
Increased Robustness of Humanoid Standing Balance in the Sagittal
Plane through Adaptive Joint Torque Reduction

Markus Giftthaler1 and Katie Byl2

Abstract— This paper introduces and compares two control
approaches that increase the robustness of humanoid standing
balance in the sagittal plane with respect to impulsive perturba-
tions by adapting joint torques. To address the question of how
the range of admissible perturbations for an n-link inverted
pendulum model can be enlarged, we propose two different
strategies: adapting the ankle torque only and adapting all
joint torques uniformly. For each, explicit-form solutions exist
for nonlinear models with an arbitrary number of links. A
Center of Pressure-based criterion for switching between the
default feedback controller and the torque reduction strategies
is introduced. In a three-link model case study, a wide range of
robot poses, which are optimized either for steady state effort
minimization or robustness, are considered. Simulation results
show that our models are robust to impulse perturbations
of between 10% and 149% greater magnitude than for an
LQR default control law. However, there is a trade-off between
robustness gains and steady-state balancing effort. In a second
example, a joint-locked model, which uses an adaptive joint
torque reduction strategy, outperforms a joint-unlocked model
that only uses the default controller both in terms of robustness
and control effort.

I. INTRODUCTION

The technological advances in humanoid robotics in re-
cent years have driven our understanding of bipedal robots
towards autonomously operating machines with a broad
spectrum of possible applications. Considering such a robot
which is standing in place, it is desirable that the system
is able to perform tasks like object manipulations without
destabilizing balance, i.e., without forcing the system to
readjust its footholds. Therefore, uncertainty and robustness
are important issues in balance research. Because they fa-
cilitate both modeling and physical understanding, one- and
multi-link inverted pendulum models have proven useful for
balance studies and walking control for both humans and
humanoid robots [1] [2]. Well-known examples for balancing
strategies are the ankle and hip strategies [3]. Investigations
about their robustness properties exist, e.g. in [4].

In this paper, we are considering the control of a
low-dimensional humanoid robot model in the sagittal
plane. Common approaches are Parametric State Feedback
controllers, Feedback-Linearization techniques or Linear
Quadratic Regulators (LQR) [5]. Optimization based meth-
ods using Dynamic Programming and look-up tables have
been presented in [6]. An approach using Model Predictive
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Fig. 1: Three-link and one-link inverted pendulum models in
the sagittal plane. All angles are zero when the robot stands
fully upright.

Control is available in [7]. While optimization related meth-
ods usually exhibit good robustness properties, they require a
discretization of the state space, high computational efforts,
and/or the generation of large look-up tables. Recently,
techniques that modify controller feedback gains depending
on the disturbance have come to the interest of the research
community. Xing, Atkeson and others have presented results
showing that postural feedback gains should change with
perturbation size [8]. In [9], it is shown that the range of
admissible perturbations can be enlarged by adapting the
knee joint torque to the ankle torque, based on Reaction-
Null-Space methods. However, such control policies cannot
be generalized for an arbitrary number of links easily, nor
are they available in explicit form.

The rest of this paper is organized as follows. We present
the model of our robot in Section II. In Section III, we in-
troduce a robustness improving control approach for upright
balancing: it is based on systematic adaption of the robot
joint torques to the magnitude of an impulsive perturbation.
In Section IV, we present simulation results that show
robustness gains for different robot poses and also a reduction
of control effort. Conclusions are drawn in Section V. A
discussion about the presented material and future work is
given in Section VI.

II. MODEL

Fig.1 shows a three-link and a one-link inverted pendulum
robot model in the sagittal plane, both facing to the right.
Each robot is assumed to be standing on a flat, massless,
asymmetric foot. As for the actuators, we consider torque



