
Third-order PLL 
 
There is still one residual problem that we have overlooked.  The phase detector produces 
pulses of variable width that activate the switches to either charge or discharge the 
capacitor CP in the case of the charge pump PFD-CP combination.  Now that we have 
added the resistor RP, which is absolutely necessary for stability, we find that the control 
voltage coming out of the charge pump will jump up or down before settling to its steady 
state value.  This occurs because you cannot change the voltage across a capacitor 
instantaneously, so the initial voltage drop occurs across RP, which then charges CP 
exponentially.  This jumpy control voltage frequency modulates the VCO at the reference 
frequency, creating reference spurs.  This is not such a big problem if N = 1 because the 
jump will be at the same frequency as the VCO.  But, at larger N values, it creates low 
frequency jitter producing FM sidebands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Frequency spectrum of output.   
Reference spur sidebands are spaced at intervals of ωin. 

 
So, we need to fix this by adding a second capacitor, C2, whose function is to filter out 
the jumpy response of the series RC network.  The magnitude of the reference spur 
sidebands is reduced.  Unfortunately, however, C2 adds a third pole of finite frequency 
that will reduce the stability of the PLL.  Now, the handy tools we have been using for 
predicting performance of the second-order PLL no longer are accurate. 
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A look at the Bode plot verifies this.   
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The pole frequency is given by RP in parallel with the series combination of CP and C2.  
Thus, the pole is always higher in frequency than the zero.  We can see that the added 
pole reduces the phase margin.  In fact, now when the loop gain is increased, phase 
margin is reduced.   
 
 
Since the second order model using ωn and ζ are no longer valid for predicting settling 
behavior, a different way is needed to relate crossover frequency and phase margin to 
settling time.  The figure below, from Vaucher1 provides this link.  A frequency step 
response is plotted.  In this figure, the frequency error, Δf, is normalized to a frequency 
step, fstep, and is plotted against a normalized time axis, fCt.  Here, fC is the crossover 
frequency.  φm is the phase margin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to the plot, a PM of 50 degrees produces more overshoot, but settles faster 
than 65 degrees.  If the higher overshoot can be tolerated, this would be a better choice.  
If less overshoot is required, then the 65 degree PM is best.  A higher fC will be required, 
however, to meet the same settling time spec.  The 30 degree case seems to have no 
benefits. 
 

                                                 
1 C. S. Vaucher, “An adaptive PLL tuning system architecture combining high spectral purity and fast 
settling time, IEEE J. Solid State Cir., Vol. 35, #4, pp. 490 – 502, April 2000. 
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The next plot shows the settling transient for different PM values expanded on a log scale 
[1].  The vertical axis plots  ln(| ( ) | /c stepf f t fΔ .  This gives the remaining frequency 

error fΔ  in response to a step in frequency stepf  plotted against a normalized time axis 

Cf t .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3(b).  The red and green lines trace the envelope for the 30 and 50 degree cases.  For 
example, at tlock = 2fCt and φm = 50 degrees, the frequency has settled to within e-9 = 1.23 
x 10-4 of its final value.   (ref.  C. Vaucher, op. cit.) 
 
This plot can be used to determine the crossover frequency required for a particular 
settling time, tlock.   
 
Ex.  Suppose we want to achieve settling to within 0.1 % in 2 ms.   
 

ln(0.001) = -6.9.   
 

If we choose the 50 degree PM,  fC tlock = 1.7 
 

So,   fC = 1.7/0.002 = 850 Hz.   
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Because some applications require a smaller residual settling error, Vaucher [1] also 
provides a plot showing settling time to e-10 (4.5 x 10-5) vs. phase margin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(ref.  C. Vaucher, op. cit.) 
 
