
Neural Networks 121 (2020) 294–307

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Rethinking the performance comparison between SNNS and ANNS
Lei Deng a,b,1, Yujie Wu a,1, Xing Hu b,∗, Ling Liang b, Yufei Ding c, Guoqi Li a,∗,
Guangshe Zhao d, Peng Li b, Yuan Xie b

a Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing 100084, China
b Department of Electrical and Computer Engineering, University of California, Santa Barbara,, CA 93106, USA
c Department of Computer Science, University of California, Santa Barbara,, CA 93106, USA
d School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China

a r t i c l e i n f o

Article history:
Available online 19 September 2019

Keywords:
Spiking neural networks
Artificial neural networks
Deep learning
Neuromorphic computing
Benchmark

a b s t r a c t

Artificial neural networks (ANNs), a popular path towards artificial intelligence, have experienced
remarkable success via mature models, various benchmarks, open-source datasets, and powerful
computing platforms. Spiking neural networks (SNNs), a category of promising models to mimic the
neuronal dynamics of the brain, have gained much attention for brain inspired computing and been
widely deployed on neuromorphic devices. However, for a long time, there are ongoing debates and
skepticisms about the value of SNNs in practical applications. Except for the low power attribute
benefit from the spike-driven processing, SNNs usually perform worse than ANNs especially in terms
of the application accuracy. Recently, researchers attempt to address this issue by borrowing learning
methodologies from ANNs, such as backpropagation, to train high-accuracy SNN models. The rapid
progress in this domain continuously produces amazing results with ever-increasing network size,
whose growing path seems similar to the development of deep learning. Although these ways endow
SNNs the capability to approach the accuracy of ANNs, the natural superiorities of SNNs and the way
to outperform ANNs are potentially lost due to the use of ANN-oriented workloads and simplistic
evaluation metrics.

In this paper, we take the visual recognition task as a case study to answer the questions of
‘‘what workloads are ideal for SNNs and how to evaluate SNNs makes sense’’. We design a series of
contrast tests using different types of datasets (ANN-oriented and SNN-oriented), diverse processing
models, signal conversion methods, and learning algorithms. We propose comprehensive metrics
on the application accuracy and the cost of memory & compute to evaluate these models, and
conduct extensive experiments. We evidence the fact that on ANN-oriented workloads, SNNs fail to
beat their ANN counterparts; while on SNN-oriented workloads, SNNs can fully perform better. We
further demonstrate that in SNNs there exists a trade-off between the application accuracy and the
execution cost, which will be affected by the simulation time window and firing threshold. Based
on these abundant analyses, we recommend the most suitable model for each scenario. To the best
of our knowledge, this is the first work using systematical comparisons to explicitly reveal that the
straightforward workload porting from ANNs to SNNs is unwise although many works are doing so
and a comprehensive evaluation indeed matters. Finally, we highlight the urgent need to build a
benchmarking framework for SNNs with broader tasks, datasets, and metrics.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial neural networks (ANNs) (LeCun, Bengio, & Hinton,
2015) are able to learn high-level features from large amount of

∗ Corresponding authors.
E-mail addresses: leideng@ucsb.edu (L. Deng),

wu-yj16@mails.tsinghua.edu.cn (Y. Wu), xinghu@ucsb.edu (X. Hu),
lingliang@ucsb.edu (L. Liang), yufeiding@cs.ucsb.edu (Y. Ding),
liguoqi@mail.tsinghua.edu.cn (G. Li), zhaogs@xjtu.edu.cn (G. Zhao),
lip@ucsb.edu (P. Li), yuanxie@ucsb.edu (Y. Xie).
1 Equal contribution.

input data via the deep hierarchy. This powerful representation
brings amazing successes in a myriad of artificial intelligence
(AI) applications. For example, researchers report multi-layered
perceptron (MLP) or convolutional neural networks (CNNs)-based
image recognition (He, Zhang, Ren, & Sun, 2016), speech recog-
nition (Abdel-Hamid et al., 2014), language processing (Hu, Lu,
Li, & Chen, 2014; Young, Hazarika, Poria, & Cambria, 2018),
object detection (Redmon & Farhadi, 2017), solar radiation esti-
mation (Jahani & Mohammadi, 2018), medical diagnosis (Esteva
et al., 2017), game playing (Silver et al., 2016), etc., recurrent
neural networks (RNNs)-based speech recognition (Lam et al.,
2019), language processing (Ghaeini et al., 2018), state control

https://doi.org/10.1016/j.neunet.2019.09.005
0893-6080/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2019.09.005
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2019.09.005&domain=pdf
mailto:leideng@ucsb.edu
mailto:wu-yj16@mails.tsinghua.edu.cn
mailto:xinghu@ucsb.edu
mailto:lingliang@ucsb.edu
mailto:yufeiding@cs.ucsb.edu
mailto:liguoqi@mail.tsinghua.edu.cn
mailto:zhaogs@xjtu.edu.cn
mailto:lip@ucsb.edu
mailto:yuanxie@ucsb.edu
https://doi.org/10.1016/j.neunet.2019.09.005

L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307 295

(Graves et al., 2016), etc., and sometimes the combination of
CNNs and RNNs (Caglayan & Burak Can, 2018; Zhang, Bai, & Zhu,
2019; Zoph, Vasudevan, Shlens, & Le, 2018). Besides various mod-
els and learning algorithms, the big data resources (e.g. ImageNet
dataset (Deng et al., 2009) for image recognition) and high-
performance computing platforms (e.g. GPU) further boost the
development of ANNs. The above successes motivate numerous
researches on ANN-specific accelerators (Chen et al., 2014; Chen,
Krishna, Emer, & Sze, 2017; Jouppi et al., 2017; Yin et al., 2017).

Spiking neural networks (SNNs) (Ghosh-Dastidar & Adeli,
2009; Maass, 1997) closely mimic the behaviors of biological
neural circuits. They operate with continuous spatio-temporal
dynamics and event-driven firing activities (0-nothing or 1-spike
event). Due to the asynchronous spiking mechanism, SNNs have
shown advantages in event-based scenarios such as optical flow
estimation (Haessig, Cassidy, Alvarez, Benosman, & Orchard,
2017), spike pattern recognition (Wu et al., 2019), and SLAM (Vi-
dal, Rebecq, Horstschaefer, & Scaramuzza, 2018). Besides, they
are also promising in addressing some interesting problems, for
instance, probabilistic inference (Maass, 2014), heuristically solv-
ing NP-hard problem (Jonke, Habenschuss, & Maass, 2016) or
quickly solving optimization problem (Davies et al., 2018), sparse
representation (Shi, Liu, Wang, Li, & Gu, 2017), and robotics (Hwu,
Isbell, Oros, & Krichmar, 2017). Furthermore, SNNs are widely
deployed in neuromorphic devices for brain inspired comput-
ing (Davies et al., 2018; Furber, Galluppi, Temple, & Plana, 2014;
Merolla et al., 2014; Shi et al., 2015). Whereas, there are ongoing
debates for a long time about the practical value of SNNs as
a computational tool in both AI and neuromorphic computing
communities (Davies et al., 2018), especially when compared to
ANNs. These skepticisms slow down the development of neuro-
morphic computing during the past few years, which is upstaged
by the rapid progress of deep learning. Researchers attempt to
fundamentally mitigate this issue by strengthening SNNs from
means such as training algorithm design.

Unlike the mature and effective training algorithms such as
error backpropagation (BP) for ANNs, one of the most difficul-
ties in SNN study is the hardness of training caused by the
complex dynamics and non-differentiable spike activities. The
case still remains challenging even if we use the simple leaky-
integrate-and-fire (LIF) (Gerstner, Kistler, Naud, & Paninski, 2014)
neuron model. To enhance the application accuracy of SNNs, the
conventional spike timing dependent plasticity (STDP) unsuper-
vised learning rule can be improved such as by adding lateral
inhibition and adaptive threshold (Diehl & Cook, 2015) or re-
ward mechanism (Mozafari, Ganjtabesh, Nowzari-Dalini, Thorpe,
& Masquelier, 2018). Some other works pre-train adapted ANNs
and convert them to SNNs (Cao, Chen, & Khosla, 2015; Diehl et al.,
2015; Hu, Tang, Wang, & Pan, 2018; Hunsberger & Eliasmith,
2016; Rueckauer, Lungu, Hu, Pfeiffer, & Liu, 2017; Sengupta, Ye,
Wang, Liu, & Roy, 2019). The adaptions in ANNs usually include
removing biases, using ReLU activation function (or its variant),
changing max pooling to average pooling, etc., to enhance the
compatibility with SNN models. The conversion from ANNs to
SNNs often induces weight/activation normalization, threshold
tuning, sampling error compensation, etc., to maintain the accu-
racy. Recently, the supervised BP learning in ANNs is borrowed to
train accurate SNNs directly (Jin, Li, & Zhang, 2018; Lee, Delbruck,
& Pfeiffer, 2016; Pengjie Gu & Tang, 2019; Shrestha & Orchard,
2018; Wu, Deng, Li, Zhu, & Shi, 2018; Wu et al., 2019). The
gradients can propagate along only the spatial direction by aggre-
gating spikes in the temporal dimension when performing BP, or
propagate along both temporal and spatial dimensions by directly
calculating the derivates of membrane potential and spike activity
at each time step. The combination of BP and STDP learning
also exists, such as applying STDP update after the BP update at

each training iteration (Tavanaei & Maida, 2017) or applying BP
fine-tuning after an STDP pre-training (Lee, Panda, Srinivasan, &
Roy, 2018). In a nutshell, with the above efforts, SNNs are grad-
ually approaching the ANN-level application accuracy in visual
recognition tasks.

