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Phase Locked Loop Circuits 
 
 

Reading: General PLL Description:  T. H. Lee, Chap. 15.  Gray and Meyer, 10.4 
Clock generation:  B. Razavi, Design of Analog CMOS Integrated 
Circuits, Chap. 15, McGraw-Hill, 2001. 
 

A.  General Description 
1.  Definition.  A PLL is a feedback system that includes a VCO, phase detector, and low 
pass filter within its loop.  Its purpose is to force the VCO to replicate and track the 
frequency and phase at the input when in lock.  The PLL is a control system allowing one 
oscillator to track with another.  It is possible to have a phase offset between input and 
output, but when locked, the frequencies must exactly track. 
 

)()(
.)()(

tt
consttt

inout

inout
ω=ω

+φ=φ
 

    
The PLL output can be taken from either Vcont, the filtered (almost DC) VCO control 
voltage, or from the output of the VCO depending on the application.  The former 
provides a baseband output that tracks the phase variation at the input.  The VCO output 
can be used as a local oscillator or to generate a clock signal for a digital system.  Either 
phase or frequency can be used as the input or output variables. 

 
Of course, phase and frequency are interrelated by: 
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Applications:  There are many applications for the PLL, but we will study:   
a.  Clock generation 
b.  Frequency synthesizer 
c.  Clock recovery in a serial data link 
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You should note that there will be different design criteria for each case, but you can still 
use the same basic loop topology and analysis methods. 
 
2.  Phase detector: compares the phase at each input and generates an error signal, ve(t), 
proportional to the phase difference between the two inputs.  KD is the gain of the phase 
detector (V/rad). 
 
  )]()([)( ttKtv inoutDe φ−φ=  
 
As one familiar circuit example, an analog multiplier or mixer can be used as a phase 
detector.  Recall that the mixer takes the product of two inputs.  ve(t) = A(t)B(t).  If, 

 
A(t) = A cos(ω0t + φA) 
B(t) = B cos(ω0t + φB) 

Then,   A(t)B(t)  =  (AB/2)[ cos(2ω0t + φA + φB) + cos(φA - φB)] 
 
Since the two inputs are at the same frequency when the loop is locked, we have one 
output at twice the input frequency and an output proportional to the cosine of the phase 
difference.  The doubled frequency component must be removed by the lowpass loop 
filter.  Any phase difference then shows up as the control voltage to the VCO, a DC or 
slowly varying AC signal after filtering. 
 
The averaged transfer characteristic of such a phase detector is shown below.  Note that 
in many implementations, the characteristic may be shifted up in voltage (single 
supply/single ended). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the phase difference is π/2, then the average or integrated output from the XOR-type 
phase detector will be zero (or VDD/2 for single supply, digital XOR).  The slope of the 
characteristic in either case is KD. 
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3.  VCO.  In PLL applications, the VCO is treated as a linear, time-invariant system.  
Excess phase of the VCO is the system output. 

∫
∞−

=φ
t
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The VCO oscillates at an angular frequency, ωout.  Its frequency is set to a nominal ω0 
when the control voltage is zero.  Frequency is assumed to be linearly proportional to the 
control voltage with a gain coefficient KO or KVCO (rad/s/v). 
 

contOout VK+ω=ω 0  
 
Thus, to obtain an arbitrary output frequency (within the VCO tuning range, of course), a 
finite Vcont is required.  Let’s define φout – φin = φο.   

 
(Figure from B. Razavi, Ch. 15, op. cit.) 
 
In the figure above, the two inputs to the phase detector are depicted as square waves.  
The XOR function produces an output pulse whenever there is a phase misalignment.  
Suppose that an output frequency ω1 is needed.  From the upper right figure, we see that 
a control voltage V1 will be necessary to produce this output frequency.  The phase 
detector can produce this V1 only by maintaining a phase offset φ0 at its input.  In order to 
minimize the required phase offset or error, the PLL loop gain, KD KO, should be 
maximized, since  
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Thus, a high loop gain is beneficial for reducing phase errors. 
 
4.  PLL dynamic response:  To see how the PLL works, suppose that we introduce a 
phase step at the input at t = t1. 
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(Figure from B. Razavi, Ch. 15, op. cit.) 
 
Since we have a step in phase, it is clear that the initial and final frequencies must be 
identical: ω1.  But, a temporary change in frequency is necessary to shift the phase by φ1.  
The area under ωout gives the additional phase because Vcont is proportional to 
frequency. 
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After settling, all parameters are as before since the initial and final frequencies are the 
same.  This shows that Vcont(t) [shown as VLPF (t) in the figure above] can be used to 
monitor the dynamic phase response of the PLL. 
 
Now, let’s investigate the behavior during a frequency step: 
 

ωωω Δ+= 12  
 
The frequency step will cause the phase difference to grow with time since a frequency 
step is a phase ramp.  This in turn causes the control voltage, Vcont, to increase, moving 
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the VCO frequency up to catch up with the input reference signal.  In this case, we have a 
permanent change in ωout since a higher Vcont is required to sustain a higher ωout. 
 

 
(Figure from B. Razavi, Ch. 15, op. cit.) 
 
If the frequency step is too large, the PLL will lose lock. 
 
