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a b s t r a c t

This paper investigates a smoothing neural network (SNN) to solve a robust sparse signal recon-
struction in compressed sensing (CS), where the objective function is nonsmooth l1-norm and the
feasible set satisfies an inequality of lp-norm (2 ≥ p ≥ 1) which is used for measuring residual errors.
With a smoothing approximate technique, the non-smooth and non-Lipschitz continuous issues of the
l1-norm and the gradient of lp-norm can be solved efficiently. We propose a SNN which is modeled by
a differential equation and give its circuit implementation. In this case, we prove the proposed SNN
converges to the optimal of considered problem. Simulation results are discussed to demonstrate the
efficiency of the proposed algorithm.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Compressed sensing (CS) provides a new sampling paradigm
for reducing data collection. On account of the pioneering
works (Candes, 2008; Candes, Romberg, & Tao, 2006a, 2006b;
Donoho, 2006), CS has become an active research branch in Bel-
lasi and Benini (2015), Chen et al. (2011) and Kulkarni and
Mohsenin (2017). CS is also an important tool and theory in
signal processing. There are many tools and theories for sig-
nal processing, such as the linear canonical transform and the
fractional Fourier transform (FRFT) (Wei, 2016, 2018; Wei &
Li, 2016). The CS theory shows that the original sparse signal
x ∈ Rn can be accurately reconstructed from a small number
of linear measures b = Ax ∈ Rm (m ≪ n), where A ∈ Rm×n

is the sensing matrix i.e., measurement matrix. Considering that
the measurement noise is unavoidable in practical observation.
Therefore, the compressed measure can be expressed as:

b = Ax + e

where e ∈ Rm is measurement noise.
Since m ≪ n, reconstructing the original signal x from

the compressed measurement b is generally ill-posed. Fortu-
nately, Candes et al. (2006a) showed that, if sensing matrix A has
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some stable embedding properties, the original signal x can be
reliably recovered with an error upper bounded which depends
on the noise energy. Then, an natural method is to relax Ax = b
to yield the following optimization problem:

min ∥x∥0 s.t. ∥Ax − b∥2 ≤ ϵ

where ∥ · ∥0 is l0-norm, ϵ > 0 is upper bound of the residual
error pre-determined from the noise level. However, solving the
l0 minimization problem is known to be NP-hard. Then, a convex
relaxation model is the replacement for it to yield the following
problem, i.e., BP denoising (BPDN) :

min ∥x∥1 s.t. ∥Ax − b∥2 ≤ ϵ (1)

According to the convex analysis theory, the problem (1) is
equivalent to its Lagrangian version, i.e., the following l1-l2 min-
imization problem.

min ∥Ax − b∥2
2 + τ∥x∥1 (2)

where τ > 0 be a regularization parameter which can be inter-
preted as a relative weight or trade-off between the residual error
term ∥Ax−b∥2

2 and regularization term ∥x∥1. The l1–l2 minimiza-
tion problem is more easily to solve because of its convexity, so it
is widely used in many problems that can be converted in sparse
signal reconstruction, such as data clustering (Elhamifar & Vidal,
2013), blind source separation (Li, Cichocki, & Amari, 2004, 2006),
variable selection (Fan & Li, 2001) and face recognition (Wag-
ner et al., 2012), etc. Some numerical iterative algorithms have
been proposed for resolving l1–l2 minimization problem, such
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as basis-pursuit (BP) (Candes et al., 2006b), Lasso (Tibshirani,
1996), the interior-point algorithm (Koh, Kim, & Boyd, 2007), aug-
mented Lagrangian method (Afonso, Bioucas-Dias, & Figueiredo,
2011), Tomioka and Sugiyama (2009) and gradient projection
method (Figueiredo, Nowak, & Wright, 2007), etc.

In paper Wen et al. (2017), a generalized lp-norm (0 ⩽ p <
2) that can be viewed as the metric for the residual error was
firstly proposed for investigating a robust sparse recovery with
impulsive measurement noises in CS.

min ∥x∥1 s.t. ∥Ax − b∥p
p ≤ ϵ (3)

where ∥x∥p
p =

∑n
i=1 |xi|p. Note that (1) is a special case of

formulation (3), i.e., p = 2.
The intuition behind adopting lp-norm (2 ≥ p > 1) as the

loss function is that, compared with the quadratic function, the lp-
norm has a less rapidly increasing function if p < 2. Therefore, the
lp-norm function has been used in many signal processing appli-
cations, such as array beamforming (Jiang et al., 2014), spectrum
sensing (Moghimi, Nasri, & Schober, 2009), robust sparse signal
recovery for lp–l1 minimization (Wen et al., 2017).

Since neural network methods can solve optimization problem
efficiently by hardware circuit in parallel, they become a more
and more hot topic in the branch of CS. Recently, a series of neural
network algorithms and their applications have been reported in
literature (Bian & Chen, 2012; Chen et al., 2011; Cheng, Hou, &
Tan, 2009; Cheng et al., 2018; Dong & Zhu, 2018; Feng et al.,
2017; Guo & Yang, 2015; Karimi & Gao, 2010; Leung, Sum, &
Constantinides, 2014; Li & Wei, 2016a, 2016b; Liu & Hu, 2016;
Liu & Wang, 2016; Wang et al., 2018; Wang & Zhang, 2017; Wei
et al., 2018; Xu et al., 2012). Liu and Wang (Liu & Wang, 2016)
investigated several one-layer projection neural network algo-
rithms with lower model complexity for solving l1-minimization
problem based on a projection operator, but the proposed algo-
rithms can only solve the problem of sparse signal reconstruction
without noise measurement. A recurrent neural network (RNN)
was proposed to handle constrained l0-norm minimization by
Guo and Yang in Guo and Yang (2015) based on an approximation
method. It guarantees to obtain the globally convergent optimal
solution. While its neurodynamic system can not handle the mini-
mization problem with inequality constraints (with measurement
noises). Based on the homotopy technique and the iterative hard
thresholding (IHT) method, two homotopy methods for solving
the l0 minimization problem in CS are proposed by Dong and
Zhu in Dong and Zhu (2018), which overcomes the difficulty of
how to select parameters of the IHT method. However, it only
effectively deals with the problem of sparse signal reconstruction
without measurement noises. In addition, a one-layer smoothing
neural network (SNN) algorithm to solve lq (1 > q > 0)
optimization problem was proposed by Bian and Chen (2012),
which has a simple neural network model and just solve the
linear constrained optimization problem (without measurement
noises) effectively. Liu and Hu (2016) proposed an effective scaled
gradient projection for solving l1–l2 minimization problem by use
of a stationary penalty approach. Wang and Zhang (2017) adopted
a smoothing projection neural network (SPNN) algorithm to solve
a hybrid norm model l1−q (2 ≥ q > 1) minimization problem.
The proposed SPNN algorithm can address the nonconvex hybrid
norm optimization problem, while it cannot solve the nonlinear
inequality constraint optimization problem (NICOP) (the problem
with measurement noises) because the analytic expression of
the projection operator of NICOP cannot be obtained. Based on
the Fischer–Burmeister complementarity functions, Li and Wei
presented a neural network method for the signal reconstruction
by solving l1–l2 minimization problem (Li & Wei, 2016b). Later,
two new Lagrange neural networks for sparse reconstruction
problem by solving l1–l2 minimization problem (one is used for