Due to the lack of specialized benchmark workloads for SNNs,
plenty of works directly port the testing workloads from the ANN
domain to verify SNN models (Cao et al., 2015; Diehl & Cook,
2015; Diehl et al., 2015; Hu et al., 2018; Hunsberger & Eliasmith,
2016; Jin et al., 2018; Lee et al., 2016, 2018; Mozafari et al.,
2018; Rueckauer et al., 2017; Sengupta et al., 2019; Tavanaei &
Maida, 2017; Wu et al., 2018). For example, the image datasets
for ANN validation are simply converted to the spike version
for SNN training and testing. This seems reasonable because the
input data are encoded in spikes when SNNs run. Whereas, the
original datasets for ANNs are just static images which cannot
make full use of the spatio-temporal superiorities of SNNs even if
they are converted to spike patterns. Furthermore, the application
accuracy is still the prime evaluation metric, but it is known
that our brain usually performs worse than current AI machines
in terms of absolute recognition accuracy. This reflects that we
need more comprehensive and fair metrics to evaluate the brain
inspired SNNs. In a nutshell, due to the inappropriate workloads
and evaluation metrics, current SNNs fail to beat ANNs. Therefore,
there comes up two open questions that ‘‘what workloads are ideal
for SNNs and how to evaluate SNNs makes sense’’.

In this paper, we try to answer the above questions and take
the visual recognition task as a case study. In Hunsberger and
Eliasmith (2016) that converts pre-trained ANNs with soft-LIF
neurons and noisy activities to SNNs, the efficiencies of SNNs and
ANNs are defined and compared. It is one of the few works that
consider the metric beyond accuracy in the SNN algorithm com-
munity and study the trade-off between accuracy and efficiency.
We extend this path to a deeper rethinking via more systematical
modeling methodologies and experimental analyses. Specifically,
through designing a series of contrast tests using datasets in
different domains, diverse processing models, signal conversion
methods, and learning algorithms, we compare the performance
of ANNs and SNNs (with rate coding). We propose comprehensive
metrics on the application accuracy, memory cost, and compute
cost to evaluate these models and conduct extensive analyses. We
evidence the fact that SNNs fail to beat ANNs at the same network
scale on ANN-oriented workloads with respect to the accuracy
but hold the potential for efficient processing; while on SNN-
oriented workloads, SNNs can fully perform better. We further
demonstrate that the change of simulation time window and
firing threshold will produce a trade-off between the application
accuracy and the execution cost. Based on these analyses, we
recommend the most suitable model for each scenario. The major
contributions of this work are summarized as follows:

• We propose the much-needed comprehensive evaluation
metrics for SNNs and ANNs by taking the trade-off between
application accuracy and execution cost into account. We
conduct extensive experiments and analyses with diverse
benchmark datasets, processing models, signal conversions,
and learning algorithms. Various comparison methodologies
and visualization means are also demonstrated.

• Based on the above results, we recommend the best model
for each workload, which provides insightful modeling
guidances.

• We point out that directly porting workloads from ANNs to
SNNs is inappropriate, at least unwise, although many works
are doing so. We further highlight that to create more SNN-
oriented datasets and build a benchmarking framework with
broader tasks is urgent for the SNN community. This shall
shed light on the future opportunities of SNN research.

296 L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307

Fig. 1. Basic neuron model in (a) ANNs and (b) SNNs.

The rest of this paper is organized as follows: Section 2 intro-
duces some preliminaries of ANNs and SNNs, as well as typical
network topologies and benchmark datasets; Section 3 system-
atically proposes signal conversion methods, testing workloads,
training algorithms, and evaluation metrics; The experimental
setup and result analyses along with visualizations are provided
in Section 4; Finally, Section 5 concludes and discusses the paper.

2. Preliminaries

In this section, we give the preliminary knowledge of ANNs
and SNNs for visual recognition, including neuron models, net-
work topologies, and benchmark datasets.

Neurons are the basic compute units, which are wired by
abundant synapses to form a neural network. If we treat the
neural network as a graph, each neuron and synapse can be
viewed as a node and edge, respectively. As aforementioned,
there are two categories of neural networks: ANNs and SNNs,
which will be explained in detail as follows.

2.1. Artificial neural networks

Fig. 1(a) depicts the model of a typical artificial neuron. The
compute process is governed by

y = ϕ(b +

∑
j

xjwj) (1)

where x, y, w, and b are input activation, output activation,
synaptic weight, and bias, respectively, and j is the index of
input neuron. ϕ(·) is a nonlinear activation function, e.g. ϕ(x) =

ReLU(x) = max(x, 0). Neurons in ANNs communicate with each
other using activations coded in high-precision and continuous
values, and only propagate information in the spatial domain
(i.e. layer by layer). From the above equation, it can be seen that
the multiply-and-accumulate (MAC) of inputs and weights is the
major operation in ANNs.

2.2. Spiking neural networks

Fig. 1(b) shows a typical spiking neuron, which has a similar
structure but different behavior compared to the ANN neuron.
By contrast, spiking neurons communicate through spike trains

coded in binary events rather than the continuous activations in
ANNs. The dendrites integrate the input spikes and the soma con-
sequently conducts nonlinear transformation to produce the out-
put spike train. This behavior is usually modeled by the popular
LIF model (Gerstner et al., 2014), described as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ
du(t)
dt = −[u(t) − ur1] +

∑
j wj

∑
tkj ∈STwj

K (t − tkj)⎧⎪⎨⎪⎩s(t) = 1 & u(t) = ur2 , if u(t) ≥ uth

s(t) = 0, if u(t) < uth

(2)

where (t) denotes the time step, τ is a time constant, and u and
s are the membrane potential and output spike, respectively. ur1
and ur2 are the resting potential and reset potential, respectively.
wj is the synaptic weight from the jth input neuron, tkj is the
time when the kth spike of the jth input neuron fires within the
integration time window of Tw (a spike sequence of STwj in total),
and K (·) is a kernel function describing the time decay effect. uth
is the firing threshold that determines whether to fire a spike or
not. Besides the LIF model, there also exist other neuron models
in SNNs, such as the model of Hodgkin and Huxley (1952) or
Izhikevich (2003). However, due to the higher complexity they
are not widely used in practical SNN models.

Different from ANNs, SNNs represent information in spike
patterns and each spiking neuron experiences rich dynamic be-
haviors. Specifically, besides the information propagation in the
spatial domain, the current state is tightly affected by the past
history in the temporal domain. Therefore, SNNs usually have
more temporal versatility but lower precision compared to ANNs
mainly with spatial propagation and continuous activations. Since
a spike only fires when the membrane potential exceeds a thresh-
old, the entire spike signals are often sparse and the compute can
be event driven (only enabled when a spike input arrives). Fur-
thermore, because the spike is binary, i.e. 0 or 1, the costly mul-
tiplication between the input and weight can be removed if the
integration time window Tw equals to 1 (see Section 3.5). For
above reasons, SNNs can usually achieve lower power consump-
tion compared to ANNs with intensive computation.

2.3. Typical network topologies

The basic layer topologies used to build neural networks are
fully-connected (FC) layer, recurrent layer, and convolutional
(Conv) layer (as well as pooling layer). The corresponding net-
works are named as multi-layered perceptron (MLP), RNNs, and
CNNs, respectively. MLP and RNNs only include stacked FC layers
with or without recurrent connections in each layer as shown in
Fig. 2(a) and (b), respectively. For CNNs shown in Fig. 2(c), they
directly target the processing of 2D features instead of the 1D
ones in MLP and RNNs. Each neuron in the convolutional (Conv)
layer only receives inputs from a local receptive field (RF) across
all feature maps (FMs) in previous layer. The basic calculation
of each neuron is the same as Eq. (1) or (2). In addition, CNNs
also use the pooling layer to down sample the size of each FM
individually via outputting the maximum (i.e. max pooling) or
average (i.e. average pooling) value of each RF, and use the FC
layer for final classification.

2.4. Benchmark datasets

Fig. 3 illustrates two different types of benchmark datasets
we used for visual recognition. The upper two rows are sam-
pled from MNIST (LeCun, Bottou, Bengio, & Haffner, 1998) and
CIFAR10 (Krizhevsky & Hinton, 2009) datasets. Because they are
frame-based static images and widely used in ANNs, we call

L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307 297

Fig. 2. Network topologies: (a) MLP; (b) RNN; (c) CNN.

Fig. 3. Illustration of benchmark datasets for visual recognition, including
ANN-oriented datasets (MNIST, CIFAR10) and SNN-oriented datasets (N-MNIST,
DVS-CIFAR10). Red or blue color denotes the On or Off event, respectively. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

them ANN-oriented datasets. The lower two rows are sampled
from N-MNIST (Orchard, Jayawant, Cohen, & Thakor, 2015) and
DVS-CIFAR10 (Li, Liu, Ji, Li, & Shi, 2017). The data format is
spike event which is converted from the above static datasets
through scanning each image by using dynamic vision sensor
(DVS) (Lichtsteiner, Posch, & Delbruck, 2008). Besides the similar
spatial information as ANN-oriented datasets, it contains more
dynamic temporal information and the spike events are naturally
compatible with the signal format in SNNs, therefore we call them
SNN-oriented datasets.

For the ANN-oriented datasets, MNIST is comprised of a train-
ing set with 60,000 labeled hand-written digits, and a testing set
of other 10,000 labeled digits. Each digit sample is a 28 × 28
grayscale image. CIFAR10 contains a training set with 50,000
labeled training images with natural and manufactured objects in
their environment, and other 10,000 testing images. Each sample
is a 32 × 32 × 3 RGB image.

For the SNN-oriented datasets, DVS can scan the original static
image along given directions and collect the generated spike
trains triggered by the intensity change of each pixel. Since it has
two change manners (increase or decrease), DVS produces two
channels of spike events, named as On and Off event (red and
blue color in Fig. 3, respectively). Hence, DVS converts each image
into row × col × 2 × T spike pattern, where T is the recording
time length. Due to the relative shift during the movement, the
resulting images usually have a larger size than original images.
In this way, N-MNIST converts the original MNIST into its spike
version. It also contains 60,000 training samples and 10000 test-
ing samples and each sample in N-MNIST is a spatio-temporal

Fig. 4. Illustration of data signal conversion: (a) image to spike pattern by
probabilistic sampling; (b) image to spike pattern by encoding layer; (c) spike
pattern to binary image; (d) spike pattern to intensity image.

spike pattern with size of 34×34×2× T . DVS-CIFAR10 converts
only 10000 images from the original CIFAR10 datasets, in which
each class has 1000 spike patterns with size of 128 × 128 × 2 ×

T . Because of the much smaller data volume than the original
CIFAR10, we randomly select 9000 images for training and the
other 1000 for testing.