 
5.  Lock Range.  Range of input signal frequencies over which the loop remains locked 
once it has captured the input signal.  This can be limited either by the phase detector or 
the VCO frequency range. 
 
a.  If limited by phase detector: 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 < φ < π is the active range where lock can be maintained.  For the phase detector type 
shown (Gilbert multiplier or mixer), the voltage vs. phase slope reverses outside this 
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range.  Thus the frequency would change in the opposite direction to that required to 
maintain the locked condition. 
 

Ve-max = ± KD π/2 
 
When the phase detector output voltage is applied through the loop filter to the VCO, 
 

Δωout – max = ± KV π/2  =  ωL  (lock range) 
 
where KV = KO KD, the product of the phase detector and VCO gains. 
 
This is the frequency range around the free running frequency that the loop can track. 
 Doesn’t depend on the loop filter 
 Does depend on DC loop gain 
 
b.  The lock range could also be limited by the tuning range of the VCO.  Oscillator 
tuning range is limited by capacitance ratios or current ratios and is finite.  In many cases, 
the VCO can set the maximum lock range. 
 
6.  Capture range:  Range of input frequencies around the VCO center frequency onto 
which the loop will lock when starting from an unlocked condition.  Sometimes a 
frequency detector is added to the phase detector to assist in initial acquisition of lock. 
 
You will see later that the loop filter bandwidth has an effect on the capture range. 
 
7.  Approach:  We will discuss the details of phase detectors and loop filters as we 
proceed.  But, at this point, we will treat the PLL as a linear feedback system.  We 
assume that it is already “locked” to the reference signal, and examine how the output 
varies with the loop transfer function and input.  A frequency domain approach will be 
used, specifically describing transfer functions in the s-domain. 
 
 Ve(s)/Δφ  =  KD 
  
 φout(s)/Vcont(s)  =  KO /s 
 
Note that the VCO performs an integration of the control voltage and thus provides a 
factor of 1/s in the loop transfer function.  Because of this, a PLL is always at least a first 
order feedback system. 
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B.  System Level Description 

 
 
Loop Gain:   )()()( sKsKsT FBFWD=  
 

Transfer Function: 
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The Loop gain can be described as a polynomial: 
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ORDER =  the order of the polynomial in the denominator 
 
TYPE =  n   (the exponent of the s factor in the denominator) 
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(this is the Laplace Transform final value theorem) 
 

SS error is a characteristic of feedback control systems.  This is the error remaining in the 
loop at the phase detector output after all transients have died out.  Once again, you can 
see that a large loop gain T(s) leads to a small phase error. 
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C.  Frequency and phase tracking loop: 
 
First we will consider the PLL with feedback = 1; therefore, input and output frequencies 
are identical.  The input and output phase should track one another, but there may be a 
fixed offset depending on the phase detector implementation. 
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Transfer Function:  H(s)  =  forward path gain / [1 + T(s)]. 

 
With feedback = 1,  

 
H(s) = T(s)/[1 + T(s)] 
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We will start from the open loop gain, T(s). 
 

T(s) = KDF(s)KO/s 
 
We know that the phase detector will be producing an output equal to or at twice the 
carrier frequency, thus some low pass filtering will be needed.  Let’s start with a simple 
RC lowpass network.   
 
 
 
 
 
 
 
 
 
 
This network has a cutoff (3 dB) frequency ω1 = 1/RC.  Thus, the filter transfer function 
is a simple lowpass, 
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Then, T(s) becomes second order, Type 1: 
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Bode Plot:   Now look at the Bode plot of T(jω). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the loop filter frequency is lower than the crossover frequency, which you might want 
to do to attenuate the high frequency ripple from the phase detector, then the phase 
margin can become unacceptably small.  And, if we increase the loop gain, KV = KDKO, 
to reduce the residual phase error, we get even smaller phase margin.  Thus, we have a 
conflict between stability of the loop and minimizing the phase error.  However, the loop 
can be made to work if ω1 > ωcrossover.  But, then we may have insufficient filtering of the 
phase detector output. 
 
Before we fix this problem, let’s look at the root locus and then the closed loop response 
of this PLL. 
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Root Locus: Since there are no zeros, the root locus represents the roots of the 
denominator of the closed loop transfer function.  Set 1 + T(s) = 0 and solve for s as a 
function of KV.   
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We see that as KV is increased, the roots approach one another then become complex 
conjugates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can have a very underdamped response when ω1 << KV.  Think about the inverse 
Laplace transform of the complex conjugate pole pair. 
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There is an exponentially decaying term determined by the real part of the roots that 
shows how long it takes the system to settle after a phase or frequency step and a ringing 
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frequency dictated by the imaginary part of the pole pair.  Again, when ω1 << KV, we 
have a high ringing frequency and a long settling time, characteristic of a system that is 
not very useful.   
 
It is sometimes useful to define a natural frequency, ωn, and a damping factor, ζ.  This is 
standard control system terminology for a second order system.  The key is to put the 
denominator of the closed loop transfer function, 1 + T(s), into a “standard” form: 
either 
 

22 2 nnss ωζω ++  
 
or 
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ζ

ω
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Taking the first formula, 1 + T(s) can be written as: 
 

11
2 ωω VKss ++  

 
so, we can associate ωn and ζ with: 
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This form allows you to use standard equations and normalized plots to describe the 
frequency and transient response of the system.  As we saw with the other ways of 
representing the frequency response of the system, a large KV, which we like for reducing 
phase error, leads to a small ζ, which is bad for stability and settling time.  
 