solving sparse signal reconstruction problem without measure-
ment noise, the other is used to solve the same problem with
measurement noise) and the circuit realization of proposed two
neural networks are investigated in Li and Wei (2016a) by Li
and Wei. Leung et al. (2014) and Feng et al. (2017) adopted
Lagrange programming neural network (LMNN) for recovering
sparse signal with noise-free and noisy measurements. The vari-
ous Lagrange programming neural networks can effectively solve
the l1-norm minimization problem with Gaussian random noise,
but they have some difficulties in solving lq-norm (1 > q > 0)
optimization problem or the sparse signal reconstruction problem
with non-Gaussian noise measurement efficiently.

In paper Wen et al. (2017), the author investigated a Lp-ADM
algorithm to solve the above problem (3). Considering that, neural
network algorithms as an efficient method to recover sparse
signal. However, there are few neural network algorithms for
addressing the problem (3). In order to use a neural network al-
gorithm to solve problem (3), a smoothing neural network based
on a smoothing approximation method and multiplier method is
researched in this paper. The main contributions of this paper are
as follows:

(1) Instead of using differential inclusion approaches to deal
with the non-differentiable optimization, a smooth approxima-
tion method is used to handle gradient of non-smooth function
(l1-norm ) that can avoid the problem of parameter selection in
differential inclusion (the derivative is zero) effectively in this
paper.

(2) A smoothing approximation method is employed to make
the gradients of lq (2 ≥ q ≥ 1) to satisfy Lipschitz condition,
which can solve the difficulties of non-Lipschitz gradient of lq
(2 ≥ q ≥ 1) in direct derivation method.

(3) Based on multiplier method, a differential equation is used
to achieve the penalty parameter λ rather than fixed penalty
parameter, which makes the proposed smoothing neural network
(SNN) easily to implement by analog circuit.

(4) A Lyapunov method is applied to analyze and prove the
stability of the proposed smoothing neural network algorithm.

The remainder of this paper is organized as follows. In
Section 2, some definitions and lemmas of smoothing approxi-
mation are provided. In Section 3, the smoothing approximation
model of l1 − lp (2 ≥ p ≥ 1) minimization problem is intro-
duced. In Section 4, a smoothing neural network is presented and
its convergence and optimality are proved. In Section 5, three
experimental results are described to illustrate effectiveness of
the proposed SNN algorithm. An analog circuit implement of
proposed SNN is presented in Section 6. Finally, we conclude the
paper in Section 7.

Notations. Let column vectors x = (x1, x2, . . . , xn)T and y =

(y1, y2, . . . , yn)T , ⟨x, y⟩ =
∑n

i=1 xiyi is the inner product of x

and y, xi is the ith element of x. ∥x∥ =
(∑n

i=1 x
2
i

) 1
2 denotes the

Euclidean norm. ∥x∥p
p =

∑n
i=1 |xi|p, (2 ≥ p ≥ 1), Ai is the i row of

the matrix A, bj is the jth element of vector b. ∇x f̂ (x, µ) means
the gradient of f̂ at x and ∇µ f̂ (x, µ) represents the gradient of f̂
at µ. The sign (x) is the signum function

sign (x) =

{ 1 if x > 0
[−1, 1] if x = 0
−1 if x < 0

2. Smoothing approximation

In the past decades, many smoothing approximation methods
for solving nonsmooth optimizations have been developed in Bian
and Chen (2014) and Chen (2012). The main feature of smoothing
method is to approximate the nonsmooth function by the para-
metric smoothing function. The definition of smoothing function
is as follows:
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Definition 1. Let θ : Rn
→ R be a locally Lipschitz function. We

call θ̂ : Rn
× (0,+∞) → R a smoothing function of θ , if θ̂ has

the following conditions:

(1) For any fixed µ > 0, θ̂ (·, µ) is continuous differentiable in
Rn, and for any fixed x ∈ Rn, θ̂ (x, ·) is differentiable in (0,+∞).

(2) For any fixed x ∈ Rn, lim
µ→0+

θ̂ (x, µ) = θ (x).

(3) There exists a positive constant κθ̂ > 0 such that⏐⏐⏐∇µθ̂ (x, µ)
⏐⏐⏐ ≤ κθ̂ ∀µ ∈ (0,+∞) , x ∈ Rn

(4)
{

lim
z→x,µ→0

∇z θ̂ (z, µ)
}

⊆ ∂θ (x)

From the above definition (2) and (3), we deduce the following
conditions:

lim
z→x,µ→0

θ̂ (z, µ) = θ (x)⏐⏐⏐θ̂ (x, µ)− θ (x)
⏐⏐⏐ ≤ κθ̂µ ∀µ ∈ [0,+∞) , x ∈ Rn⏐⏐⏐θ̂ (x, µ)− θ̂ (x, µ̃)
⏐⏐⏐ ≤ κθ̂ (µ− µ̃) ,∀x ∈ Rn, µ ≥ µ̃ > 0

In the following, two propositions for the compositions of
smoothing functions (Bian & Chen, 2012) are displayed:

Lemma 1. (1) If ĥ1, . . . , ĥm be smoothing functions of h1, . . . , hm,
then

∑m
i=1 aiĥi is a smoothing function of

∑m
i=1 aihi with k∑m

i=1 ai ĥi
=∑m

i=1 aiκĥi when ai ≥ 0 and hi is regular for any i = 1, 2, . . . ,m.
(2) Let φ : Rm

→ R be regular and ϕ : Rn
→ Rm be

continuously differentiable. Let ϕ̂ be a smoothing function of ψ , then
ϕ̂ (φ) is a smoothing function of ϕ (φ) with κϕ̂(φ) = κϕ̂ .

