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Bandwidth Constraints for Integer-N Synthesizers
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PFD output has a periodicity of 1/T
- 1/T = reference frequency

Loop filter must have a bandwidth << 1/T
- PFD output pulses must be filtered out and average value 

extracted

Closed loop PLL bandwidth often chosen to be a
factor of ten lower than 1/T



Bandwidth Versus Frequency Resolution
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Frequency resolution set by reference frequency (1/T)
- Higher resolution achieved by lowering 1/T



Increasing Resolution in Integer-N Synthesizers
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Use a reference divider to achieve lower 1/T
- Leads to a low PLL bandwidth ( < 20 kHz here )



The Issue of Noise
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Lower 1/T leads to higher divide value
- Increases PFD noise at synthesizer output



Background:  Classical Linearized PLL Model
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Classical PLL model
- Predicts impact of PFD and VCO referred noise sources
- Does not allow straightforward modeling of impact due 

to dynamic divide value variations
More on this shortly …



Background:  Classical Linearized PLL Model
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Parameterizing in terms of G(f) helps visualize the 
nature (high-pass or low-pass) and gain of the noise 
transfer functions



Parameterized Version of Classical Model
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G(f) represents the 
PLL closed loop 
dynamics
G(f) is low-pass
Nature of noise 
transfer very easily 
seen from the 
parameterized model 



Modeling PFD Noise Multiplication

PFD spectral density multiplied by N2 before influencing PLL 
output phase noise
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High divide values         high phase noise at low frequencies



Fractional-N Frequency Synthesizers

Break constraint that divide value be integer
- Dither divide value dynamically to achieve fractional values
- Frequency resolution is now arbitrary regardless of 1/T

Want high 1/T to allow a high PLL bandwidth
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Classical Fractional-N Synthesizer Architecture

1-bit

PFD Loop
Filter

ref(t)

div(t)

out(t)

frac[k]
Accumulator

N/N+1

carry_out[k]

e(t)

Nsd[k] = N + frac[k]

Use an accumulator to perform dithering operation
- Fractional input value fed into accumulator
- Carry out bit of accumulator fed into divider



Accumulator Operation

residue[k]

carry_out[k]

frac[k] =.25

1-bit
M-bit

M-bit
frac[k]

Accumulator
carry_out[k]

residue[k]

clk(t)

Carry out bit is asserted when accumulator residue 
reaches or surpasses its full scale value
- Accumulator residue increments by input fractional 

value each clock cycle



Fractional-N Synthesizer Signals with N = 4.25
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Divide value set at N = 4 most of the time 
- Resulting frequency offset causes phase error to 

accumulate
- Reset phase error by “swallowing” a VCO cycle

Achieved by dividing by 5 every 4 reference cycles



The Issue of Spurious Tones
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PFD error is periodic
- Note that actual PFD waveform is series of pulses – the 

sawtooth waveform represents pulse width values over time
Periodic error signal creates spurious tones in synthesizer 
output
- Ruins noise performance of synthesizer



The Phase Interpolation Technique
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Phase error due to fractional technique is predicted 
by the instantaneous residue of the accumulator
- Cancel out phase error based on accumulator residue



The Problem With Phase Interpolation
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Gain matching between PFD error and scaled D/A 
output must be extremely precise
- Any mismatch will lead to spurious tones at PLL output



Is There a Better Way?



A Better Dithering Method:  Sigma-Delta Modulation
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Sigma-Delta dithers in a manner such that resulting 
quantization noise is “shaped” to high frequencies



Dither

The sigma-delta noise shaping analysis assumes a 
white quantization noise spectrum
In order to make the input look “sufficiently exciting” 
a dither signal can be added to it
Dithering methods are directly taken from sigma-delta 
ADC and DAC design
- This makes sense since the synthesizer is really a DAC 

(digital to phase)
- Most common method is to add a random sequence to 

the LSB’s of the input



Sigma-Delta Frequency Synthesizers
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Use Sigma-Delta modulator rather than accumulator 
to perform dithering operation
- Achieves much better spurious performance than 

classical fractional-N approach



Summary: Sources of Phase Noise in Σ∆ Synthesis

Charge-pump / Phase Detector / Reference
- Low-pass filtered by PLL, dominant at low offset frequencies

VCO
- High-pass filtered by PLL, dominant at high offset frequencies
Σ∆ dithered quantization noise
- Low-pass filtered by PLL, noise/bandwidth tradeoff exists
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A quick note on the linearized model

Non-linearities break the assumptions of the linear model 
- The shaped noise can be “folded down” to lower 

frequencies due to non-linearities in the synthesizer 
PFD/Charge-pump design 

This process is best seen through behavioral simulation
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A Well Designed Sigma-Delta Synthesizer
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Order of G(f) is set to equal to the Sigma-Delta order
- Sigma-Delta noise falls at -20 dB/dec above G(f) bandwidth

Bandwidth of G(f) is set low enough such that synthesizer 
noise is dominated by intrinsic PFD and VCO noise



Impact of Increased PLL Bandwidth
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Allows more PFD noise to pass through
Allows more Sigma-Delta noise to pass through
Increases suppression of VCO noise
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