The settling time reaches a sharp minimum at about 51 degree PM.  This is the phase 
margin just below the point at which the closed loop poles are coincident at  – fC. [1]  
Thus, the design of critically damped loops, a PM of about 70 degrees, does not lead to 
the fastest settling time for third order CP PLLs. 
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Alternatively: 
Recall that the rate at which a second-order low pass system responds to a step in phase 
or frequency is given by n te ω ζ− , the envelope of the damped ringing.  Vaucher 
hypothesizes that an effective damping factor, ( )e mζ φ , can be defined from the envelope 
of the responses in fig. 3(b).  Then, 
 
 
 
 
 
 
 
 
 

fstep is the amplitude of the frequency jump 
ferror is the maximum frequency error at tlock 

 
Figure 6 is extracted from Fig. 4.  It shows the effective damping factor vs phase margin 
for ln(fstep/ferror) = -10. 
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Design of charge pump PLL.  The equation for loop gain T(s) can be used with the 
Bode plot to set the crossover frequency and determine k to obtain a particular phase 
margin.  fC and φm can be determined from the above plots to match a particular settling 
time specification. 
 
The phase frequency detector (PFD) with single capacitor CP has 
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To find the frequency response of the input current, we note that,  
 

I(s) = Vout(s)/Z(s) = Vout(s)/(1/sCP) 
 
where Z(s) is the complex impedance.  So, the current source can be modeled as: 
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  . 

 
Now, let’s use this to modify the PFD-CP combination for the third-order loop filter.  
Multiply the current by the new Z(s): 
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So, the loop gain, T(s),  
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Where 1/z P PR Cω =   and 3 2 2( ) /( )p P P PC C R C Cω = + . 
 
The next step is to determine the zero and third pole frequencies needed to obtain the 
desired phase margin.  One strategy is to choose these frequencies centered around the 
crossover frequency.   The Bode plot can be used to estimate this.  We want to choose k 
such that  
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Here we see a solution sketched out for k = 4.  The factor k can be estimated by2 
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2 D. Shaeffer, Design Criteria for Frequency Synthesis in Wireless Systems, Session F1, Girafe Design 
Forum, ISSCC 2005. 
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Design process: 
1.  fC and φm are determined by settling time using the plots from [1]. 
2.  k is derived from φm.  So, ωz and ωp3 are known.   
3..At this stage, you can estimate the loop filter components.  Here are three ways that 
give reasonably accurate results.  You can later use ADS to optimize from these initial 
results if they are not sufficiently accurate for your design. 
 
a.  First method does not make any assumptions.  Start from loop gain. 
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Evaluate the magnitude at the crossover frequency.  We see that the frequency ratios at 
crossover are just defined by k.  And, at crossover, | ( ) | 1CT jω =  
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Thus, CT = C2 + CP can be determined.  Then,  
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b.  Another method makes the assumptions that ωz << ωC,  ωC << ωp3 and 

2P PC C C+ ≈  
 
Start with the magnitude of T(jω).   
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Then at crossover, | ( ) | 1CT jω = , so solve for RP. 
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Once RP is known, then CP and C2 follow from ωz and ωp3. 
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OR: 
 
c.  Calculate the loop gain at a low enough frequency that both zero and third pole 
contribution to the magnitude can be ignored.  Suppose you set ω = 1 rad/s.  The loop 
gain can be determined by a Bode plot method, either on the graph or using: 
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Then, convert from dB to a ratio: 
 

2
| ( 1) |

2 ( )
P O

P

I KT j
N C Cπ

=
+

 

 
so, CP + C2 can be determined.  Let’s call this CT.  Then, using, ωz and ωP3,  then using 
the equations in part a., RP and CP can be found from ωz and C2: 
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Implicit in all of this is that you have a specific divide ratio N that you are designing for.  
In all cases, however, N will vary over some range so that the synthesizer frequency can 
be tuned.  And, over this frequency range, KO is not constant either.  Both of these 
variations will affect the phase margin and settling time since the loop gain depends on 
both of these factors. 
 
Your job, then, is to figure out ahead of time which extreme represents the worst case in 
terms of whatever parameter you are trying to specify: overshoot, spur rejection or 
settling time.  Design for the worst case, and the other extreme will most likely exceed 
specs. 
 
In the case of the second order loop, the end with the lowest KV and highest N generally 
produces the lowest phase margin.  Phase margin increases as the crossover frequency 
increases.  ωn increases, but ζ also increases.  Thus, the settling time must be estimated at 
both ends and depends on the specific design details.  Spur rejection gets worse for higher 
crossover. 
 
