienced by an agent are the same as they would be if her
utility function were simply equal to φ.

� In a potential game, one can think of the potential function φ as an “imaginary”
function in the background which behaves in a very particular way: any gain for an
agent is a gain for the potential function.

� Every potential game is an identical interest game “in disguise,” in the same way that
we added/subtracted constants in Figure 4 to “disguise” the identical interest game
from Figure 1.

Due to the alignment with an identical interest game, every potential game is guaranteed to
have at least one pure Nash equilibrium. Specifically, the maximizer of the potential function



is a pure Nash equilibrium, for precisely the same reason that in an identical interest game
the maximizer of the common utility function is a pure Nash equilibrium. However, several
questions remain:

� Is a NE unique in a potential game?

� How do you evaluate whether or not a game is a potential game?

� Is an identical interest game a potential game?

� Should the potential function be related to the system objective?

2.4 Identifying Potential Games

To determine whether a given game is a potential game, one must determine whether that
game has a potential function. That is, does some function (a potential function) exist which
is aligned with all possible agent unilateral deviations? If a potential function exists, then
the game is a potential game — otherwise, it is not.

2.4.1 Prisoner’s Dilemma

As a simple initial example, we may ask if the Prisoner’s Dilemma is a potential game?

L R
T 3, 3 0, 4
B 4, 0 1, 1

If this is a potential game, then a potential function exists — and the utility functions provide
enough information to derive it. However, if we attempt to derive a potential function and
then fail, it must be that no potential function exists — and it is thus not a potential game.
But how do we derive a potential function?

The first thing to note is that a potential function is never unique: since all that matters
about the potential function is agent deviations, we can add any constant to a potential
function and the resulting function is still a potential function. Thus, when we attempt to
derive a potential function for a given game, we can “seed” the potential function at any
number we like. We demonstrate this on the Prisoner’s Dilemma, with the payoff matrix on
the left and the candidate potential function on the right; note that we have “seeded” the
potential function with the value 0 for the (T, L) action profile:

L R
T 3, 3 0, 4
B 4, 0 1, 1

Prisoner’s Dilemma

L R
T 0 ?
B ? ?

Candidate Potential Function



Since changes in the potential function must exactly match changes in individual agent
utility functions, we can now derive the necessary potential function values for both the
(B,L) and (T,R) action profiles. That is, according to (2), we solve φ(B,L) − φ(T, L) =
U1(B,L) − U1(T, L) for φ(B,L) and we solve φ(T,R) − φ(T, L) = U2(T,R) − U2(T, L) for
φ(T,R):

L R
T 3, 3 0, 4
B 4, 0 1, 1

Prisoner’s Dilemma

L R
T 0 1
B 1 ?

Candidate Potential Function

Having filled in all but 1 box in the potential function grid, it now remains to be seen if it
is possible to define φ(B,R) in a way that is consistent with both agent utility functions.
That is, we seek a single value for the lower-right box which satisfies both equations

φ(B,R)− φ(T,R) = U1(B,R)− U1(T,R) (3)

φ(B,R)− φ(B,L) = U2(B,R)− U2(B,L). (4)

Happily, by setting φ(B,R) = 2, both equations are satisfied, which verifies that this is a
potential game with potential function equal to:

L R
T 3, 3 0, 4
B 4, 0 1, 1

Prisoner’s Dilemma

L R
T 0 1
B 1 2

Potential Function

2.4.2 If a game has a PNE, is it a potential game?

As we stated earlier, every potential game has at least one PNE. Is the converse true? Let us
consider the following game which has one PNE (T, L), and check if it is a potential game.

L R
T 1, 1 3, 0
B 0, 0 0, 1

L R
T 0 ?
B ? ?

Candidate Potential Function

As with the Prisoner’s Dilemma, we can seed the potential function with any number we
want, so in the above, we have chosen φ(T, L) = 0. Given this seed, we compute the values
of φ(B,L) = U1(B,L)− U1(T, L) = −1 and φ(T,R) = U2(T,R)− U2(T, L) = −1:

L R
T 1, 1 3, 0
B 0, 0 0, 1

L R
T 0 −1
B −1 ?

