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Stability and Gait Transition of the Five-Link Biped on Stochastically
Rough Terrain Using a Discrete Set of Sliding Mode Controllers

Cenk Oguz Saglam! and Katie Byl'

Abstract— The five-link biped is a simple, planar model of
human-like walking in which scuffing can be avoided. In this
paper, we focus on controller design and stability analysis for
the important case of non-steady walking, toward such goals as
avoiding obstacles on terrain or meeting specific requirements
in speed or energetics. To achieve such tasks as new sensor
information about upcoming terrain becomes available, control
must be adjusted on-the-fly, preferably using a continuous
family of controllers. Here, we present an illustrative case using
only two, discrete sets of controllers and investigate the effect
of switching between them on a stochastically rough terrain. Of
note, we find that the tenth-order system dynamics of unsteady
walking can be accurately represented as a Markov process,
using only a sparse, quasi-2D mesh of discrete states. This
transition matrix approach is then used to determine bounded
limits on terrain noise for which guarantees of stability (i.e.,
never falling) may be given for a particular controller and
for arbitrary switching between the controllers, as well as to
estimate fall rates for cases where these bounds are exceeded.
Our results also allow us to quantify the increase in stability
gained by a simple policy of switching based on a noisy, single-
step lookahead on terrain. This illustrative example, using
two controllers that behave differently and allow for arbitrary
switching, provides a framework for future work where tasks
or requirements for biped walking are clearly defined and can
only be achieved by a wider set of, or ideally a continuous
range of, controllers.

[. INTRODUCTION

Locomotion is an undeniable necessity for many robot
application. Bipedal robot walking is an anthropomorphic
approach, providing an intuitive means for negotiating inter-
mittent or otherwise rough terrain, where wheels would be
ineffective. For development of such robots, use of under-
actuated, dynamic walking gaits provides a practical means
of operating in environments with extreme perturbations [1],
[2] and may be essential in eventually reducing energetic
cost for such robots [3], [4]. In recent years, several control
approaches have been proposed to address the ongoing
challenge of non-steady, underactuated biped walking on
rough terrain [5], [6], [7], [8], [9], [10], [11], [2]. The current
paper addresses the challenges of addressing increasingly
high-dimensional legged systems and of quantifying trade-
offs between stability and other desired performance metrics.

In this work, we address the problems of using noisy
information about upcoming rough terrain both to select
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foothold width to avoid obstacles and bad terrain and to
modify the gait to accommodate variations in terrain height.
Important contributions are the use of stochastic modeling
tools both to define bounds on the noise about upcoming
terrain for which control will remain stable and to quantify
the rate of failure when these bounds are exceeded. In
particular, we report on the use of low-dimensional (2D)
meshing in representing much higher-order (10D) system
dynamics, extending methods presented in [12] and [13].

The rest of the paper is organized as follows. We first
present briefly the robot used in simulations and then offer
a control scheme that allows us to easily map the tasks to
controller output. We then integrate sliding mode controllers
(SMC) to this scheme. We use the states just before the
impacts to create a discrete Poincaré map. After verifying
the stability of individual controllers through simulation, we
test the robot with randomly switching controllers and use
Poincaré map to interpret the results. Then we calculate
numeric solutions for the state to state transitions for each
controller for a wide range of slopes to capture whole
dynamics of the robot and create a transition matrix for a
set of mesh points along the surface of Poincaré states. This
approach allow us to determine bounded limits on terrain
noise for which the walker can be guaranteed to never fall,
and it also provides a helpful approach for determining which
controller to use, given a short lookahead of information
about upcoming terrain slope. These results are tested and
verified using simulations on grounds modeled by normal
distributions of different means and deviations. Finally, we
discuss two specific applications that motivate our approach:
(1) the ability to adjust footstep length on-the-fly, to avoid
upcoming terrain obstacles, and (2) switching controllers to
adapt to upcoming changes in slope.

II. MODEL
A. Definitions

The five-link model used in this paper is depicted in Fig. 1.
We use relative angles ¢ := [q1 ¢2 g3 g4 ¢s]” and restrict our
attention to planar motion. This is a slightly edited version
of the RABBIT biped [14], and model parameters used are
listed in Table I.