3. Benchmarking methodology

In this section, we first introduce the signal conversion be-
tween the ANN and SNN domains. Then we design six bench-
mark models along with the training algorithms for contrast
tests and propose three evaluation metrics for consequent model
assessment and comparison.

3.1. Data signal conversion

In general, ANNs receive frame-based images in real value
while SNNs receive event-driven spike signals. Thus, sometimes it
is necessary to transform the same data resource into a different
form for the processing in the other domain. Here we take the
visual recognition task as a case study and primarily introduce
four signal conversion methods as follows.

Image to spike pattern. Since real-valued signals of pixel
intensity are not suitable for spike-based SNNs, the conversion
to spike trains is needed when testing SNN models over ANN-
oriented datasets. One of the prevalent strategies is the prob-
abilistic sampling. At every time step, it samples the original
pixel intensity (usually normalized to [0, 1]) into a binary value,
wherein the probability of being 1 (firing a spike) equals to
the intensity value. The sampling follows a specific probability
distribution such as Bernoulli distribution or Poisson distribution.
For example, the i1 neuron in Fig. 4(a), corresponding to the pixel
on the upper left with a normalized intensity of 0.8, produces a
binary spike train following the Bernoulli distribution B(0.8, T).
Here T is a given time window for sampling.

The above element-wise sampling usually suffers from preci-
sion loss in the case of short time window (see Section 4.2). To
circumvent this problem, modern works (Esser et al., 2016) add
an encoding layer to generate spike signals globally, as shown
in Fig. 4(b). Each neuron in this layer receives intensity values
of multiple pixels as the input (i.e. the dendrite works in ANN
mode with normal input-weight MAC operations) while produces
spikes as the output (i.e. the soma works in SNN mode with LIF
dynamics). Although the encoding layer is an ANN–SNN hybrid
layer rather than a complete SNN layer like following layers
in the network, its weights are trainable because our training

298 L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307

method for SNNs in this paper is also BP-compatible for ANNs
(see Section 3.4). Since the number of neurons can be flexibly
customized and the parameters are trainable, it can adapt to the
overall optimization problem for better accuracy.

Spike pattern to image. Similarly, to test ANN models over
SNN-oriented datasets, we need to convert spike patterns into
frame-based images. There exist two possible output formats:
(i) binary image with 0/1 pixels; (ii) intensity image with real-
valued pixels. An intuitive strategy for converting a spike pattern
into binary images is to first expand the spike trains from all
neuron locations along the temporal dimension. Then, as Fig. 4(c)
illustrates, the expanded 2D spike pattern (location index v.s.
time) can be directly viewed as a binary image (every spike
event represents the pixel intensity being 1, otherwise the pixel
intensity is 0). The original recording time length T is usually long
which might result in a too big image size. So the spike events
along the temporal direction need to be aggregated or sampled
periodically with a moderate sliding time window (e.g. every
1 ms). Here the aggregation means the resulting spike event is
1 if it has spikes in the window, otherwise it is 0. Even if so,
the unfolding of 2D locations (the left side in Fig. 4(c)) to an 1D
location vector (Y-axis of the right side in Fig. 4(c)) also produces
a big image size.

For the conversion into intensity images, a temporal accumu-
lation of the spike events (counting spike numbers) is required.
Fig. 4(d) depicts the accumulation process of spike trains within
100 ms. The accumulated spike numbers will be normalized to be
pixels with a proper intensity value. Due to the relative motion
and intrinsic noise of DVS, the resulting image is often blurred
and its edge features are obscure. This conversion is only allowed
by a strong assumption that each spike location should not move
away its beginning location as t evolves, otherwise it will severely
harm the quality of resulting image.

3.2. ANN-oriented workloads

Here the ‘‘ANN-oriented workloads’’ means the target is to
recognize the images in frame-based datasets (e.g. MNIST and
CIFAR10), which is widely used in the ANN field. To process
this type of workloads, we introduce three benchmark models.
As shown in Fig. 5(a), the most straightforward solution is the
natural ANN with ‘‘ANN training & ANN inference’’. It fully trains
the network in the ANN mode (Eq. (1)) with intensity images and
then does consequent inference in the same domain. The training
follows the most widely used BP algorithm in the ANN field.

Besides, many works in the SNN community also use these
datasets to test the performance of SNNs (Diehl et al., 2015; Hu
et al., 2018; Lee et al., 2016; Sengupta et al., 2019; Wu et al., 2018,
2019). Since in these cases the network works in the SNN mode,
the input data need to be converted from frame-based images to
spike events, as illustrated in Fig. 4(a) or (b). After the signal con-
version, we further provide two modeling branches. One is shown
in Fig. 5(b), where an ANN is first trained using BP algorithm
on the original image dataset, and then the pre-trained ANN
is adapted to its SNN counterpart with the same structure but
different neuron model. This converted SNN receives the dataset
variant with spike events in the inference phase. The other is
the enforced SNN as depicted in Fig. 5(c), where an SNN model
is directly trained from scratch on the converted spike datasets
and tested in the same domain. As aforementioned in Section 1,
the emerging BP-inspired supervised algorithms for training SNNs
usually present better accuracy than the unsupervised ones. Actu-
ally they use different learning methodologies. For example, both
synaptic weights and axonal delays are trainable variables under
the error backpropagation framework in Shrestha and Orchard
(2018), the gradients at every location and time are directly

Fig. 5. Model configuration on ANN-oriented datasets: (a) Model-1, natural ANN
with ANN training and ANN inference; (b) Model-2, converted SNN with ANN
training and SNN inference; (c) Model-3, enforced SNN with SNN training and
SNN inference.

Fig. 6. Model configuration on SNN-oriented datasets: (a) Model-4 or Model-
5, enforced binary ANN or enforced intensity ANN using converted binary or
intensity images, respectively, for ANN training and ANN inference; (b) Model-6,
natural SNN with SNN training and SNN inference.

derived using spatio-temporal backpropagation (STBP) method
in Wu et al. (2018) and Wu et al. (2019), while a temporal based
loss function is further proposed to solve the spatio-temporal
credit assignment problem in Pengjie Gu and Tang (2019). Con-
sidering the open-source codes in Pytorch, we select the STBP for
the direct training of SNNs. In summary, the three benchmark
models for ANN-oriented workloads are denoted as Model-1/2/3
for clarity. Note that we use the rate coding scheme in the SNN
domain throughout this paper, which is because of its higher
accuracy indicated by previous work.

3.3. SNN-oriented workloads

Here the ‘‘SNN-oriented workloads’’ means the target is to
recognize the images in frame-free spike datasets (e.g. N-MNIST
and DVS-CIFAR10), which is widely used in the SNN field. Like
the above ANN-oriented workloads, here we also introduce three
benchmark models. The first two work in the ANN mode (see
Fig. 6(a)), where the input data are converted into images. The
models are trained using the regular BP algorithm for ANNs and
tested also in the ANN domain. There are two ways for the data
conversion from spike events to images: (i) binary images by
directly receiving the unfolded spike pattern; (ii) intensity images
by compressing the spike pattern along the temporal dimension,
which are illustrated in Fig. 4(c) and (d), respectively. Fig. 6 gives
another benchmark model that works in the natural SNN mode.
The network is directly trained and tested using the original spike
dataset, and the learning algorithm is still BP-inspired as above in
Model-3. Similarly, the three benchmark models for SNN-oriented
workloads are denoted as Model-4/5/6.

L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307 299

3.4. Training algorithms

In the above section, we mentioned two training algorithms
for the six benchmark models: (i) BP for ANNs; (ii) BP-inspired
variant for SNNs. The BP algorithm is widely used in the training
of ANN. It can be simply described as⎧⎨⎩

∂L
∂yni

=
∑

j
∂L

∂yn+1
j

ϕ
′n+1
j wn+1

ji

▽wn
ji =

∂L
∂yn+1

j
ϕ

′n+1
j yni , ▽ bnj =

∂L
∂yn+1

j
ϕ

′n+1
j

(3)

where i and j are the neuron index in previous layer n and
current layer (n+1), respectively, ϕ

′n+1
j is the activation derivative

of the jth neuron in layer (n + 1), and L is the loss function
for optimization. Usually, we can simply use mean square error
(MSE) as the cost to be minimized, i.e. let L =

1
2∥YYY

label
− YYY∥

2
2.

Here YYY and YYY label are the actual output and labeled ground truth,
respectively.

As aforementioned, because of the superior accuracy and
open-source codes, we select STBP (Wu et al., 2018, 2019) to train
our SNNs. It is based on an iterative version of the original LIF
model in Eq. (2). Specifically, it yields{
ut+1,n+1
i = e−

dt
τ ut,n+1

i (1 − ot,n+1
i) +

∑
j w

n
ijo

t+1,n
j

ot+1,n+1
i = f (ut+1,n+1

i − uth)
(4)

where dt is the length of simulation time step, o denotes the
neuronal spike output, t and n are time step and layer index,
respectively. e−

dt
τ reflects the decay effect of the membrane po-

tential. f (·) is a step function, which satisfies f (x) = 1 when x ≥ 0,
otherwise f (x) = 0. This iterative LIF format incorporates all
the behaviors in the original neuron model including integration,
firing, and reset. Note that here we set ur1 = ur2 = 0, Tw = 1,
and K (·) ≡ 1 in the original LIF model for simplicity. Given
the iterative LIF model, the gradient propagates along both the
temporal and spatial dimensions, and the parameter update can
be derived accordingly as follows⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂L
∂ot,ni

=
∑

j
∂L

∂ot,n+1
j

∂ot,n+1
j

∂ot,ni
+

∂L
∂ot+1,n

i

∂ot+1,n
i

∂ot,ni
,

∂L
∂ut,ni

=
∂L

∂ot,ni

∂ot,ni
∂ut,ni

+
∂L

∂ot+1,n
i

∂ot+1,n
i

∂ut,ni
,

▽wn
ji =

∑T
t=1

∂L
∂ut,n+1

j
ot,ni .