Candidate Potential Function



Finally, we can check if there exists a value for φ(B,R) which is consistent with unilateral
deviations of both Player 1 and Player 2:

L R
T 0 −1
B −1 −4

Consistent with Player 1

L R
T 0 −1
B −1 0

Consistent with Player 2

Since we cannot select a single value for φ(B,R) that is consistent with both players deviating
(B,R), there definitively exists no potential function, and this is thus not a potential game.

2.5 Approaches for identifying potential game structure

In general, identifying whether or not a game is a potential game is hard and there are no
“easy” ways to verify this property. The two most commonly applied approaches include
the following:

(i) Guess and Check: In this first approach, you merely need to guess the potential function
and verify whether or not the property holds. For smaller games, as discussed above,
you can provide an intelligent guess where you initialize the potential function value of
some states and iteratively define the value of the potential function for other action
profiles.

(ii) Inspect Unilateral Deviation Cycles: In this section approach, we consider cycles of
action profiles of the form

(ai, aj, ·)→ (a′i, aj, ·)→ (a′i, a
′
j, ·)→ (ai, a

′
j, ·)→ (ai, aj, ·)

where each subsequent joint action is the result of a unilateral deviation, i.e., the first
transition results in player i transitioning from ai to a′i while all other players stay fixed.
If we explore the change in utility of the deviating player for each of these transitions
we have

∆1 = Ui(a
′
i, aj, ·)− Ui(ai, aj, ·) = φ(a′i, aj, ·)− φ(ai, aj, ·)

∆2 = Uj(a
′
i, a
′
j, ·)− Uj(a

′
i, aj, ·) = φ(a′i, a

′
j, ·)− φ(a′i, aj, ·)

∆3 = Ui(ai, a
′
j, ·)− Ui(a

′
i, a
′
j, ·) = φ(ai, a

′
j, ·)− φ(a′i, a

′
j, ·)

∆4 = Uj(ai, aj, ·)− Uj(ai, a
′
j, ·) = φ(ai, aj, ·)− φ(ai, a

′
j, ·)

where the second equality holds if the game is a potential game with potential function
φ. Accordingly, what is ∆1 + ∆2 + ∆3 + ∆4 =? Well, if the game is a potential game
then the answer must be 0 for any cycle of unilateral deviations. Checking that all
cycles of length four satisfies this constraint proves the result. Recall example:



L R
T 1, 1 3, 0
B 0, 0 0, 1

Note that counterclockwise cycle starting at (T, L) has sum

(0− 1) + (1− 0) + (3− 0) + (1− 0) 6= 0.

Hence, this game is not a potential game.

While these represent two common approaches to evaluate whether or not a game is a
potential game, in this class we will typically rely on the guess and check approach to verify
whether or not a potential function exists.

3 Revisiting Congestion Games

We started this lecture by reviewing the class of congestion games, which has application
to both traffic management and control and numerous other resource allocation problems
relevant to engineering based systems. The goal of this lecture was to build tools to evaluate
whether or not an interesting class of games have guaranteed existence of a pure Nash
equilibrium. While we showed that for a class of two-player congestion games, it remained
an upon question as to whether or not that property held true to arbitrary congestion games.
The following theorem resolves this question.

Theorem 3.1 (Monderer and Shapley, 1996) Consider any congestion game as defined
in Section 1.1. The congestion game is a potential game with potential function

φ(a) =
∑
r∈R

|a|r∑
k=1

cr(k)

Proof 3.1 In order to show that a congestion game is in fact a potential game, we need to
show that for any action profile a ∈ A, agent i ∈ N , and alternative choice a′i ∈ Ai the
following equality is satisfied

Ji(a
′
i, a−i)− Ji(ai, a−i) = φ(a′i, a−i)− φ(ai, a−i).