As illustrated in Figure 1 and Table I, we refer to the upper
leg links associated with ¢; and ¢, as femurs. The torso is
the uppermost element, and the tips are the remaining two.
We assume point masses between the joints but not at the
hip. The walking motion is a sequence of steps which have
hybrid dynamics, described by a continuous swing phase and
a discontinuous impact event.
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Fig. 1. Tllustration of the five-link robot with identical legs

TABLE I
MODEL PARAMETERS FOR THE FIVE-LINK ROBOT

Description Parameter Label Value
Torso Mass mr 12 kg
Femur Mass mr 6.8 kg
Tip Mass my 3.2 kg
Torso Inertia Ir 1.33 kg m?
Femur Inertia Iy 0.47 kg m?
Tip Inertia I 0.20 kg m?
Torso Length It 0.63 m
Femur Length ly 04 m
Tip Length Iy 04 m
Torso Mass Center pT 0.24 m
Femur Mass Center Pr 0.11 m
Tip Mass Center Dt 0.24 m
Gravitational Acceleration 20 9.81 m/s?
Coefficient of friction s 0.7

B. Swing Phase

We define the swing leg to consists of the femur and tip
associated with ¢g» and g4, respectively. The other femur and
tip form the stance leg. At each impact event, the previous
swing leg becomes the new stance leg and vice versa, and
so the two legs are relabeled. Here, we concentrate on the
continuous part of one step which is between two impacts.
As the name dictates, swing phase refers to swing leg taking
off from the ground, passing the stance leg and landing on a
further point on the ground. We use the following canonical
form to model the continuous dynamics:

D(q)§+C(q,9)q4+G(q) = Bu ¢))

where matrices D, C, G and B are derived using the La-
grangian approach. We can define x = [¢7 ¢"]" to express
the dynamics equivalently as:

i= : — ) gl @

D '(—C4— G+ Bu)

An important point is that g consists of the five angles
depicted in Fig. 1 whereas u has only four elements. The
system has a degree of underactuation of one due to the fact

that we have a passive joint at the stance tip. Also note that
we have five degrees of freedom instead of seven because the

position of the stance tip end, the pivot point in contact with
the ground, is constant during the motion. As mentioned,
the swing phase starts with an impact and ends with another.
Although the controllers are effective during the swing phase,
the effects of the impact event will be the main focus in our
controller design.

C. Impact Event

Although the dynamics of the impact event itself may
contribute to step-to-step variability in real-world legged
robotics [15], [16], in this paper, we use the classic impact
model formulated in [17] and used in [14]. Essentially, this
model assumes instantaneous, inelastic collisions between
the swing leg tip and the ground, with the instantaneous
changes in velocities to reflect the effects of impulsive forces
exerted on the robot. We denote the states just before and
after the impact as x~ and x™ respectively. The impact model
is a mapping from x~ to x™, i.e., x* = A(x™). The changes in
the velocities are calculated using conservation of energy and
the principle of virtual work. This model is discussed in great
detail in [17]. The angles undergo a comparatively simple
transformation at impact: although the robot’s position and
orientation do not actually change according to the impact
model, we relabel the legs so that the swing leg will always
be the one parametrized by the ¢> and g4. That is:

i gq5] 3

As a result we will always have the leg associated with ¢»
and g4 as the swinging one.

D. Hybrid Model

The two parts of the hybrid model described below are
linked as shown in Fig. 2. After an impact, the robot swings
its leg until another impact occurs, i.e., until the swing tip
touches the ground. A step consists of an impact event and
a swing phase. In our modeling, we assume the impact
event occurs first, but the order in the definition of a step
is an arbitrary choice, so long as one remains consistent
after deciding. The importance of the impact can be better

4 @ @ 4@ @)=[n o a4

Swing tip touched the ground

Failure
(Absorbing State)

Knee or Torso touched the ground

Fig. 2.

Hybrid model of a step and failure state

understood when noted as reinitialization for the swing
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phase. If the reinitialized robot can successfully complete
the next step for all allowable (bounded) stochastic terrain
events, we call x~ a safe state. Thus a controller has two
main objectives: Choosing an x~ and converging to it. The
following section will explain what makes a state safe.

