ECE594A Winter 2005

Mixed Signal Electronics

Prof. Steve Long
2231F Engineering Sciences Building
xanadu.ece.ucsb.edu/~long
long@ece.ucsb.edu

Course Outline

1. Technology Overview
A. Materials
B. MOSFET Scaling trends
C. Implications of CMOS scaling to mixed signal IC design
D. SiGe BiCMOS

Course Outline

2. Data conversion circuits
A. Track/Hold circuits
B. D/A converters
C. A/D converters

Course Outline

3. Data transmission circuits
A. Clock generation and recovery
B. Frequency generation PLL, DLLs
C. Phase noise and jitter
D. Serial data transmission circuits (SERDES)

Course Outline

Now, it's your turn. Two options:

1. Review and present journal paper(s)
2. Topic of your choice - must be approved
3. 20 minute presentation
4. Facilitate discussion in class
5. Paper must be available at least 2 days ahead of time.

Course Outline

2. Design project on data conversion or transmission circuit
3. 0.18 um public domain CMOS
4. (or your favorite technology - you provide model parameters)
5. Submit a proposal
6. No layouts
7. ADS, MATLAB, HSPICE available.
8. 20 minute presentation required

Course grading

$>$ Case 1:

- Paper presentation 40\%
- Midterm
- Homework

40\%
20\%
$>$ Case 2:

- Design Project
- Midterm
- Homework

50\%
35\%
15\%

Lecture 1

> High Speed IC Technology Comparisons

- Materials
- Devices
- Scaling trends
- Performance trends

Compare Materials

> Semiconductor transport properties:

- compare Si, SiGe, and III-Vs
$>$ Heterojunctions
> Substrates

Elements

Substrate material properties

Material	Thermal conductivity	Dielectric constant	Wafer size	Electrical conductivity	Cost
Silicon	1.45 W/cm-K	11.7	300 mm	n or p	Low
GaAs	0.45	13.1	$100-$ 150	n, p, or semi-ins.	Mediu
InP	0.68	12.4	$50-100$	N, p, or semi-ins.	High
Sapphire	0.42	9.4	200	Insulating	Low
SiC	$3.0-3.8$	9.8	$50-75$	N, p, or semi-ins.	VERY high

Elemental Semiconductor: Si

- Workhorse of the industry
- Great substrates, oxide, metallization systems
- Excellent density of devices, interconnect
- High thermal conductivity
- Limited in transport properties
$-\mathrm{Ve}_{\text {sat }} \cong 1 \times 10^{7} @ 10^{5} \mathrm{~V} / \mathrm{cm}$
- Limits f_{T} of device $\mu_{\mathrm{e}} \cong 1400 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s} \quad \mu_{\mathrm{h}} \cong 300 \mathrm{~cm}^{2} / \mathrm{V}$-s
- Increases access resistances
- Strained layers improve however

Improving Si: SiGe

- Overcoming transport limitations
- Extremely short gate lengths < 60 nm
- $\mathrm{f}_{\mathrm{T}}>150 \mathrm{GHz} \quad \mathrm{f}_{\max }>200 \mathrm{GHz}$ (SOI)
- Strained Si channel increases mobility
- Narrow base widths + doping gradients
- Transport improves but access resistance $\left(\mathrm{R}_{\mathrm{bb}}\right)$ degrades
- Silicon-Germanium base
- Graded bandgap - quasi-electric field: reduces τ_{b}
- Higher hole mobility helps reduce R_{bb}
- Retains most of processing advantages of Si

Why III - Vs?

- Transport: high electron velocities
$-\mathrm{In}_{0.47} \mathrm{Ga}_{0.53} \mathrm{As}: \mathrm{v}_{\mathrm{sat}} \cong 2.7 \times 10^{7} \mathrm{~cm} / \mathrm{s}$
- Reduces transit time, increases f_{T}
- Optoelectronic properties
- Many direct bandgap compounds available
- Lasers, LEDs
- Heterojunctions
- Allow bandgap engineering!