In this paper, the smooth approximation function with a simple
structure (Chen, 2012) will be used.

θ̂ (s, µ) =

{
|s| , if |s| > µ
s2
2µ +

µ

2 , if |s| ≤ µ
(4)

where θ̂ (·, µ) is a convex of x for any µ > 0, θ̂ (s, ·) is nondecreas-
ing continuous function for any fixed s ∈ R.

Next, two assumptions of the objective and constrained func-
tion are displayed.

Assumption 1. Both f (x) and g(x) functions are convex in Rn.

Assumption 2 (Slater Condition). There exists x̂ ∈ Rn, such that
g
(
x̂
)
< 0.

3. The smoothing approximation to l1−lp (2 ≥ p ≥ 1) problem

min f (x) = ∥x∥1

s.t. g (x) = ∥Ax − b∥p
p − ϵ ≤ 0

(5)

where ∥ · ∥1 is the 1-norm, ∥Ax − b∥p
p =

∑m
i=j

⏐⏐Ajx − bj
⏐⏐p ,

(2 ≥ p ≥ 1), and ϵ is a nonnegative parameter that can bound
the p-norm of the residual error.

Next, we will show the problem (5) has the capability to
successfully recover the original signals with a finite 2-norm
error. A well-known condition of the sensing matrix A that be
used to ensure the satisfactory recovery of x is called restricted
isometry property (RIP) (Candes, 2008). Let integer s = 1, 2, . . . ,
be the s-restricted isometry constant δs of A, the A satisfies the
RIP condition if the following conditions are true

(1 − δs) ∥z∥2 ⩽ ∥Az∥ ⩽ (1 + δs) ∥z∥2

Lemma 2. Supposing that the sensing matrix A satisfies the RIP of
order 2s with δ2s <

√
2−1. Then, for any measurement noise e with

∥e∥p
p ⩽ ϵ i.e., ∥e∥p ⩽ ϵ

1
p , 1 ⩽ p ⩽ 2, and any signal x supported on

T0 with |T0| ⩽ s, the relation between the solutions x∗ of problem
(5) and true signal x0 yields

∥x∗
− x0∥2 ⩽ Csϵ

1
p (6)

where Cs =
2
√

2+2δ2s

1−
(
1+

√
2
)
δ2s

.

Proof. The derivation is similar to that in Wen et al. (2017). Since
x∗ is a solution of problem (5) and the measurement noise obeys
∥e∥p ⩽ ϵ

1
p i.e., ∥Ax∗

− b∥p ⩽ ϵ
1
p , ∥Ax0 − b∥p ⩽ ϵ

1
p . Let d = x∗

− x0,
we obtain

∥Ad∥ ⩽∥Ax∗
− b∥2 + ∥Ax0 − b∥2

⩽∥Ax∗
− b∥p + ∥Ax0 − b∥p

⩽2ϵ
1
p

(7)

As the pointed out in Candes (2008) that

∥d∥ =

√
2 + 2δ2s∥Ad∥2

1 −

(
1 +

√
2
)
δ2s

(8)

if δ2s <
√
2−1. Therefore, substituting (7) into (8), we obtain the

conclusion. □

Next, the smoothing approximation of problem (5) based on
smoothing functions presented in (4) will be discussed. Note that,
∥x∥1 is a convex, nonsmooth function, moreover, when 2 >

p > 1, the g(x) is smooth and convex but its gradient is not
Lipschitz continuous (not bounded), both the object functions
f (x) and constrains condition g(x) are nonsmooth when p =

1. Therefore, the traditional proximal gradient methods cannot
be used directly. To solve problem (5) using a neural network
modeled as ordinary differential equation (ODE) (it is easy to
implement by circuit), a smoothing approximation method (4) is
adopted. Since lim

z→x,µ→0
θ̂ (z, µ) = θ (x), f (x) can be approximated

by

f̂ (x, µ) =

n∑
i=1

f̂ (xi, µ), f̂ (xi, µ) =

{
|xi| , if |xi| > µ
x2i
2µ +

µ

2 , if |xi| ≤ µ
(9)

g(x) is approximated by

ĝ (x, µ) =

n∑
j=m

w
(
Ajx − bj

)
− ϵ ≤ 0

w
(
Ajx − bj

)
=

⎧⎨⎩
⏐⏐Ajx − bj

⏐⏐p if
⏐⏐Ajx − bj

⏐⏐ > µ(
(Ajx−bj)

2

2µ +
µ

2

)p

if
⏐⏐Ajx − bj

⏐⏐ ≤ µ

(10)

Then, the problem (3) can be approached by the following
smoothing function:

min f̂ (x, µ) s.t. ĝ (x, µ) (11)

4. Smoothing neural network

In this section, based on smoothing approximation method,
we proposed a smoothing neural network algorithm to resolving
problem (5).{

ẋ = −2∇x f̂ (x, µ)− 2
[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)

λ̇ = −λ+
[
λ+ ĝ (x, µ)

]+ (12)



Y. Zhao, X. He, T. Huang et al. / Neural Networks 122 (2020) 40–53 43

where λ is a penalty parameter, [·]+ = max {0, ·}, µ = µ0e−2t ,
∇x f̂ (x, µ) is a gradient of the smoothing function of f with
respect to xi and it satisfies:

∇xi f̂ (xi, µ) =

{
sign (xi) , if |xi| > µ

xi
µ

, if |xi| ≤ µ
(13)

∇xĝ (x, µ) is the gradient of ĝ (x, µ) at x with any fix µ, which
follows:

∇xĝ (x, µ) =

m∑
j=1

∇xw
(
Ajx − bj

)
∇xw

(
Ajx − bj

)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p
⏐⏐Ajx − bj

⏐⏐p−1 sign
(
Ajx − bj

)
AT
j

, if
⏐⏐Ajx − bj

⏐⏐ > µ

p
(
(Ajx−bj)

2

2µ +
µ

2

)p−1
(Ajx−bj)ATj

µ

, if
⏐⏐Ajx − bj

⏐⏐ ≤ µ

(14)

Theorem 1. Suppose that Assumptions 1 and 2 hold, x∗ is an
optimal solution of problem (5) or (11) if and only if there exist
λ∗

∈ R, µ∗
→ 0 and the (x∗, λ∗, µ∗) satisfy:{

0 = −∇x f̂ (x∗, µ∗)−
[
λ∗

+ ĝ (x∗, µ∗)
]+

∇xĝ (x∗, µ∗)

0 = −λ∗
+
[
λ∗

+ ĝ (x∗, µ∗)
]+ (15)

Proof. According to the Karush–Kuhn–Tucker (KKT)
conditions (Clarke, 1983), x∗ is an optimal solution to problem
(5), if and only if the following conditions hold:

0 ∈ ∂∥x∗
∥1 + λ∗∂∥Ax∗

− b∥p
p (16)

∥Ax∗
− b∥p

p − ϵ ≤ 0 (17)

λ∗
≥ 0 , λ∗

(
∥Ax∗

− b∥p
p − ϵ

)
= 0 (18)

According to (4) in Definition 1,
{

lim
z→x,µ→0

∇z θ̂ (z, µ)
}

⊆ ∂θ (x), if

µ → 0+ and λ∗
=
[
λ∗

+ ĝ (x∗, µ∗)
]+.