For example, the transient response for a Type 1, second order lowpass system such as 
this is plotted in the next figure taken from Motorola App. Note AN-535.  It is clear that 
damping factors less than 0.5 produce severe overshoot and ringing.   
 



UCSB/ECE Department Prof S. Long    6/11/08 13

These parameters will have a strong effect on the loop dynamics which control overshoot 
and settling time.  From the system design perspective, overshoot can be quite harmful, 
since it will cause the frequency to temporarily exceed the steady state value.  Thus, the 
output of the synthesizer might land in an adjacent channel during part of the transient 
response.  Settling time can also be critical since many TDM applications use different 
receive and transmit frequencies.  The settling time determines how long you must wait 
until transmitting or receiving after a hop in frequency. 

 
 
Ref.  B. Razavi, RF Microelectronics, Prentice-Hall, 1998. 
 
Here you see the consequences of PLL settling time if the PLL is being used as a local 
oscillator for a receiver or transmitter. 
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In the frequency domain, the closed loop transfer function will also exhibit gain peaking 
when the system is underdamped.  This is the same effect that we see with feedback 
amplifiers.   
 
So, it is clear that we need a better transfer function that gives us more flexibility in 
determining the bandwidth of the filter and the stability of the system.  You can’t obtain a 
narrow loop bandwidth without reducing the phase margin/damping factor. 
 
Add a zero to the loop filter transfer function to manipulate the root locus and improve 
stability.   
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Adding a resistor to the lowpass loop filter contributes a zero to its transfer function. 
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Thus, the zero frequency is always higher than the pole frequency. 
 
Check out the Bode plot, root locus and transient response again. 

R1

C

R2

R1

C

R2



UCSB/ECE Department Prof S. Long    6/11/08 16

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the phase margin has increased.  Now, small values of ω1 can be used for 
narrower filter bandwidth, or higher KV values can be used for lower phase error without 
sacrificing phase margin.  Note how phase margin now improves when the crossover 
frequency is increased due to higher gain.   
 
Root Locus:  Calculate the closed loop transfer function for this PLL with the pole-zero 
loop filter.   
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The denominator is of the form 1 + T(s).  We can also extract ωn and ζ from the closed 
loop transfer function since the denominator is in one of the standard forms. 
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Then, solve for s; these are the poles.   
 

2 1n ns ζω ω ζ= − ± −  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We see that ωn is the same as with the simple RC filter, but the damping factor has an 
added term.  The first term is quite small in most cases, but the second term can be made 
large by increasing KV or reducing ω2.  We still have a type 1 system, but we have an 
added term that we can use to improve stability, the zero frequency.  Note that the zero is 
in the forward path and therefore shows up in the closed loop transfer function.  It will 
affect the frequency and transient response. 
 
FREQUENCY RESPONSE 

ω1ω2 ω1ω2
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According to Gardner1, the loop bandwidth for this Type 1, second-order loop with a 
forward path zero is given by: 
 

[ ] 2/122 1)21(21 ++++= ζζωω nh  
 

According to this, we have a bandwidth of about 2ωn for ζ = 0.707. 
 
Refer to Fig. 2.3 from Gardner.  This is a plot of the closed loop frequency response of a 
high gain second order PLL:  20 log |H(jω)|.  A high gain PLL is defined by KV/ω2 >> 1. 
 

 
 
 
 
 
 
 
 
 

                                                 
1 F. M. Gardner, Phaselock Techniques, Second ed., Wiley, 1979. 
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From this plot, we can see how the 3 dB frequency and gain flatness varies with ζ.  Also, 
we see that the natural frequency must be significantly greater than the maximum 
frequency of phase variation for the reference (φin) when ζ < 1 in order to avoid gain 
peaking.  This is a consequence of the zero added to the transfer function.  For 
applications that require very small gain peaking (such as clock recovery), ζ > 2 is often 
employed.   
 
PHASE ERROR 
 
There is no frequency error when the loop is locked 

• Input frequency = output frequency 
 
But, it is possible to have a phase error for some input transient phase conditions.  The 
phase error must remain bounded in order to keep the loop locked.  To analyze in the 
frequency domain, we assume a sinusoidal phase variation at the input. 
 

PHASE ERROR  =  
)(

)()(
sT1

sINs
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STEADY STATE ERROR =  )(lim)]([lim

0
tss
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Fig. 2.4 from Gardner’s book illustrates how the phase error, expressed as  
 

ε(s) = 20 log (φout/φin)   dB 
 
increases as the input frequency approaches the natural loop frequency for the case with  
ζ = 0.707.  For input phase variations well below the loop bandwidth, the loop tracks 
very well.  This is because |T(jw)| is large at low frequency. 
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TRANSIENT PHASE ERROR 

• Inverse Laplace transform of ε(s) 
 
Now, let’s look more closely at how the phase error is affected by the type of transient 
phase signal at the input of the Type I PLL. 
 
1.  Phase step.  Because  φin(t) = Δθ u(t), in the frequency domain, 
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The steady-state phase error can be calculated from ε(s) and εss above. 
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Thus, there is only a transient phase error for a phase step.  This is reasonable, because 
the control voltage must return to the same value after the phase step is completed. The 
frequency will be the same before and after the step. 
 
2.  Frequency step.  
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There is a static “error”, but it can be made small by increasing KV.  This is consistent 
with the idea that a shift in control voltage is needed to give a step in frequency.  The 
phase error needed to generate this control voltage step varies inversely with the loop 
gain. 
 