TABLE I: Three link robot model parameters

No. Link Mass mi [kg] Inertia Ji [kg·m2] li[m] lc,i[m]
1 Shanks 8.934 0.163 0.422 0.230
2 Thighs 17.093 0.311 0.424 0.199
3 Torso 61.990 3.420 0.752 0.322

inputs at the joints. Table I shows the parameters of the
three-link model, which are extracted from the DARPA
Robotics Challenge Atlas humanoid simulation [10]. Note
that li denotes the length of link i and lc,i denotes the
distance from joint ji−1 to the location of the center of
mass mi. Ji is the moment of inertia. The equations of
motion for an n-link inverted pendulum can be derived using
Lagrange’s formalism, choosing the generalized coordinates
q = [θ1 θ2 . . . θn]> and can be written as

M(q)q̈ +H(q, q̇) + Φ(q) = ~τ (1)

with inertia matrix M(q) ∈ Rn×n, H(q̇, q) ∈ Rn×1 captur-
ing the Coriolis and centrifugal forces, Φ(q) ∈ Rn×1 describ-
ing gravity-induced terms and ~τ = [τ1 τ2 . . . τn]> ∈ Rn×1

being the vector of input torques.
For the purpose of this paper, we restrict the notion of

robustness to the ability to recover from impulsive pertur-
bations. It is assumed that an impulse ~p is imparted at the
overall Center of Mass (CoM) while the robot is in a steady
state. It occurs instantaneously, in the positive (or negative)
x-direction only, and is entirely absorbed by the robot. This
leads to a new distribution of angular velocities depending
on the initial state and the impulse, if the robot joints are
unlocked.

In case of the upper n − 1 joints being locked, the robot
model can be lumped into a corresponding one-link inverted
pendulum with angle θ and identical coordinates of the CoM,
which is also shown in Fig. 1. In that case, an imparted
impulse leads to a single angular velocity θ̇.

The Ground Reaction Force (GRF) is a function of the
current state and the control input and its location on the
ground is called the Center of Pressure (CoP). We define
an arbitrary Region of Trust (RoT) on the x-axis as the
interval [−0.04 0.18] (meters), in which the CoP shall be
moved in order to recover from perturbations. The RoT is
indicated with in Fig. 1. Note that the RoT is a subarea
of the actual support polygon, which is defined to range from
−0.05 m to 0.2 m. Thus, we want to prevent the CoP from
coming close to the edge of the foot and provide a safety
margin.

For the following investigations, we choose the underlying
main control laws to be full-state feedback LQR controllers
that are designed about certain reference poses, which we
will refer to as our default control law. For the feedback-
gain matrix computation, we choose all weighting matrices
to be diagonal, penalizing deviations from the reference pose
with factors 1 and control inputs with factors 0.1. There are
no penalties for angular velocities. Note that in this setup,
the choice of the weighting factors is not very influential
because the feedback gains converge to the same matrix for
a broad spectrum of different weighing factors.

q̇

q

x0

x1

x′1

Fig. 2: A system starting at x0 in the default controller’s
Basin of Attraction (BoA) converges to the setpoint. An
Adaptive Joint Torque Reduction strategy can be used to
drive a system starting with initial state x1 into the BoA.
The default controller takes over at x′1.

III. THE ADAPTIVE JOINT TORQUE REDUCTION
STRATEGY

A. Approach

Humans typically use a strategy of moving the CoP to
recover from perturbations of small magnitude. The size of
the support polygon imposes limits for admissible perturba-
tions for this strategy. If required, different control strategies,
for example taking a step or applying an external force,
e.g. by pushing on a wall, have to be used [11]. In this
paper, we assume the foot does not slide or lift off. We
define it as a failure if the required CoP for a given control
strategy would exit the RoT. Hence, our goal is to modify the
balancing control strategy such that the maximum admissible
perturbation is enlarged while the CoP stays in the RoT. This
increases the bound for impulsive disturbances the robot can
take without switching to higher-level control strategies.

Consider a Basin of Attraction (BoA) of a closed-loop
inverted pendulum with a default controller and a ‘Moving
the CoP’ strategy, as schematically shown in Fig. 2. Consider
a perturbation which exceeds the described limit and thus
leads to a state x1 which lies outsides the BoA. We propose
to drive the system’s state back into the BoA by adapting
(reducing) the joint torques calculated by the default con-
troller such that the CoP stays at the edge of the RoT. Since
the BoA’s precise boundaries for a nonlinear system will in
general not be computable with low effort, we suggest the
controller switching strategy shown in Fig. 3. We estimate
the required location of the CoP for the default-controller
case. If it lies outside the RoT, the joint torques are adapted
such that the CoP is placed at the edge of the RoT. We later
switch back to the default controller if its estimated CoP
location is back within the RoT.