We have

0 = −∇x f̂
(
x∗, µ∗

)
−
[
λ∗

+ g
(
x∗
)]+

∇xĝ
(
x∗, µ∗

)
⊆ ∂∥x∗

∥1 + λ∗∂∥Ax − b∥p
p

(19)

Then, the equality λ∗
=

[
λ∗

+ ĝ (x∗, µ∗)
]+ is true which

shows that λ∗
≥ 0, ĝ (x∗, µ∗) ≤ 0 and λ∗ĝ (x∗, µ∗) = 0. From

the (2) of Definition 1 and µ∗
→ 0+, one has λ∗

≥ 0, g (x∗) ≤ 0
and λ∗g (x∗) = 0 which is equivalent to (17) and (18). The proof
is complete. □

Theorem 2. For any fixed µ0 > µ > 0, There exists a unique
solution of the smoothing neural network (12) if both ∇x f̂ (·, µ) and
∇xĝ (·, µ) satisfy local Lipschitz condition.

Proof. First, we show the ∇xĝ (x, µ) at x for any fixed µ > 0
satisfies Lipschitz condition, which can be derived by the global
boundedness of the Clarke generalized gradient of ∇xĝ (x, µ).
According to the definition of Clarke gradient, ∇xĝ (x, µ) is not
differentiable when

⏐⏐Ajx − bj
⏐⏐ = µ. Thus, we only need to prove

the boundedness of the gradient of ∇xĝ (x, µ) when
⏐⏐Ajx − bj

⏐⏐ ̸=

µ.
For

⏐⏐Ajx − bj
⏐⏐ > µ, with fixed µ > 0, we obtain⏐⏐∇2

xw
(
Ajx − bj, µ

)⏐⏐ =

⏐⏐⏐p (p − 1)
⏐⏐Ajx − bj

⏐⏐p−2 AjAT
i

⏐⏐⏐
≤ p

⏐⏐AjAT
i

⏐⏐µp−2
(20)

when
⏐⏐Ajx − bj

⏐⏐ < µ, one has⏐⏐∇2
xw
(
Ajx − bj, µ

)⏐⏐
=p (p − 1)

((
Ajx − bj

)2
2µ

+
µ

2

)p−2 (
Ajx − bj

)2 AjAT
i

µ

+ p

((
Ajx − bj

)2
2µ

+
µ

2

)p−1
AjAT

i

µ

≤p (p − 1)
(µ
2

)p−2
⏐⏐AjAT

i

⏐⏐
µ

+ pµp−1

⏐⏐AjAT
i

⏐⏐
µ

≤2p

⏐⏐AjAT
i

⏐⏐
µ

(
µp−2

+ µp−1) (21)

Therefore, for any x, r ∈ Rn, we have

∥∇xĝ (x, µ)− ∇r ĝ (r, µ) ∥

≤2np
max
i,j

⏐⏐AjAT
i

⏐⏐
µ

(
µp−2

+ µp−1)
∥x − r∥

(22)

The same way for ∇xĝ (x, µ), for any x, r ∈ Rn, one has

∥∇x f̂ (x, µ)− ∇r f̂ (r, µ) ∥ ≤
n
µ

∥x − r∥ (23)

Denote z1 =
[
xT1, λ1

]T
∈ Rn+1 and z2 =

[
xT2, λ2

]T
∈ Rn+1 are

two solutions of SNN with initial point z0 ∈ Rn+1. Suppose there
exists a t̂ , such that z1

(
t̂
)

̸= z2
(
t̂
)
. There exists a ϱ > 0, such

that z1 (t) ̸= z2 (t), ∀t ∈
[
t̂, t̂ + ϱ

]
. Write

Φ (z, µ) =

(
−2∇x f̂ (x, µ)− 2

[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)

−λ+
[
λ+ ĝ (x, µ)

]+ )
(24)

For any fixed µ > 0, ∇x f̂ (x, µ) and ∇xĝ (x, µ) satisfies Lip-
schitz condition, so is Φ (z, µ). Therefore, there exists a L > 0,
such that

∥Φ (z1, µ)−Φ (z2, µ) ∥ ≤ L∥z1 − z2∥ (25)

which yields

1
2

d
dt

∥z1 − z2∥2
= (z1 − z2)T (ż1 − ż2)

= (z1 − z2)T (Φ (z1, µ)−Φ (z2, µ))

≤ L∥z1 − z2∥2 ,∀t ∈
[
0, t̂ + ϱ

] (26)

Integrating the above inequality form 0 to t
(
t ≤ t̂ + ϱ

)
and

applying Gronwall’s inequality, we obtain that z1 = z2. The proof
is complete. □

Theorem 3. With Assumptions 1 and 2, the trajectory
[
xT , λ

]T
∈

Rn+1 associated with SNN (12) is stable and x converges to an
optimal solution of problem (5) with any given initial point.

Proof. Let x∗
∈ Rn be an optimal solution of problem (5). From

Definition 1, there exists λ∗
∈ R and µ∗ satisfies the equations in

(10)–(12).
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Considering the following Lyapunov function:

V (x, λ)

=f̂ (x, µ)− f̂
(
x∗, µ∗

)
− ∇µ f̂

(
x∗, µ∗

) (
µ− µ∗

)
+

1
2

(
∥
[
λ+ ĝ (x, µ)

]+
∥
2
− ∥

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
∥
2
)

+ kf̂µ

−
(
x − x∗

)T (
∇xĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+
+ ∇x f̂

(
x∗, µ∗

))
+

1
2
∥x − x∗

∥
2
+

1
2
∥λ− λ∗

∥
2

−
(
λ− λ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+
+ kĝ

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
µ

− ∇µĝ
(
x∗, µ∗

) (
µ− µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+
(27)

where kf̂ = k∑n
i=1 f̂(xi,µ)

