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Delay-Locked Loops - An Overview

Chih-Kong Ken Yang

Abstract — Phase-locked loops have been used for a wide
range of applications from synthesizing a desired phase
or frequency to recovering the phase and frequency of an
input signal. Delay-locked loops (DLLs) have emerged as
a viable alternative to the traditional oscillator-based
phase-locked loops. With its first-order
characteristic, a DLL both is easier to stabilize and has
no jitter accumulation. The paper describes design
considerations and techniques to achieve high
performance in a wide range of applications. Issues such
as avoiding false lock, maintaining 50% clock duty cycle,
building unlimited phase range for frequency synthesis,
and multiplying the reference frequency are discussed.

loop

1. INTRODUCTION

Many applications require accurate placement of the
phase of a clock or data signal. Although simply delaying the
signal could shift the phase, the phase shift is not robust to
variations in processing, voltage, or temperature. For more
precise control, designers incorporate the phase shift into a
feedback loop that locks the output phase with an input
reference signal that indicates the desired phase shift. In
essence, the loop is identical to a phase-locked loop (PLL)
except that phase is the only state variable and that a
variable-delay line replaces the oscillator. Such a loop is
commonly referred to as a delay-line phase-locked loop or
delay-locked loop (DLL). As with a PLL, the goals are (1)
accurate phase position or low static-phase offset, and (2)
low phase noise or jitter.

Because a DLL does not contain an element of variable
frequency, it historically has fewer applications than PLLs.
Bazes in {1] demonstrated an exampie of precisely delaying
a signal in generating the timing of the row and column
access strobe signals for a DRAM. Another common
application uses a DLL to generate a buffered clock that has
the same phase as a weakly-driven input clock. Johnson in
[2] synchronizes the timing of the buffered clock of a
floating-point unit with the clock of a microprocessor. A
similar application recovers the data of a parallel bus by
generating a properly positioned sampling clock. Typically,
these systems provide a sampling clock with the same
sampling rate but with an arbitrary phase as compared to the
data (i.e. a “mesochronous” system [4]). A clocked DRAM
data bus is an example of such a system. A clock propagates
with the data as one of the signals in the bus and therefore
has a nominally known phase relationship with the data.
However, in order to receive and buffer the clock to sample

C.K. Ken Yang is with University of California at Los Angeles,
Yang@ee.ucla.edu.

13

the data bus, the actual sampling clock is no longer properly
aligned with the data. A DLL is commonly used to lock the
phase of the buffered clock to that of the input data. The
phase locking significantly reduces timing uncertainty in
sampling the data, which then enables higher data rates as in
31

- Although aperiodic signals can also be delayed by the
delay line in a DLL, the inputs to delay lines are typically
clock signals. By using a periodic signal, the delay lines do
not need arbitrarily long delays and typically only need to
span the period of the clock to generate all possible phases.
A data signal can be delayed by sampling the data with the
appropriately delayed clock.

The motivation for using DLLs is that the design of the
control loop is simplified by having only phase as the state
variable. Section II reviews how such a loop is
unconditionally stable and has better jitter characteristics.
However, a DLL is not without its own limitations. The
variable delay line has a finite delay range and finite
bandwidth. Section 1II also discusses these design
considerations. Section 111 describes different
implementations of the variable delay line. Within the past
ten years, modifications to the basic DLL architecture have
enabled clock and data recovery applications in
“plesiochronous” systems [4] where the sampling rates for
clock and data differ by a few hundred parts-per-million in
frequency. Delay lines with effectively infinite delay are also
addressed in Section III.

More recently, several researchers such as [S] and [6]
have introduced architectures that permit frequency
multiplication based on delay lines which further extends
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their use in clock generation and frequency synthesis.

Section IV describes these architectures.

II. DLL CHARACTERISTICS

The basic loop building blocks are similar to that of a
PLL: a phase detector, a filter, and a variable-delay line.
Figure 1 illustrates the three main functional blocks. Since
phase is the only state variable, a control loop higher than
first-order is not needed to compensate a fixed phase error.
The resulting transient impulse response is a simple
exponential. Although the simple loop characteristics are an
advantage that DLLs have over PLLs, the design is
complicated by the additional circuitry that is needed to
overcome having a limited delay range and not producing its
own frequency.

A. First-order Loop

A phase detector compares the phase of the reference
input and the delay-line output. The comparison yields a
signal proportional to the phase error. The error is low-pass
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Figure 1: DLL architecture.