Electron Velocity versus Electric Field Strength for Various Semiconductors

S. Long, Compound Semiconductor IC Symposium 2004 Primer Course

Recall Bandstructure of Si/SiGe in k-space

S. Long, Compound Semiconductor IC Symposium 2004 Primer Course

Bandstructure of GaAs

S. Long, Compound Semiconductor IC Symposium 2004 Primer Course

Bandstructure of GaAs

S. Long, Compound Semiconductor IC Symposium 2004 Primer Course

Bandstructure of GalnAs (base \& SHBT collector)

S. Long, Compound Semiconductor IC Symposium 2004 Primer Course

Bandstructure of InP for DHBTs

S. Long, Compound Semiconductor IC Symposium 2004 Primer Course

Semiconductor Material Parameters

($\mathrm{T}=300 \mathrm{~K}$ and "weak doping" limit)

Semiconductor	E_{G}	ε_{r}	Electron Mobility $\left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{sec}\right)$	Hole Mobility $\left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{sec}\right)$	Peak Electron Velocity $(\mathrm{cm} / \mathrm{sec})$
$\mathrm{Si}($ bulk $)$	1.12	11.7	1,450	450	N.A.
Ge	0.66	15.8	3,900	1,900	N.A.
InP	1.35 D	12.4	4,600	150	2.1×10^{7}
GaAs	1.42 D	13.1	8,500	400	2×10^{7}
$\mathrm{Ga}_{0.47} \mathrm{I}_{0.53} \mathrm{As}$	0.78 D	13.9	11,000	200	2.7×10^{7}
InAs	0.35 D	14.6	22,600	460	4×10^{7}
$\mathrm{Al}_{0.3} \mathrm{Ga}_{0.7} \mathrm{As}$	1.80 D	12.2	1,000	100	---
$\mathrm{AlAs}^{\mathrm{Al}_{0.48} \mathrm{In}_{0.52} \mathrm{As}}$	2.92	10.1	280	---	---

(In bandgap energy column the symbol " D " indicates direct bandgap, otherwise, it is indirect bandgap)

GaN	3.34 D	9.5	1200	150	3×10^{7}

Ref. 1.14, 1.15
P type \square
S. Long, GaAs IC Symposium 2002 Primer Course

Heterojunctions

Widely used in III-V's to enhance performance

The Central Design Principle for Heterostructures [1]

" Heterostructures use energy gap variations in addition to electric fields as forces acting on holes and electrons to control their distribution and flow."

[1] H. Kroemer, "Heterostructure Bipolar Transistors and Integrated Circuits," Proc. IEEE 70 (1) pp. 13-25, 1982.
S. Long, Compound Semiconductor IC Symposium 2004 Primer Course

Heterojunctions

- Provide:
-Carrier Confinement
- quantum wells
- 2D electron and hole gas structures
-Bandgap grading
- Quasi-electric fields reduce transit times
-Optical Confinement
- index grading
- stepped index

Heterojunctions

Technology

- Growth
- MBE or MOCVD
- Lattice Matching
- limits possible combinations of materials
- BUT: elastic strain (pseudomorphic) can be tolerated
- lattice mismatch x thickness = constant

Bandgap Energy vs. Lattice Constant

From S. Long, D. Estreich, C. Chang, M. Venkataraman, "Compound Semiconductor Digital IC Technology," Chap. 69, in VLSI Handbook, CRC Press, 2000.

So, what's the downside?