(5)

To solve the non-differentiable problem, Wu et al. (2018) intro-
duces an auxiliary function to approximate the derivative of step
function f (·) when calculating ∂o

∂u . It satisfies

∂o
∂u

≈
1
a
sign(|u − uth| <

a
2
) (6)

where the parameter a determines the gradient width. We have
sign(x) = 1 when x > 0 and sign(x) = 0 when x = 0. The loss
function L measures the discrepancy between the ground truth
and the average firing rate of the last layer N within a given time
window T . Also, it can be defined as the format of MSE like that
in ANNs, i.e. L = ∥YYY label

−
1
T

∑T
t=1OOO

t,N
∥
2

2.

3.5. Evaluation metrics

As well known, the SNNs-based brain usually cannot beat the
current ANNs-based AI system in terms of the absolute recog-
nition accuracy, while the true brain performs better on other
metrics, such as operating efficiency. Whereas, in most recent
works, recognition accuracy is still a mainstream metric to judge
which model (ANNs or SNNs) is better, especially in the algorithm
research. This is not fair enough since ANNs and SNNs have
very different characteristics. For example, the data precision in

ANNs are much higher than SNNs, which makes ANNs easier to
gain better recognition accuracy at the same network size. All
these indicate more comprehensive metrics are needed for model
evaluation. Besides the common accuracy comparison, here we
further introduce memory and compute cost as complementary
evaluation metrics. Note that this is just a beginning, and more
insightful metrics are expected in the future (see discussions in
Section 5.2).

Recognition accuracy. Here we use the top-1 accuracy. In
ANNs, this accuracy means the percentage of the correctly rec-
ognized samples. If the label class is the same with the one
predicted by the model with the maximum activation value, the
recognition is correct for the current sample. In SNNs, we first
count the fire rate (number of spikes) of the output neurons
during a given time window T for rate coding, then determine the
predicted class Ĉ according to the fire rate values. The consequent
accuracy calculation is the same as that in ANNs. A well-accepted
decoding method can be defined as follows

Ĉ = argmax
i

{
1
T

T∑
t=1

ot,Ni } (7)

where ot,Ni denotes the spike output of the ith neuron in the last
layer N at the tth time step.

Notation: Before stepping into the introduction of memory
and compute costs, we make a clarification that in this paper
we consider costs in only the inference phase. On one hand,
the training of SNNs under Eq. (5) with spatio-temporal gradient
propagation paths is more complicated than that of the inference
phase. The complication will weaken the readability of this work
since it is already complicated due to various signal conversions,
modeling methods, workloads, and evaluation metrics. On the
other hand, most neuromorphic devices supporting SNNs perform
only the inference phase. Therefore, it is better to focus on the
inference phase that can be quickly applied in current hardware
platforms.

Memory cost. Usually, the memory footprint matters a lot
when deploying models on embedded devices. In ANNs, the
memory cost includes the weight memory and activation mem-
ory. The overhead of the activation function is ignored but it
should be counted if it is realized using look up table. In SNNs, the
memory cost includes the weight memory, membrane potential
memory, and spike memory. Other parameters such as the fire
threshold uth and time constant τ are negligible since they can be
shared by all neurons in the same layer or in the whole network.
The spike memory overhead only occurs when spike fires. In
summary, the memory cost can be calculated by{
ANN: M = Mw + Ma

SNN: M = Mw + Mp + Ms
(8)

where Mw , Ma, Mp, and Ms denote the memory cost for weights,
activations, membrane potentials, and spikes, respectively. Com-
pared to the static values of Mw , Ma, and Mp that are determined
by the network structure, Ms is dynamically determined by the
maximum number of spike events at a certain time step. Here
for clarity, all the data are assumed to be stored in 32 bits
except for the 1-bit spike data. Note that, in models with data
quantization (Banner, Hubara, Hoffer, & Soudry, 2018; Deng, Jiao,
Pei, Wu, & Li, 2018) or on specialized devices (Davies et al., 2018;
Jouppi et al., 2017; Merolla et al., 2014), the bitwidth can be
reduced to save the memory cost. For some compressed models
via matrix/tensor decomposition (Novikov, Podoprikhin, Osokin,
& Vetrov, 2015) or sparsification (Li, Kadav, Durdanovic, Samet, &
Graf, 2016; Liu et al., 2018) techniques, the memory cost can also
be reduced. However, these are out of the scope of this paper.

300 L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307

Fig. 7. Illustration of experimental flowchart.

Compute cost. The compute overhead is critical for the run-
ning latency and energy consumption. In ANNs, the compute
cost is mainly determined by the MAC operations in Eq. (1),
which is widely used in ANN accelerators (Chen et al., 2014,
2017). In SNNs, the major compute overhead is the spike-driven
input integration in Eq. (2). Two differences from ANNs should
be emphasized: (i) the costly multiplication can be removed due
to the binary spike inputs if Tw = 1 and K (·) ≡ 1 actually we
satisfy these for simplicity, then the dendrite integration becomes
multiplierless as

∑
j wj·sj =

∑
j′ wj′ (if sj′ = 1); (ii) the integration

is event-driven that implies no computation occurs if no spike
received. The compute cost can be calculated by{
ANN: C = Cmul + Cadd

SNN: C = Cadd
(9)

where Cmul and Cadd are the compute cost for multiplications and
additions, respectively.

The compute overheads in soma (such as the activation func-
tion in ANNs and the membrane potential update and firing
activity in SNNs) are ignored, which is a common way in neural
network devices (Akopyan et al., 2015; Jouppi et al., 2017). Note
that in SNNs, the Cadd takes all the addition operations into
account during the entire rate coding period (e.g. T), which is
proportional to the total number of spike events. Similar to the
memory cost evaluation, the data quantization can replace the
complex high-precision MACs to efficient low-precision ones and
the compression techniques (e.g. decomposition and sparsifica-
tion) can additionally reduce the amount of operations. Whereas,
they are not the focus of this paper as a starting point to establish
a comprehensive evaluation framework.

4. Experimental results

4.1. Experimental setup

In our experiments, we comprehensively evaluate the perfor-
mance of several ANN and SNN models for visual recognition over
different types of benchmark workloads (ANN-oriented and SNN-
oriented). As a starting work, we discuss more on the results
of MLP and (plain) CNNs for simplicity and just provide the
results of other models (e.g. RNNs and temporal CNNs) on SNN-
oriented workloads at the end. On ANN-oriented workloads, we
evaluate the performance of Model-1/2/3 on MNIST and CIFAR10
datasets. Due to the incapability of MLP in processing larger-scale
CIFAR10, we just show the CNN results on this dataset. On SNN-
oriented workloads, we evaluate the performance of Model-4/5/6
on the neuromorphic version of above datasets, i.e. N-MNIST
and DVS-CIFAR10. Note that why we mainly compare the re-
sults across Model 1–6 implemented by ourselves is because we
can easily control many factors (e.g. network structure and size,
training techniques, learning hyper-parameters, etc.) to guarantee
the fairness. Otherwise, it will be challenging to present a fair
comparison with others due to the modeling diversity in this
field.

The overall experimental flowchart is presented in Fig. 7,
and the main network structures are given in Table 1. Besides,

Table 1
Configuration of network structures.
ANN-oriented testing workloads (Model-1/2/3)

MNIST MLP: Input-512-10
CNN: Input-32C3-AP2-32C3-AP2-128FC-10

CIFAR10 CNN: Input-64C3-AP2-128C3-128C3-AP2-256FC-10

SNN-oriented testing workloads (Model-4/5/6)

N-MNIST MLP: Input-512-512-10
CNN: Input-64C3-128C3-AP2-128C3-AP2-256FC-10

DVS-CIFAR10 CNN: Input-64C3-AP2-128C3-AP2-256FC-10

Note: nC3—Conv layer with n output FMs and 3 × 3 kernel size, AP2—Average
pooling layer with 2 × 2 kernel size, FC—FC layer.

Table 2
Parameter setting on ANN-oriented workloads.
Parameters Descriptions Model MNIST CIFAR10

Max epoch – 1, 2, 3 150 150
Batch size – 1, 2, 3 50 50

T Simulation time window 2 500 1000
3 20 15

uth Firing threshold 2 2 2.5
3 0.5 0.3

τ Decay factor 3 0.25 0.3
a Gradient width 3 0.5 0.5

Table 3
Parameter setting on SNN-oriented workloads.
Parameters Descriptions Model N-MNIST DVS-CIFAR10

Max epoch – 4, 5, 6 200 200
Batch size – 4, 5, 6 50 50
T Simulation time window 6 15 10
uth Firing threshold 6 0.3 0.25
τ Decay factor 6 0.25 0.3
a Gradient width 6 0.25 0.25

the parameter configurations for ANN-oriented and SNN-oriented
workloads are provided in Tables 2 and 3, respectively. Since
these workloads usually have different encoding formats for input
conversion, we just show the parameter configurations of hidden
layers for clarity. In all Conv layers, we set the padding value to
1. Due to the large input size of Model-4, we set the stride value
to 2 there, and set the stride value to 1 in other models. In all
SNN models (Model-2/3/6), each unit in the pooling layer is an
independent neuron, which guarantees that the outputs of pool-
ing layer are still in the spike format. This pooling configuration is
different from previous work (Wu et al., 2018, 2019). In Model 3/6
we use the complete LIF neuron model described in Eq. (4), while
in Model-2 we use the IF neuron model (without the leakage item
in LIF) that is a popular choice in previous converted SNNs (Diehl
et al., 2015; Sengupta et al., 2019).

We implement all the models in Pytorch framework. On
MNIST and N-MNIST datasets, we adopt Adam (adaptive moment
estimation (Kingma & Ba, 2014)) optimizer with default parame-
ter setting (α = 0.0001, β1 = 0.9, β2 = 0.999, ϵ = 10−8); while
on CIFAR10 and DVS-CIFAR10 datasets, we use SGD (stochastic
gradient descent) optimizer with initial learning rate r = 0.1
and momentum 0.9, wherein r decays by 10x every 35 training
epochs.

4.2. Accuracy analysis

Table 4 lists the accuracy results of different models on ANN-
oriented workloads. On MNIST, the straightforward natural ANNs
(Model-1) can achieve the best accuracy, i.e. 98.60% for MLP
and 99.31% for CNN, because they are naturally compatible with
the frame-based dataset. The accuracy scores of converted SNNs

L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307 301

Fig. 8. Sensitivity analysis for the simulation time window T on ANN-oriented datasets: (a) sampled images; (b) mean absolute error (MAE) curves; (c) training
curves of enforced SNNs.

