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Abstract— Simplified models of limit-cycle walking on flat can still meaningfully quantify stochastic stability, ierms of
terrain have provided important insights into the nature of expected time to failure, and maximization of this metric in
legged locomotion. Real walking robots (and humans), however, turn provides a parameter for optimization in the design of

do not exhibit true limit cycle dynamics because terrain, even trol f IKi bot deratel h deled
in a carefully designed laboratory setting, is inevitably non-flat. controf for a walking robot on moderately rough, unmodele

Walking systems on stochastically rough terrain may not satisfy terrain.

strict conditions for limit-cycle stability but can still demonstrate

impressively long-living periods of continuous walking. Here, we Il. BACKGROUND

examine the dynamics of rimless-wheel and compass-gait walking Many stochastic dynamic systems exhibit behaviors which

on randomly generated rough terrain and employ tools from - velv | livi but which | dt
stochastic processes to describe the ‘stochastic stability’ of ¢lse are impressively long-living, but which are also guaraatee

gaits. This analysis generalizes our understanding of walking t0 €Xit these behaviors (“fail”) with probability one given
stability and may provide statistical tools for experimental limit enough time. Such systems cannot be classified as “stable”,

cycle analysis on real walking systems. but it is also misleading and incomplete to classify them as
“unstable”. Physicists have long used the temetastable
to capture this interesting phenomenon and have developed

The science of legged locomotion is plagued with coma number of tools for quantifying this behavior [8, 9, 12,
plexity. Many of the fundamental results for legged robots5]. Many other branches of science and engineering have
have come from detailed analytical and computational inveslso borrowed the terminology to describe dynamic systems
tigations of simplified models (e.g., [3, 5, 7, 10, 11]). Téesin a wide variety of fields. Familiar metastable systems in-
analyses reveal the limit cycle nature of ideal walkingeyst clude crystalline structures (e.g. diamonds), flip-flopuwits,
and employ Poincér map analysis to assess the stability afdioactive elements, oscillatory wave patterns in theénbra
these limit cycles. However, the very simplifications whicland ferromagnetic materials, such as spin glass or magnetic
have made these models tractable for analysis can limit thigpe film (which explains why a taped recording sitting in
utility. storage still inevitably fades over time).

Experimental analyses of real machines based on these
simple models [4] have revealed that real machines dil
from these idealized dynamics in a number of important wa
Certainly the dynamics of impact and contact with the grou
are more subtle than what is captured by the idealized moc
But perhaps more fundamental is the inevitable stochasti
in the real system. More than just measurement noise, rol
that walk are inherently prone to the stochastic influendes
their environment by interacting with terrain which varias
each footstep. Even in a carefully designed laboratorynsgtt ; , >
and especially for passive and minimally-actuated walki A B X
machines, the effects of this stochasticity can have a muyu
effe_Ct on the Iong-t'erm S.yStem dynamics. In pracU_c_g, .IE_WV Fig. 1. Cartoon of a particle subject to Brownian motion in éeptial U (x)
difficult (and technically incorrect) to apply determirdisiimit  with two metastable statesi and B.
cycle stability analyses to our experimental walking maehi
- the real machines do not have true limit cycle dynamics. The canonical example of metastability is a particle in a

In this paper, we extend the analysis of simplified walkingotential well subject to Brownian motion, as cartooned in
models toward real machines by adding stochasticity infigure 1. These systems have local attractors which tend to
the our model. Although we have considered a number kéep the dynamics within a particular neighborhood in state
sources of uncertainty, we will focus here on a compact asgace. In the limit as such systems become deterministic
demonstrative model - where the geometry of the ground (i3o noise), these local attractors are fixed points, and the
drawn from a random distribution. Even with mild deviationsystem is truly stable whenever the dynamics begin with an
in terrain from a nominal slope angle, the resulting trajees initial condition somewhere inside the basin of attractafn
of the machine are different on every step and for many noite fixed point. In contrast, stochasticity constantly mssh
distributions (e.g., Gaussian) the robot is guaranteesldnta- the dynamics about within this neighborhood, and for some
ally fall down (with probability one ag — oc). However, one systems and noise types, this turns a stable system into a