> 0, kĝ = k∑m
i=1 w(Ajx−bj)

> 0 and

µ = µ0e−2t .
Taking the derivative of V (x, λ) with respect to t , we have

dV (x, λ)
dt

≤ sup
∇x f̂ (x, µ)
∇xĝ (x, µ)

2
(
∇x f̂ (x, µ) + ∇xĝ (x, µ)

[
λ+ ĝ (x, µ)

]+

+ x − x∗
− ∇x f̂

(
x∗, µ

)
−∇xĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)T
×

(
−∇x f̂ (x, µ)−

[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)

)
− 2kf̂µ

+

([
λ+ ĝ (x, µ)

]+
−
[
λ∗

+ ĝ
(
x∗, µ

)]+
+ λ− λ∗

)T
×

(
−λ+

[
λ+ ĝ (x, µ)

]+)
− 2kĝ

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
µ

− 2µ
(
∇µ f̂ (x, µ) + ∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
− ∇µ f̂

(
x∗, µ∗

)
−∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)
= V

(28)

In what follows, we will show some properties of V i.e., the
right-hand side of (28).

V =2
(
∇x f̂ (x, µ)+ ∇xĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
+ x − x∗

− ∇x f̂
(
x∗, µ∗

)
−∇xĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)T
×

(
x − x∗

− ∇x f̂ (x, µ)−
[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)

)
+ 2

(
∇x f̂ (x, µ)+ ∇xĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
+ x − x∗

− ∇x f̂
(
x∗, µ∗

)
−∇xĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)T
×
(
x∗

− x
)
− 2kĝ

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
µ

+

([
λ+ ĝ (x, µ)

]+
−
[
λ∗

+ ĝ
(
x∗, µ

)]+
+ λ− λ∗

)T
×

(
−λ+

[
λ+ ĝ (x, µ)

]+)
− 2kf̂µ

− 2µ
(
∇µ f̂ (x, µ)+ ∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
− ∇µ f̂

(
x∗, µ∗

)
− ∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)

(29)

let

F1 =2
(
∇x f̂ (x, µ)+ ∇xĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
+ x − x∗

− ∇x f̂
(
x∗, µ∗

)
−∇xĝ

(
x∗, µ∗

) [
λ∗

+ g
(
x∗
)]+)T

×

(
−∇x f̂ (x, µ)−

[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)+ x − x∗

)
(30)

and

F2 =2
(
∇x f̂ (x, µ)− ∇x f̂

(
x∗, µ∗

)
+ x − x∗

)T
×
(
x∗

− x
)
− 2kf̂µ− 2µ

(
∇µ f̂ (x, µ)− ∇µ f̂

(
x∗, µ∗

)) (31)

and

F3 =

([
λ+ ĝ (x, µ)

]+
−
[
λ∗

+ ĝ
(
x∗, µ∗

)]+
+ λ− λ∗

)T
×

(
−λ+

[
λ+ ĝ (x, µ)

]+)
− 2kĝ

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
µ

+ 2
(
∇xg (x) [λ+ g (x)]+ − ∇xg

(
x∗
)T [

λ∗
+ g

(
x∗
)]+)T

×
(
x∗

− x
)
− 2µ

(
∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
−∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)
(32)

For F1, we get

F1 = − 2
(
∇x f̂

(
x∗, µ∗

)
+ ∇xĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)T
×

(
−∇x f̂ (x, µ)−

[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)+ x − x∗

)
+ 2

(
∇x f̂ (x, µ)+

[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)+ x − x∗

)T
×

(
−∇x f̂ (x, µ)−

[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)+ x − x∗

)
=2∥x − x∗

∥
2
− 2∥∇x f̂ (x, µ)+

[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ) ∥2

(33)

Since x∗ is an optimal solution of problem (5), then
∇x f̂ (x∗, µ∗)+ [λ∗

+ g (x∗)]+ ∇xg (x∗) = 0. Therefore, we have

F1 = 2∥x − x∗
∥
2
− 2∥∇x f̂ (x, µ)+

[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ) ∥2

(34)

For F2, one have

F2 =2
(
∇x f̂ (x, µ)− ∇x f̂

(
x∗, µ∗

)
+ x − x∗

)T
×
(
x∗

− x
)
− 2µ

(
∇µ f̂ (x, µ)− ∇µ f̂

(
x∗, µ∗

))
− 2kf̂µ

= − 2∥x − x∗
∥
2
+ 2

(
∇x f̂ (x, µ)− ∇x f̂

(
x∗, µ∗

))T
×
(
x∗

− x
)
− 2kf̂µ− 2µ

(
∇µ f̂ (x, µ)− ∇µ f̂

(
x∗, µ∗

))
≤ − 2∥x − x∗

∥
2

(35)

Utilizing the convexity of f̂ (x, µ) about x and µ provided in
Appendix, we have

− kf̂
(
µ− µ∗

)
+ ∇x f̂

(
x∗, µ∗

) (
x − x∗

)
⩽ f̂ (x, µ)− f̂

(
x∗, µ∗

)
⩽ kf̂

(
µ− µ∗

)
+ ∇x f̂ (x, µ)

(
x − x∗

)
(36)
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then(
∇x f̂ (x, µ)− ∇x f̂

(
x∗, µ∗

))T (
x∗

− x
)
+ 2kf̂

(
µ∗

− µ
)
⩽ 0 (37)

Since µ ≥ µ∗ > 0, ∇µ f̂ (x, µ) ⩾ 0, ∇µ f̂ (x∗, µ∗) = 0, we have(
∇x f̂ (x, µ)− ∇x f̂

(
x∗, µ∗

))T (
x∗

− x
)
− 2kf̂µ

− 2µ
(
∇µ f̂ (x, µ)− ∇µ f̂

(
x∗, µ∗

))
⩽ 0

(38)

For F3, we have

F3 =

([
λ+ ĝ (x, µ)

]+
− 2

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
+ λ

)T
×

(
−λ+

[
λ+ ĝ (x, µ)

]+)
+ 2

([
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ)

−∇xĝ
(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)T (x∗
− x

)
− 2kĝ

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
µ

− 2µ
(
∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
− ∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)
= − ∥

[
λ+ ĝ (x, µ)

]
− λ∥2

− 2µkĝ
[
λ∗

+ ĝ
(
x∗, µ∗

)]+
+ 2

([
λ+ ĝ (x, µ)

]+
−
[
λ∗

+ ĝ
(
x∗, µ∗

)]+)T
×

(
−λ+

[
λ+ ĝ (x, µ)

]+)
+ 2

(
∇xĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
− ∇xĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)T (x∗
− x