Figure 2: Open- and closed-loop transfer characteristics.

filtered to produce a control voltage or current that adjusts
the delay of the delay line. The delay-line input can be either
the reference input or a clean clock signal.

The s-domain representation of each loop element is
depicted within each block in Fig. 1. The open-loop transfer
function can be written as T(s) = K ppKpr G F(s) where
Kpp is the phase-detector gain, Gg(s) is the filter transfer
function, and Kpp is the delay-line gain. If the loop has
finite gain at dc, the resuiting output signal will exhibit a
static phase error as shown in the following equation.

1
1+ 1/(KppKprGr(s)|.

lc=0

H), o = 0y

To eliminate the static phase error, the filter is often an
integrator to store the phase variable. This results in a
first-order closed-loop transfer function.

1
1+ (s/KppKp1GF)

H(s) = @

The equation assumes that the delay-line input is a clean
reference as opposed to the reference input. Higher-order
loop filters have not commonly been used but can enable
better tracking of a phase ramp (i.e. a frequency difference).

Figure 2 shows the open-loop and closed-toop transfer
functions. With only a single integrator, the open-loop phase
margin is 90°. The loop is unconditionally stable as long as
the delay in the loop does not degrade the phase margin
excessively. The closed-loop transfer function illustrates that
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Figure 3: Step response of PLL and DLL (with same loop charac-
teristics). '

the tracking of the phase of the input clock changes at
different frequencies. Based on the transfer function, the
loop bandwidth is @, = KppKpy Gp. For frequencies
within the loop bandwidth the phase of the output clock will
track that of the reference input and reject noise within the
loop. The phase characteristics of the output clock above the
bandwidth of the loop depend on the phase behavior of the
delay-line input and the noise from the delay line. The noise
transfer function from a noise source lumped at the
delay-line output is a high-pass response.
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©))

In some degenerate cases, the delay-line input is also the
reference input. The feedback loop would guarantee a fixed
phase relationship between the delay-line output and the
reference so any phase variations in the reference would
directly appear at the delay-line output in an all-pass
response. However, noise due to the delay line is still
high-pass filtered.

B. Advantages over a PLL

The loop characteristics are considerably simpler than
those of a PLL. A PLL would contain at least two states to
store both the frequency and phase information. In order to
maintain loop stability, an additional zero is needed. A DLL
is less constrained with only a single pole. The loop gain
directly determines the desired bandwidth. The only stability
consideration is when the loop bandwidth is very near the
reference frequency. The periodic sampling nature of the
phase detection and the delay in the feedback loop degrade
the phase margin. For instance, if the feedback delay is one
reference cycle, the loop bandwidth should not exceed 1/4 of
the reference frequency.

Figure 3 illustrates the response to a noise step applied
to the control voltage for both a PLL and a DLL. A PLL
accumulates phase error due to its higher-order loop
characteristic. In response to a phase error, the control
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Figure 4: Early-late receiver architecture using the receiver as the
phase detector. Timing diagram showing early and late data.

voltage alters the frequency of an oscillator. The output
phase is an integration of the frequency change. In response
to a noise perturbation, the loop accumulates a phase error
before correcting. In contrast, a DLL attenuates the phase
error by the time constant of the loop. In the figure, both
loops are designed with the same 3-dB bandwidth, the same
delay elements, and the PLL is a 2nd-order loop with a
damping factor of unity. Clearly, the PLL suffers from larger
phase errors due to the phase accumulation.

A second advantage relates to clock and data recovery
applications. An effective way to recover the timing for
sampling a data input is to use the data receiver as a phase
detector. The architecture, depicted in Fig. 4, uses the
180°-shifted clock to sample the data transitions in addition
to sampling the data values [7]. Whenever data changes
values, the sampled transition and the data values can be
combined to indicate whether the sampling clock edge is
earlier or later than the data transition. Phase information is
only present with data transitions. The feedback loop locks
when the transition sampling clock samples a metastable
value. This commonly used design is known as an early-late
or bang-bang architecture. The timing diagram in Fig. 4
illustrates examples of the data being early and late. Due to
the inherent setup time of the data receiver, the transition
sampling clock may not occur at the same time as the data
transition. The phase shift compensates for the receiver setup
time and maximizes the margin of error for the data
sampling.
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Figure 5: Delay line phase/delay characteristic.