I. INTRODUCTION




metastable one. Occasionally but repeatedly, such systéims eigenvectorsy;, and characteristic times; = ﬁ The
deviate particularly far from a metastable attractor intestatransition matrix from an absorbing Markov chain will have
space (making “escape attempts”), and eventually, thely wN; = 1, with v; representing the stationary distribution on the
successfully exit (by which we mean entering a region wheadsorbing state. The magnitude of the remaining eigensalue
a different attractor is now a far more dominating influencef0 < |\;| < 1,Vi > 1) describe the transient dynamics and
convergence rate (or mixing time) to this stationary disti
tion. Transient analysis on the walking models we investiga
The dynamics of walking systems are continuous, but theiére will reveal a general phenomenox; is very close to
are punctuated by discrete impact events when a foot comesandr, > ;. This is characteristic of metastability: initial
into contact with the ground. These impacts provide a nhtuggnditions (in eigenmodes 3 and higher) are forgotten dyjick
time-discretization of a gait onto a Poinéamap. Therefore, and v, describes the long-living (metastable) neighborhood
we will consider walking systems governed by the discretgf the dynamics. In metastable systems, it is useful to define

IIl. M ETASTABLE LIMIT CYCLE ANALYSIS

closed-loop return-map dynamics: the metastable distributions, as the stationary distribution
x[n + 1] = £(x[n],v[n]), 1) conditioned on having not entered the absorbing state:
wherex[n] denotes the state of the robot at ste@nd ~[r] ¢i = lim Pr(X[n] = z; | X[n] # 21).

represents the slope of the ground, which is a random variabl = ) ] ]

drawn independently from a distributioR, at eachn. This ThiS is easily computed by zeroing the first elementofand
model for stochastically rough terrain dramatically siifigs NOrmalizing the vector to sum to one. _

our presentation in this paper, but it also restricts outyasig Individual trajectories in the metastable basin are chiarac
to strictly forward walking. These state evolution equationdZ€d by random fluctuations around the attractor, with occa-
represent a discrete-time, continuous-state Markov gs(ar S|onall exits”, in which the system enters a region domldate
infinite Markov chain). For computational purposes, we wilpy & different attractor. For walking systems this is eqjeiua
also discretize the state space into a finite set of states, to noisy, random fluctuations around the nominal limit cycle

Defining the state distribution vectas[n], as with occasional transitions to the absorbing (fallen)estdihe
existence of successful escape attempts suggests a natural
pi[n] = Pr(X[n] = z;), (2) quantification of the relative stability of metastable attors

in terms of first-passage times. Theeanfirst-passage time
(MFPT) to the fallen absorbing state describes the time we
should expect our robot to walk before falling down.
pn+1]=pnT, T=Pr(Xn+1]=z;|X[n]=umx). Let us define the mean first-passage time veatgrwhere

(3) m, is the expected time to transition from the stateinto
T is the (stochastic) state-transition matrix; each row rsust  the absorbing state. Fortunately, the mean first-passamgeisi

to one. Then-step dynamics are revealed by the Chapmaparticularly easy to compute, as it obeys the relation:
Kolmogorov equation,

] = plO}T" mi=1 .
n| = . i — .
P p 1435, Tijm; otherwise

we can describe the state distribution (master) equatighan
matrix form:

We obtain the transition matrix numerically by integratimg ] ]
governing differential equation forward from each mesmpoi (the expected first-passage time must be one more than the
using barycentric interpolation [13] to represent the sigon  €XPected first-passage time after a single transition into a

probabilities. non-absorbing state). In matrix form, this yields the ohets
For walking, we will designate one special statg, as an calculation:

absorbing state representing all configurations in whiah th m = [ 0 o } , (4)

robot has fallen down. Transitions to this state can c@nom (I-T)""1

many regions of the state space, bUt. there are no trans't'?/vr}wsere'i‘ is T with the first row and first column removeth
away from this state. Assuming that it is possible to get touantiﬁes the relative stability of each point in state spac
this absorbing state (possibly in multiple steps) from aayes 9 Y P s

