


Feedback Amplifiers:  One and Two Pole cases 
 

Negative Feedback: 
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There must be 180o phase shift somewhere in the loop.  This is often provided by an 
inverting amplifier or by use of a differential amplifier. 
 

Closed Loop Gain:   
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When  a >> 1, then      1aA
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This is a very useful approximation. 
 
The product af occurs frequently:   Loop Gain  or Loop Transmission  T = af 
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At low frequencies, the amplifier does not produce any excess phase shift.  The feedback 
block is a passive network.   
 
But, all amplifiers contain poles.  Beyond some frequency there will be excess phase shift 
and this will affect the stability of the closed loop system. 
 

Frequency Response 
 
Using negative feedback, we have chosen to exchange gain a for improved performance 
 
 Since  A = 1/f, there is little variation of closed loop gain with a. 
 Gain is determined by the passive network f 
 
But as frequency increases, we run the possibility of  
 

• Instability 
• Gain peaking 
• Ringing and overshoot in the transient response 

 
We will develop methods for evaluation and compensation of these problems. 
 
 

Bandwidth of feedback amplifiers:  Single Pole case 
 
Assume the amplifier has a frequency dependent transfer function 
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where p1 is on the negative real axis of the s plane. 
 



With substitution, it can be shown that: 
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We see the low frequency gain with feedback as the first term followed by a bandwidth 
term.  The 3dB bandwidth has been expanded by the factor 1 + aof = 1 + To. 
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Note that the separation between a and A, labeled as x,  
 

20log(| ( ) |) 20log(1/ ) 20log(| ( ) |) 20log( ( ))x a j f a j f T jω ω ω= − = =  
 
 
Therefore, a plot of T(jω) in dB would be the equivalent of the plot above with the 
vertical scale shifted to show 1/f at 0 dB. 
 
 
We see from the single pole case, the maximum excess phase shift that the amplifier can 
produce is 90 degrees.   
 

Stability condition: 
 

If  |T(jω)| > 1 at a frequency where  ∠T(jω) = -180o, 
then the amplifier is unstable. 

 
This is the opposite of the Barkhousen criteria used to judge oscillation with positive 
feedback.  In fact, a round trip 360 degrees (180 for the inverting amplifier at low 
frequency plus the excess 180 due to poles) will produce positive feedback and 
oscillations. 
 
 
This is a feedback based definition.  The traditional methods using T(jω)  
 

• Bode Plots 
• Nyquist diagram 
• Root – locus plots 

 
can also be used to determine stability.  I find the Bode method most useful for providing 
design insight.  To see how this may work, first define what is meant by PHASE 
MARGIN in the context of feedback systems. 
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Two pole frequency and step response.  Low pass.  No zeros. 
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Zero in Loop Gain, T(s). 
 
There will be some cases where we will want to add a zero to the loop gain T(s).  How 
does this zero affect the transient response? 
 
Let’s locate the zero frequency relative to the real part of the closed loop pole location 
using α as a proportionality factor 
 

s = - αζωn . 
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A large α will place the zero far to the left of the poles.  Let’s normalize ωn = 1.  Then,  
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Split this into 2 equations. 
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We see that the second term is the derivative of the first term (first term is multiplied by s 
times a coefficient).  This can produce a bump in the step response.  See the next figure 
from  G. Franklin, et al, “Feedback Control of Dynamic Systems,” 3rd edition, Addison-
Wesley, 1994. 
 
Ho(s) is the first term; Hd(s) is the derivative term.  We see that if α is close to 1, we get 
a big increase in the overshoot. 
 
 
 
 
 
 
 
 
 



 
 

Ref.  Franklin, op.cit. 
 
 
 
 
 







Compensation 
 
Question:   What happens when the phase margin is too small or negative for the 
particular value of feedback required for an application. 
 

• The transient response will ring,  
• gain will peak,  
• or possibly oscillation. 

 
If you are building an oscillator, that might be good, but if you intended it as an amplifier 
then you must modify its frequency response to make it useable.  Compensation is a 
technique that accomplished this, albeit at the expense of bandwidth. 
 
