8-bit Flash ADC

C. Mangelsdorf, "A 400-MHz Input Flash Converter with Error Correction," IEEE JSSC Vol.25,#1, pp184-191, Feb 1990.

Pipeline detail

Fig. 2. Pipeline detail.

C. Mangelsdorf, "A 400-MHz Input Flash Converter with Error Correction," IEEE JSSC Vol.25,#1, pp184-191, Feb 1990.

Reduced error rate due to cascaded latches

C. Mangelsdorf, "A 400-MHz Input Flash Converter with Error Correction," IEEE JSSC Vol.25,#1, pp184-191, Feb 1990.

ENOB vs. input amplitude

FULL-SCALE RANGE (Volts)

Fig. 10. Effective number of bits versus full-scale range for 1-, 50-, and 100-MHz analog input frequencies, all at 200 Ms/s. Input amplitude was adjusted for each range.

C. Mangelsdorf, "A 400-MHz Input Flash Converter with Error Correction," IEEE JSSC Vol.25,#1, pp184-191, Feb 1990.

2 stage 10 bit ADC

94 comparators instead of 1024

Figure 1: Block diagram of a 10-b, 1GS/s ADC.

N. Sheng, et al,"A 10-bit, 500 MS/s ADC," IEEE IMS, pp. 197-200, 1999.

2 stage ADC dynamic performance

Figure 5: Measured ADC performance at 500 MS/s with 49 MHz input.

Figure 6: Measured ADC performance at 500 MS/s with 200 MHz input.

N. Sheng, et al,"A 10-bit, 500 MS/s ADC," IEEE IMS, pp. 197-200, 1999.

Subranging ADCs

- Area and power efficient
- Reduced number of comparators
- Suitable for pipelining
 - Increased clock rate but higher latency
 - interpolation, folding also can be used
- Uses simple CMOS diff amps

2 step 8-b subranging ADC

Fig. 1. Two-step subranging ADC architecture.

Output of 4-bit CADC

selects between 15 reference subranges of 32 LSBs for FADCgives 4 MSBs

FADC has 5 bits to provide overrange – digitally correct for errors in CADC up to +/- 8 LSBs

Coarse ADC Operation: offset compensation

 Φ 1 reset for ½ clock cycle produces low Z at amplifier input. Store Vref,j + Voffset on C

 Φ 2 then activates amplifier. The difference between V_{T/H} and Vref then is sensed by the amplifier with the same offset.

Switch charge Injection compensation

- Charge injection on reset (φ1) is signalindependent

CADC amplifier

- Full differential reduces substrate noise
- Cascode improves speed
- Current sources in parallel with Rload increases gm

Fine ADC operation

Fig. 5. Operation principle of the FADC.

Reset switch on A, B Open loop offset comp

Fig. 7. Effect of finite on-resistance of the reset switches at high conversion rates.

Fig. 8. Implementation of the reset switches in array A and B of the FADC.

2X Interpolation of ref ladder

Reduces number of comparators, requires fewer ref voltages

Fig. 9. Implementation of $2 \times$ interpolation of the reference ladder voltages.

Another 2X interpolation

Charge redistribution is used to generate intermediate reference voltage

Fig. 10. Implementation of another $2 \times$ capacitive interpolation of the reference ladder voltages.

FADC pipeline

Fig. 4. Block diagram of the FADC.

- Interpolation is introduced at A, B and C
- Only 17 ref voltage taps
- Capacitive loading of switches and amplifiers is reduced proportionally

Active 2X interpolation

Fig. 11. Simplified schematic of a differential-pair amplifier providing $2 \times$ interpolation.

Capacitive averaging

- RESET:
 - Each cap charged
 Vin,0 and Vin,1
- AMPLIFY:
 - Charge redistribute
 - Node voltage is the average of Vin,0 ar Vin,1.
- Decreases influence switching noise and random mismatch wl is uncorrelated

Fig. 12. Implementation of $2 \times$ capacitive averaging.

• Better SNR

Fig. 13. Distributed averaging topology, providing $4 \times$ and $2 \times$ averaging of the amplifiers in array A and B, respectively.

CMOS MS Comparator

Fig. 10. Implementation of master-slave comparator, optimized for a low bit error rate.

A. Venes, R. Van de Plassche, "An 80 MHz, 80 mW, 8-bit Folding ADC with Distributed Track Hold Preprocessing," IEEE JSSC, Vol. 31, #12, pp. 1846 – 1853, Dec. 1996.

BJT Comparator

Fig. 2. Standard comparator cell with a master and a slave flip-flop in ECL-miniwatt technique.

Folding ADC .∎V i⊓ Folding Υ in. circuit Fine coarse Flash Flash converter converter

Fig. 4. Block diagram of a single folding system.

Fig. 8. Triangular waveform with rounding-off effect.

Double Folding ADC

90 degrees out of phase

Fig. 5. Block diagram of the double folding system.

Range overlap reduces nonlinearity due to rounding error

Fig. 6. Signal waveforms of the double folding system.

Double folding circuit

Fig. 7. Simplified circuit diagram of the double folding system.

References

- Van de Grift and van de Plassche, "Monolithic 8-bit Video ADC," IEEE JSSC, vol.19, #3, pp.374-8, June 1984.
- A. Venes, R. Van de Plassche, "An 80 MHz, 80 mW, 8-bit Folding ADC with Distributed Track Hold Preprocessing," IEEE JSSC, Vol. 31, #12, pp. 1846 1853, Dec. 1996.
- J. Mulder, etal.,"A 21mW 8-b 125 MS/s ADC in 0.09 mm2 0.13 um CMOS," IEEE JSSC, Vol. 39, #12, pp. 2116-2125, Dec. 2004.
- N. Sheng, et al,"A 10-bit, 500 MS/s ADC," IEEE IMS, pp. 197-200, 1999.
- C. Mangelsdorf, "A 400-MHz Input Flash Converter with Error Correction," IEEE JSSC Vol.25,#1, pp184-191, Feb 1990.
- J. van Valburg and R. van de Plassche, "An 8-b 650 MHz Folding ADC," vol 27, #12, pp. 1662-6, Dec 1992
- K. Poulton, et al."A 20Gs/s 8b ADC with a 1MB Memory in 0.18 um CMOS," ISSCC 2003, paper 18.1.
- K. Poulton, et al."A 4Gs/s 8b ADC in 0.35 um CMOS," ISSCC 2002, paper 10.1.