) X L , " _One interesting characteristic of metastable systemsads th
then this absorbing Markov chain will have a unique statigna . .
o . . - . . the mean first-passage time around an attractor tends be very
distribution, with the entire probability mass in the alisng . . : .
state flat; most system trajectories rapidly converge to the same

The dynamics of convergence to the absorbing state Crgrtlatastable distribution (forgetting initial conditionbgfore

. . . : ) ... _escaping to the absorbing state. Therefore, it is also mgani
be investigated using an eigenmode analysis [1]. Withol , . . :
. . . to define a system mean first-passage tiive,by computing
loss of generality, let us order the eigenvalugs, in order

of decreasing magnitude, and label the corresponding) (Ietﬁ:triiﬁii%ted first-passage time over the entire metastable

lincluding backward steps is straightforward, but requitiess model to M = mei. (5)
include spatio-temporal correlations in the slope angle P



Whenr,; > 13, we haveM = 1, and when\, ~ 1, we have On a constant slope of = 8°, any wheel which starts
1 1 with w, > 0 has a deterministic evolution over time and is
Tog () T N guaranteed to converge to a fixed point.of 1.20_97 (rad/s).
The return map defining the step-to-step transitions ftgm
IV. NUMERICAL MODELING RESULTS to w,41 IS given as:

M%TQZ

demonstrate use of the methodology presented in Sectiondi}+1 =
and to illustrate some of the important characteristicscsip
for metastable walking systems more generally. The twgheres, = 2+ andBy = £ —, with v > 0 as the downhill

systems presented here are the rimless wheel and the pasgiyge. A plot of this return function is shown in Figure 3.
compass gait walker, each of which is illustrated in Figure 2

This section uses two simple, classic walking models to
cos? a (w% + T 7

291~ cosm) 2291 cospy)

Deterministic Return Map for Rimless Wheel
25 T T T

Fig. 2. The Rimless Wheel (left) and Compass Gait Walker (rigitgels.

. — return function

. L - - -line of unity slope

A. Rimless Wheel L’ o rolling fixed point
o ; ; ; :

5 2 25

The rimless wheel (RW) model consists of a set /éf
massless, equally-spaced spokes about a point mass. Kineti
energy is added as it rolls downhill and is lost at eadfig. 3. Return map and fixed point for an 8-spoke rimless wheeomstant,
impulsive impact with the ground. For the right combinatioHo""”h”' slope‘of8°. Here, wn, is defined as angular velocity when the

L L. . .support spoke is exactly vertical.
of constant slope and initial conditions, a particular RWI wi
converge to a steady limit cycle behavior, rolling forevada
approaching a particular velocity at any (Poir@disnapshot”
in its motion (e.g., when the mass is vertically above a leg 25
at 0 = 0 in Fig. 2). The motions of the rimless wheel on a
constant slope have been studied in depth [3, 16]. .

In this section, we will examine the dynamics of the RW
when the slope varies stochastically at each new impactoTo d
this, we discretize the continuous set of velocities, usirgpt
of 250 values ofv, from 0.01 to 2.5 (rad/s). We also include
an additional absorbing failure state, which is defined here
to include all cases where the wheel did not have sufficient
velocity roll past its apex on a particular step. Our wheetigio

1 1
o, [rad/s]

Stochastic Return Map for Rimless Wheel

[rad/s]

n+1

®

.. 05 7’ return distribution
has N = 8 spokes ¢ = 7). At each ground collision, we i — —line of unity slope
. 7/ o inisti
assume that the slope between ground contact points of the - e e o PDF
previous and new stance leg is drawn from an approximéately ‘o 0 1 2 25

1.
o, [rad/s]

Gaussian distribution with a mean of= 8°. For clarity, we
will Stu_dy Only.Wheels which begm_ @ = 0 with some mmalj . 4. Return distribution and metastable “neighborhoaat’ dn 8-spoke
downhill velocity, w,, and we consider a wheel to have failegimless wheel on downhill terrain with a mean step-to-stepesiof 8 degrees
oh a particu|ar Step if it does to reach an apex intragek 0 and o= 1.5°. There is now a probability density function describing the
with w > 0. (Clockwise rotations go downhill, as depicted"sition fromwn 10 wn-t.1.