Table 4
Accuracy on ANN-oriented workloads.
Dataset Network Model Accuracy

MNIST

MLP
Model-1 (Natural ANN) 98.60%
Model-2 (Converted SNN)a 98.51%
Model-3 (Enforced SNN)a 98.41%

CNN
Model-1 (Natural ANN) 99.31%
Model-2 (Converted SNN)a 99.07%
Model-3 (Enforced SNN)a 99.22%

CIFAR10 CNN

Model-1 (Natural ANN) 78.16%
Model-2 (Converted SNN)a 76.81%
Model-3 (Enforced SNN)a 63.19%
Model-3 (Enforced SNN)b 74.23%

Note:
aRefers to the model using probabilistic sampling for input signal conversion.
bRefers to the model using encoding layer for input signal conversion.

based on pre-trained ANNs (Model-2) are comparable but slightly
worse than those of natural ANNs. The enforced SNNs (Model-3)
trained by BP-inspired algorithm on the converted spike datasets
achieve the worst accuracy. Note that although we also observe
that the enforced SNN can occasionally surpass the converted
SNN (e.g. on the CNN structure), it has never been better than
the natural ANN.

The small gap between different models on MNIST might be
due to the reason that it is a simple task. To this end, we continue
to test on a larger dataset, i.e. CIFAR10. In this case, the accuracy
differences become more obvious, which follows ‘natural ANN
(Model-1) ⇒ converted SNN (Model-2) ⇒ enforced SNN (Model-
3)’ from the best to the worst (i.e. 78.16% ⇒ 76.81% ⇒ 63.19%).
Even though the accuracy of enforced SNN can be improved to
74.23% by using an extra encoding layer (Fig. 4(b)) for signal
conversion, it still cannot beat the natural ANN.

From Table 4, you can find evidence that the converted and
enforced SNNs cannot beat natural ANNs. Now, we try to reveal
the underlying reason for this accuracy gap. Fig. 8(a) presents
the information loss when converting the original image to spike
signal for consequent SNN processing (in Model-2 & Model-3).
Here we take the probabilistic sampling in Fig. 4(a) as an example.
We first count the total number of spikes produced by probabilis-
tic sampling of each pixel during the simulation time window
T , and then visualize the spike numbers after being normalized

as images. As T increases, the images become clearer which
indicates less precision loss in signal conversion. However, a too
large T will cause long simulation time. In our experiments, we
set T = 15, however, the precision loss for signal conversion still
exists. Fig. 8(b) depicts the mean absolute errors (MAE) between
the original pixel value and normalized spike number as well as
the MAE variances due to the nondeterministic sampling. Finally,
we study how T affects the training convergence, which is shown
by the training curves under different T configuration. Usually,
the longer T produces a faster convergence speed and better final
accuracy, which is mainly due to the smaller precision loss during
input signal conversion. In summary, the signal conversion from
images to spikes causes information loss and makes the SNN
models lose the chance to outperform the natural ANN on ANN-
oriented workloads. Furthermore, the length of simulation time
window T significantly affects the model convergence.

Next, let us analyze why the converted SNN also loses accuracy
compared to the natural ANN. The converted SNN is based on a
pre-trained ANN model. In order to be compatible with the final
IF model after conversion, the pre-training of ANN usually adds
some constraints, termed as constrained ANN. The constraints
include removing bias, allowing only ReLU activation function,
changing max pooling to average pooling, and so on Diehl et al.
(2015) and Hunsberger and Eliasmith (2016). These constraints
usually cause accuracy loss as shown in Fig. 9(a). Then the
conversion from the pre-trained ANN to the converted SNN will
suffer from further precision loss during the aforementioned
signal conversion and the newly incurred parameter adaption
such as weight/activation normalization and threshold tuning. On
CIFAR10, the accuracy loss for model conversion is significantly
larger than that on small MNIST. The influence of simulation time
window T is shown in Fig. 9(b), wherein the smaller T produces
significantly larger accuracy loss. Therefore, the converted SNN
usually requires a much longer T to recover the accuracy. In
summary, due to the constrained pre-training and lossy model
conversion, the converted SNN cannot outperform the natural
ANN. More and more recent works benchmark the SNN perfor-
mance using converted SNNs on ANN-oriented datasets (Diehl
et al., 2015; Hu et al., 2018; Sengupta et al., 2019). Although this
way demonstrates that SNNs can still work well on these ANN-
oriented workloads, it also makes SNNs lose the opportunity to
be the winner.

302 L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307

Fig. 9. Accuracy analysis for the converted SNNs on ANN-oriented datasets: (a) testing accuracy comparison among the natural ANN, constrained ANN, and converted
SNN; (b) conversion accuracy loss curve recording the accuracy gap between the natural ANN and the converted SNN as time step increases.

Fig. 10. Training curves of the enforced binary ANN (Model 4), enforced
intensity ANN (Model 5), and natural SNN (Model 6) on different datasets.

Table 5
Accuracy on SNN-oriented workloads.
Dataset Network Model Accuracy

N-MNIST

MLP
Model-4 (Enforced Binary ANN) 97.24%
Model-5 (Enforced Intensity ANN) 97.63%
Model-6 (Natural SNN) 98.61%

CNN
Model-4 (Enforced Binary ANN) 99.08%
Model-5 (Enforced Intensity ANN) 98.63%
Model-6 (Natural SNN) 99.42%

DVS-CIFAR10 CNN
Model-4 (Enforced Binary ANN) 17.60%
Model-5 (Enforced Intensity ANN) 51.10%
Model-6 (Natural SNN) 60.30%

Table 5 lists the accuracy results of different models on SNN-
oriented workloads. The natural SNNs (Model-6) can always
achieve the best accuracy (98.61% for MLP on N-MNIST, 99.42% for
CNN on N-MNIST, and 60.30% for CNN on DVS-CIFAR10) on these
networks and datasets, which owes to the natural compatibility
with frame-free spike events. In the enforced ANNs, the intensity
image-based ANN (Model-5) usually performs better than the
binary image-based one (Model-4) except for one occasional
case of the CNN on N-MNIST. The reason is similar to that
on ANN-oriented workloads, because the relative simplicity of
N-MNIST narrows the accuracy gaps between different models.
The corresponding training curves of all the models in Table 5 are
presented in Fig. 10. Overall, on these SNN-oriented workloads,
the natural SNNs are able to converge better than other ones
converted to process in ANN domain.

We attempt to explain the accuracy results in a comprehensive
way. Fig. 11 visualizes the different inputs injected to the three
models (Model-4/5/6) on SNN-oriented workloads. For the first
two models, the spike events are converted to binary images
or intensity images according to the signal conversion methods
in Fig. 4(c) or (d), respectively. Since Model-4 directly receives
each spike pattern (0/1) as a binary image, the features are

Fig. 11. Visualization of the input data carried by (a) binary images for the
enforced binary ANN (Model-4), (b) intensity images for the enforced intensity
ANN (Model-5), and (c) raw & accumulated (with decay) spike patterns for the
natural SNN (Model-6).

not intuitive and are too sparse as shown in Fig. 11(a). Differ-
ently, Model-5 accumulates the spikes for each pixel along the

L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307 303

Fig. 12. 2D embedding visualization by t-SNE (Matten & Hinton, 2008) for the
activations (in ANNs) or the firing rates (in SNNs) of the last hidden layer in the
enforced binary ANN (Model 4), enforced intensity ANN (Model 5), and natural
SNN (Model 6), with only CNN structures for simplicity. Here we use different
perplexity values and datasets.

temporal dimension and then normalizes the spike number to be
an intensity value. As Fig. 11(b) depicts, the object contour can be
kept to a great extent, however, the detailed sharp features are
blurred. In contrast to the above two frame-based models, Model-
6 naturally receives the spike events. The raw spike pattern at
every time step (actually it still has to aggregate the spike events
of every 3 ms to narrow the total simulation time length) is
visualized in the odd columns of Fig. 11(c). Recalling Eq. (4),
the membrane potential in SNNs actually accumulated all the
previous inputs with a temporal decay factor if we ignore the
potential reset after firing for simplicity. To mimic the equivalent
inputs finally injected onto the membrane potential, we plot the
decayed accumulation of previous spike patterns at every time
step and show them in the even columns of Fig. 11(c). It can be
seen that the natural SNN (Model-6) is well capable of remaining
the detail features contained in the spike events, which is one
reason to explain why it can perform better on SNN-oriented
workloads.

Besides the visualization of input signals, we further visual-
ize the activations (in ANNs) and the firing rates (in SNNs) to
compare the recognition capability of these three models. Fig. 12
provides the 2D embedding results generated by a nonlinear di-
mensionality reduction algorithm, t-distributed stochastic neigh-
bor embedding (t-SNE) (Matten & Hinton, 2008). It can project the
high-dimensional embedding down to a low-dimensional one for
data visualization. Due to the sensitivity of t-SNE to the setting of
perplexity (ppl) value, we adopt two ppl values (ppl = 5, ppl =

50) on each dataset according to the suggested range by Matten
and Hinton (2008). In this way, we project the 256-dimensional
activations or firing rates of the last hidden layer down to two
dimensions. Points with the same color have the same label
and with different color belong to different classes. Therefore,
more concentrated points of the same color and more divergent
points of different color reflect better classification performance

of the model. Although different ppl setting indeed causes pat-
tern change, the relative clustering effects between three models
remain consistent as ppl value varies. On N-MNIST, three models
are all able to project data from different classes into different
point clusters. Compared with Model-4 and Model-5, Model-6
can attract the points within each class more compact and push
classes farther, which indicates that Model-6 performs the best.
On DVS-CIFAR10, all models present large cluster overlaps. This
implies the incapability to achieve comparable accuracy scores
like those on the simple N-MNIST task. It is obvious that the clus-
tering effect from Model-4 to Model-6 is gradually strengthened.
Combining the results on N-MNIST and DVS-CIFAR10, it confirms
the superiority of Model-6 on SNN-oriented workloads, which is
consistent with the results in Table 5. Note that the classifica-
tion performance of models has been already demonstrated in
Tables 4 and 5, and the t-SNE simulation is just an auxiliary way
of visualization for better understanding (not the focus of this
work). This is the reason why we only show the t-SNE results for
Table 5 with Model 4/5/6 on SNN-oriented datasets and do not
repeat the same experiments for Table 4 with Model 1/2/3.