In this paper, we propose two different ways of adapting
the joint torques in order to place the CoP at a desired
location:

I Reduce the ankle torque τ1 as a function of the state
and the default controls which remain unchanged for
the upper n − 1 joints. There exists a closed form
solution; its derivation is outlined in Section III-B. In
the following, we refer to this strategy as Ankle Torque
Reduction (ATR).



Estimate CoP
for Default

Strategy

in RoT?
Use Default

Control
Strategy

Get Default
Control
Strategy
Torques

Adapt Joint
Torques

Update
System

no

yes

Fig. 3: Flow chart describing the switching strategy between
using the default controller and using adapted joint torques.

II Reduce all n torques by a factor α, i.e., ~τred = α ·~τ . A
similar derivation of a closed form solution exists but
it is not included here, due to space limitations. In the
following, we refer to this strategy as Uniform Joint
Torque Reduction (UTR).

B. Derivation of the adapted ankle torque τ1
The system state ~q, the desired location of the CoP ξx

and the default control inputs ~τ are given. While the CoP
is a function of τ1 and the y-component of the GRF, ~FGRF
is itself a function of the state and the input torque vector.
The following section sketches the derivation of the adapted
ankle torque τ1 = f(~τ , ~q, ξx) for the ATR strategy.

1) Calculation of the GRF and the CoP: Consider a
general n-link system and let ~pt be the total impulse of
the system. Let ~rba denote a vector from point a to b.
Let the absolute angular velocity of link i be ωi with
corresponding angular velocity vector ~ωi = [0 0 ωi]

>. The
GRF ~FGRF = [fx fy fz]

> can be computed from the conser-
vation of impulse d~pt

dt =
∑n
i=1mi~ami = ~FGRF − ~Fg , where

~Fg = [0 g
∑n
i=1mi 0]> represents the body weight and

~ami
denotes the acceleration of mass mi. Hence the GRF

can be written in matrix-vector form as

~FGRF = [~am1 ~am2 . . .~amn ]︸ ︷︷ ︸
=:A∈R3×n


m1

m2

...
mn


︸ ︷︷ ︸
=:~m∈Rn×1

+~Fg (2)

which simplifies the following derivation. Considering the
equilibrium of torques about the ankle joint, the x-coordinate
of the CoP ξx results as a function of the ankle torque τ1
and the vertical component of the GRF fy:

ξx =
τ1
fy

(3)

2) Define matrices Ω and Ω̇: For the n-link case, the
derivative q̇ of the generalized coordinates is mapped to the
absolute angular velocities by a regular matrix L ∈ Rn×n

such that [ω1 . . . ωn]> = Lq̇ and [ω̇1 . . . ω̇n]> = Lq̈.
Consider a matrix Ω = [~ω1 . . . ~ωn] ∈ R3×n and its derivative
w.r.t. time Ω̇. Using the equation of motion (1) for the sagittal
plane, we can rewrite Ω̇ as

Ω̇ =

 ~0>

~0>

−(LM−1(H + Φ))>

 +

 ~0>

~0>

(LM−1~τ)>

 (4)

as a first step to isolate the torque vector ~τ .
3) Isolating the ankle torque τ1: Rewriting the matrix

LM−1 =: [~η1 ~η2 . . . ~ηn], ~ηi ∈ Rn×1 allows us to isolate the
ankle torque from the second summand of Equation (4)

LM−1~τ = τ1~η1 + LM−1 · [0 τ2 . . . τn]>︸ ︷︷ ︸
=:~τ∗>

(5)

which leads to

Ω̇ =

 ~0>

~0>

(LM−1(~τ∗ −H − Φ))>


︸ ︷︷ ︸

=:Ω̇A

+τ1

 ~0>

~0>

~η>1


︸ ︷︷ ︸

=:Ω̇B

(6)

where the first summand is just a function of the state
and the input torques τ2 . . . τn which are set by the default
control law. The second summand now contains the unknown
variable τ1 as simple, scalar factor.