Fig. 2, and have positive values ©of) Note that the dynamic

evolution of angular velocity over time does not depend on When the slope bet_wee_n successive groun_d co_ntact; IS
I%awn from a stochastic distribution, the function given in

Figure 3 is now replaced by a probabilistic description @& th
transitions, as illustrated in Figure 4. Given the curreates

2To avoid simulating pathological cases, the distributioaligays truncated is so_me part_icma'w’m there is _a corresponding probability
to remain within+£10°, or roughly 6o, of the mean. density function (PDF) to describe what the next statg, 1,

we will use spokes of unit lengttd,= 1 meter, throughout.



will be. Figure 5 shows this set of PDF’s clearly; it is a 3Dbf a particular dynamic system. For this particular casereth
plot of the same probabilistic return map shown from ovedheare no regions in state space (except the failure state) with
in Figure 4. For our discretized model, each height valldFPT significantly lower than the system-wide value, which
in Figure 5 is proportional to elemerf;; of the transition is not typical more generally; the passive compass gait walker
matrix, wheres is the state we are coming fromw,{, on the in Section IV-B is highly sensitive to initial conditionsoif
x-axis) andj is the state we are going ta{;1, on the y- instance, although it too has regions of state space whitesh
axis); Figures 4 and 5 provide a graphical representatigheof a nearly uniform MFPT value.

transition matrix describing this metastable dynamic eayst

x10°

Stochastic Return Map for Rimless Wheel

n

¢ MFPT from discrete approximation
—curved fit

6.41 L L
0 05 1 15 2 25

SN (rad/s)

MFPT(w ) for rimless wheel

Fig. 6. Mean first-passage time as a function of the initialdétion, w,. Data
are for a rimless wheel on stochastic terrain with mean slop® dég and
o = 1.5°. Points show the approximation obtained through eigenyaisabf
the discretized system, and a smoothed line is overlaid. N@eNFPT is
largely constant over a large portion of state space.

PDF from Transition Matrix

The eigenvector associated wity yields the PDF of the

o © @ [rad/s]

o, lradss] metastable dynamic process — the relative probability ofde
in any particular location in state space, given initial ditions
Fig. 5. 3D view of the return distribution for the stochastimless wheel have been forgotten and the walker has not yet failed. Figure

system. This is a smoothed rendering of the step-to-stepiticanmatrix, 7', . e s . .
with the probability density functions for some particuléates () overlaid shows the resultlng probablllty distribution functions fihe

as lines for greater clarity. rimless wheel for each of several levels of noise. Pictlyial
each system-wide PDF for a metastable system is analogous
To generate the discrete transition matrix, we calculate the fixed point for a stable, deterministic system. In the
wnt+1 = f(wn,7y) for each of a discrete set of 601 possibleleterministic case, the probability of being exactly atfiked
~ values, in the range of10 degrees from the mean. Eaclpoint approaches unity @s— oco.
new state is then represented in the mesh using barycentric
weighting interpolation [13], which (we note) inherentlgids

Quasi-stationary distribution of states
100 o . .