III. CONTROL
A. Limitations and Goal

As explained in the previous section, the robot is under-
actuated by one degree during the swing phase. As a result,
the five angles, g, should be combined to choose a set of
four variables, g., to be controlled. The choice of possible
variables is not unique and may include coordinates on the
body, such as the position of the center of mass, toward
driving the system in stable, forward motion. In the present
work, however, we simply chose ¢. := [g2 ¢3 g4 gs])” to be
the parameters to be controlled. This idea originates from
our observations on experiments using the three-link walker
where we decided to control the swing leg and torso angles
but not the stance leg directly. We observed that the velocity
of the stance leg was almost always negative (except for
poor initial conditions), which meant a monotonic decrease
in the stance leg angle during a successful step. This is also
the case here as shown in Fig. 3, where a typical step is
given. ¢ is mostly negative and also nearly constant for
a considerable time. With this choice of g, invertibility of
the decoupling matrix is then exploited in determining the
four control torques, u, as described in [14] and reviewed
briefly in Section III-B. Note that given enough time, g
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Fig. 3. A typical step

achieves the desired reference we have in mind, determined
by the other references imposed on ¢, so long as the slope
of the terrain ahead is accurately known. That is, ¢, and the
terrain geometry at the moment of impact uniquely determine
q1. Concentrating on the remaining four angles makes the
controller design method very easy and straightforward. A
negative but small-magnitude ¢; gives us a reasonable time to
move robot to the state we want in the ten dimensional space.
The main goal of the controller is to make g. = ¢/ before
the impact occurs. Reaching our references rapidly will also

put g. close to zero, and this is in fact one of the most
important criteria determining the success of our step. This
will be explained in more detail in the context of simulation
results. However, we note there is a direct trade-off between
achieving fast convergence and the limiting the magnitude
of the required controller outputs (i.e., motor torque limits).

We now further investigate Fig. 3 to explain controller
goals for each state variable intuitively. We prefer g, to
move fast, particularly on rough terrain, where the impact
event may occur earlier than anticipated. Compared with the
other angles, it can be seen that qfff (lower swing leg tip)
changes quite dramatically throughout a step: g4 is first sent
to a negative value and then forced back to zero before the
impact occurs, to insure ground clearance of the swing leg.
The negative reference and the time when we start going back
can be adjusted to have a larger clearance for the swing leg
or smaller controller effort. Note that we send g4 to zero
because it will be relabeled as g3 in the next step, and we
want g3 to be always zero for again ground clearance. The
torso angle, gs, can be used to bias forward motion and
serves as a parameter to set the duration of a step. In [13],
a bent torso in a three-link walker significantly enhanced
robustness to terrain height variations during blind walking,
compared with upright walking. Use of the torso in this
work is similarly inspired but somewhat more complicated
in practice. On one hand, the center of mass depends highly
on torso angle, i.e., leaning forward speeds up the robot by
moving the center of mass forward: if the torso does not lean
forward enough, we may fall backward rather than complet-
ing a forward step. However, a high forward speed may also
prevent the robot from reaching its reference before impact,
thus also causing instability, as we will see. Finally, note
the ground clearance is defined as a non-negative swing tip
height above ground, and that impact occurs when it becomes
zero. We have verified the intuitive ideas described above in
numerous simulations, using different ground profiles, model
parameters and initial conditions.

B. Control Action during the Swing Phase

We select the input to the system to be in the form of

u=(SD'B)"'(v+SD1(C4+G)) (4)
01000
00100

where S = 000 1 0 (®)]
00 0 01

and D, B, C, G are derived by the Lagrangian approach.
Substituting this # into (1) and noting g. = S g by their
definitions, we obtain a very simple equation for the second
derivatives of the angles to be controlled:

Ge=v (6)

Note that §; is not included in this equation and it is not
directly controlled as explained in the previous section. Since
q1 plays an important role in the step time, fast convergence
will play a critical role in many aspects including the
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stability. After getting the simple structure of (6), what is left
to do is to select v appropriately, to ensure fast convergence
to given references with acceptable torque inputs. Adopting
the control outlined in [18], to have finite time convergence
we first define the error to be the difference between the
given reference and actual output.

ei=qi—q, i=1{2,3,4,5} (7)

Thus we have 4 decoupled error dynamics. We then define
generalized error to be

Gi:éi+ei/fi7 12{2,3,4,5} (8)

where 7;s are the time constants to be selected. Finally, we
select vI' = [v v v3 v4] to be

vi = —ki|o;|*% sign(c;) )

where i = {2,3,4,5}, k; > 0 and 0.5 < a; < 1. The control
parameters used are given in Table 1.