$>$ Poor thermal conductivity compared with Si
$>$ Low ρ contacts are more difficult
> Process technology is comparatively primitive

- Substrate size
- Low device and interconnect density
> Transit time is only one part of the problem
- Digital: RC time constants generally dominate
- Analog: $f_{\max }$ is usually more important than f_{T}

Compare InP and SiGe HBTs

Parameter	$\mathrm{InP} / \mathrm{InGaAs}$	Si/SiGe	benefit (simplified)
collector electron velocity	$3 \mathrm{E} 7 \mathrm{~cm} / \mathrm{s}$	$1 \mathrm{E} 7 \mathrm{~cm} / \mathrm{s}$	lower τ_{c}, higher J
base electron diffusivity	$40 \mathrm{~cm}^{2} / \mathrm{s}$	$-2-4 \mathrm{~cm}^{2} / \mathrm{s}$	lower τ_{b}
base sheet resistivity	500 Ohm	5000 Ohm	lower R_{bb}
comparable breakdown fields			

Consequences, if comparable scaling \& parasitic reduction:
-3:1 higher bandwidth at a given scaling generation
~3:1 higher breakdown at a given bandwidth
Problem for InP: SiGe has much better scaling \& parasitic reduction
Technology comparison today:
Production SiGe and InP have comparable speed
SiGe has much higher density and integration scale

Materials Summary

> Material transport properties

- better $\mathrm{v}_{\text {sat }}$ for electrons in III-V
- performance edge when speed or bandwidth are the main goals
> Heterojunctions add to device performance
- holes and electrons can be independently controlled
- Iowest noise FETs, highest $\mathrm{f}_{\mathrm{T}}, \mathrm{f}_{\text {max }}$ HBTs and HEMTs
$>$ Process
- linewidths, circuit densities also critical
- Si and SiGe has huge advantages here

What makes a transistor fast?

> Decrease transit time
> Reduce access resistance
> Decrease RC delays
> Figures of Merit do not necessarily predict performance for every circuit application

Active device used to discuss the "charge control principle"

CHARGE CONTROL PRINCIPLE: A charge Q_{C} on the control electrode can at most introduce an equal charge in the transport region. In symbols, $-\mathrm{Q}_{\mathrm{ch}} \leq \mathrm{Q}_{\mathrm{C}}$

Introduction of "charge control" time constants

We have introduced two time constants: τ and τ_{r}

Consider the transconductance -- g_{m}

By definition g_{m} is

$$
\mathrm{g}_{\mathrm{m}}=\frac{-\Delta \mathrm{i}_{\mathrm{out}}}{\Delta \mathrm{v}_{\mathrm{in}}}
$$

But capacitance $\quad C_{i}=\frac{\Delta \mathrm{Q}_{\mathrm{c}}}{\Delta \mathrm{v}_{\text {in }}}$,
Output current $\Delta i_{\text {out }}=\frac{-\Delta Q_{C}}{\tau_{r}}$ from charge control.
Hence, we get $\quad \mathbf{g}_{\mathrm{m}}=\frac{\mathbf{C}_{\mathbf{i}}}{\tau_{\mathbf{r}}}$
D. Estreich, Compound Semiconductor IC Symposium 2004 Primer Course

Maximizing Active Device Transconductance (g_{m})

$$
g_{m}=\left.\frac{\Delta \mathrm{I}_{\text {out }}}{\Delta \mathrm{V}_{\mathrm{in}}}\right|_{\mathrm{V}_{\text {out }}} \Rightarrow \mathrm{g}_{\mathrm{m}}=\frac{\mathrm{C}_{\mathrm{i}}}{\tau_{\mathrm{r}}} \begin{gathered}
\begin{array}{c}
\tau_{\mathrm{r}} \text { is average transit time } \\
\text { of a charge carrier }
\end{array}
\end{gathered} \begin{gathered}
\mathrm{C}_{\mathrm{i}} \text { is a measure of the } \\
\text { a charge carrier introduce }
\end{gathered}
$$

(1) Transit time τ_{r} depends upon
a. Charge carrier velocity (material dependent)
b. Transport region length (geometry)
(2) Input capacitance C_{i} depends upon
a. Charge separation (for FET the gate-tochannel spacing \& BJT merged charge in base) b. Dielectric constant (material dependent)

[^0]
Maximizing Controlled Charge in Devices

FET Structure

BJT/HBT Structure

Control charge \mathbf{Q}_{c} \& controlled charge $-\mathbf{Q}_{\mathrm{ch}}$ share base region