a small level of additional (unintended) noise to the modele e o= 5deg
dynamic. In Figures 4 and 5, the noise has a standard daviatio °r . gjig gzg
of o = 1.5°. Using MATLAB to take the 3 largest eigenvalues o * 0=20deg
of the transpose of the transition matrix for this case, we fin il — f;'(”;::;‘l’nf’;‘;

that the largest eigenvalug;, is within 10~'# of being exactly
unity, which is within the mathematical accuracy expected.
This eigenvalue corresponds to the absorbing failure ,state
and the corresponding eigenvector sums to 1, with all values
except the failure state having essentially zero wéighthis
vector (since all wheels will eventually be at this state, as
t — o0). All other eigenvectors sum to zero (within numerical
limits), since they must die away @s— oo. The second-
largest eigenvalue ig; = 0.999998446. Using the methods
presented in Section lll, this corresponds to a system-wide
MFPT of aboutl/0.000001554 = 643, 600 steps. Each initial _ o B ] ) )
condition has a particular MFPTu(.), which is obtained ©3; 7  Qusssitionar pobabity denil functions toe stochasic
from Eq. 4 and plotted in Figure 6. Note that the value af estimated by renormalizing the eigenvector associated thi¢ second-
the mean first-passage time is nearly flat throughout a |a|4_g@est eigenvalue of the transpose of the transition matiate that meshing
portion of state space. This is characteristic for metdsta Nherently adds noise to the dynamic system; smoothed lineslraren on

R - . op of the raw data (shown as points) from the scaled eig¢orsec
systems, which justifies the notion of a “system-wide” MFPT,

M = 1/(1 — A2), quantifying the overall stochastic stability The third-largest eigenvalue of transition matrh, quan-

3AIl states except the failure state had a magnitude less taario, tifies the characteristic time scale in which initial cormtis
numerically. are forgotten, as the dynamics evolve toward the metastable

PDF

mroll



distribution (or toward failure). For the case presentetehe 10
(o = 1.5°), A3 ~ 0.50009, which means almost half of the
PDF of the initial condition composed of this eigenvector is
lost (“forgotten”) with each, successive step; an evendarg
fraction-per-step is lost for all remaining eigenvectonst
even smaller values of). Within a few steps, initial conditions
for any wheel beginning in our range of analyfis< w, <

2.5 have therefore predominantly evolved into the metastable
PDF (or have failed). If we multiply the metastable PDF,
¢(w), by the transition matrix, we obtain a joint probability,
Pr(wp,wn+1), of having just transitioned from,, to w41,
given the wheel has not failed by step+ 1. This is shown
both as a 3D plot in Figure 8 and as a set of overlaid contour o ‘ ‘ ‘ ‘

lines in Figure 4. ’ coftle?rain per step (zdegrees) e :

H
S,

MFPT of stochastic rimless wheel (steps)
5 5 5 5
i i i i

H
S,
i

Fig. 9. Mean first-passage time (MFPT) for the rimless wheeh amction
of terrain variationg. Estimates abov&0'4 correspond to eigenvalues on the
order of1 — 10~ and are beyond the calculation capabilities of MATLAB.

50 :; B. Passive Compass Gait Walker
e iL_/ ‘ e The second metastable dynamic system we analyze in this
s e paper is a passive compass gait (CG) walker. This system
L (—_ ) “ consists of two, massless legs with concentrated masses at
N I the intersection of the legs (“the hip”) and partway alongrea
N o leg, and it has been studied in detail by several authors, e.g

[5, 7, 14]. Referring to Figure 2, the parameters used for our
metastable passive walker ate= 5, m;, = 1.5, a = .7, and

Fig. 8. 3D view of the metastable “neighborhood” of statestate transitions, b = .3. Given an appropriate combination of initial conditions,

(wn,wn+1). If @ rimless wheel starts from some arbitrary initial corafiti physical parameters and constant terrain slope, this idedél
and has not fallen after several steps, this contour map sept® the joint : :

probability density function of being in state,, now and transitioning to will walk downhill forever. . o

wnt1. The contour lines drawn are identical to those overlaid igufe 4. When each step-to-step terrain slope is instead selected fro