However, the data receiver is ultimately a binary
comparator and the phase detector does not indicate an error
that is proportional to the phase difference. Hence, the
timing-recovery loop is nonlinear. Although a higher-order
PLL using early-late control can be made conditionally
stable [8], the resulting phase dithers with a limit cycle
translating into jitter. The oscillation depends on the loop
parameters and can be considerable for high bandwidth
loops. With an early-late DLL, the phase of the clock output
also dithers. But because the stability only depends on the
delay within the loop, the dithering would only be a few
cycles and can be significantly less than the dithering of a
PLL.

C. Design Considerations in a DLL

A typical DLL involves several design considerations.
First, the delay line usually has a finite delay range. If the
desired phase of the output signal is beyond the delay range,
the loop will not lock properly. Second, the output of the
DLL also depends greatly on the input to the delay line.
Since the delay-line input propagates to the DLL output,
tracking jitter and the output’s duty cycle depend not only on
the delay-line design but also on the delay-line input. Third,
the basic DLL cannot generate new frequencies different
from that of the delay-line input.

A variable-delay line adjusts the delay by varying the
RC time constant of a buffer and ofien has limited
adjustment range. Section III will describe several
techniques in greater detail. Even though the delay range is
limited, DLLs for a periodic clock signal only need the range
to exceed 2x in phase across process and systematic
variations to cover all possible phases. For systems with a
range of operating frequencies, the delay line must span 2x
for the lowest input frequency.

An issue known as false-locking occurs when the delay
range exceeds 2t. There can be several secondary lock
points repeating every 2x. Figure S depicts an example of the
characteristic of a delay line with two lock points. Since
phase detectors must be periodic, if the delay line initializes
within 1t of the second lock point, the phase detector will
push the delay line toward lock with a longer than necessary
delay. Long delays require large RC time constants for a
given variable-delay buffer element. The bandlimiting by the



Figure 7: Six different delay elements.

A. Basic Delay Line

A delay line comprises of a chain of variable-delay
elements. Each element is controllable by either a voltage or
a current. The delay of each element is proportional to its RC
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time constant and changing the effective resistance or
capacitance adjusts the delay.

Figure 7 depicts several examples of buffer elements.
For a differential buffer, the load resistance can be an MOS
transistor in the triode region ([Fig. 7-(a)] where the
resistance is proportional to Vgg-Vin. Varying the gate
voltage adjusts the delay of the element. A non-linear device
such as a diode can also serve as a load resistance [Fig.
7-(b)]. Since the resistance varies with the current, varying
the bias current of the buffer would adjust the delay.
Similarly, a negative transconductance that changes with the
bias current can be placed in parallel with a fixed load
resistance  [Fig. 7-(c)]. The varying negative
transconductance changes the effective load resistance and
hence varies the delay. Because nonlinear elements have
resistances that depend on both voltage and current, they can
be more sensitive to supply noise.
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Figure 8: Delay versus voltage for two different delay buffer ele-
ments: types (d) and (f) of Fig. 7.

For push-pull type elements such as inverters, the delay
can be changed.by changing the rate at which the output
capacitance is charged [Fig. 7-(d)]. An adjustable current
source limits the peak current of an inverter and varies the
delay. An alternative method regulates the supply voltage of
the inverters and uses the control voltage to set the supply
voltage [Fig. 7-(e)]. The effective switching resistance varies
with the supply voltage. Instead of changing the resistance,
the effective capacitance can also be made adjustable [Fig.
7-(f)]. A transistor that behaves as an adjustable resistance
can be used to decouple an explicit output capacitance. The
larger the resistance the less capacitance is seen at the
output.

Figure 8 illustrates the delay versus control voltage for a
resistively-controlled delay element. For the element of Fig.
7-(d), either Vgg-Vyy, or the bias current can be zero and,
therefore, a single element’s delay can span from the
minimum buffer delay to infinite. However, since the time
constant is proportional to the delay, a long delay setting
would significantly attenuate a high-frequency clock. Delay
lines with a wide range for high clock frequencies require a
large number of broadband delay elements.