[^1]
Small-Signal Charge Control Model

(No parasitic or external components included -- intrinsic model only)

$$
g_{i}=\frac{C_{i}}{\tau}
$$

$$
\mathbf{g}_{\mathrm{m}}=\frac{\mathbf{C}_{\mathrm{i}}}{\tau_{\mathrm{r}}}
$$

$$
\mathrm{g}_{\mathrm{r}}=-\frac{\mathrm{C}_{0}}{\tau}
$$

$$
\mathrm{g}_{\mathrm{o}}=\frac{\mathrm{C}_{0}}{\tau_{r}}
$$

Where $\tau=$ controlling charge "lifetime" and $\tau_{r}=$ transit time; also output capacitance C_{0} is from unwanted charge at collecting electrode coupling to ground.
D. Estreich, Compound Semiconductor IC Symposium 2004 Primer Course

Circuit Performance

- Figures of Merit: $\mathrm{f}_{\mathrm{T}}, \mathrm{f}_{\text {max }}$
- Static Frequency Dividers

An Interpretation of Current Gain-Bandwidth Product f_{T}

Starting with $G_{i}=\frac{1}{\omega \tau_{r}}$ then if $G_{i}=1$ implies $\omega_{T}=\frac{1}{\tau_{r}}$

Cascade of Common-Emitter Stages

f_{T} is a rough measure of how well an active device can perform when cascaded with a chain of identical active devices.

Historically, $\boldsymbol{f}_{\mathrm{T}}$ was easiest parameter to measure.

Figures of Merit - Include h_{21} and f_{T}

D. Estreich, Compound Semiconductor IC Symposium 2004 Primer Course

What do we need: $\boldsymbol{f}_{\tau}, \boldsymbol{f}_{\max }$, or ... ?

Tuned ICs (MIMICs, RF): fmax sets gain, \& max frequency, not ft.
...low ft/fmax ratio makes tuning design hard (high Q)

Lumped analog circuits need high \& comparable ft and fmax.
(1.5:1 fmax/ft ratio often cited as good...)

Distributed Amplifiers

 in principle, fmax-limited, ft not relevant....(low ft makes design hard)

What determines digital circuit speed?

- Neither f_{T} nor $\mathrm{f}_{\max }$ predict digital circuit speed

$$
\begin{gathered}
\frac{1}{2 \pi \boldsymbol{f}_{T}}=\tau_{B}+\tau_{c}+\frac{\boldsymbol{k} \boldsymbol{T}}{\boldsymbol{q} \boldsymbol{I}_{c}}\left(\boldsymbol{C}_{\text {je }}+\boldsymbol{C}_{c b}\right)+\left(\boldsymbol{R}_{e x}+\boldsymbol{r}_{c}\right) \boldsymbol{C}_{c b} \\
f_{\max }=\sqrt{f_{T} / 8 \pi R_{b b} C_{c b}}
\end{gathered}
$$

- RC time constant analysis can guide the design
- Must minimize interconnect RC loading and maximize device current per area.

Frequency Dividers - 2004

Benchmark: master-slave flip-flop configured as 2:1 static frequency divider
S. Long, Compound Semiconductor IC Symposium 2004 Primer Course

Scaling trends for CMOS

> Complexity

- Processing issues
> Performance trends and tradeoffs
> Future device innovations
> Scaling effects on analog circuits

Growth in Complexity

A Modern CMOS Process

8. Schematic cross section of a typical PMOSFET and NMOSFET. (Figure from [3].)
P. Zeitzoff, J. Chung, "A Perspective from the 2003 ITRS Roadmap, IEEE Circuits And Devices Magazine," Jan-Feb 2005.