They correspond to the neighborhood of likely,,w,1) pairings, analo- g stochastic distribution (near-Gaussian, as in SectieA)lV
gous to the unique fixed point of the deterministic case. evolution of the dynamics becomes stochastic, too, and we
can analyze the stochastic stability by creating a stegtep-
This particular system has a beautiful simplicity which akransition matrix, as described in detail for the rimlesseaih
lows us to extract some additional insight from the condiiio The resulting system-wide MFPT as a function of terrain
probability in Figure 8. Because of the definition of, as noise, M (o), is shown in Figure 10. Note that it is similar
being the velocity when the mass is at its apex in a givén shape to the dependence shown in Figure 9.
step, the value ofv, 1 = 0 represents the boundary to the To analyze this system, our discretized mesh is defined using
absorbing failure state in this example. If we visualize thge state immediately after each leg-ground collision. Jtiage
contours of the conditional probability as they extend talvaof the walker is defined completely by the two leg angles
wn+1 = 0 in Figure 4, we see that most failures do not occynd their velocities. On a constant slope, these four states
because we transition from a very slow statg €lose to zero) are reduced to three states, since a particular combinafion
to failure but are more typically due to sudden transitioost  slope and inter-leg angle will exactly define the orientatid
more dominant states in the metastable distribution toifail poth the stance and swing leg during impact. Although the
Finally, when this methodology is used to analyze thg&lope is varying (rather than constant) on stochasticiterra
rimless wheel for each of a variety of noise levelg,(the we still use only three states to define our mesh. To do so,
dependence of system-wide MFPT engoes as shown in we simulate the deterministic dynamics (including impgcts
Figure 9. For very low levels of noise, MATLAB does nota short distance forward or backward in time to find the
find a meaningful solution (due to numerical limits). As theobot state at the Poindasection where the slope of the line
level of noise increases, the MFPT decreases smoothly bonhnecting the “feet” of the legs is equivalent to our deskire
precipitously. (Note that the y-axis is plotted on a logtmmic nominal slope. Because the dynamics between collisions are
scale.) The stochastic stability of each particular systambe entirely deterministic, these two states are mathemétical
qguantified and compared by calculating this estimate of MFREQuivalent for the stochastic analysis. If such a state doés
which comes from\, of the transition matrix. exist for a particular collision (which occurs only very e,

-
® . [rad/s] 05
et 08 w, Irads]



10" Deterministic CG

—e— mfpt
= = =numerical limit

min(MFPT, 1e6)

= X (ads)

X, (rad/s)
Stochastic CG, o = 0.5 Stochastic CG, o = 0.5

MFPT for passive compass gait walker

MFPT (steps)
MFPT (steps)

. X, (rads) L X, G

X, (radls) X, (rad/s)

10°

1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 12 14
o of terrain per step (degrees)

Fig. 11. Basin of attraction (top) for deterministic CG wallend map of
Fig. 10. Mean first-passage time as a function of terrain tiariaResults for MFPT for low-noise § = 0.5°, lower left) and high-noises( = 1.0°, lower
analysis of a compass gait walker using a discretized (mestpgutpximation right) examples. To aide in visual comparison, all 3 plots ieesame mesh.
of the transitions. Average slope is 4 degrees, with thedstahdeviation in The “near-constant MFPT basin” for each stochastic systeessentially a
slope shown on the x-axis. Noise is a truncated Gaussiaribdison, limited low-pass filtered version of the deterministic basin of atice, and its shape
to between 0 and 8 degrees for all cases. does not change significantly, even when the magnitude of theMitself
varies greatly (e.g., 180,000 steps [left] vs 390 [rightRis region represents
a boundary on the volume in state space from which a walkekedylto pulled
into the metastable distribution.