You can estimate the settling time from the exponential behavior of the transient 
response: 
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For the third-order PLL, the opposite is true.  Phase margin, overshoot and spur rejection 
get worse as the crossover frequency increases.  Analysis is more difficult, but a Bode 
plot can be used to estimate the crossover frequency and phase margin.  Settling response 
can be estimated from the normalized curves.  ADS or MATLAB simulation should be 
used to verify the results. 
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Reference spur rejection.  Refer to the magnitude Bode plot below.   
 

The slope approaching and leaving the crossover region is – 40 dB/decade because: 
1. Type 2 loop gain function has a factor of 1/s2.  However, 
2. The zero reduces slope to – 20 dB/decade in the crossover region, but because the 

reference frequency must be at least 10 times fC, the slope again approaches -40 
dB when the third pole kicks in. 

 
So, depending on the relationship between the reference and crossover frequencies, we 
can predict the spur rejection based upon either a – 20 or -40 dB/decade extrapolation.  
From the Bode plot, you can see that the closed loop gain is the same as open loop gain 
after crossover.  The gain at crossover is 0 dB, so anything beyond that frequency will be 
attenuated as shown. 
 
Example:  suppose the reference frequency is 100 KHz.  Crossover is about 2 kHz in this 
example.  We can see that the graph predicts – 60 dB of attenuation for 100 kHz signals. 
 
Or, estimate from the equation below: 
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OpAmp Loop Filter Version 
The charge pump solution, although quite popular, is not the only possibility.  You can 
also produce the Type 2, third-order loop gain function using the opamp style loop filter 
shown below.  Capacitor C1 gives the third pole in this case. 
 

 
 
Because the phase-frequency detector has limited current output capability, you need to 
make sure that R1 is sufficiently large so that this current is not exceeded, otherwise the 
filter will not work correctly.  In deriving the transfer function, F(s), you should note that 
only one input at a time is being driven.  The PFD output gives either UP or DOWN 
pulses (neglecting the very narrow pulses produced at both outputs when the loop is 
locked) if the phase is lagging or leading respectively.   
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The block diagram of the PLL with opamp filter is shown below.  From the diagram, T(s) 
can be seen to be: 
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Then the design can proceed in a similar manner as with the charge pump if phase margin 
and settling time are known. 
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R1 is known from the phase frequency detector maximum current limitation. 
 
So, solve for C2.  Then, 
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Simulation tool:  You can verify your design using the ADS PLL design guide.   
 

1.  The first step is to select the PLL design guide from the DesignGuide menu.  Then 
select the application, in this example, Frequency Synthesizer. 
 

 
2.  Next, specify which type of simulation you wish to perform. 
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3.  The type of phase detector being used must be selected. 

 
4.  Finally, select the filter type.  The RPCPC2 combination is a passive 3 pole, of course. 
 
 
The frequency response simulation mode uses the AC analysis method.  It plots a Bode 
plot of the open and closed loop gain.  Component values can be optimized. 
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You will need to specify your reference frequency, charge pump current, the divide ratio, 
and your VCO tuning coefficient.  Enter the corresponding filter component values.  To 
evaluate your calculated component values, you should disable the optimization 
controller.  Then, the Bode plot that is produced will reflect your choice of components.  
You can refine the solution later by using the optimization feature. 
 

 

With optimization disabled, the lowpass filter component values are not displayed, but 
crossover frequency, phase margin and spur attenuation are calculated. 
 
When you optimize, then specify the desired crossover frequency and phase margin.  But, 
start from the component values you have already selected to obtain a solution that is 
closer to optimum.  The optimizer does not generate a unique solution, and the closer the 
initial values are to your goal, the more useful the result. 
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A transient simulation can also be used to verify settling time.   
 

 
 

 
Note the components on the far right, R4 and C3.  These model the input to your VCO.  
If C3 is large, it will produce a 4th pole that could badly affect your step response.  Be 
sure that the VCO does not have any large filtering capacitors at the tuning port. 
 
 
 
 
 
 