4.3. Cost analysis

In this subsection, we count the memory and compute costs
for all models in Tables 4 and 5. The cost calculation is according
to Eqs. (8)–(9). The results are shown in Table 6, wherein the cost
values are the average results across all testing samples during
inference.

Memory cost analysis. For all ANN models, the memory cost
mainly includes the weight memory and activation memory. Here
we omit some possible intermediate variables (e.g. partial sums)
for simplicity, since they are related to the hardware architecture
design (e.g. dataflow mapping). We also ignore the memory cost
for bias because it occupies only a small fraction of the total
memory especially in CNNs. On ANN-oriented workloads, the
memory cost of SNNs is comparable with that of ANNs. Specif-
ically, the amount of membrane potentials in SNNs is the same
with that of activations in ANNs, but the extra spikes of SNNs still
consume memory. Fortunately, the spike is in the binary format,
i.e. only one bit, the memory cost of which is negligible. On SNN-
oriented workloads, similar conclusions can be drawn, except for
the Model-4 (enforced binary ANN). The input size of Model-4
is much larger than Model-5/6 (see Fig. 4), which significantly
increases the feature map size and memory/compute cost. Note
that the memory cost of ANNs will be increased if we consider
the bias memory, especially in the case of MLP networks.

Compute cost analysis. Different from the memory cost de-
termined by the time step with the maximum memory consump-
tion, the compute cost takes the total operations across all time
steps within the entire simulation time window (T) into account.
Two major conclusions are observed: (1) All SNNs can remove the
costly multiplication operations (under the mentioned condition
of Tw = 1) which is very helpful for power and energy reduction;
(2) The number of addition operations in SNNs might exceed that
of ANNs or at least in the same level because SNNs require a
processing duration, i.e. T , to accomplish a practical task under
the rate coding scheme. The first conclusion does not include
Model-3 with encoding layer, whose first layer works in the
ANN–SNN hybrid mode, leading to extra multiplications and a
bit more additions. The second conclusion is a little counter-
intuitive against the common sense that the firing activity of
SNNs is very sparse, i.e. should be low-cost. It is correct that the
spike events are very sparse at each time step, which results in
the low-power characteristic of SNN-based devices. However, the
compute cost here is determined by the total activities across all
time steps, which is more close to the energy consumption rather
than power.

304 L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307

Table 6
Memory and compute cost on all workloads.
MNIST (units = 106)

Model Network #W #A/P #S M (bits) #Add #Mul

Model-1 (Natural ANN) MLP 0.4065 0.0005 0 13.0256 0.4065 0.4065
Model-2 (Converted SNN)a MLP 0.4065 0.0005 0.0000 13.0256 24.325 0
Model-3 (Enforced SNN)a MLP 0.4065 0.0005 0.0001 13.0257 1.202 0
Model-1 (Natural ANN) CNN 0.2115 0.0393 0 8.0259 2.2655 2.2420
Model-2 (Converted SNN)a CNN 0.2115 0.0393 0.0058 8.0317 35.9342 0
Model-3 (Enforced SNN)a CNN 0.2115 0.0393 0.0097 8.0356 7.9147 0

CIFAR10 (units = 106)

Model-1 (Natural ANN) CNN 2.3226 0.1559 0 79.3120 60.4923 60.4923
Model-2 (Converted SNN)a CNN 2.3226 0.1559 0.0312 79.3432 1580.4851 0
Model-3 (Enforced SNN)a CNN 2.3226 0.1559 0.0236 79.3356 127.4985 0
Model-3 (Enforced SNN)b CNN 2.3226 0.1559 0.0243 79.3375 152.9086 26.5421

N-MNIST (units = 106)

Model-4 (Enforced Binary ANN) MLP 118.6417 0.0010 0 3796.5661 118.6417 118.6417
Model-5 (Enforced Intensity ANN) MLP 1.4510 0.0010 0 46.464 1.4510 1.4510
Model-6 (Natural SNN) MLP 1.4510 0.0010 0.0003 46.4655 1.4419 0
Model-4 (Enforced Binary ANN) CNN 7.3022 6.1312 0 429.8688 1235.1050 1233.6164
Model-5 (Enforced Intensity ANN) CNN 2.3220 0.3044 0 84.0448 131.4607 131.3210
Model-6 (Natural SNN) CNN 2.3220 0.3044 0.0092 84.054 104.1391 0

DVS-CIFAR10 (units = 106)

Model-4 (Enforced Binary ANN) CNN 43.3306 7.9026 0 1639.4624 490.5503 485.8083
Model-5 (Enforced Intensity ANN) CNN 3.3542 0.2106 0 114.0736 37.9949 37.8666
Model-6 (Natural SNN) CNN 3.3542 0.2106 0.0194 114.093 23.142 0

Note: #—amount, W—weight, A—activation, P—membrane potential, S—spike, M—memory (total), Add—addition, Mul—multiplication. Mul is much more costly than
Add in hardware implementation.
aRefers to the model using probabilistic sampling for input signal conversion.
bRefers to the model using encoding layer for input signal conversion.

Fig. 13. The trade-off between accuracy and compute cost of Model-6 over
DVS-CIFAR10 dataset, influenced by the simulation time window T and firing
threshold uth .

On ANN-oriented workloads, the amount of addition opera-
tions of SNNs is higher than that of ANNs due to the mentioned
time window for rate coding. Specifically, we find Model-3 of
enforced SNN consumes less additions than Model-2 of converted
SNN. This is because Model-2 requires longer time window (up to
66.7x, see Table 2) to recover the accuracy loss after model con-
version. On SNN-oriented workloads, Model-4 of enforced binary
ANN consumes much higher compute cost due to the larger fea-
ture size as mentioned earlier. Model-6 of natural SNN removes
the costly multiplications; moreover, it consumes lower addi-
tions than Model-5 of enforced intensity ANN, which presents
an opposed observation compared to the case of Model-1/2/3.
This indicates that the spike train of neuromorphic datasets (e.g.
N-MNIST and DVS-CIFAR10) is much sparser than that of con-
verted ANN-oriented datasets (e.g. MNIST and CIFAR10). There-
fore, the SNN models on neuromorphic datasets can suppress the
extra cost caused by the rate coding window.

From the above analyses, we know that the firing activities
in SNNs will greatly affect the accuracy and compute cost. Thus
we further conduct sensitivity analysis shown in Fig. 13, taking
Model-6 over DVS-CIFAR10 dataset as an example. We omit the

memory cost since it is only determined by the maximum amount
of spike events at a certain time step rather than the total spikes
across the entire time window. Two factors, i.e. T and uth, are
taken into account. We can get two observations: (1) Apparently,
a larger T can usually bring higher accuracy but causes more
compute cost; (2) A properly larger uth could improve both the
accuracy and compute cost simultaneously. A too small uth will
produce much more spikes that not only increases the compute
cost but also decreases the model accuracy due to lower pattern
discriminability. Although a too large uth could sparsify the spikes
significantly, it will compromise the network’s expression ability
leading to lower accuracy.

4.4. Additional comparison

Besides SNNs, both RNNs and temporal CNNs in the neu-
ral network family are also able to process temporal informa-
tion. Therefore, here we provide an additional comparison of
RNNs, temporal CNNs, and SNNs on N-MNIST and DVS-CIFAR10
datasets, as shown in Tables 7–8. We implement plain RNN, long
short term memory (LSTM), and temporal CNN models, which
are in non-spiking version, as well as SNNs in spiking version on
these two datasets. We also reference other reported results. All
the network structures are detailed to help understanding.

First, our SNN results are advanced compared with previously
reported references, benefit from our selection of superior train-
ing algorithm and signal conversion method. The minor accuracy
degradation compared to the recent work (Wu et al., 2019) is
because we use a smaller network and do not adopt the neu-
ron normalization and voting-based classification techniques. We
would like to emphasize that the focus of this work is to give a
comprehensive benchmarking methodology rather than beating
prior work, so we abandon the possible optimization techniques.
Our LSTM result is consistent with prior work (Liu et al., 2018),
which also reflects the reliability of our implementation.

Second, regarding the comparison between SNNs and RNN
(LSTM)/temporal CNN models, it seems that the natural SNN

L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307 305

Table 7
Accuracy comparison of RNNs, temporal CNNs, and SNNs on N-MNIST dataset.
Model Structure N-MNIST

LSTM (Liu et al., 2018) Input-110–10 97.05%
Phased-LSTM (Liu et al., 2018) Input-110–10 97.38%
RNN (this work) Input-128–10 96.08%
LSTM (this work) Input-128–10 97.13%
Natural SNN (this work) Input-128–10 98.52%

Natural SNN (Wu et al., 2019) InputL-128C3-128C3-AP2 99.53%-128C3-256C3-AP2-1024FC-10

Temporal CNN InputL-64C3-128C3-AP2 99.47%-128C3-AP2-256FC-10

Natural SNN (this work) InputL-64C3-128C3-AP2 99.42%-128C3-AP2-256FC-10

Note: In temporal CNN, the convolution and pooling here are 3D operations. Here C3 refers to
3 × 3 × 3 convolution, and AP2 refers to 2 × 2 × 2 average pooling.

Table 8
Accuracy comparison of RNNs, temporal CNNs, and SNNs on DVS-CIFAR10 dataset.
Model Structure DVS-CIFAR10

RNN (this work) Input-128–10 23.8%
LSTM (this work) Input-128–10 28.7%
Natural SNN (this work) Input-128–10 32.1%

Natural SNN (Wu et al., 2019) InputL-128C3-128C3-AP2 60.5%-128C3-256C3-AP2-1024FC-10

Temporal CNN InputL-64C3-AP2- 53.7%128C3-AP2-256FC-10

Natural SNN (this work) InputL-64C3-AP2- 60.3%128C3-AP2-256FC-10

Note: In temporal CNN, the convolution and pooling here are 3D operations. Here C3 refers to
3 × 3 × 3 convolution, and AP2 refers to 2 × 2 × 2 average pooling.

model (Model-6) has greater potential to perform better. Al-
though our natural SNN performs slightly worse than the tem-
poral CNN on N-MNIST, we should note that the latter has much
more weight parameters due to the 3D convolution. We try
our best to explain the advantages of SNNs on neuromorphic
workloads as follows: (1) The temporal integration of historical
information can naturally maintain the detail features of sparse
data better (see Fig. 11); (2) The leakage and thresholded firing
mechanism in each neuron can synergistically help denoise re-
dundant information and thus remain useful features (Evangelos
et al., 2015; Gutig, 2016).