Advanced Metallization

© J. Rabaey, et al, Digital Integrated Circuits²nd, Prentice-Hall, 2003

Advanced Metallization

ITRS Roadmap for Silicon

DRAM 1/2 Pitch
DRAM Metal Pitch/2
Metal
Pitch
Typical DRAM
Metal Bit Line

MPU/ASIC Poly Silicon $1 / 2$ Pitch $=$ MPU/ASIC Poly Pitch $/ 2$

Typical MPU/ASIC Un-contacted Poly

MPU/ASIC M1 $1 / 2$ Pitch
= MPU/ASIC M1 Pitch/2
Metal 1
(M1)
Pitch

Typical MPU/ASIC Contacted Metal 1

Figure 4 Definition of Metal Half Pitch

Half-pitch history

2003 ITRS Technology Trends - 1/2 Pitch

Figure 72003 ITRS-Half Pitch Trends
http://public.itrs.net
Still on the target - 2004 ITRS

Gate Length History

2003 ITRS Technology Trends - Gate Length

public.itrs.net
from 2003 ITRS executive summary

Scaling of Lithography

Scaling Calculator + Node Cycle Time:
 $\left.\left\lceil^{0.7 x}\right]^{0.7 x}\right\rceil$

 250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

 N $\begin{array}{lll}\mathrm{N}+1 & \mathrm{~N}+2\end{array}$
 * $\operatorname{CARR}(\mathrm{T})=$ Compound Annual Reduction Rate
 (@ cycle time period, T)
 > Node Cycle Time $(\mathrm{T}$ yrs $):$ > $* \operatorname{CARR}(\mathrm{~T})=$ $\left[(0.5)^{\wedge}(1 / 2 \mathrm{~T}\right.$ yrs $\left.)\right]-1$ > $\operatorname{CARR}(\mathbf{3} \mathrm{yrs})=-\mathbf{1 0 . 9 \%}$ > $\operatorname{CARR}(2 \mathrm{yrs})=-\mathbf{1 5 . 9 \%}$

 Node Cycle Time

 Node Cycle Time (T yrs): (T yrs):

 * $\operatorname{CARR}(\mathrm{T})=$

 * $\operatorname{CARR}(\mathrm{T})=$ [(0.5)^(1/2T yrs)]-1 [(0.5)^(1/2T yrs)]-1

 $\operatorname{CARR}(\mathbf{3}$ yrs) $=\mathbf{- 1 0 . 9 \%}$

 $\operatorname{CARR}(\mathbf{3}$ yrs) $=\mathbf{- 1 0 . 9 \%}$

 CARR(2 yrs) $=-15.9 \%$

 CARR(2 yrs) $=-15.9 \%$}public.itrs.net
from 2003 ITRS executive summary

Scaling Challenges

$>$ Lithography

- 193 nm with lithographically friendly design rules
- 193nm immersion lithography
- 157 nm ? EUV?
> Power dissipation: $\mathrm{P}=\mathrm{CV}^{2 f}+\mathrm{NWI}_{\text {off }} \mathrm{Vdd}$
- Gate leakage current
- Disproportionate scaling of Vdd and Vth
- Off current increases with each generation
$>$ Boron difffusion from p+ gate thru oxide

2004 Roadmap for Lithography

Manufacturable solutions exist, and are being optimized
Manufacturable solutions are known
Interim solutions are known
public.itrs.net Manufacturable solutions are NOT known