4) Calculation of the acceleration of every mi: The
acceleration of an arbitrary point pi on link i is

~api = ~aj(i−1)
+ ~̇ωi × ~rpiji−1

+ ~ωi × (~ωi × ~rpiji−1
) (7)

with ji−1 denoting the preceding joint. The cross prod-
ucts can be expressed as matrix-vector products, similar
to ~ωi × ~r = ~̂ωi · ~r with ~̂ωi ∈ R3×3 being a skew-symmetric
matrix. This leads to the equivalent equation

~api = ~aj(i−1)
+

ˆ̇
~ωi · ~rpiji−1

+ ~̂ω2
i · ~r

pi
ji−1

, (8)

and eliminates the cross-product notation. Evaluating Equa-
tion (8) for a mass mi by subsequent substitution delivers

~ami =

i−1∑
k=1

ˆ̇
~ωk · ~rjkjk−1

+
ˆ̇
~ωi · ~rmi

ji−1

+

i−1∑
k=1

~̂ω2
k · ~r

jk
jk−1

+ ~̂ω2
i · ~r

mi
ji−1︸ ︷︷ ︸

=:~ei

(9)

with ~ei being a function of the current state only. Aiming at
a matrix-vector representation for the acceleration matrix A,
we now define a new matrix R to be

R =


~rm1

0 ~rj10 ~rj10 . . . ~rj10

0 ~rm2
j1

~rj2j1 . . . ~rj2j1
0 0 ~rm3

j2
. . . ~rj3j2

...
...

...
. . .

...
0 0 0 . . . ~rmn

jn−1

 ∈ R3n×n (10)



This allows us to write the acceleration matrix A as

A = [
ˆ̇
~ω1

ˆ̇
~ω2 . . .

ˆ̇
~ωn] ·R+ [~e1 ~e2 . . . ~en]︸ ︷︷ ︸

=:E∈R3×n

(11)

by exploiting the linear structure of Equation (9).
5) Equating the results: The advantage of the arrange-

ment in Equation (11) is that the angular acceleration vectors
which correspond to the skew-symmetric matrices ˆ̇

~ω1 . . .
ˆ̇
~ωn

can be identified as the column vectors of Ω̇ from Equa-
tion (6). For both Ω̇A and Ω̇B we replace each column vector
by its corresponding skew-symmetric matrix and obtain
Ω̇A → ˆ̇ΩA ∈ R3×3n and Ω̇B → ˆ̇ΩB ∈ R3×3n. Substituting
them into Equation (11) results in A = ˆ̇ΩAR+ τ1

ˆ̇ΩBR+ E
and substituting this in Equation (2) finally delivers

~FGRF = τ1
ˆ̇ΩBR~m+ (ˆ̇ΩAR+ E)~m+ ~Fg (12)

6) Solving for the adapted ankle torque: For a robot
model with an ideally flat foot, only the y-component of
the GRF and therefore the second row of Equation (12) is
relevant for an equlibrium of torques about the ankle. It is
useful to split some matrices along their rows:

ˆ̇ΩA =

 ~ϕ>1
~ϕ>2
~ϕ>3

 , ˆ̇ΩB =

 ~n>1
~n>2
~n>3

 , E =

 ~ε>1
~ε>2
~ε>3

 (13)

The second row of Equation (12) can now be solved for the
ankle torque τ1 as a function of the default control inputs
for the remaining n−1 joints and the desired location of the
CoP ξx by using Equation (3). This leads to the closed-form
expression

τ1 =
(~ϕ>2 R+ ~ε>2 )~m+ g

∑n
i=1mi

ξ−1
x − ~n>2 R~m

. (14)

Equation (14) can easily be evaluated numerically using
matrix-vector operations.