3.  Frequency ramp.  We could do the same exercise for a frequency ramp (Doppler 
shift).  This gives an unlimited steady state error.  So, a type I loop is not suitable for 
tracking a moving source. 
 
Summarizing:   

Type I; second order:    
1

2
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ω
ω

/s
/s)s(F

+
+

=  

 
Input φin(s) εss 
Phase step Δθ/s 0 
Freq. step Δω/s2 Δω/KV 
Freq. ramp A/s3 infinite 
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D.  FM Demodulator Application.  (See Gray and Meyer, Chap. 10, Section 4.)   
  
Our first application example is the FM Demodulator.   
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For convenience, we define KV = KD KO A 
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How does the PLL work as an FM demodulator? 
 
Frequency to voltage conversion:   We need to convert the frequency variation of the 
input signal to a baseband signal whose frequency is equal to fm, the modulation 
frequency, and whose amplitude is proportional to Δf, the frequency deviation.  The input 
carrier frequency will be centered at the IF frequency, but will vary in time around this 
frequency. 
 

Input Variable:   ω i =ωc + Δω sinωmt  

Output Variable:    
VO = Δω

KO
sinωmt

 
 
In the FMD application, the output is the VCO control voltage, not the phase of the VCO.  
This voltage will track the input FM signal modulation frequency and deviation.  The 
loop filter is lowpass.  The block A represents a gain factor, usually 1 with a passive LPF, 
but it can be higher if the filter is implemented with an active filter. 
 
Assume that the loop is locked at the IF frequency, ωC.  Frequency modulation will shift 
the instantaneous frequency around ωC by Δω at rate ωm.  As the frequency shifts with 
time, the phase detector will sense a phase error that increases with time.  The filtered 
error voltage, Vcont = VO, will send the VCO closer to ωC + Δω, tracking the frequency 
shift.  If the bandwidth of the loop is greater than ωm, the loop will track the frequency 
deviation of the input signal and VO will be the demodulated baseband signal, 
 

 Δω/KO sin (ωmt). 
 
Now we will consider the frequency and time response of a PLL in the FMD application.  
The loop filter transfer function F(s) has a big influence on these responses. 
 
There are two typical applications.2   

1.  Analog baseband demodulation.  This would be the case for an FM radio 
where speech or music is the baseband signal to be recovered. 
 
2.  Digital demodulation.  The simplest application of this is Binary FSK or 
Frequency Shift Keying.  The frequency is changed in a binary step from fm1 to 
fm2 and back in order to transmit digital information.   

                                                 
2 Note that there are many other techniques besides PLLs that are used to demodulate PM 
or FM signals, but this application of the PLL is a good one that helps to illustrate how 
they function. 
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In the demodulator application, we can see that the Type 1 second-order PLL will give 
zero steady state phase error for a PSK input (thus, it isn’t useful as a PSK demodulator) 
and finite phase error for an FSK input if frequency deviation Δω is small and KV is 
large, but will have unbounded error for a constantly drifting frequency such as might be 
caused by the Doppler effect on a moving signal source. 
 
Sinusoidal baseband modulation 
 
Figure 4.1 from Gardner plots the steady state phase error for a frequency modulated 
source with a single frequency sinusoidal baseband signal.  Note that this error is 
normalized to the ratio of the frequency deviation Δω to the loop natural frequency.   
 
Looking at this from a slightly different perspective, suppose that we have a sinusoidal 
FM source with modulation frequency ωm and deviation Δω.  We see that the steady state 
phase error can be small if ωm/ωn is small and ζ > 0.7. 
 
The steady state phase error can be read from the plot: 
 
εss = θe = (Δω/ωn) x (normalized phase error from the plot) 
 
This steady state phase error must remain within the operational range of the phase 
detector or the loop will lose lock.  
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UCSB/ECE Department Prof S. Long    6/11/08 26

 
Example.  FM broadcast application. 
 
Channel bandwidth 200 kHz 
Maximum modulation frequency ωm,max = 2π x 15 kHz = 9.4 x 104 rad/s 
Maximum frequency deviation Δω, max = 2π x 75 kHz = 4.7 x 105 rad/s 
 
1.  Determine KV.  Let’s use rough numbers just for illustration 
 phase detector gain = 1 volt/rad 
 VCO gain = 107 rad/s/volt 
 
So, KV = 107 s-1 
 
2.  To obtain low phase error and small gain peaking, we need ωn >> ωm,max 
 
 arbitrarily choose ωn = 5 ωm,max 
 
then the pole frequency, ω1 = ωn

2/KV = 2.2 x 104 rad/s  is determined. 
 
From Fig. 4-1, this gives us a maximum transient phase error of 
 

2020 ..
n

e =
Δ

=
ω

ωθ  radians. 

 
3.  choose ζ.  Then, ω2 can be calculated: 
 

2

1

22
1

ω
ωω

ζ n

VK
+=  

 
Typically the second term is much larger than the first. 
 
Let ζ = 0.707.  Then ω2 = ωn/2ζ = 3.4 x 105 rad/s 
 
4.  Check the maximum steady state phase error for this case.  From the plot, we have a 
normalized value = 0.2 for ωn/ωm = 0.2.  Thus, εss = 0.2 radians since Δω/ωn = 1 in this 
example.  This should be well within the operating range of most phase detectors. 
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Here is a block diagram of the IF and demodulator sections of an FM receiver. 
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Frequency shift keying:  In FSK we have a frequency step.  We know that the steady 
state phase error is bounded when KV is large, but we should also consider the peak 
transient phase error.  If this exceeds the phase detector operating range, we may lose 
lock and skip cycles before lock is recovered.  Referring to Gardner again, Fig. 4.3 shows 
the transient phase error for a frequency step.   
 