)
− 2µ

(
∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
− ∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)
= − ∥

[
λ+ ĝ (x, µ)

]
− λ∥2

+ 2
[
λ+ ĝ (x, µ)

]+
×

(
−λ+

[
λ+ ĝ (x, µ)

]+
+ ∇xĝ (x, µ)

(
x∗

− x
))

− 2
(
−λ+

[
λ+ ĝ (x, µ)

]+
+ ∇xĝ

(
x∗, µ∗

)T (x∗
− x

))
×
[
λ∗

+ ĝ
(
x∗, µ∗

)]+
− 2ukĝ

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
− 2µ

(
∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
− ∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)

(39)

Using the following conditions:

λ+ ĝ (x, µ) =
[
λ+ ĝ (x, µ)

]+
−
[
−λ− ĝ (x, µ)

]+
− λ+

[
λ+ ĝ (x, µ)

]+
= ĝ (x, µ)+

[
−λ− ĝ (x, µ)

]+ (40)

we have

F3 = − ∥
[
λ+ ĝ (x, µ)

]+
− λ∥2

+ 2
[
λ+ ĝ (x, µ)

]+
×
(
ĝ (x, µ)− ĝ

(
x∗, µ∗

)
− ∇xĝ (x, µ)

(
x − x∗

))
+ 2

[
λ+ ĝ (x, µ)

]+ (ĝ (x∗, µ∗
)
+
[
−λ− ĝ (x, µ)

]+)
− 2ukĝ

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
− 2

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
×

(
ĝ (x, µ)− ĝ

(
x∗, µ∗

)
− ∇xĝ

(
x∗, µ∗

)T (x − x∗
))

− 2
[
λ∗

+ ĝ
(
x∗, µ∗

)]+ (ĝ (x∗, µ∗
)
+
[
−λ− ĝ (x, µ)

]+)
− 2µ

(
∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
− ∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)
(41)

According to the convexity of ĝ (x, µ) of x and µ that can be seen
in Appendix, we have

ĝ (x, µ)− ĝ
(
x∗, µ∗

)
− ∇xĝ (x, µ)

(
x − x∗

)
≤∇µĝ (x, µ)

(
µ− µ∗

)(
ĝ (x, µ)− ĝ

(
x∗, µ∗

)
− ∇xĝ

(
x∗, µ∗

) (
x − x∗

))
≥∇µĝ

(
x∗, µ∗

) (
µ− µ∗

)
(42)

Since ∇µĝ (x, µ) ≥ 0, we get

2
[
λ+ ĝ (x, µ)

]+ (ĝ (x, µ)− ĝ
(
x∗, µ∗

)
− ∇xĝ (x, µ)

(
x − x∗

))
− 2∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
µ

≤2∇µĝ (x, µ)
(
µ− µ∗

) [
λ+ ĝ (x, µ)

]+
− 2∇µĝ (x, µ)

[
λ+ ĝ (x, µ)

]+
µ

= − 2∇µĝ (x, µ)µ∗
[
λ+ ĝ (x, µ)

]+
≤ 0

(43)

and

− 2kĝ
[
λ∗

+ ĝ
(
x∗, µ∗

)]+ u − 2
[
λ∗

+ ĝ
(
x∗, µ∗

)]+
×
(
ĝ (x, µ)− ĝ

(
x∗, µ∗

)
− ∇xĝ

(
x∗, µ∗

) (
x − x∗

))
+ 2∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+
µ

≤ − 2
[
λ∗

+ ĝ
(
x∗, µ∗

)]+
∇µĝ

(
x∗, µ∗

) (
µ− µ∗

)
+ 2µ∇µĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+
− 2kĝ

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
µ

≤2
[
λ∗

+ ĝ
(
x∗, µ∗

)]+
∇µĝ

(
x∗, µ∗

)
µ∗

− 2kĝ
[
λ∗

+ ĝ
(
x∗, µ∗

)]+
µ ≤ 0

Since x∗ is an optimal solution of problem (11), one has ĝ (x∗, µ∗)

≤ 0, then
[
λ∗

+ ĝ (x∗, µ∗)
]+ ĝ (x∗, µ∗) ≤ 0,

[
λ+ ĝ (x, µ)

]+
ĝ (x∗, µ∗) ≤ 0, and

[
λ+ ĝ (x, µ)

]+ [
−λ− ĝ (x, µ)

]+
= 0. Then,

we have

F3 ≤ −∥
[
λ+ ĝ (x, µ)

]+
− λ∥2 (44)



46 Y. Zhao, X. He, T. Huang et al. / Neural Networks 122 (2020) 40–53

Fig. 1. The transient behaviors of SNN with p = 1.5 under SNR = 30 dB.

Therefore
F1 + F2 + F3

≤ − ∥
[
λ+ ĝ (x, µ)

]+
− λ∥2

− 2∥∇x f̂ (x, µ)+
[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ) ∥2

(45)

Combining with (25) implies

dV (x, λ)
dt

≤ − inf
∇x f̂ (x, µ)
∇xĝ (x, µ)

{
∥
[
λ+ ĝ (x, µ)

]
− λ∥2

+2∥∇x f̂ (x, µ)+
[
λ+ ĝ (x, µ)

]+
∇xĝ (x, µ) ∥2

}
(46)

Obviously, the convexity of ĝ (x, µ) and f̂ (x, µ) of x and µ, it
follows that

f̂ (x, µ)− f̂
(
x∗, µ∗

)
− ∇µ f̂

(
x∗, µ∗

) (
µ− µ∗

)
+

1
2

(
∥
[
λ+ ĝ (x, µ)

]+
∥
2
− ∥

[
λ∗

+ ĝ
(
x∗, µ∗

)]+
∥
2
)

−
(
λ− λ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+
−
(
x − x∗

)T
×

(
∇x f̂

(
x∗, µ∗

)
+ ∇xĝ

(
x∗, µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+)
− ∇µĝ

(
x∗, µ∗

) (
µ− µ∗

) [
λ∗

+ ĝ
(
x∗, µ∗

)]+
≥ 0

(47)

and kf̂µ+ kĝ
[
λ∗

+ ĝ (x∗, µ∗)
]+
µ ≥ 0, we have

L + 1
2

∥x − x∗
∥
2
+

L + 1
2

∥λ− λ∗
∥
2 ⩾ V (x, λ)

≥
1
2
∥x − x∗

∥
2
+

1
2
∥λ− λ∗

∥
2

(48)

Therefore, the SNN converges to its equilibrium points i.e., the
optimal solution of our considered problem. The proof is
complete. □

Remark 1. If p = 2, the proposed SNN can be replaced by Eq. (49)
and its stability can be proved analogous to the above
methods:{

ẋ = −2∇x f̂ (x, µ)− 2 [λ+ g (x)]+ ∇xg (x)
λ̇ = −λ+ [λ+ g (x)]+

(49)

Fig. 2. The recovered sparse signal of SNN with p = 1.5, RelErr=0.049 under
SNR = 30 dB.