IV. SIMULATION RESULTS

A. Choosing steady state robot poses based on different
optimization criteria

First, consider the three-link case. A humanoid robot
can take a large variety of different poses for balancing.
Reflecting the requirement of being able to balance in both
straight upright configurations as well as crouched poses,
we chose to parameterize different sets of poses by the
height of the Center of Mass yCoM ∈ [0.56 0.96] (meters).
Furthermore, xCoM had to be within the RoT in steady
state. Considering the space of kinematically feasible pairs
of (xCoM, yCoM), we compared robustness towards impulsive
perturbations depending on a given combination of
• yCoM, the height of the CoM.
• the control strategy (LQR, ATR, UTR).
• poses being chosen according to steady-state balancing

effort minimization, or LQR, ATR, or UTR robustness
optimization.

For optimizing the pose for minimal steady state effort,
Equation (1) delivers ~τss = Φ. We chose the sum of

squared input torques as optimization criterion. This can
be interpreted as a measure for power: joint torques are
approximately directly proportional to the motor currents and
the power is directly proportional to the sum of squared
motor currents. We formulate the following problem for a
desired ydes

CoM:

min
q

(Φ>Φ) s.t. yCoM(q) = ydes
CoM

0 ≤ θ1 ≤ π/2
0 ≤ θj ≤ π, j = 2, 3

0 ≤ θ1 − θ2 + θ3

(15)

with the inequality constraints reflecting expected joint con-
straints for balancing humanoids. In a typical scenario for
humanoid robot operation, one may be interested in choosing
the robot pose for maximal robustness towards unexpected
perturbations from both the front and the rear, for a given
control strategy. Let p+ (p−) be the largest positive (negative)
impulse a system can take in a particular pose without failing.
Furthermore, consider the cost function J = (p+ + p−)2. If
the bounds for negative and positive impulses are equal in
magnitude, J results in zero. Otherwise it increases directly
proportional to the square of the impulses’ difference in
magnitude. Therefore, it penalizes asymmetric perturbation
bounds, or in other words, a lack of robustness in one
direction compared to the other. The optimal poses for LQR,
ATR, and UTR robustness w.r.t. the cost function J then
arise from similar optimization problems as in Equation (15).
These nonlinear optimization problems were solved using
the Global Search Algorithm from the MATLAB Global
Optimization Toolbox [12]. The LQR controller design was
part of the optimization and solved at each iteration.

Different CoM locations result from the different optimiza-
tion criteria as shown in Fig. 4a: while the steady state effort
minimizing CoM location is relatively close over the ankle
joint in x, the robustness optimizing solutions are closer over
the middle of the asymmetric foot. Note that for both using
an LQR controller only and using the ATR strategy, the same
CoM locations result within the resolution of our numerical
simulations. If we optimize the pose for the UTR strategy
and robustness, the CoM location starts at the same point
as for LQR/ATR at the upper end of the range of yCoM,
then it diverges slightly towards higher xCoM values. Fig. 4b
shows a series of stick figures which illustrate the different
optimal steady-state poses for different heights of the CoM
and different control strategies.

B. Numerical simulations show an increase of robustness
using ATR and UTR strategies

Fig. 5 shows an example for ATR and UTR strategy
simulation results for a system where the pose was chosen for
steady-state effort minimization. The disturbance was chosen
such that the state is driven out of the default controller’s
Basin of Attraction, consequently the LQR controller would
fail. Using the joint torque reduction strategies, the CoP is
controlled at exactly the edge of the RoT until the system
reenters the BoA of the default controller.
Fig. 4d - 4f show positive and negative perturbation bounds
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Fig. 4: Simulation results for different pose optimization criteria and control strategies.

for three-link models with different setpoint poses chosen
according to the optimization criteria from Section IV-A and
the control strategies LQR, ATR, and UTR. Both the ATR
and UTR strategy always outperform LQR for all poses, for
both negative and positive perturbations. Fig. 4d shows the
perturbation bounds if the pose is chosen for steady state
effort minimization. Note that the slight bend of the optimal
CoM locations is reflected by perturbation bounds which are
bent the other way round. The relative robustness gains lie
between 10% in comparison to LQR in the worst case and
77% more robustness in the best case. If we choose the pose
to be optimized for ATR/LQR robustness, the bounds for
the admissible impulses on the CoM result as in Fig. 4e.
Again, the smallest gain is 10%, the largest gain is 77%.
The largest overall increase in robustness can be found for
the case where the pose is optimized for robustness with the
UTR strategy, see Fig. 4f, and is 149%.