 
 
The worst case overshoot is close to ωnt = 1.    With ζ = 0.707, θe/(Δω/ωn) = 0.45.   
 
If Δω = frequency step size (deviation) and θe,max = π/2 radians, we can determine a 
minimum value of ωn to avoid losing lock. 
 

ω
θ
ωω Δ=

Δ
≥ 290450 ..

e
n  
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E.  Frequency Synthesizer Application:    
How does the design of a frequency synthesizer differ from the FM Demodulator? 
 
For the frequency synthesis application, we want to have ideally perfect phase tracking 
for phase and frequency steps.  An output frequency that is a multiple of the reference 
frequency is obtained when digital frequency dividers are included in the reference and 
VCO feedback path.  The phase detector will keep the phase and frequency equal at its 
inputs.  The block diagram below is often referred to as an  

INTEGER-N Frequency Synthesizer. 
 

 

 out ref
Nf f
M

=  

 
 

 FMD FS 
Input level Can have low S/N You choose the S/N for 

best performance.  
Crystal oscillator may 

have 100 dB S/N 
Function Tracking of frequency Frequency up/down 

conversion 
We want Low THD 

Low noise 
Low phase noise 

Loop BW Narrow – similar to IF 
bandwidth 

As wide as possible while 
preserving low spurious 

outputs 
Transfer function VO(s)/ωin(s) φout(s)/φin(s) 

 

KD F(s)
+

–

Loop filter

KO /s

VCO

1/N

1/M

Φr

Phase Detector
φvcoΣ

Digital frequency divider for VCO 
Modulus = N 

fref Digital frequency divider for reference freq. 
Modulus = M 
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The frequency synthesis application is concerned with: 
 

1.  Transient response to a frequency step 
 
2.  Steady state phase error for frequency step 
 
3.  Stability of feedback loop 
 
4.  Phase noise and timing jitter 
 
5.  Suppression of spurious output frequencies 

 
In the phase error analysis for the type 1 passive pole-zero lag filter, we found that there 
was a static phase error for a frequency step.  To eliminate this phase error, we need a 
TYPE = 2 loop gain function.  This requires an ideal integrator rather than a passive lead-
lag filter.   
  
Type 2; second order:     

1

2
/s

/s1)s(F
ω

ω+
=  

 
 
Input φref(s) εss 
Phase step Δθ/s 0 
Freq. step Δω/s2 0 
Freq. ramp A/s3 kA 
 
 
Placing an opamp RC integrator or charge pump in the loop will give a filter transfer 
function of the form: 
 

1

2
/s

/s1)s(F
ω

ω+
=  

 
where providing a pole at s = 0 and a zero at ω2.  Then, the loop gain T(s) will be that of 
a type 2 control system: 
 
Details regarding the implementation of these filters will be presented later. 
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Ref.  Motorola AN535 
 
Here we see the phase and frequency step response for a type 2 PLL in terms of the key 
loop parameters.  The settling time can be determined by setting an error tolerance 
around θo(t) = 1.  For example, if settling to 5% were the criteria and if ζ = 1, the 
response first falls within the boundary of 0.95 or 1.05 for ωnt = 4.5.  Then settling time t 
can be determined since natural frequency ωn will also be known. 
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KD F(s)
+

–

Loop filter

KO /s

VCO

1/N

1/M

Φr

Phase Detector
φvcoΣ
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and also, 
ref

outN
ω
ω
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We can calculate the loop gain, T(s): 
 

sN
sFKKsT OD )()( =  

 
• We see that the loop gain is reduced by a factor of N.   
• Also, in most applications, N is not constant, and 
• KO is not a constant – varies with frequency according to the choice of N 

 
Using the F(s) determined for the ideal integrator type 2 pole-zero loop filter:   
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We can now determine how the natural frequency and damping are affected by N: 
 

CNR
K

N
K VV

n
1

1 ==
ωω  

 

NR
CKR Vn

1

2

2 22
==

ω
ωζ  

 
 
If Kv = KOKD were constant (it is usually not) then the damping factor ζ is decreased as 
N is increased.  But, the frequency dependence of the VCO tuning coefficient KO must 
also be considered when evaluating how damping varies with frequency. 
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Root Locus: 
 

Now, find the poles of       01)(1
21

2
=++=+

ωω
s

K
NssT
V

 

 
 

1s 2
nn −±−= ζωζω  

 
where ζ and ωn are as defined above. 
 
Now examine the root locus.  As the loop gain KV increases, both real and imaginary 
parts grow.  The locus follows a circle centered around the zero.  The poles become real 
again when ζ = 1.  This happens when KV = 4ω2

2/ω1.  We have the same geometric 
interpretation that was discussed in the FMD notes. 
 
 
 
 

(2)

- ω2

Increasing KV

(2)

- ω2

Increasing KV
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F.  Some hardware implementation considerations 

1.  Loop Filter – OpAmp Implementation 
 

 
 
 
Vin 
 
 
 
 
 
 
 
An op amp can be used to form a filter that includes a pole at s = 0 and a finite zero.  For 
example, the circuit above can be analyzed using the virtual ground approximation to 
obtain F(s). 
 