For simplicity, assume Ai = R, i.e., we have a parallel network where any agent can select
any single edge from the set R. Let ai = r, a′i = r′, where r′ 6= r. Given any a−i, the cost
function of player i satisfies

Ji(ai = r, a−i) = cr(|a|r)
Ji(a

′
i = r′, a−i) = cr′(|a|r′ + 1)



where the +1 comes from the fact that there is now 1 extra player on the resource r′ when
player i switches to that one. If we inspect our potential function, we have that

φ(a′i = r′, a−i)− φ(ai = r, a−i) =
∑
r∈R

|a′|r∑
k=1

cr(k)−
∑
r∈R

|a|r∑
k=1

cr(k)

=

|a′|r′∑
k=1

cr′(k)−
|a|r′∑
k=1

cr′(k) +

|a′|r∑
k=1

cr(k)−
|a|r∑
k=1

cr(k)

= cr′(|a|r + 1)− cr(|a|r)
= Ji(a

′)− Ji(a)

Hence the game is a potential game with potential function φ.

The above theorem demonstrates that a pure Nash equilibrium is guaranteed to exist in any
congestion game. This holds irrespective of the number of players, the number of resources,
the resource latency functions, or the agents’ action sets. This is the first significant class of
games where we demonstrated the existence of pure Nash equilibria.

4 Conclusions

This lecture focused on a class of games known as congestion games. The main result that
we covered demonstrated that a congestion game is an instance of a potential game, which
directly implies that a pure Nash equilibrium is guaranteed to exist in any congestion games.
However, note the difference in structure between the global objective and the potential
function, i.e.,

C(a) =
∑
r∈R

|a|r · cr(|a|r),

φ(a) =
∑
r∈R

|a|r∑
k=1

cr(k).

What is the implication of these functions being different? Are there mechanisms a system
operator can employ to make these functions more aligned? These questions will be the
focus of the next lecture.

5 Exercises

1. Consider the following games from a previous lecture

� BoS:



B S
B 2, 1 0, 0
S 0, 0 1, 2

� Stag hunt:

Stag Hare
Stag 2, 2 0, 1
Hare 1, 0 1, 1

� Typewriter:

Alt Std
Alt 3, 3 0, 0
Std 0, 0 1, 1

Are any of the three games a potential game? If so, which one(s)? Further, what is
the potential function?

2. Complete the payoffs in the following game so that it is a potential game:

L C R
T 1,? 2,? 1,?
M ?,4 5,3 2,?
B 1,? 6,? 7,?

3. This question studies a learning algorithm known as Fictitious Play. At any given time
t ∈ {1, 2, . . . }, the Fictitious Play algorithm proceeds as follows:

� Bookkeeping: Each player i ∈ N maintains the empirical frequency of each
player’s previous actions. Let qj(t) ∈ ∆(Aj) represent the empirical frequency
of player j’s action over the stages k = 1, 2, ..., t − 1. For example, if player j
selected aj(1) = H, aj(2) = H, aj(3) = T , then qj(4) = (2/3, 1/3) where the
(2/3) corresponds to empirical frequency of H and the (1/3) corresponds to the
empirical frequency of T .

� Assumptions: At any given time t > 0, each player assumes that all other
players j 6= i will select an action independently using the strategy qj(t).

� Best Response: Each player selects an action at time t seeking to maximize his
expected utility given his belief that each player j 6= i will be selecting her action
independently according to strategy qj(t), i.e.,

ai(t) = BRi({qj(t)}j 6=i)

� Repeat:

Fictitious play has several nice convergence results. Two such results are as follows:

� Empirical frequency of play converges to a Nash equilibrium in any potential
game;



� Empirical frequency of play converges to the optimal security strategies in any
zero-sum game.

This question will explore this result on the following two player game:

a2 b2
a1 5, 2 0, 4
b1 0, 4 2, 6

(a) Does a pure Nash equilibrium exist? If so, what are the pure Nash equilibria?

(b) Is the above game a potential game? If so, what is the potential function?

(c) Suppose the game defined above is repeated each period t = 1, 2, ... and each
player uses the learning algorithm Fictitious Play to select their respective action
at each time t. If the initial action is a(1) = (b1, a2) derive the ensuing action
trajectory a(2), a(3), ...., a(k) for any k ≥ 1.