To summarize, in all three scenarios, the robustness of
the default LQR controller is inferior to both presented Joint
Torque Reduction strategies. However, at the same time, ATR
is more robust w.r.t. negative disturbances than UTR. On the
other hand, UTR is more robust towards positive disturbances
than ATR, except for a small interval of yCoM being between
approximately 0.96 and 0.90.

Fig. 4c shows a plot which compares the perturbation
bounds of LQR, ATR, and UTR, using the optimal xCoM
locations particular to each strategy and yCoM height. Note

that the curves are symmetric, due to the choice of the
robustness cost function J in Section IV-A. In summary,
UTR achieves between 39% and 57% more robustness
compared to the default LQR controller, ATR gains between
51% and 74%. That means, if the particularly optimal poses
are chosen, ATR is slightly more robust than UTR. The fact
that the Ankle Torque Reduction Strategy provides the best
overall robustness gain is especially useful in the context that
its optimal poses are the same as the robustness optimizing
poses for normal LQR controllers. In contrast, the UTR
strategy requires a more crouched steady-state pose in order
to reach the same robustness.

So far, we have seen that different poses provide different
levels of robustness. In Fig. 6, it is shown how large the
smaller (in magnitude) of both positive and negative impulses
can be, in dependency of the required steady-state effort for
different poses and the applied control strategy. It can be seen
that there is a trade-off between the steady-state balancing
effort and the achievable robustness when choosing a robot
pose. As expected, the steady-state effort minimizing pose is
energy efficient but provides the lowest robustness margins.
However, the robustness can be enlarged significantly by
increasing the steady-state effort a little bit and switching
to the ATR-optimized pose. This corresponds to leaning the
humanoid a little bit forward, such that the overall CoM
is close over the middle of the foot in x. The overall
trend indicates that crouched poses with higher steady-state
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Fig. 5: Example ATR und UTR strategy simulation results
for a perturbation of 45 kgm

sec and yCoM = 0.76 m.

effort should be chosen in order to maximize robustness
towards unexpected perturbations. Then, taking the pose
which is optimized for ATR robustness clearly offers the
best compromise between balancing effort and the minimal
provided robustness margin.

C. An example which saves energy and gains robustness
using ATR on a joint-locked robot.

Consider a robot standing in place and assume that it
is able to lock its knee and hip joints mechanically, for
example, using a magnetic clutch. Assume that the work
required to lock the joints is small in comparison to the
perturbation recovery efforts. With joints being locked, it
can be represented as a one-link inverted pendulum model.
One policy to pick an appropriate way of counteracting a
perturbation is to choose the least costly way in terms of
control effort. For example, one would typically choose an
ankle strategy only, if the perturbation is sufficiently small.
Increasing the magnitude of the impulse, one would begin
to use additional degrees of freedom and unlock joints in
order to recover, at the expense of consuming more energy.
Fig. 7a shows the perturbation bounds for the joint-locked
and unlocked cases with the poses being chosen subject to
steady state effort minimization and using an LQR controller
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Fig. 6: Minimal admissible perturbation magnitudes of both
positive and negative impulses for the ATR and UTR strate-
gies (str.), plotted over the required steady-state effort for
ATR-, UTR robustness optimizing and steady-state effort
(SSE) minimizing poses.

only. Furthermore, it shows the perturbation bound of a cor-
responding joint-locked robot using the ATR strategy. In the
presented example, the joint-locked ATR-controlled system
can take impulses of at least 46% larger magnitude than an
LQR controlled system with all degrees of freedom being
unlocked. At the same time, as shown in Fig. 7b, the effort
measured in terms of an integral of squared input torques
over the time needed for recovery is significantly smaller for
the ATR joint-locked robot than for the LQR joint-unlocked
case. That means, in this particular example, a joint-locked
robot with ATR outperforms a fully actuated LQR controlled
robot both in terms of robustness and recovery effort.