CRs
CRs1

V
V)s(F

1

2

in

out +
==  

 
These values correspond to the ω1 = 1/R1C  and ω2 = 1/R2C used in the derivation of 
T(s). 
 
Vbias can be used to level shift between the phase detector and the VCO if needed. 
 
For this loop filter, we can evaluate ωn and ζ in terms of the 3 components: 
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12

V
n

V

K
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+Vbias
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C

Vout-
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+Vbias
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2.  Let’s design a synthesizer 
 
We can start with a transient specification for locking of the synthesizer PLL 
 

• Overshoot < 20% 
 

• Settling time = 1 mS 
 
From Fig. 6 of AN535 we see that a ζ = 0.8 meets the overshoot spec. 
 

Settling to within 1% happens at ωnt = 5.5 
 

So, ωn = 5.5/1mS 
 
Note that: 

1.  KD is fixed.  Depends on the phase detector 
 
2.  KO is found from the slope of the VCO tuning curve. 
In general, this is not constant, but varies with tuning voltage. 
 
3.  N is determined by  ωout/ωref 
 
The change in N required to tune over the required range and the change in KO 
causes the loop gain T to vary with frequency. 
 

Since damping also increases with KV and decreases with 
N
1

, loop dynamics 

will depend on N. 
 
4.  The phase detector will have a maximum output current.   
R1 must be consistent with VDD/Imax   Refer to the data sheet. 
 
5.  Choose C to determine ωn 
 
6.  Use ζ to determine R2. 

 
An alternate design sequence could have used the loop bandwidth, ωh = ω3dB as a starting 
point.  We will show later that this is the phase noise corner frequency.  From ω3dB and ζ, 
ωn could be determined.  The settling time is then set by default. 
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3.  Phase Frequency Detector 
The phase-frequency detector shown below is a widely used architecture in frequency 
synthesizers.  As opposed to the XOR phase detector that we first considered, this one 
produces two outputs:  QA and QB, or as is customary, UP and DOWN respectively. 

 
Ref.  J. Savoj and B. Razavi, High Speed CMOS for Optical Receivers, Kluwer 
Academic Publishing, 2001. (and many other books) 
 
This phase detector has a much larger phase range (4π) of operation, and it will produce 
an output that drives the frequency in the right direction when it is out of lock.  It also has 
zero offset when the phases are aligned and is insensitive to the duty cycle of the inputs 
since edge-triggered flip-flops are used. 
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PFD characteristic.   
 
When the phases coincide, both outputs produce minimum width pulses.  When there is a 
phase or frequency error, the width of the UP or DOWN pulses increases.  When 
integrated by the loop filter, this causes the control voltage of the VCO to move toward 
the locked condition of equal frequency and phase. 
 
Because both outputs must be combined to obtain the desired output, the loop filter must 
be modified for differential inputs as shown below.  F(s) is the same as that of the single 
ended version. 
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I.  Reference Spurs. 
 
The Integer N PLL has an inherent conflict between the frequency step size (increment) 
and the settling time/bandwidth.  The phase detector produces pulses that are at the 
reference frequency, fR.  These pulses are filtered by the loop lowpass filter, F(s), but not 
completely.  Any residual reference frequency component on the VCO tuning voltage 
port produces frequency modulation.  FM sidebands, called reference spurs, appear on 
both sides of the desired output spectral line.  The sidebands are spaced at fR.   
 
The crossover frequency of the open loop gain, T, (where |T| = 1), must be well below the 
reference frequency so that the reference frequency component is well attenuated by the 
loop filter.  Once beyond crossover, the loop gain is less than 1, and so attenuates the 
spurs.  The slope beyond crossover (or the closed loop 3 dB bandwidth) is 20 dB/decade 
for the second order loop with zero.  For example, if you need 40 dB of spur attenuation, 
you must choose a crossover frequency that is a factor of 100 less than the reference 
frequency. 
 
Since the settling time and loop bandwidth are directly affected by the crossover 
frequency, we have conflicting requirements.  Compromises must be made. 
 
 

 
Spectral display of PLL output with reference spur sidebands 
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 4.  Charge Pump Loop Filter 
An alternative loop filter implementation called the charge pump is widely used for many 
applications.  It is very convenient to implement in CMOS, so is more frequently used 
than the opamp version. 
 

• The PFD output produces UP (QA) and DOWN (QB) pulses whose width is 
proportional to the phase error. 

 
• Charge pump current sources I1 and I2 must produce exactly equal currents.  They 

charge and discharge the capacitor, CP, in discrete steps. 
 

• If there is a static phase error Δφ at the PFD input, the capacitor, C, will be 
charged indefinitely – therefore, the DC gain is infinite: an ideal integrator.  So, 
we expect to have zero static phase error.  This is unlike the type I loop which 
gave Δφ = Δω/KV steady state phase error. 

 
• The CP PLL will detect small phase errors and correct them as long as the 

frequency of the phase error (jitter frequency) is within the loop 3 dB bandwidth.  
This phase comparison occurs on every cycle. 

 

 
(from B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001. 
 
To illustrate how the charge pump works and how it might be analyzed in a linearized 
model, refer to Fig. 15.32.  Here we assume that I1 = I2 = IP and that a phase step Δφ 
occurs at t = 0. 
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(from B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001. 
 