5. Conclusion and discussion

5.1. Brief summary

In this work, we design well-rounded experiments to answer
the questions of ‘‘what workloads are ideal for SNNs and how
to evaluate SNNs makes sense’’. Specifically, we conduct exten-
sive workload analyses using different benchmark datasets (ANN-
oriented and SNN-oriented), processing models (ANNs and SNNs),
signal conversion methods (images⇔spikes), and learning algo-
rithms (direct and indirect supervised training). Comprehensive
evaluation metrics are proposed in consideration of the trade-off
between the application accuracy and the memory/compute cost.

Through a variety of comparisons, visualizations, and sensitiv-
ity studies, we give the following modeling insights:

• On simple ANN-oriented workloads (e.g. MNIST), Model-3
(enforced SNN) is a better choice with acceptable accuracy
and less compute cost (without costly multiplications and
with slightly more additions).

• On more complicated ANN-oriented workloads (e.g.
CIFAR10), Model-1 (natural ANN) is preferred to maintain
the model accuracy. Although it needs multiplications, the
amount of additions is the least one.

• On SNN-oriented workloads, Model-6 (natural SNN) is the
best selection with both higher accuracy and lower compute
cost.

The converted SNNs on one hand compromise the accuracy
compared to their original ANN counterparts due to the extra
constraints during ANN pre-training and lossy signal conversion
& parameter adaption during SNN conversion; on the other hand
also lose efficiency compared to the enforced SNNs due to the
much longer time window for accuracy recovery. In SNN mod-
eling, the sparse activities of SNN-oriented datasets significantly
benefit the reduction of compute cost, and a properly larger
firing threshold can improve both the accuracy and compute
cost. In addition, we for the first time point out in the following
discussions that the direct porting of ANNs workloads for the
evaluation of SNN is unwise although many works are doing so,
and a benchmarking framework for SNNs to cover broader tasks,
datasets and metrics is urgently needed.

5.2. Future opportunities

Coding schemes and learning algorithms. The application
accuracy and execution cost of SNNs are mainly determined by
the coding scheme and learning algorithm. Studying new coding
schemes beyond the rate coding is an attractive topic to narrow
the time window (i.e. towards faster response and lower compute
cost) without compromising the expressive power (i.e. maintain-
ing the accuracy). Powerful learning algorithms are also required
to further explore the potential of these coding schemes. More-
over, modifying the simple MSE loss function is also a promising
way to further improve the network classification performance.
All these directions are helpful for training SNNs with less com-
pute cost or extending current models to larger scale, e.g. on
ImageNet-level tasks (Deng et al., 2009).

Datasets, benchmarks, metrics, and applications. In this
work, we highlight that it is unwise to intuitively test SNNs

306 L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307

using ANN-oriented benchmark datasets. More aggressively, it
is interesting to ask a question whether current SNN-oriented
datasets are neuromorphic enough, i.e. whether they can help
fully explore the characteristics of SNNs. In Iyer, Chua, and Li
(2018), the authors claim that SNNs fail to outperform ANNs even
if on neuromorphic datasets (e.g. N-MNIST) and the temporal
information in current neuromorphic datasets is not important.
We find that their comparison is a little unfair since the network
size of the ANNs they use is larger than the SNN baseline. But
they still open an interesting question for the neuromorphic
community: what is and how to build a good neuromorphic
dataset? Despite that there exist different types of generation
method for neuromorphic datasets (Li et al., 2017; Mueggler,
Rebecq, Gallego, Delbruck, & Scaramuzza, 2017; Orchard et al.,
2015; Serrano-Gotarredona & Linares-Barranco, 2015), scanning
static image datasets into the spiking version using a DVS-like
device is still the current common practice. However, it might
not be the best way to exploit the spatio-temporal processing
capability of SNNs.

Second, most of the existing benchmarks are based on visual
tasks, especially the image recognition. They are insufficient to
showcase the capability of SNNs in processing temporal or un-
deterministic information. We need a broader set of benchmark
tasks for SNNs to drive research innovations. Besides visual recog-
nition applications, processing auditory and language information
with intrinsic temporal properties or finding fast solution of op-
timization problems that do not require high solution accuracy,
for example, might be well-suited for SNNs. As another example,
object detection (Binas, Neil, Liu, & Delbruck, 2017; Zhu, Yuan,
Chaney, & Daniilidis, 2018) in high-volume videos is promising
to benefit much from the event-drive paradigm of SNNs towards
low cost. Furthermore, more evaluation metrics beyond the pro-
posed recognition accuracy and memory/compute cost are also
needed. For instance, how to assess the capability of temporal
association, memorization capacity, fault tolerance, and practical
running efficiency on devices are all interesting.

Furthermore, recognizing images is just one out of a huge
number of tasks the brain can perform. Extensive efforts to ex-
plore more functionality potentials of SNNs should be conducted.
One promising direction is to study the network dynamics from a
more global angle. Each neuron in SNNs is a dynamic model with
firing activity that distinguishes from ANNs, which can bring rich
response behaviors in the temporal domain. For example, an SNN
could memorize multiple scenarios encoded in metastable states
and can output the corresponding response trajectory under dif-
ferent stimuli. Even if for one stimulus, changing the sequence
of input spikes can also produce a totally different response.
Therefore, how to accurately control the response trajectory via
external stimuli is interesting for the exploration of memorization
behavior. Overall, SNNs have a huge behavior space that merits
in-depth analysis in the future. In this paper we just provide sev-
eral points to start a discussion. More investigations are expected,
requiring efforts from the entire community.

Acknowledgments

The work was partially supported by National Science Foun-
dation (Grant No. 1725447), Tsinghua University Initiative Scien-
tific Research Program, Tsinghua-Foshan Innovation Special Fund
(TFISF), and National Science Foundation of China (Grant No.
61876215).

References

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., Deng, L., Penn, G., & Yu, D. (2014).
Convolutional neural networks for speech recognition. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 22(10), 1533–1545.

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., et al.
(2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 34(10), 1537–1557.

Banner, R., Hubara, I., Hoffer, E., & Soudry, D. (2018). Scalable methods for 8-bit
training of neural networks, arXiv preprint arXiv:1805.11046.

Binas, J., Neil, D., Liu, S. C., & Delbruck, T. (2017). Ddd17: End-to-end davis
driving dataset.

Caglayan, A., & Burak Can, A. (2018). Exploiting multi-layer features using a cnn-
rnn approach for rgb-d object recognition, In: Proceedings of the european
conference on computer vision (ECCV).

Cao, Y., Chen, Y., & Khosla, D. (2015). Spiking deep convolutional neural networks
for energy-efficient object recognition. International Journal of Computer
Vision, 113(1), 54–66.

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., et al. (2014). Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning.
In ACM sigplan notices, Vol. 49 (pp. 269–284). ACM.

Chen, Y.-H., Krishna, T., Emer, J. S., & Sze, V. (2017). Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural networks.
IEEE Journal of Solid-State Circuits, 52(1), 127–138.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro,
38(1), 82–99.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In Computer vision and pattern
recognition, 2009. CVPR 2009. IEEE conference on (pp. 248–255). IEEE.

Deng, L., Jiao, P., Pei, J., Wu, Z., & Li, G. (2018). Gxnor-net: Training deep
neural networks with ternary weights and activations without full-precision
memory under a unified discretization framework. Neural Networks, 100,
49–58.

Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Frontiers in Computational Neuroscience, 9,
99.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., & Pfeiffer, M. (2015).
Fast-classifying, high-accuracy spiking deep networks through weight and
threshold balancing. In Neural networks (IJCNN), 2015 international joint
conference on (pp. 1–8). IEEE.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R., An-
dreopoulos, A., et al. (2016). Convolutional networks for fast, energy-efficient
neuromorphic computing. Proceedings of the National Academy of Sciences,
113(41), 11441–11446.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017).
Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639), 115.

Evangelos, S., Daniel, N., Michael, P., Francesco, G., Furber, S. B., & Shih-Chii, L.
(2015). Robustness of spiking deep belief networks to noise and reduced bit
precision of neuro-inspired hardware platforms. Frontiers in Neuroscience, 9.

Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The spinnaker project.
Proceedings of the IEEE, 102(5), 652–665.

Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University
Press.

Ghaeini, R., Hasan, S. A., Datla, V., Liu, J., Lee, K., Qadir, A., et al. (2018). Dr-bilstm:
Dependent reading bidirectional lstm for natural language inference, arXiv
preprint arXiv:1802.05577.

Ghosh-Dastidar, S., & Adeli, H. (2009). Spiking neural networks. International
Journal of Neural Systems, 19(04), 295–308.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-
Barwińska, A., et al. (2016). Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626), 471.

Gutig, R. (2016). Spiking neurons can discover predictive features by
aggregate-label learning. Science, 351(6277), aab4113.

Haessig, G., Cassidy, A., Alvarez, R., Benosman, R., & Orchard, G. (2017). Spiking
optical flow for event-based sensors using ibm’s truenorth neurosynaptic
system.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition, In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of Physiology, 117(4), 500–544.

Hu, B., Lu, Z., Li, H., & Chen, Q. (2014). Convolutional neural network archi-
tectures for matching natural language sentences, In: Advances in neural
information processing systems, pp. 2042–2050.

Hu, Y., Tang, H., Wang, Y., & Pan, G. (2018). Spiking deep residual network, arXiv
preprint arXiv:1805.01352.

Hunsberger, E., & Eliasmith, C. (2016). Training spiking deep networks for
neuromorphic hardware.