V. CONCLUSIONS

The purpose of this paper is to introduce a new approach of
adapting joint torques for increased robustness of humanoid
standing balance, and many advantages can be stated. First,
we are now in a position to compute a set of input torques
such that the CoP is placed at a desired location, based
on a nonlinear model, with comparably low computational
effort. Second, the presented strategies enlarge the robustness
towards impulsive perturbations without having to invoke
higher level strategies like taking a step or using an additional
support. This results in the potential of a bigger variety
of tasks which can be performed by a humanoid robot
while balancing. The approach is general for n-link inverted
pendulum models in the sagittal plane. Note that there is no
need for an explicit trajectory planning of the CoP with the
presented simple switching technique, which includes only
one decision stage. The ATR and UTR adaption strategies
themselves are not independent but serve as a robustness
improving extension for a default feedback control law. A
further advantage is that in order to maximize robustness for
unexpected perturbations from both sides, it is not generally
necessary to change the system’s setpoint. It turned out that
the optimal poses w.r.t. our robustness cost function are the
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(b) The ATR strategy with joints being locked is more energy-
efficient in recovering from a perturbation than LQR with unlocked
joints. In this example, the control efforts for the recovery from
positive impulses which are equal to the perturbation bounds for
the joint-unlocked, LQR-controlled case, are shown.

Fig. 7: A one-link model (locked knee and hip joints) using
the ATR strategy outperforms a fully actuated three-link
model with unlocked joints and LQR controller.

same for LQR and ATR, within our numerical resolution.
A third and final point is that we can quantify the trade
off between control effort at steady state and robustness
to perturbations. In this context, it is possible to match a
humanoid robot’s standing pose (upright versus crouched) to
particular operating conditions.

VI. DISCUSSION AND FUTURE WORK
Many topics can be identified for future work. First, no

joint constraints were included for the actual process of
recovering from a disturbance, however, this is not a major
issue for crouched poses because the closed-loop does not
overshoot during counteracting perturbations. No joint torque
limits were taken into account and the most extreme ankle
torque magnitude being recorded during all simulations was
close to 200 Nm.

An extension of the presented approach to a more general
class of perturbations, such as constant pushes or distributed
forces, is also desirable. We only analyze a particular class of
impulsive perturbations and we rely on numeric simulations:
we give no analytic statements about the Basins of Attraction
(BoAs), stability or speed of convergence (etc.) of the pre-
sented ATR and UTR strategies. For a real technical system,
one would therefore still have to rely on pre-computed

perturbation bounds and look-up tables to know when an
initial condition is within the BoA for successful recovery. In
practice, we anticipate that one would not have to cover the
entire state space but only certain types and magnitudes of
perturbations which would keep the look-up table dimensions
small.

Additionally, considering using a robot model with two
legs, an even bigger gain in robustness should be reachable
by placing one foot a step forward and thus enlarging the
overall base of support. The presented strategies are partic-
ularly helpful in scenarios with limited accessible ground
area, for example for balancing on a small support region.
A disadvantage of the switching algorithm presented in Fig.
3 is that an estimation of the CoP location using the default
strategy is required - even if a joint torque reduction strategy
is active. Using a model with an asymmetric foot, simulations
have shown that for a small base of support, the strategy
of adapting only the ankle torque (ATR) outperforms the
strategy of reducing all joint torques uniformly. In contrast,
UTR results in a bigger robustness margin than ATR if the
base of support is rather large. Consequently, there must
be a relation between the footsize and the best choice of a
joint adaption strategy. The assumption about which direction
the model is facing might also play an important role in
that question. In this work, the Region of Trust was chosen
arbitrarily. The choice should be optimized in future work.

Finally, investigations are necessary for what happens if
the plant shows significant non-minimum phase behavior:
the current switching strategy includes the risk of provoking
closed-loop chattering if the absolute value of the CoP starts
increasing again after a successful back-switch to the default
controller. Although the simple approach presented in this
paper worked well, a more sophisticated switching technique
could be developed in future.
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