First consider the time domain picture above.  Δφ = φ0 u(t) 
 
QA produces pulses that are of width 
 

tTin Δ=
Δ
π
φ

2
 . 

 
IP charges Cp by  
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in every period.  We can approximate this as a linear ramp with slope  
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Thus, the output voltage from the charge pump can be described by 
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The derivative of the step response is the impulse response, so we can determine the 
frequency domain transfer function. 
 

)t(u
C

I
dt

dV)t(h
P

Pout
π2

==  

 
Take the Laplace transform to obtain the frequency domain transfer function. 
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Δ
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Here is the block diagram of the CP PLL.  We see that the loop gain function T(s) has a 
factor of s2 in the denominator.  Thus, it is a type II loop. 
 

s
K

s
K)s(T VCOPFD=  

 
But, because of that, we have a big problem.  The phase margin is always zero as shown 
by the Bode plot below.   
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Therefore, we must add a zero to the loop filter transfer function to provide some phase 
lead to stabilize the PLL. 
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Now, we can see that an increase in the loop gain will improve phase margin. 
 
To determine T(s) for this case, we want to calculate Vout(s)/Δφ again, adding the 
resistor to the charge pump filter. 
 
New filter: 
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The phase frequency detector (PFD) with single capacitor CP has 
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Δ
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2πφ
 

 
To find the frequency response of the input current, we note that,  
 

I(s) = Vout(s)/Z(s) = Vout(s)/(1/sCP) 
 
where Z(s) is the complex impedance.  So, the current source can be modeled as: 
 

πφ 2
PI)s(I

=
Δ

  . 

 
Now, let’s use this to modify H(s) for the series RC loop filter.  To do this, just replace 
the impedance 1/sCP with Z(s) = RP + 1/sCP.   
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The loop gain T(s) is therefore 
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We see that a zero at ω = 1/RPCP has been added to the transfer function.  This provides 
the necessary phase lead to achieve stability.   
 
Of course a frequency divider can be placed in the feedback path if the output frequency 
is to be multiplied by the PLL.  Divide by N gives  
 

inout

inout
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N

ωω
φφ

=
=

 

 
This added divider would be needed in a frequency synthesizer application or clock 
multiplier application.   
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T(s) is then modified by a factor of 1/N. 
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Now, let’s derive the closed loop transfer function.  Define KV = IPKVCO/2πCP and zero 
frequency ωZ = 1/RPCP. 
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Having put this in one of the standard forms, we can extract ωn and ζ from the 
denominator. 
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We can see now with RP = 0, ζ = 0, therefore there is no phase margin and the system is 
unstable as expected.  With added RP, the damping factor can be increased.  Also note  
that stability will decrease with increasing N.  Loop gain must be increased to 
compensate for this. 
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The root locus of the modified charge pump PLL is shown below.  It is the same as was 
obtained for the opamp loop filter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As loop gain is increased by increasing IPKVCO, the dual poles at s = 0 split and form a 
circular locus, rejoining the real axis at – 1/2RPCP.   
 
The pole locations are found at 
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G.  Closed Loop Frequency Response 
 
The closed loop frequency response can be evaluated from H(jω).  Recall that  
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out V
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K F s sH s
T s

φ
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In Fig. 2-3, Gardner has plotted the magnitude as a function of ω/ωn.   
 
 

 
We see that the frequency response is a low pass to φin.  Thus, the phase noise of the 
reference source passes through the PLL, is increased in magnitude by 20 log N, and is 
filtered as shown in Fig. 2-3.  Below the crossover frequency (0 dB in the figure above), 
we have little attenuation of input noise.  Above, noise is reduced by 20 dB/decade.   
 
Also note that for ζ < 2, there is gain peaking.  Actually there is always some gain 
peaking for the Type II CP PLL or the opamp filter PLL because the zero frequency is 
always less than the pole frequency in the strongly damped case.  For some applications, 
this is inconsequential.  However, for clock and data recovery (CDR) use, the SONET 
specification is very strict:  less than 0.1 dB of gain peaking is allowed.  This is because 
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in an optical fiber link, the signal may pass through several repeaters that include CDR 
units.  Cascaded transfer functions with gain peaking leads to amplification of jitter 
(phase noise) close to the 3 dB frequency. 
 
H.  PLL Phase Noise 
 
We have considered how the loop crossover frequency and phase margin affect things 
like settling time and capture range.  But it also plays a role in the PLL noise behavior. 
 
Phase noise consists of noise sidebands offset on either side of the oscillator output 
frequency.  These typically drop off at 20 dB/decade in magnitude with offset Δf from 
carrier.  This type of noise is really bad for communication applications because it 
spreads out the oscillator signal.  Rather than looking like an impulse in the frequency 
domain, the local oscillator now occupies a finite region of the spectrum.  If this noise 
overlaps with adjacent frequency channels, a phenomenon called Reciprocal Mixing 
occurs.  On receive, strong signals outside of the desired channel mix with the oscillator 
phase noise sidebands into the desired channel.  IF filtering cannot remove this.  On 
transmit, the LO noise shows up in someone else’s channel, also bad. 
 

In the spectrum above, the LO frequency has noise sidebands due to phase noise.  This 
can cause mixing of signals from adjacent channels as shown by the interfering signal, 
fINT being mixed down to the same IF frequency as fRF.  Thus, the LO phase noise 
degrades the SNR of the RF signal.   
 