Hwu, T., Isbell, J., Oros, N., & Krichmar, J. (2017). A self-driving robot using
deep convolutional neural networks on neuromorphic hardware. In 2017
international joint conference on neural networks (IJCNN) (pp. 635–641). IEEE.

http://refhub.elsevier.com/S0893-6080(19)30266-7/sb1
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb1
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb1
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb1
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb1
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb2
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb2
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb2
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb2
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb2
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb2
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb2
http://arxiv.org/abs/1805.11046
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb6
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb6
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb6
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb6
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb6
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb7
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb7
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb7
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb7
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb7
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb8
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb8
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb8
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb8
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb8
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb9
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb9
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb9
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb9
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb9
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb10
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb10
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb10
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb10
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb10
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb11
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb11
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb11
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb11
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb11
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb11
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb11
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb12
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb12
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb12
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb12
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb12
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb13
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb13
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb13
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb13
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb13
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb13
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb13
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb14
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb14
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb14
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb14
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb14
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb14
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb14
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb15
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb15
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb15
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb15
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb15
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb16
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb16
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb16
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb16
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb16
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb17
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb17
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb17
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb18
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb18
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb18
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb18
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb18
http://arxiv.org/abs/1802.05577
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb20
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb20
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb20
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb21
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb21
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb21
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb21
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb21
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb22
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb22
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb22
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb25
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb25
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb25
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb25
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb25
http://arxiv.org/abs/1805.01352
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb29
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb29
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb29
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb29
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb29

L. Deng, Y. Wu, X. Hu et al. / Neural Networks 121 (2020) 294–307 307

Iyer, L. R., Chua, Y., & Li, H. (2018). Is neuromorphic mnist neuromorphic?
analyzing the discriminative power of neuromorphic datasets in the time
domain, arXiv preprint arXiv:1807.01013.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on
Neural Networks, 14(6), 1569–1572.

Jahani, B., & Mohammadi, B. (2018). A comparison between the application of
empirical and ann methods for estimation of daily global solar radiation in
iran. Theoretical and Applied Climatology, 1–13.

Jin, Y., Li, P., & Zhang, W. (2018). Hybrid macro/micro level backpropagation for
training deep spiking neural networks, arXiv preprint arXiv:1805.07866.

Jonke, Z., Habenschuss, S., & Maass, W. (2016). Solving constraint satisfaction
problems with networks of spiking neurons. Frontiers in Neuroscience, 10,
118.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al. (2017).
In-datacenter performance analysis of a tensor processing unit. In Proceed-
ings of the 44th annual international symposium on computer architecture
(pp. 1–12). ACM.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
Computer Science.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny
images. Citeseer.

Lam, M. W., Chen, X., Hu, S., Yu, J., Liu, X., & Meng, H. (2019). Gaussian process
lstm recurrent neural network language models for speech recognition. In
ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal
processing (ICASSP) (pp. 7235–7239). IEEE.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11),
2278–2324.

Lee, J. H., Delbruck, T., & Pfeiffer, M. (2016). Training deep spiking neural
networks using backpropagation. Frontiers in Neuroscience, 10, 508.

Lee, C., Panda, P., Srinivasan, G., & Roy, K. (2018). Training deep spiking
convolutional neural networks with stdp-based unsupervised pre-training
followed by supervised fine-tuning. Frontiers in Neuroscience, 12.

Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2016). Pruning filters
for efficient convnets, arXiv preprint arXiv:1608.08710.

Li, H., Liu, H., Ji, X., Li, G., & Shi, L. (2017). Cifar10-dvs: An event-stream dataset
for object classification. Frontiers in Neuroscience, 11.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128× 128 120 db 15
µs latency asynchronous temporal contrast vision sensor. IEEE Journal of
Solid-State Circuits, 43(2), 566–576.

Liu, L., Deng, L., Hu, X., Zhu, M., Li, G., Ding, Y., et al. (2018). Dynamic sparse
graph for efficient deep learning, arXiv preprint arXiv:1810.00859.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Networks, 10(9), 1659–1671.

Maass, W. (2014). Noise as a resource for computation and learning in networks
of spiking neurons. Proceedings of the IEEE, 102(5), 860–880.

Matten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne. Journal of
Machine Learning Research (JMLR), 9, 2579–2605.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F.,
et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197), 668–673.

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., & Masquelier, T.
(2018). Combining stdp and reward-modulated stdp in deep convolutional
spiking neural networks for digit recognition arXiv preprint arXiv:1804.
00227.

Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., & Scaramuzza, D. (2017).
The event-camera dataset and simulator: Event-based data for pose esti-
mation, visual odometry, and slam. International Journal of Robotics Research,
(49).

Novikov, A., Podoprikhin, D., Osokin, A., & Vetrov, D. P. (2015). Tensorizing
neural networks, In: Advances in neural information processing systems,
pp. 442–450.

Orchard, G., Jayawant, A., Cohen, G. K., & Thakor, N. (2015). Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in
Neuroscience, 9(178).

Pengjie Gu, G. P., & Tang, H. (2019). Stca: Spatio-temporal credit assignment
with delayed feedback in deep spiking neural networks, In: International
joint conferences on artificial intelligence.

Redmon, J., & Farhadi, A. (2017). Yolo9000: better, faster, stronger, arXiv preprint.
Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., & Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for
image classification. Frontiers in Neuroscience, 11, 682.

Sengupta, A., Ye, Y., Wang, R., Liu, C., & Roy, K. (2019). Going deeper in spiking
neural networks: VGG and residual architectures. Frontiers in Neuroscience,
13.

Serrano-Gotarredona, T., & Linares-Barranco, B. (2015). Poker-dvs and mnist-
dvs. their history, how they were made, and other details. Frontiers in
Neuroscience, 9(437).

Shi, G., Liu, Z., Wang, X., Li, C. T., & Gu, X. (2017). Object-dependent
sparse representation for extracellular spike detection. Neurocomputing, 266,
674–686.

Shi, L., Pei, J., Deng, N., Wang, D., Deng, L., Wang, Y., et al. (2015). Development
of a neuromorphic computing system, In: 2015 IEEE international electron
devices meeting (IEDM), pp. 4.3.1–4.3.4.

Shrestha, S. B., & Orchard, G. (2018). Slayer: Spike layer error reassignment in
time, In: Advances in neural information processing systems, pp. 1412–1421.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
et al. (2016). Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587), 484–489.

Tavanaei, A., & Maida, A. S. (2017). Bp-stdp: Approximating backpropagation
using spike timing dependent plasticity, arXiv preprint arXiv:1711.04214.

Vidal, A. R., Rebecq, H., Horstschaefer, T., & Scaramuzza, D. (2018). Ulti-
mate slam? combining events, images, and imu for robust visual slam
in hdr and high speed scenarios. IEEE Robotics & Automation Letters, 3(2)
994–1001.

Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2018). Spatio-temporal backpropa-
gation for training high-performance spiking neural networks. Frontiers in
Neuroscience, 12.

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., & Shi, L. (2019). Direct training for
spiking neural networks: Faster, larger, better, In: Proceedings of the AAAI
conference on artificial intelligence, Vol. 33, pp. 1311–1318.

Yin, S., Ouyang, P., Tang, S., Tu, F., Li, X., Zheng, S., et al. (2017). A high energy
efficient reconfigurable hybrid neural network processor for deep learning
applications. IEEE Journal of Solid-State Circuits, 53(4), 968–982.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep
learning based natural language processing. IEEE Computational Intelligence
Magazine, 13(3), 55–75.

Zhang, W., Bai, Z., & Zhu, Y. (2019). An improved approach based on cnn-
rnns for mathematical expression recognition. In Proceedings of the 2019
4th international conference on multimedia systems and signal processing
(pp. 57–61). ACM.

Zhu, A. Z., Yuan, L., Chaney, K., & Daniilidis, K. (2018). Ev-flownet: Self-supervised
optical flow estimation for event-based cameras.

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable
architectures for scalable image recognition, In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8697–8710.

http://arxiv.org/abs/1807.01013
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb31
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb31
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb31
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb32
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb32
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb32
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb32
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb32
http://arxiv.org/abs/1805.07866
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb34
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb34
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb34
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb34
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb34
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb35
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb35
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb35
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb35
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb35
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb35
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb35
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb36
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb36
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb36
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb37
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb37
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb37
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb38
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb38
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb38
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb38
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb38
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb38
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb38
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb39
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb40
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb40
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb40
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb40
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb40
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb41
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb41
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb41
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb42
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb42
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb42
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb42
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb42
http://arxiv.org/abs/1608.08710
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb44
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb44
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb44
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb45
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb45
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb45
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb45
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb45
http://arxiv.org/abs/1810.00859
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb47
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb47
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb47
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb48
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb48
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb48
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb49
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb49
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb49
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb50
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb50
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb50
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb50
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb50
http://arxiv.org/abs/1804.00227
http://arxiv.org/abs/1804.00227
http://arxiv.org/abs/1804.00227
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb52
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb52
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb52
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb52
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb52
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb52
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb52
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb54
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb54
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb54
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb54
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb54
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb57
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb57
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb57
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb57
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb57
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb58
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb58
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb58
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb58
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb58
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb59
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb59
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb59
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb59
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb59
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb60
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb60
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb60
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb60
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb60
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb63
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb63
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb63
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb63
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb63
http://arxiv.org/abs/1711.04214
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb65
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb65
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb65
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb65
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb65
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb65
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb65
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb66
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb66
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb66
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb66
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb66
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb68
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb68
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb68
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb68
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb68
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb69
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb69
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb69
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb69
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb69
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb70
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb70
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb70
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb70
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb70
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb70
http://refhub.elsevier.com/S0893-6080(19)30266-7/sb70

	Rethinking the performance comparison between SNNS and ANNS
	Introduction
	Preliminaries
	Artificial neural networks
	Spiking neural networks
	Typical network topologies
	Benchmark datasets

	Benchmarking methodology
	Data signal conversion
	ANN-oriented workloads
	SNN-oriented workloads
	Training algorithms
	Evaluation metrics

	Experimental results
	Experimental setup
	Accuracy analysis
	Cost analysis
	Additional comparison

	Conclusion and discussion
	Brief summary
	Future opportunities

	Acknowledgments
	References