Unlike resistive control, the maximum delay in a
capacitively-controlled element [Fig. 7-(f)] is proportional to
R(Cip¢tCexp) and the minimum delay is proportional to
RC;, where C,, is the intrinsic capacitance of the buffer
and the load of the subsequent stage, and C.,, is the explicit
capacitance added to the circuit. Because of the limited
range per buffer, obtaining a wide delay range involves a
large number of buffers. The maximum delay of each buffer
is chosen to avoid attenuating the signal. In designs where
the clock has a large voltage swing, the transistor in series
with the explicit capacitance no longer appears as a variable
resistor because the device enters saturation and cut-off. For
these buffers, the control voltage determines the fraction of
current and period of time in which the buffer’s current
charges the explicit capacitance.

An example of the delay versus control voltage for a
capacitively-controlled element is overlaid in Fig. 8. Most
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filter would significantly attenuate a high-frequency input
even
prohibit the input from reaching the output. o

Even if the delay line is constrained to span only one
lock point but greater than 2w, a second similar issue exists.
It is difficult to design a delay line such that the adjustable
range is exactly 4 to % across different operating and
processing conditions. If initialized at the minimum or
maximum delay, the phase detector may push the loop
toward either the maximum or minimum delay limit and
“false-lock” to an incorrect phase.

To address false-locking, designers employ several
techniques depending on the application. For systems that
require a delay line with a known fixed delay, operating
condition variations may be small enough such that the delay
line only needs a small variable range that is less than +7 and
-n. For systems that lock to a fixed phase over a wide range
of frequencies, one design [9] uses an auxiliary
frequency-sensing loop that generates a voltage to coarsely
set the delay for the given input frequency. Then DLL only
fine tunes the delay for the desired phase. For data recovery
applications where the clock phase can be arbitrary with
respect to the data, a common design uses a startup circuit
for the DLL that initializes the delay line at its minimum
delay to avoid any secondary lock points. However, as
mentioned earlier, the phase detector may keep the delay line
at the minimum delay. A sensing circuit or a state machine
detects when the delay line is at its limit and optionally
inverts the feedback clock. The phase would flip by 180° and
the loop would lock properly. As will be discussed in
Section 111, a more robust alternative reconfigures the delay
line such that the delay only spans 2% and wraps back to 0°
when the delay exceeds 360°.

The jitter and duty cycle of the delay-line output clock
depend on the input, the coupling of the input to the delay
line, and the delay line itself. Often the input is from off-chip
and, therefore, it must be carefully received to prevent
supply and substrate noise from coupling onto the signal as
jitter. In contrast, the high-frequency phase noise of the
clock output of an oscillator-based PLL depends primarily
on the oscillator design. An improperly received input clock
can often result in worse jitter performance in a DLL as
compared to a PLL. Similarly, while the duty cycle from an
oscillator is only modestly distorted (by the difference
between the rising edge and falling edge delays), the duty
cycle of the DLL’s input clock can be significantly distorted
as it propagates to the output. Since duty cycle is a
systematic error, a good design corrects duty cycle using an
explicit block instead of compounding the difficulty of the
delay-line design.

A duty-cycle corrector (DCC) is commonly added to
either the DLL input or output. Figure 6 illustrates the basic
components of the feedback loop: an input with finite slew
rate, a buffer element with adjustable threshold, a
comparator, and an integrator. The comparator determines
the threshold crossing of the clock waveform. The result is
integrated and used to skew the threshold of the buffer stage.
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Figure 6: Duty-cycle corrector block diagram. Timing diagram
shows change in duty cycle with changing offset.

Because the buffer input has finite slew rate, changing the
threshold effectively adjusts the output high and low
half-periods. The loop settles when the high and low
half-periods are equal. Figure 6 illustrates the reduction in
duty cycle as the threshold shifts from Vief) to Vier2- Since
random variation of the duty cycle effectively appears as
jitter, single-ended implementations such as that shown in-
the figure can be very sensitive to common-mode noise. For
this reason, differential architectures are preferred [3].

For low jitter on the output clock, the loop components
must be carefully designed. Many of the loop components
are very similar to that of a PLL and are well described in
[10]. For a charge-pump based loop fi ince the filter is
only first-order, a simple capacitor replaces the RC filter. As
in a PLL, noise on the control voltage directly translates into
jitter. Designers may use additional filtering to suppress the
noise. The loop element that has deviated the most from PLL
design and is critical for functionality and performance is the
design of the delay line.