Lithography - 2010 +

Table $77 b$ Lithography Technology Requirements-Long-term UPDATED

	Year of Production	2010	2011	2012	2013	2014	2015	2016	2017	2018
	Technology Node	hp45			hp32			hp22		
	DRAM									
WAS	DRAM ${ }^{1 / 2}$ Pitch (nm)	45	40	35	32	28	25	22	20	18
IS	DRAM ${ }^{1 / 2}$ Pitch (nm)	45	40	35	32	28	25	22	20	18
WAS	Contact in resist (nm)	55		45	40		35	30		25
IS	Contact in resist (nm)	55	50	45	40	37	35	30	$\underline{27}$	25
WAS	Contact after etch (m)	50		35	30		25	21		18
IS	Contact after etch (m)	50	40	35	30	28	25	21	$\underline{20}$	18
WAS	Overlay	18		14	12.8		10	8.8		7.2
IS	Overlay /A]	18	16	14	13	12	10	8.8	8	7.2
WAS	CD control (3 sigma) (nm)	5.5		4.3	3.9		3.1	2.7		2.2
IS	CD control (3 sigma) (nm)	5.5	4.8	4.3	3.9	3.4	3.1	2.7	2.4	2.2
WAS	MPU									
	MPU/ASCI Metal 1 (MI) $1 / 2$ pitch (nm)	54		42	38		30	27		21
IS	MPU/ASCI Metal 1 (MI) $1 / 2$ pitch (lmm)	54	48	42	38	34	30	27	24	21
WAS	MPU 1/2 Pitch (nm) (uncontacted gate)	45		35	32		25	22		18
IS	MPU 1/2 Pitch (nm) (uncontacted gate)	45	40	35	32	$\underline{28}$	25	22	20	18
WAS	MPU gate in resist (nm)	25		20	18		15	13		10
IS	MPU gate in resist (nm)	25	$\underline{22}$	20	18	17	15	13	11	10
WAS	MPU gate length after etch (nm)	18		14	13		10	9		7
IS	MPU gate length after etch (nm)	18	16	14	13	11	10	9	8	7

http://public.itrs.net

And: NRE Cost is Increasing

Innovesion Revolution

Exploding NRE / Mask Costs

70nm ASICs will have $\$ 4 \mathrm{M}$ NRE

Year of Production	2003	2004	2005	2006	2007	2008	2009	2010	2012
Technology Node		hp90			hp65			hp45	
DRAM 1/2 Pitch (nm)	100	90	80	70	65	57	50	45	35
MPU Physical Gate Length (nm)	45	37	32	28	25	22	20	18	14
Vdd (V)	1.2	1.2	1.1	1.1	1.1	1	1	1	0.9
Chip Frequency (MHz)									
On-chip local clock	2,976	4,171	5,204	6,783	9,285	10,972	12,369	15,079	20,065
Allowable Maximum Power									
High-performance with heatsink (W)	149	158	167	180	189	200	210	218	240
Cost-performance (W)	80	84	91	98	104	109	114	120	131
Functions per chip at p (million transistors [Mtransistors])	oduction 153	193	243	307	386	487	614	773	1.227

P. Zeitzoff, J. Chung, "A Perspective from the 2003 ITRS Roadmap, IEEE Circuits And Devices Magazine," Jan-Feb 2005.

Figure 1.3.10: Performance of CMOS and SiGe BJT devices [23].
Sunlin Chou, ISSCC 2005 Plenary Speech

9. Electron mobility enhancement in strained Si MOSFETs [18]. Electron mobility enhancement of $\sim 1.8 \times$ persists up to high $E_{\text {eff }}(\sim 1 \mathrm{MV} / \mathrm{cm})$.

Strained-Si allows "moving off" of the universal mobility curve.

P. Zeitzoff, J. Chung, "A Perspective from the 2003 ITRS Roadmap, IEEE Circuits And Devices Magazine," Jan-Feb 2005.

Low standby
Low operating power
high performance

P. Zeitzoff, J. Chung, "A Perspective from the 2003 ITRS Roadmap, IEEE Circuits And Devices Magazine," Jan-Feb 2005.

9. Gate leakage dependence on physically effective oxide thickness for pure and nitrided oxide [33].
C.T. Chuang et al., "Scaling Planar Silicon Devices," IEEE Circuits And Devices Magazine," Jan-Feb 2004.