Many techniques are available: 
 

• Add a dominant pole 
• Move a dominant pole  
• Miller compensation 
• Add a zero to the closed loop gain 

 

1.  Dominant Pole Compensation 
 
Add another pole that is much lower in frequency than the existing poles of the amplifier 
or system.  This is the least efficient of the compensation techniques but may be the 
easiest to implement. 
 

• Reduces bandwidth,  
• but increases the phase margin at the crossover frequency. 
• |T| is reduced over the useful bandwidth,  

 
Thus, some of the feedback benefits are sacrificed in order to obtain better stability 
 
Extrapolate back from the crossover frequency at 20 dB/decade  The frequency, PD, 
where the line intersects the open loop gain Ao is the new dominant pole frequency.  In 
this case,  

|T(jω)| = 1 at ω = |p1| 
45o phase margin 

Note that we are assuming that the other poles are not affected by the new dominant pole.  
This is not always the case, and computer simulation will be needed to optimize the 
design.  Nevertheless, this simple method will usually help you get started with a solution 
that will generally work even though not optimum. 





For example, you could add C to produce a dominant pole at  
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This approach may require a large compensating capacitor, C. 
 
Let’s look at some better approaches. 
 
 



2.  Reduce |p1| instead of adding yet another pole. 
 

• Retains more bandwidth 
• Requires less C to shift an existing pole 
• p2 and p3 may even be moved up to a higher frequency 

 
Move p1 to p1'such that the new crossover frequency is at |p2| >> |p1| 
 

 
From Gray, Hurst, Lewis and Meyer, Analysis and Design of Analog Integrated Circuits, 
4th ed., J. Wiley, 2001. 



3.  What if we  reduce p1 and increase p2 at the same time! 
 

• Big bandwidth improvement 
• Phase margin improves without sacrifice of bandwidth 
• Pushes out crossover frequency   

 
MILLER COMPENSATION 
 
The first and second pole frequencies can be estimated by the method of time constants.  
Assuming that 
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Alternatively, if we assume that the non-dominant pole is at a very high frequency 
 
CF behaves like a short 
 

 
The current source just looks like:  
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A much easier way to see how the pole splitting comes about.... 



Compensation by adding a zero in the feedback path 
 
In wideband amplifier applications, adding dominant poles or Miller compensation is 
undesirable due to the loss in bandwidth that is incurred.  In some cases, it is possible to 
add a zero to the feedback path by adding a frequency dependent component.  The zero 
bends the root locus and improves the bandwidth as well as the damping of the amplifier. 
 
Adding a zero to f(s) will put a zero in T(s) and thus affects the root locus.  But, it doesn’t 
add a zero to A(s).  Thus, it doesn’t produce the overshoot problems that a zero in the 
forward path would cause.  The forward path zero would show up in the closed loop 
transfer function. 
 
If we consider the overall gain with feedback as:   
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and a(s) = Na(s)/Da(s)   and   f(s) = Nf(s)/Df(s) 
 
Then, 
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Here we see that the zero Nf(s) shows up in the denominator of A(s) multiplied by To.  
And, typically for this type of compensation, the pole contributed by the f(s) block is at a 
much higher frequency than the zero. 
 
Referring to the circular root locus sketched on the next page, we see that the zero bends 
the poles away from the jω axis.  This increases ζ, improving damping, and also 
improves bandwidth. 



The root locus will travel around the zero in a circle if there are no other poles to the left. 
 
The poles will terminate at large |T| on zeros at ω2 and at infinity. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
We can appreciate the effectiveness of this by comparing with the two pole low pass case 
where the poles remain at the same distance from the jω axis as |T| is increased.   
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So, how do you implement a zero in the feedback path? 
 

 
 
We need to find f(s).   

• With SHUNT at input, currents are summed 
• With SERIES output, current is sampled 
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Typically, the pole frequency is much higher than the zero, so it does not bend the root 
locus very much. 
 



Next, let’s look at the phase margin. 
 

 
 
Recall that 
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This blows up when 

( ) 1 jT j e 1πω −= =−  
 
Thus, even if the phase reaches -180 degrees, if the magnitude is not equal to 1, we do 
not have instability. 
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