1
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IIL. DELAY-LINE ARCHITECTURES

The primary characteristics of a delay line are (1) gain
(i.e. change in delay for a given change in voltage), and (2)
delay range. For most applications using periodic inputs, the
absolute delay is not critical as long as the range spans 27.
Because delay lines are relatively short, they do not
contribute significant thermal or 1/f phase noise. However,
for large digital systems, low supply/substrate sensitivity is
needed to reject the on-chip switching noise.
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Figure 9: 180°-locked DLL to generate intermediate phases that are
a fraction of a cycie.

delay elements exhibit some nonlinearity. As a result, the
delay-line gain, Kpy, is @ function of the delay. Because a
DLL is unconditionally stable, the loop still functions with
the varying loop parameter. However, more linear elements
are better for designs that require a constant loop bandwidth.
To compensate for the variable Kpy, designers add
programmability to the loop-filter capacitor.

The control signal for either type of delay elements can
be digital. In a digital implementation [11], the current
source is binary weighted and switched by a digital word.
For capacitively-controlled elements, the capacitance can be
binary weighted and switched. A pearly all-digital DLL is
then possible by using a simple counter to replace the analog
integrating filter.

B. Phase Interpolation

Instead of only using the clock phase at the end of a
delay line, an earlier clock phase can be tapped from the
middle of a delay line. Some applications require the delay
line to produce a delay that is a fixed fraction of the
- input-clock period. Figure 9 shows one implementation that
uses a DLL to lock the input clock to the output. An 180°
phase detector would guarantee the absolute delay of a delay
line to be a half-cycle. Tapping from different points on the
delay line provides different phases. As shown in Fig. 9, for
a 45° phase shift, the clock can be tapped from the first delay
stage of a 4-stage differential delay line. If an arbitrary phase
is needed, each delay stage can be tapped and multiplexers
can select the nearest desired phase. The number of delay
elements quantizes the phase step and limits the resolution
{12]. Fine phase resolution requires longer delay lines. Yet,
the resolution is limited at high clock frequencies because
the maximum number of delay elements needed to span 180°
is limited.

An arbitrary intermediate phase can be obtained by
“interpolating” between two clock phases that are tapped
from a delay line. Depending on the weighting, an
interpolator produces a clock that has a programmable
output phase in between the input clock phases. As long as
discrete clock phases that span the entire cycle are available
as inputs, any phase for the interpolator’s output is possible.

\ _Phase Interpolator. /
Figure 10: Phase interpolator design by shorting of the output of
two integrators/buffers. .

Multiplexers are needed to select the phases to interpolate
between. For example, with phases tapped from a 4-stage
delay line, if the desired output clock phase is 120°, the
interpolator inputs would be from the second and third delay
elements. '

Interpolators essentially perform a weighted average of
the input phases. As shown in Fig. 10, ideally, the two input
phases drive two integrators which charge a single output.
The weighting of the average is by the relative currents of
the two integrators. When o=1, the output clock phase
depends only on ckj,o. When 0=0.5, i.e. the current is split
equally between the two integrators, the output phase is
additionally delayed by half the phase difference. As
illustrated in Fig. 10, the phase of the interpolated output
(ckouror) falls between the phases of the non-interpolated
outputs (ckoyro and choyer)-

With ideal integrators, the interpolation is linear,
resulting in a constant Kpy. Alternatively, an interpolator
can effectively be formed with buffer elements instead of
integrators. By weighting the drive strength or current of two
buffer elements whose outputs are shorted together, one can
adjust the output phase. Because the output is not integrated,
the resulting interpolation is slightly nonlinear and depends
on (1) the phase difference between the inputs and (2) the
slew rate (or time constant) of the input and output signals
[13]. Figure 11 depicts the linearity of the interpolation for
two different input phase separations, s=T and s=21 where T
is the buffer’s time constant. The larger phase spacing results
in greater nonlinearity. Similar to RC delay elements, the
interpolation can be digitally controlled. Since the weighting
of the interpolation depends on the proportional current, the
current sources of the integrators or buffers can be digitally
weighted and programmed.

In a design for clock and data recovery by (3],
quadrature clocks are interpolated to generate an
intermediate clock phase within a quadrant. Figure 12
illustrates the mostly analog architecture. An analog control
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Figure 11: Buffer based phase interpolator linearity.

voltage produced by the phase detector and filter determines
the interpolator currents. Comparators indicate when the
current is fully steered to one integrator. A finite state
machine driven by the comparators selects the appropriate
quadrant by switching the interpolator inputs such that all
360° phases are possible. The quadrature input clocks is
generated from an external reference clock through the use
of a divide-by-two circuit.