Fig. 3. The transient behaviors of SNN with p = 1.5 under SNR = 40 dB.

Fig. 4. The recovered sparse signal of SNN with p = 1.5, RelErr = 0.049 under
SNR = 40 dB.
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Fig. 5. Recovery performance of SNN with various p = 1.1, 1.2, . . . , 2 in Gaussian noise (left) and Recovery performance of Lp-ADM (Wen et al., 2017) with various
p = 1.1, 1.2, . . . , 2 in Gaussian noise..

Fig. 6. The recovered sparse signal of SNN with Err =0.8375 (left) and the recovered sparse signal of LPNN (right) with Err = 1.0151, under m = 64, n = 256,
S = 10 and σ 2

= 0.05.

Fig. 7. The recovered sparse signal of BPDN with Err = 1.113 (left) and the recovered sparse signal of SGP(right) with Err = 1.4557, under m = 64, n = 256,
S = 10 and σ 2

= 0.05.

5. Numerical simulations

In this section, three experiments will be to done to illus-
trate the performance of SNN (12). The following three steps are
needed to get the sensing matrix A and measurement vector b.

(1) Generating a random S sparse signal vector x ∈ Rn,
i.e., there exists a random S nonzero components in vector x.

(2) Getting the entries of sensing matrix A with normal Gaus-
sian distribution.

(3) Computing the measurement vector b by using equation
‘‘Ax’’+‘‘noises’’.

Example 1. In this experiment, A random Gaussian matrix, where
m = 40, n = 128 the sparsity S = 10 and the locations of which
are randomly determined, is used as the sensing matrix. The noise
is appropriately added to generate noisy measurements according
to desired noise levels. The desired signal-to-noise ratio (SNR),
measured in decibel (dB) is as follows (Wen et al., 2017):

SNR = 20 log10

(
∥Ax0 − E{Ax0}∥

∥e∥

)
(50)

First, we evaluate the convergent behavior of SNN when p =

1.5 with Gaussian noise at various noise levels. The performance
is evaluated by relative error as RelErr = ∥x0 − x∗

∥/∥x0∥, where
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Fig. 8. The transient behaviors of SNN with p = 1.

x∗ is the recovered value of the true signal x0. As can be see
from Figs. 1, 3, the state curves of SNN converge to the KKT
stable points as t increases. The recovery performance signals
and the RelErr are displayed in Figs. 2, 4. As shown in Figs. 2, 4,
the recovered signal is close to the original signal with a certain
RelErr at different SNR levels, which coincides with the conclu-
sion presented in Lemma 2. Next, we investigate the recovery
performance of SNN versus p in Gaussian noise with 20 dB, 30 dB
and 40 dB by calculating the averaged relative error (50times). In
Fig. 5, we investigate the averaged relative error (50times) of SNN
and Lp−ADM (Wen et al., 2017), and its results show that the SNN
algorithm is quite similar to the Lp − ADM .

Example 2. In this experiment, we also use the orthonormal
Gaussian random matrix with m = 64, n = 256 as a sensing
matrix. With the sparsity S = 10 and the upper bound of the
residual error ϵ = mσ 2, we evaluate the effectiveness of SNN
algorithm (49) (by using Err = ∥x − x∗

∥, x∗ is the recovered
values of the true signal x0). Compared with the state-of-the-art

algorithms: Basis Pursuit De-Noising (BPDN), LPNN (Feng et al.,
2017), the scaled gradient projection (SGP) (Liu & Hu, 2016) with
σ 2

= 0.05. It can be see from Fig. 6, the SNN has a smaller Err
than LPNN with σ 2

= 0.005. From Fig. 7, the BPDN has less Err
than SGP. Thus, the SNN algorithm a better performance than
other algorithms, the BPDN and LPNN algorithms have a similar
performance and the SGP algorithm has the worst performance
than SNN, LPNN, BPDN.

Example 3. In this example, we consider a practical condition
that the measurements are contaminated by bit error like corrup-
tion, which gives rise to larger errors in measurements. We take
the length 128 with 10 nonzero values as original sparse signal
and use orthonormal Gaussian random matrix with 40 observa-
tions as the sensing matrix. Ten percent of the measurements are
set ±500 randomly and zero-mean Gaussian noise with variance
0.01 is to imitate the background noise, the valuation of ϵ is
500 × 0.1 × 40. Figs. 8 and 9 show the transient behaviors of
SNN (p = 1) and the recovery performance of the compared
robust algorithms with the relative error of recovery (RelErr).
From Fig. 8, we can see that the transient behaviors of SNN
(p = 1) are asymptotic stability. From Fig. 9, we can see that
the SNN (p = 1) has relatively high robustness than Lasso,
Lq-min Foucart and Lai (2009), BP-SEP (Studer & Baraniuk, 2014)
algorithms and has relatively low robustness than Lp-ADM. This
is because that the Lp-ADM algorithm adopts different proxim-
ity operators for different p values (for example using a soft-
threshold method when p = 1), so it has better robustness than
SNN algorithm, which only use the same approximation method
for different p values.

6. Circuit implementation of SNN (12)

In this section, an analog circuit implementation of SNN (12) is
proposed. First, some elementary circuits needed in the complete
circuit are presented in Figs. 10–20. Fig. 10 shows a circuit to
carry out the operation of Vout = max {0, Vin} by using two Op
Amps and a diode. Fig. 11 displays a circuit which get Vout =

|Vin| operation with two Op Amps, two diodes and five resis-
tors. Fig. 12 shows two voltage selection circuits by using two

Fig. 9. The recovery performance of compared algorithms in the presence of bit error. (a) Test signal. (b) Measurements without noise. (c) Measurement noise.
(d) Lq-Min, RelErr = 92.350. (e) Lasso (L1–L2), RelErr = 0.173. (f) BP-SEP, RelErr = 0.0797. (g) Lp-ADM (p = 1), RelErr = 0.028. (h) SNN (p = 1), RelErr = 0.075.
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Fig. 10. Circuit implementation of term [·]+ = max {0, ·}.