For frequency synthesis, we are interested in low phase noise.  There are at least 2 main 
sources: 

1.  Reference and PFD-CP noise – Reference noise is usually small since we 
frequently use a crystal oscillator with very low phase noise.  However, if the ratio 
of fout/fref = N is very large, the PLL will multiply the phase noise of the 
reference by N.  Thus, the noise power at the output is increased by  
 

20 log N. 
 

fIF fLO fRF fINTfIF fLO fRF fINT

Δf
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2.  VCO noise – often high.  We hope that the PLL will suppress most of the noise 
within the loop bandwidth, at least close to the carrier. 
 

 
The effect caused by each of these noise sources can be seen from the closed loop 
transfer functions. 
 
1.  Reference Noise:   

 
Adding the phase noise of the reference source, φref noise, at the input,  
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This is a low pass transfer function.  Its magnitude approaches N as s becomes small.  
Thus, reference phase noise is low pass filtered by the loop.  Reference phase noise can 
be quite low when a crystal oscillator is used to generate the reference frequency.  
However, the phase noise fluctuation gets multiplied by a factor of N for the integer N 
PLL.   

N
ref
out =
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Because noise power is proportional to the square of the phase, reference phase noise 
power at the PLL output is increased by a factor of N2 or 20 log N for offset frequencies 
within the loop bandwidth.  This is a serious limitation for large N values.  There are 
better architectures to be used when small step size and low phase noise are both 
required. 
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2.  VCO Noise: 
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This is a high pass closed loop transfer function.  It approaches a magnitude of 1 as s 
becomes large.   
 
While LC VCOs can have low phase noise, they generally have smaller tuning range.  
RC or ring oscillator VCOs can be built with very wide tuning range but poor phase 
noise.  The PLL can be used to clean up the VCO phase noise within the loop bandwidth.  
VCO phase noise is unattenuated at offset frequencies beyond the loop bandwidth. 
 
Conclusions: 
 
1.  Reference input noise (reference source noise, data jitter, phase noise on FM input 
signal, etc.) sees a low-pass transfer function.  It is passed through and multiplied by N.  
All we can do is try to avoid making it worse with our loop.  A narrow bandwidth loop 
filter will help to suppress high frequency noise coming into the PLL from the reference 
port.   
 
2.  VCO jitter is suppressed by the PLL within the loop bandwidth.  It has a high-pass 
transfer function.  Thus, to suppress VCO noise, we want a large loop bandwidth. 
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Lock and Capture Behavior 
 
Up until now, we have assumed that the loop is always locked: 
 
 out in out inφ φ ω ω= =  
 
But, we have seen that some finite phase error is necessary to drive the VCO.  If KV is 
large and/or we use a Type II loop filter, the steady state error is very small or zero. 
 
1.  Static Tracking.  When the input or reference frequency is changed slowly or the 
divide modulus change is small, the loop remains locked.  The VCO control voltage 
coming from the loop filter varies slowly to track the change in frequency.  As long as the 
VCO frequency is capable of providing what is required, and the phase detector range is 
not exceeded, the PLL continues to follow.  Locking range is either 
 
 ( )L D OK K PFD rangeωΔ =±  
OR 
 
 L VCO freq rangeωΔ = ±  
 
2.  Dynamic Tracking.  If the input frequency or N is changed by a large step, the loop 
responds with an exponential envelope. 
 

 tne ω ζ−  
 
It is possible for the PLL to lose lock temporarily until the control voltage catches up.  
This referred to as cycle slipping.  The PLL must then capture lock again. 
 
Consider a mixer or XOR type of phase detector.  If the two input 
frequencies, in VCO inandω ω ω ω= + Δ  are different, then, 
 
 cos( )cos[( ) ]e in inV t tω ω ω= + Δ  
  
The output contains frequency components at 2 inandω ω ωΔ + Δ .  The higher 
frequency component is removed by the loop filter, but the output of the loop filter 
contains the ωΔ  frequency.  If the loop were open, as seen in the figure below, part (a), 
the VCO is frequency modulated and produces sidebands separated by the beat 
frequency. 1 

                                                 
1 B. Razavi, in Monolithic Phase Locked Loops and Clock Recovery Circuits: Theory and Design, Wiley-
IEEE Press, 1996. 





When the loop is closed, part (b) above shows how there is a net DC component in the 
control voltage that will drive the VCO toward lock.  Once the PLL loses lock, the VCO 
frequency may drift back to its free running frequency.  Then, capturing lock requires 
moving that frequency close to the reference frequency. 
 
Why is the capture range always less than the lock range? 
 
When the loop is unlocked, there is an output of the phase detector at the difference 
frequency, ωΔ . 
 
When this is filtered by the loop filter, the amplitude reaching the VCO will be reduced 
by  
 

( )| |cont eV V F j ω= Δ  
 
Hence, if the loop filter has a narrow bandwidth, only small deviations from inω  can be 
tolerated without losing lock.  Once the PLL loses lock, the frequency difference must be 
brought within ωΔ  in order to restore lock. 
 
The figure on the next page illustrates how the lock range is greater than the capture 
range in a hypothetical example2.  Note how the error voltage tracks the input frequency 
change once lock is established.  
 
 capture lockf fΔ <Δ  
 

                                                 
2  A. Grebene, Bipolar and Analog Integrated Circuit Design, p.633, Wiley Interscience, 1984. 