Interestingly, because the phase rotates from one
quadrant to the next, the architecture effectively has an
unlimited delay range. If the input data rate and the reference
clock frequency are slightly different, a DLL would
continually increase or decrease the delay in order to track
the accumulating input phase. A typical DLL with a finite
delay range would run out of delay or lose lock. On the other
hand, plesiochronous operation is possible with an
interpolator-based delay line since the phase smoothly
rotates between quadrants.

Interpolating between clocks with large phase spacings
such as quadrature clocks results in an output clock with
slow slew rate. Such waveforms are more susceptible to
noise and result in higher jitter. An enhancement uses more
closely-spaced phases that span the cycle. The finer phases
spacing is possible using a multi-stage ring oscillator. As
shown in Fig. 13, a 4-stage differential oscillator would
generate 8 phases 45° apart. To guarantee a correct period
for each clock phase, the ring oscillator is locked to the
external reference clock using a PLL. The role of the PLL is
solely for generating the phases. A purely DLL-based
architecture is also possible by replacing by using the DLL
in Fig. 9 that locks the delay-line output with a 180° phase
shift [13].

The architecture is commonly known as a dual-loop
design because the first loop, a PLL or DLL, generates the
phases and the second loop, the interpolation-based DLL,
recovers the data and phase. Since the first loop is not in the
feedback of the second loop (or vice versa), the overall
system is stable as long as each loop is individually stable. A
dual-loop design is possible with the second loop within the
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feedback of the first loop [15] as long as the stability of the
loop is carefully considered.

The data recovery portion of a dual-loop design is
conducive to a digital implementation. The binary output of
the receiver-replica phase detector can be accumulated using
a digital counter. The counter output selects the appropriate
phase from the oscillator and controls the digitally
programmable interpolators [13],[14]. As long as the
quantized phase step is small, the small error only minimally
impacts the data recovery.

C. Oversampled Implementation

An alternative purely digital approach to clock and data
recovery can be implemented by oversampling the data.
Figure 14 iliustrates an example of a digital architecture.
Multiple finely-spaced clock phases oversample the data
input. The sampled results are digitally processed to
determine both the correct data value and the optimal phase
of the data sample. The digital processing can vary in
complexity. Simple implementations use the optimal data
sample as the received data [18] or take a majority vote from
the samples of a single bit [17]. The bit boundaries
determine the samples associated with a bit. Transitions that
are detected in the samples from the prior or current bits
indicate the bit boundaries.

The sampling rate limits the timing error margin.
Greater amount of oversampling reduces the data-recovery
timing error, but increases the number of clock phases. Low
data rate UARTs [16] typically use 8 to 16 times
oversampling. For high data rates, generating accurate clock
phases separated by sub-100ps is very challenging. More
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Figure 14: Oversampled data recovery architecture.

aggressive designs with the least amount of clocking
overhead and high data rates use a minimum of 3x
oversampling [17], [18]-

Even though phase spacing scales with the gate delay of
a technology, so does the bit time in each generation of
applications. For oversampling of the data bits, finely-spaced
clock phases are needed. Tapping from a delay line produces
phases separated by a buffer delay. For even finer phases,
several techniques are commonly used. For example, several
interpolators can be used where each interpolator has slightly
different weighting to generate intermediate phases with
spacing less than a buffer delay [19]. An alternative method
uses a chain or array of coupled oscillators [20]. By taking a
chain of oscillators and coupling them such that the output
and input of the chain are separated by only one gate delay,
sub-gate-delay phase spacings result from the outputs of
each oscillator. Lastly, if the data can be delayed with a
chain of delay buffers along with the clock, the clock at each
delay stage can be used to sample the data of the
corresponding stage. As long as the data and the clock delay
lines have slightly different delays, the sub-sampled outputs
are effectively an oversampling of the data. The effective
phase spacing depends only on the difference between the
data delay and clock delay [21]. The architecture has a
drawback in that it requires delaying the data and clock by
long delays of several cycles, which can significantly
increase jitter.

1V. CLOCK MULTIPLICATION

With a dual-loop architecture, a DLL can produce a
frequency plesiochronous to the delay-line input. However,
the rate at which the interpolator weight changes limits the
frequency difference. Generating a significantly different or
multiplied frequency from a low-frequency input reference
is not possible with the architecture.