we treat this as a member of the absorbing failure state. This
approximation allows us to reduce the dimensionality from 4
states to 3, which improves numerical accuracy signifigantMFPT of about 20 steps when= 0.5°, where we findM =
Specifically, it has allowed us to mesh finely enough 680,000 for the other walker).
capture near-infinite MFPT for low-noise systems, whilengsi  Just as in the case of the rimless wheel, the fixed point (for
four states did not. The three states we use in meshing avar deterministic compass gait system) is now replaced (in
(1) absolute angular velocity of the stance 1&g, (2) relative the stochastic case) by a probability density function,nied
velocity of the swing leg, Xy, and (3) the inter-leg angley.  the likelihood of being in any particular state (conditidnen
Figure 11 shows a slice of the basin of attraction for thidot having fallen) ag — oco. Figure 13 shows 2D contour
compass ga|t on a constant S|0pe (top)’ a|0ng with regionsnwt sections of the PDF obtained from the eigen'analySiS of
state space with nearly-constant MFPT (bottom two) for twih€ stochastic compass gait. The outermost contour defines a
different magnitude of noiser} in terrain. Each slice is taken Poundary containing 0.999 of the probability distribution
at the same inter-leg angle, ~ 25.2°. In the deterministic State space. The distribution spreads over more of statespa
case, the basin of attraction defines the set of all statds was the level of noise increases, in a manner analogous to the
infinite first-passage time: all walkers beginning with aitiah ~Widening of the distribution with noise seen in Figure 7.
condition in this set will converge toward the fixed pointlwit  Finally, we note that the relationship in state space batwee
probability 1. For stochastic systems which result in ntetzle the PDF of the metastable dynamics, shown in Figure 13,
dynamics, there is an analogous region which defines initaitd the region of nearly-uniform mean first-passage tihe,
conditions having MFPT very close to the system-wide valuehown at the bottom of Figure 11, hints at where successful
M. Interestingly, the deterministic and stochastic basapss “escape attempts” are most likely to occur over time. Fidi#e
are quite similar here; we expect this may often be the ca®eerlays these two regions across a different dimensidical s
for systems such as this with discrete jumps in state spaceqf the 3D space for the = .5° ando = 1.0° cases. As the
The image at the top of Figure 12 shows the determinisfigilS of the metastable PDF (shown in yellow) approach the
basin of attraction for this CG walker more clearly. ThistploPoundary of the uniform-MFPT basin (shown in blue), there
was generated by sampling carefully over the state space §h@ higher probability of failing on any given step duringth
simulating the dynamics. The plot at the top of Figure 1petastable process, resulting in turn in a less stochdgtica
intentionally uses the same mesh discretization used for §fable system (i.e., with a lower system-wide value\f}.
stochastic system, to provide a better head-to-head cdsopar
of the change in shape due to the addition of terrain noise (as V. DISCUSSION
opposed to the noise of the discretization itself). The sdco
image in Figure 12 shows the deterministic basin of attbacti This section briefly discusses the use of the stochastic
for a different set of physical parameters. (= mj; a = methods presented toward designing controllers for wglkin
b = .5) on the same, constant slope 45f. This basin looks systems and also provides a few further observations on the
qualitatively more delicate and the resulting performante properties of metastable systems which result in multiple
this walker on stochastic terrain is in fact much worse (e.@ttractors (e.g., period-gaits).
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Fig. 12. Basins of attraction (blue region) and fixed pointti@o compass
gait walkers, each on a constant slopetdf Walker with basin at top is more
stable and uses the parameters defined for the stochastemsy&scribed
throughout Section IV-B; for the other walker; = mj; anda = b = .5.
MFPT is infinite inside the shaded region and is small (1-4 Steutside
of it. This image shows only a slice of the 3D basin, taken atititer-leg
angle of the fixed point for each respective walker. The fixethtpis at
X3 = —.89 (rad/s), X4 = 2.89 (rad/s),a = 25.2° for the first walker, and
itis at X3 = —1.14 (rad/s), X4 = 1.26 (rad/s),a = 33.4° for the lower
one. The deterministic basin of attraction for the secondevais narrower
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Fig. 13. On stochastic terrain, there is no fixed point for ¢tbenpass gait

walker. Instead, there are metastable “neighborhoods” at stpace which
are visited most often. As time goes to infinity, if a walker has fallen, it

will most likely be in a this region. The contours shown here analogous
to the PDF magnitude contours in Figure 7; they are drawn ttosecegions
capturing 90%, 99%, and 99.9% of walkers at any snapshatgiunetastable

in shape, and this walker is significantly less stable ontsistic terrain. walking. Top picture corresponds ® = 0.5°. Larger noise ¢ = 1.0°,