TABLE 11
CONTROLLER PARAMETERS

T k o
1/15 | 50 | 0.75
1/5 | 50 | 0.75

1/13 | 50 | 0.75
1/5 | 25 | 0.75

AW | = ~.

Two discrete sets of references used, as given in Table III.
We refer to these as Controller 1 and Controller 2, using
the first and second reference set, respectively. We could
of course optimize controller parameters for each reference
set; however, it is more illustrative for our purposes here
to keep them as shown, toward quantitative comparison of
the two. Note that both controllers were able to work quite
successfully on moderately rugged stochastic terrain.

TABLE III
REFERENCE SETS

Set q;ef qgef q;ef[ ref2 qgef

1 267.5 0 -45 0 -60
2 240 0 -45 0 -40

Note in Table III that we impose two different reference
values for the lower swing leg angle, g4, during a step, i.e.:

ref qfff ' condition (10)
% g%, otherwise

where we selected condition, above, to be “g, < ¢g1”. Both
the first reference, qff 1, and the condition can be adjusted
to enable either a larger ground clearance for the swing
leg or a smaller controller effort. However, the primary
goal in our work is to avoid early impacts, for stability on
geometrically rough terrain. These parameters can also be
adjusted adaptively during a step, in a manner analogous to

a human responding during blind walking.

IV. SIMULATION
A. Stability of the Controllers

For our initial tests of the stability of the two controllers,
we first define the ground profile, g(x), to be:

g(x) := 1073 (3sin(v/80x) + 1.5sin(v/270x) + 1.5sin(v/531x))
1D
Note that g(x) is not periodic and has a small (sub-cm)
amplitude. After verifying both controllers were able to take
thousands of steps when used individually on the ground
function g(x), we ran simulations again, selecting a controller
randomly at each step and recording x~ values, to plot a
Poincaré map. The first thousand points are shown in Fig. 4.
We select g1 and ¢; as the independent axes, observing that
all other variables could be quite accurately determined as
a function of these two values and the controller type used.
In other words, the Poincare states for each controller lie
on a 2D manifold within the 10D state space. g3, g4 and
q. are plotted to show that they are almost zero. They will
correspondingly not be examined in detail after this.
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Fig. 4. Poincaré Sections. Angles are in degrees and velocities are in
degrees/second. Indistinguishable values g3, g4, ¢2, ¢3, g4 and g5 are given
to show they are effectively zero for this ground and controller set

Since the amplitude of the selected ground is small, we
do not encounter early impacts and have enough time to
converge to the references. That is the reason why ¢, g3 and
qa are very close to zero and why we observe flat surfaces for
q» and gs. The 2D structure of the Poincare states allows us
to mesh the step-to-step stochastic dynamics of this system
using an irregular and relatively sparse mesh of observed,
discrete states. This in turn allows us to test the limits of the
controllers by completely forming the transition matrix of
the “steps that can be taken” given any particular stochastic
description of terrain, as we do next.

B. Transition Matrix of Step-to-Step Dynamics

To build a transition matrix of the Markov process for
walking on stochastic terrain, we begin with the data for
100 observed x~ states, from the simulation described above,
along with a single, absorbing failure state. All failed steps
transition to this failure state, which in turn can transition
only back to itself. For each controller, we simulate a single
step from each of these points for twenty one slopes ranging
from —10° to +10°. If a step is successfully taken, we decide
whether the resulting pre-impact state is close enough to one
of the existing states or if we need to create a new mesh point
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to represent the transition. To determine this, we define P to
be the set of existing mesh points and calculate:

dclosest (x) ‘= min {d(-xap)} (12)
pEP
where
O (xi—pi\°
dlorp)i= ) <R,- > (13)

where radius R is chosen to be as in Table IV and a point
is created when d(x) > 2.89. Note the scaling factor of 10°
in Table IV, and that units here are given in radians and
rad/sec, as appropriate. We repeat this simulation procedure
for the newly added points until number of the points stops
increasing, i.e., until the mesh states form a closed set. In this
work, we err on the side of a more densely-packed mesh than
is likely necessary: the resulting set, P, has 18,934 points.