Recently designers have explored several methods of
using DLLSs for frequency multiplication. One method uses a
delay line that is locked to 180°. With the phases that span an
entire cycle, the tapped clock edges are combined to form a
clock with multiplied frequency. The most direct method
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Figure 15: Clock/data recovery using startable oscillator.

uses logical AND-ORs to combine the multiple phased
clocks into a single high-frequency clock [23]. Alternatively,
the method in [24] converts each phase into a small pulse
and ORs the pulses together to form the output clock. In
cases where the output capacitance of the logic gates limits
the output frequency, one design [6] uses phases to excite a
tuned LC tank to combine the clock phases.

Instead of edge combining, the multiplied clock can be
the direct output of a delay line. The architecture is similar to
a technique for clock and data recovery that uses a startable
oscillator [22]. As shown in Fig. 15, the architecture uses
data transitions to trigger startable oscillators: high-value
data triggers one oscillator and low-value data triggers
another. Each startable oscillator comprises of a delay line
and an AND gate. The data value enables the AND gate and
the triggered oscillator propagates an edge through the delay
elements and produces a clock edge delayed by a haif-cycle.
The edge is used to sample the data. In the absence of input
transitions, the delay line is configured an oscillator and
generates a sampling edge every cycle. Whenever a new data
transition occurs, the oscillator resynchronizes its phase to
that of the input. In the implementation by [22], the natural
oscillation frequency of the oscillator is determined by an
external plesiochronous clock reference. The architecture
has not been widely applied to higher data rate designs
because the sampling phase is directly derived from the input
data without any filtering. The deterministic and random
jitter inherent in the data are effectively doubled and can be
considerable.

If the input is a low-jitter reference clock, a similar
architecture can be used for clock multiplication [5]. As
illustrated in Fig. 16, a lower frequency but clean reference
clock is one input to a multiplexer that feeds into a delay
line. The output of the delay linc is fed back to the
multiplexer as the second input. When a reference clock
edge is available, the multiplexer selects the reference input.
Otherwise, the multiplexer configures the delay line as an
oscillator with the output frequency controlled by the delay.
The multiplexer inputs are selected by a counter circuit that
determines the number of cycles to oscillate before accepting
the next reference clock edge. A phase detector compares the
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reference input with the oscillator output and tunes the delay
of the delay elements. Once locked, the resulting output
clock frequency is a multiple of the input reference
frequency. Recent designs [26] extend the frequency range
and use an interpolator instead of a multiplexer to blend the
delay-line feedback and the low-frequency reference clocks.
Both edge-combining multiplication and delay-line
multiplication reduce the phase noise of the output clock
because the core DLL does not have an oscillator that
accumulates phase error. After N cycles, where N is the
divide ratio, a new clean reference clock edge arrives and
resets any accumulated phase error to zero. The architecture
potentially lowers jitter by eliminating the peaking in the
transfer function and allows a high tracking bandwidth.
However, matching is critical in these designs. Mismatches
in the phase detector or charge pump result in a static phase
error that modulates the output frequency at the input
reference frequency. Similarly, in the edge combining
implementations, if the delay line is mismatched, the output
clock would contain significant reference tones. Designers
either choose the reference frequency carefully so that the
tones do not impact the system performance or employ
additional circuitry to compensate for the mismatches.

V. CONCLUSION

DLLs have been commonly used for generating precise
phase delays of a signal and have been increasingly popular
in clock generation and data recovery applications. Most
importantly, because of the first-order loop characteristics
that controls the phase directly, DLLs can be designed with
high tracking bandwidths and do not exhibit the phase
accumulation of an oscillator-based PLL.

The more simple loop characteristics belie many
subtleties in DLL design. The delay-line input clock must
have low-jitter and good duty-cycle. Furthermore, it must be
carefully received and coupled to the input of the delay line
to maintain good jitter performance. This source of jitter
counter-balances the jitter accumulation of PLLs and results
in less jitter improvement. Additional circuitry is often
needed to prevent false-locking. Since a delay line does not

restore a clock’s duty cycle, the output clock requires
correction circuitry. To use DLLs in plesiochronous systems,
the, delay line must have even more circuitry to achieve an
unlimited delay range. In clock multiplication applications,
very careful matching in the DLL components is critical to

_eliminate reference tones. In the many designs that have
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addressed these subtleties, DLLs have demonstrated
low-jitter clock outputs for a variety of clock generation and
data recovery applications.
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