bottom) results in larger excursions in state space, as &ghec

A. Impacts on Control Design . ) )
impressively rough terrain [2].

One of the primary goals of a controller is to enhance
the dynamic stability of a system. For walking systems, w@- Multiple stable limit cycles
propose throughout this paper that this should be definedvietastable dynamic systems sometimes have an inherent
as increasing thetochastic stabilityWe would like time-to- periodicity. We expect this may be the case on a slightly
failure to be long, and we would like a system to convergsteeper slope, for instance, where compass gait models expe
toward the metastable distribution from a large set of ahiti rience period-doubling bifurcations [7]. Another case wehe
conditions. The tools provided here can be used in optimiziperiodicity arises is for wrapping terrain, such as theaierr
controllers with either or both of these two aims in mind. for the controlled walker in Figure 15. Wrapping is a reatisti

As an example, consider an active compass gait walker, wittodel for many in-laboratory walking robots, as they aremft
a torque source at the hip but with the ankles still unactuate confined to walk on a boom — repeatedly covering the same
the ground contact. Putting this walker omegeatingterrain, terrain again and again. In our simulation of a hip-actu&éd
as depicted in Figure 15, allows us to mesh across the entivalker on wrapping terrain, we observe that a repeatingep-s
state space of possible post-collision poses. By desigaingycle results in multiple eigenvalues, through,, 1, all with
low-level PD controller to regulate inter-leg angle, we camagnitude just under unity. They are complex eigenvalues,
discretize the action space on a single once-per-stepypolas are the corresponding eigenvectors. The top left image in
decision. The optimal high-level policy (to select desimg@r- Figure 15 shows such a set of eigenvalues, all lying justiwith
leg angle) for the system can now be solved via value itaratidhe unit circle. The next-smallest set of eigenvalues akre al
Preliminary results for such a control methodology allove th significantly smaller in this example. The complex eigeneasl
underactuated compass gait model to walk continuously ovard eigenvectors mathematically capture an inherent gherio
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icity, in which the probability density function changeseov
time in a cyclical manner.

VI. CONCLUSIONS

The goal of this paper has been to motivate the use of
stochastic analysis in studying and (ultimately) enhamd¢ire
stability of walking systems. Robots that walk are inhegent
more prone to the stochastic influences of their environment
than traditional (e.g., factory) robots. Locomotory sysse
capable of interacting with the real world must deal with
significant uncertainty and must perform well with limited
energy budgets and despite limited control authority.

The stochastic dynamics of walking on rough terrain fit
nicely into the well-developed study of metastability. The
simplified models studied here elucidate the essentialifgct
of a metastable limit cycle dynamics which makes occasional
escape attempts to the fallen-down state. Metrics for stetah
stability, such as the mean first-passage time, may be potent
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Fig. 14. Metastable system: Contours of the stochastic fbafsattraction”
are shown where MFPT i8.5M, 0.9M and0.99M (blue) versus contours (4]
where the integral of the PDF accounts f&; .99, and.999 of the total
metastable distribution (yellow). The metastable dynamiod t® keep the
system well inside the “yellow” neighborhood. As the tail this region (5]
extend out of the blue region, the system dynamics becomettassastically
stable (lowerlM). The axis into the page represents the angle of the swingE6
leg relative velocity,X4, and a slice is taken aXy = 2.33rad/s. Terrain ]
variation for the top plot iz = 0.5 degrees (with\/ ~ 180, 000 steps). For
the noisier system at bottorar (= 1.0 degrees)M is only 20 steps or so. [7]
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Fig. 15. Controlled compass gait walker, with torque at the o solve for [15]
an optimal policy using value iteration, the terrain wrapergv/ meters. The
optimization maximizes the MFPT from any given state. An eigafysis
reveals a complex set of eigenvalues (top), spaced evenlyt gbot strictly  [16]

inside of) the unit circle. Corresponding eigenvectorsase complex.

metrics for quantifying both the relative stability acrasate-
space and the overall system stability for real walkingeayst.
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