Fig. 11. Circuit implementation of term |·|.

Fig. 12. Circuit implementation of selective circuit. Top: Vout = V1 , if Vin ≥ 0 and Vout = 0, otherwise. Bottom: Vout = 0, if Vin ≥ 0 and Vout = −V1 , otherwise.

Fig. 13. Circuit implementation of term u = u0e−t/(RC) .
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Fig. 14. Circuit implementation of operations about ‘‘ + " and ‘‘ − ".

Fig. 15. Circuit implementation of multiplication operation n· and integral
operation

∫
·.

Op Amps, two diodes and two analog switches (‘‘1/4 CD4066’’).
In Fig. 13, the discharge of capacitance is used to implement
µ = µ0e−2t operation by selecting the appropriate values of
resistances and capacitances. The arithmetic circuit of addition,
subtraction, and integration is displayed in Figs. 14, 15. By com-
bining the above basic circuits, we get the smoothing function
θ̂ (x, µ),i.e., f̂ (x, µ) and ∇xθ̂ (x, µ), i.e., ∇x f̂ (x, µ).

Before giving a circuit of w
(
Ajx − bj

)
and ∇xw

(
Ajx − bj

)
, sev-

eral basic circuits of xy with y =
1
2 ,

1
3 , . . . ,

1
9 are displayed in

Fig. 18 by using Op Amps and analog multipliers. (values (1 > y >
0) except 1

2 ,
1
3 , . . . ,

1
9 can be achieved by using y =

1
2 ,

1
3 , . . . ,

1
9

in suitable way with analog multipliers).
As can be see from Fig. 19, the circuit in the red box contains

two resistors that are used to achieve the values of the Aikui with
the values of two resistors of Rik and RikAik

1−Aik
, respectively. Using

the above circuit (Aikui) and the circuits in Figs. 11, 12, 14, 18,
the term of w

(
Ajx − bj

)
can be implemented by circuit in Fig. 19.

In Fig. 20, a ‘‘1/4 LM339’’ (one voltage comparator) with ±1V
voltage values is used to implement the operation of sign (x), if
|x| > µ

2 (the red box in Fig. 20). By composing the elementary

Fig. 16. Circuit implementation of term θ̂ (x, µ).

Fig. 17. Circuit implementation of term ∇x θ̂ (x, µ).

Fig. 18. Circuit implementation of term xp .

circuits in Figs. 13–15, 18 and 19, the term of ∇xw
(
Ajx − bj

)
can

be implemented by using the circuit in Fig. 20.
Fig. 21 displays the complete circuit of SNN (12). Though the

expression of SNN looks complex, it can be realized based on
the elementary circuits in Figs. 10–20 which means that it does
not have expensive components in circuit implementation. The
circuit in Fig. 21 is a feedback loop system which alters the
voltage values until their equilibrium is reached which satisfies
KKT condition. The detailed technique can refer correctto Chua,
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Fig. 19. Circuit implementation of term w
(
Ajx − bj

)
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 20. Circuit implementation of term ∇xw
(
Ajx − bj

)
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

Desoer, and Kuh (1987), Kennedy and Chua (1988) and Tank and
Hopfield (1986).

7. Conclusions

Based on the smoothing approximation approach, this paper
investigates a smoothing neural network for robust sparse sig-
nal recovery by solving minimization l1 − lp (2 ≥ p ≥ 1)
problem in CS. Compared with existing optimization algorithms,
such as BP-SEP, BPDN, LASSO, the proposed SNN has a high
robustness in signal reconstruction problem in Gaussian noise
and bit errors like corruption, but has a low robustness of Lp-
ADM in signal reconstruction problem in Gaussian noise and bit
errors like corruption. By using the theory of non-smooth analy-
sis, Lyapunov method, we can prove that the proposed SNN can
globally converge to an equilibrium point satisfied KKT condition
under certain conditions. Simulation results on three examples
problem have shown that the proposed recurrent neural network
is feasible and very efficient. Future work is to further study min-
imization l1 − lp (1 ≥ p ≥ 0) i.e., an nonconvex, nonsmooth and
non-Lipschitz problem and design an effective neural network to
solve this problem and provides computational efficiency or the
rate of convergence of the designed neural network algorithms.
How to effectively select a better approximation method for
different p is also the focus of our future work.
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Appendix

Here, we present some definitions and properties of Clarke
generalized gradient, and the convexity of f̂ (x, µ) and ĝ (x, µ),
which are needed for the theoretical analysis in this paper. We
refer the readers to see Aubin and Cellina (1984), Clarke (1983),
Foucart and Lai (2009), Liu and Wang (2011), Rockafellar and
Wets (1998), Studer and Baraniuk (2014) and Tsaig and Donoho
(2008).
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Fig. 21. Circuit implementation of SNN algorithm (12).

Definition 2: Let θ : Rn
→ R be function which satisfies locally

Lipschitz, here θ is differentiable almost everywhere. Denote Dθ
as the set of points which θ is differentiable. Then the Clarke
generalized gradient is

∂θ (x) = co
{

lim
xk→x,xk∈Dθ

∇θ (xk)
}

(51)

Proposition 1. The smoothing function f̂ (x, µ) is convex with
respect to x, also with respect to µ. It is easy to observe the convexity
of f̂ (x, µ) at x according to the equality (4). By the definition of
convex function, the f̂ (x, µ) is also a convex for µ.

f̂ (x, µ1)− f̂ (x, µ2)− ∇µ2 f̂ (x, µ2)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , if |x| > µ1 ≥ µ2, |x| > µ2 ≥ µ1
(x±µ1)

2

2µ1
≥ 0 , if µ1 > |x| > µ2

(µ2(|x|−µ1)+|x|(µ2−µ1))(µ2−|x|)
2µ2

2
≥ 0 , ifµ2 ≥ |x| ≥ µ1

x2(µ1−µ2)
2

2µ1µ
2
2

≥ 0 , if |x| ≤ µ1 ≤ µ2, |x| ≤ µ2 ≤ µ1

(52)

Then the smoothing function ĝ (x, µ) is also convex with re-
spect to x, also for µ. It is easy to see the convexity of f̂ (x, µ) of
x. We only show that the ĝ (x, µ) is a convex function of µ:

∇
2
µĝ (x, µ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if |x| > µ2{

p (p − 1)
(

x2
2µ +

µ

2

)p−2 (
−

x2

2µ2 +
1
2

)2
p x2

µ3

(
x2
2µ +

µ

2

)p−1
≥ 0

}
, if |x| ≤ µ2

(53)

So, the proof is completed.
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