TABLE IV
RADII FOR THE DISTANCE CHECK

i
10°R; | 35 | 12,6 | 2.6 | 47 | 1.4 | 36 | 24 | 154 | 66.6 | 24

In Fig. 4, we chose ¢; and ¢ for our axes because ground
variability was minimal, giving the swing leg tip (g4) ample
time to arrive near its reference value of zero. While the
same choice can still be adopted here as well, we now use
g4 instead of §; as it varies more as terrain slope increases
in variability, due to the way we control the swing leg, g4.
In addition, g; is more strongly correlated with ¢; than with
qa, making the later a more practical independent coordinate
for illustrating our results. We present the angles in Fig. 5.
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Fig. 5. Poincaré sections showing controller effect on next pre-impact

state. Angles are in degrees and velocities are in deg/sec.

In Fig. 5, four colored regions are illustrated, each rep-
resenting a switching sequence of the controller used on
the previous and current steps for each pre-impact state
plotted. Looking at the z scale, note that state g3 (stance
leg tip) is always relatively small (as might be expected).

The negative values of ¢4 indicate premature impacts, due to
high, upcoming ground slopes. Note that even with switching
between controllers, go and g5 form distinguishable, flat
surfaces. If this were not true, the mesh would rapidly fill a
larger volume of state space, and our methods would likely
be impractical for the case of switching among larger sets
distinct controllers. Instead, we observe a rapid convergence
of each controller to its own 2D manifold, meaning our toy
example can likely be extended to the case of many distinct
controllers, each tuned for a particular step width and/or to
remain stable for a particular upcoming terrain slope.

Fig. 6 shows pre-impact velocities for the same mesh
points, P. We note the lines in the upper-left figure result
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Fig. 6. Poincaré sections showing controller effect on velocities. Angles
are in degrees and velocities are in degrees/second.

from the discrete nature of the slope range that we used. We
can state ¢», g3 and ¢s stay relatively small compared to ¢;.
The variance in stance leg velocity, ¢, is simply a result of
impacts occuring over a range of different terrain slopes.
We are now ready to present a set of very explanatory
graphs which were mentioned in previous sections. For a
given definition of bounded terrain noise, we classify a state
x~ as “safe” if we can guarantee achieving a step with the
corresponding x™ as initial condition to the swing phase.
Similarly we say a point x~ is “unsafe” if such guarantees
can not be made. Note that in our particular example, most
of the unsafe states are in fact guaranteed to fail within the
next step or two. Figs. 7 and 8 show regions classified in
light of this understanding. Both controllers have their own,
individual safe and failure regions. In Figs. 7 and 8, we
are illustrating as safe only those initial conditions that are
guaranteed to never fail given any arbitrary switching be-
tween controllers on future steps. We illustrate these regions
for the largest bounded limits on upcoming terrain slope at
each step for which any guarantee of stability (i.e., never
falling) can be made: specifically, terrain slope is bounded
to be between -5 and +3 degrees at each step here. By
comparison, the bounds required to guarantee stability when
using Controller 1 alone are -7 to +4 degrees; for Controller
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Fig. 7. Poincaré sections showing safe and failure regions for angles.

Angles are in degrees and velocities are in degrees/second.

2, they are -10 to +3 degrees. We note that large swing tip
velocity, ¢4, is indicative of eminent failure in the following
step. This is expected since ¢4 is large while g4 is still
moving between two references, meaning impact occurred
before g4 settles. For improved robustness on stochastic
terrain, we can improve our controllers, which is a subject
for future work. These figures motivate us to design a large
set of discontinuous or (potentially) continuous controllers to
transition within safe regions to achieve different objectives
such as obstacle avoidance, perturbation recovery, and energy
modulation as terrain height varies.
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Fig. 8. Poincaré sections showing safe and failure regions for velocities.

Angles are in degrees and velocities are in deg/sec.

C. Theorotical Estimation of Number of Steps Before Failure

While forming the set of mesh points, we record a map
matrix M, which has the following structure: For the selected
controller, given slope and starting point p**", we estimate

est

the new point p* as:

est | M(pPP slopePP), Controller 1 used (14)
P M(p“PP 21+ slopePP), Controller 2 used

where M(i, j) is the element on the ith row and jth column,
p®" is the estimated new point, p®’P is the p € P which
minimizes the distance d(x, p) defined in (13) and slope“PP =
11 4 min(10,max(—10, round(slope))) is the approximated
slope index.

Matrix M allows the state evolution to be interpreted as a
Markov Chain. We can then create a state transition matrix,
T, once some stochastic description of the probability of each
next terrain slope is given. T will be (n+ 1) X (n+ 1) where
n = 18934 is the number of points we obtained before and
+1 is due to the addition of an absorbing state, i.e. failure,
in the mesh. As explained in detail in [12], expected mean
of the steps before failure N can be approximated by

N~1/(1-2) (15)

where A, is the second largest eigenvalue of the transition
matrix 7. Results for different terrain slope means, standard
deviations, and controllers are plotted in Fig. 9. We observe
Controller 1 is more stable for slopes with mean around zero.
We also note that with Controller 1, the robot moves faster
due to smaller angle between the legs and torso leaning
forward. Thus we can achieve both speed and stability by
selecting Controller 1 when the ground is estimated to be
close to level, while Controller 2 becomes the more stable
choice as either uphill or downhill variations in upcoming
terrain increase. A simple (non-optimal) switching algorithm
is implemented based on this strategy and is shown in the
Fig. 9 to show the feasibility and enhanced stability of
this approach in using noisy, one-step sensor information
about the average slope of upcoming terrain. To verify (15)
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10 10,
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Fig. 9. Expected Mean Value of the Steps Before Failure

approximates adequately, we select four sample cases, i.e.
controller, slope mean y and deviation . We then use matrix
M to guess the number of steps before failure for randomly
generated slopes using normal distribution. After a thousand
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failures were observed, we estimated the mean time to failure
to obtain the results in Table V.

TABLE V
ESTIMATION OF NUMBER OF STEPS BEFORE FAILURE FOR KNOWN
CONTROLLER, MEAN SLOPE AND DEVIATION

Cont. u o Estimation by ( 1 5) Estimation by (14) Simulation
1 -4 | 1.5 740.8 740.84 871.75
1 0 3 71.45 72.041 87.32
2 4 21.67 19.2928 18.88
2 5 1 9.692 8.0525 9.693

V. CONCLUSION

In this paper, we present a simple structure for controller
which is later verified to exhibit finite time convergence.
Thanks to the structure of the reference sets selected, we
achieve a large ground clearance for each controller while
maintaining stability. We use Poincaré methods to map the
step-to-step transitions for states just before the impacts.
We then show that switching between controllers yields
gentle, flat surfaces in these Poincaré maps. Results show
that the choice of controller for the previous step has limited
, which indicates decoupling. We then created transition
matrices of some particular examples of stochastic terrain,
to see the big picture. We identified the safe regions in
state space, in which a walker can be guaranteed to walk
forever without falling, for particular bounds on terrain noise.
We compared Monte Carlo trial estimate with estimated
failure rates for a few example cases, toward verifying the
eigenvalue analysis of [12] used to plot the expected mean
value of the steps before failure. In light of these plots,
we conclude that a simple control strategy can significantly
increase the expected step until failure, given a noisy one-
step estimate of next terrain slope. This work is motivated
by the need for better control solutions for underactuated
walkers to plan unsteady walking gaits on terrain for which
upcoming information is available but corrupted with sensor
noise. We conclude that by employing a set of discrete set of
controllers, a bipedal robot is capable of moving it’s impact
state in the ten dimensional space, which can be mapped to
real-life tasks and objectives, and we provide tools to analyze
the resulting stability of such control policies.

VI. FUTURE WORK

The authors currently plan to modify the 5-link biped
model in the following ways. First, a lock-in mechanism
such as the one outlined in [19] will be adopted for the
knees. Secondly, an impulsive toe-off as described in [6]
and [20] will be integrated. Thirdly, the impact event will
be improved with springs and dampers at the expense of
complexity. Then, we are planning to optimize the controller
and to have a continuous reference set. At present, we have
only anedotal evidence that such an approach is feasible;
quantifying stability in this case remains an open challenge.

One particular goal is to create an adaptive biped that can
adjust to given tasks and specifications while staying inside
a bounded, stable region. One specific task we want to
perform is to better control the swing tip height to avoid
undesirable impacts. This can be done by changing ¢}''
and the condition which determines qff . Examination of
robustness to changes in model parameters is another topic
we will be looking at. Our work here presents compelling
evidence that applying our stochastic modeling techniques
to high-dimensional robots is a practical goal, allowing one
to quantify the trade-off between a wide range of goals (en-
ergetics, speed, foothold selection, etc.) and corresponding
changes in the risk of failure.
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