Tradeoffs

> High Performance

- High speed in exchange for high leakage
> Low Standlby Power
- Lower speed in exchange for low leakage

Critical problems to be solved

$>$ Hi k dielectric gate materials (2006-7)

- Leakage unacceptably high in next generation
> Polysilicon depletion in gate electrode
- Metal gates (2007 and beyond)
$>$ Planar bulk CMOS inadequate? (>2008)
- Fully-depleted SOI
- FINFET
- Nonclassical structures

1. High-performance logic technology roadmap. Device structure evolution: from PD SOI [3] to FD SOI with raised source/drain [6] to FinFET [9].
C.T. Chuang et al., "Scaling Planar Silicon Devices," IEEE Circuits And Devices Magazine," Jan-Feb 2004.

Scalling: challenges for analog

> Scaling causes mismatches to increase due to finer geometry, higher deviation in threshold voltages and current/voltage gains.
> Lower supply voltage reduces dynamic range and linearity.
> Lower supply voltage makes switches more resistive - bad for Track/Hold

Scaling: challenges for analog

> Higher output conductance degrades gain - Triode region is extended
> Higher gate and drain/source leakages increase power and influence accuracy of THA
> More "Moore" will happen - mixed signal designers must adapt to less ideal CMOS devices.

CMOS Device Scaling

	0.25um	0.18um	0.13um
$\mathrm{V}_{\text {dd }}$ (volt)	2.5	1.8	1.3
G_{m} (ms/um)	0.3	0.4	0.6
R_{0} (k $\Omega \cdot \mathrm{um}$)	130	66.7	24
$\mathrm{G}_{\mathrm{m}} \mathrm{R}_{0}$	39	27	14
$\mathrm{A}_{\mathrm{vth}}$ (mv*um)	7	5.5	4.5
A_{β} (\%*um)	1.8	1.8	1.8
$\mathrm{f}_{\mathrm{T}}(\mathrm{GHz})$	30	60	80
Vth(v)	0.46	0.42	0.34
$\mathrm{I}_{\text {off }}(\mathrm{pA} / u m)$	10	20	320

Short Courses CSICS 2004 (Formerly GaAs IC Symposium) \square
M.F.Chang, UCLA

Microwave considerations for CMOS and SiGe BJTs

Fig. 6. MOSFET speed as a function of gate length [31]. The f_{T} and f_{MAX} demonstrate a clear gate length dependence. Note that the ratio of f_{MAX} / f_{T} decreases with decreasing gate length, demonstrating the increasing impact of parasitic gate resistance.
Larson, "Silicon Technology Tradeoffs for MS/RF SOC," IEEE Trans Elect Dev., March 2003.

Fig. 7. Comparison of voltage limitations of MOSFETs and HBTs as a function of f_{T} [31], [35]. The $\operatorname{VDS}(\mathrm{Rel})$ of the MOSFET is the recommended operating voltage to minimize long-term degradation of the transistor. The $\mathrm{Si} / \mathrm{SiGe}$ HBT BVCEO and BVCBO maintain a roughly $1: 3$ relationship from 20 to 90 GHz .

Fig. 12. Comparison of reported SiGe HBT and MOSFET minimum device noise figures as a function of peak f_{T}. For an equivalent intrinsic device speed, the MOSFET typically has an approximately $0.5-\mathrm{dB}$ advantage, but this is difficult to realize in practice in a monolithic circuit due to the higher source impedance required.

SiGe BiCMOS ICs

Band Structure: Si/SiGe "Heterojunction Bipolar Transistor"

Note: First Si/SiGe "HBT" reported in 1987 (IBM). Distance

[^2]
Self-aligned, selective epi SiGe HBT

Fmax $=180 \mathrm{GHz}$ 5.5 ps ECL delay

Deep trench isolation
K. Washio, SiGe HBT and BiCMOS Technologies for Optical Transmission and Wireless Communication Systems," IEEE Trans. On Elect. Dev., Vol. 50, \#3, pp. 656-668, March 2003.

Wafer cross section

K. Washio, SiGe HBT and BiCMOS Technologies for Optical Transmission and Wireless Communication Systems," IEEE Trans. On Elect. Dev., Vol. 50, \#3, pp. 656-668, March 2003.

$F_{\mathrm{T}} F_{\max }$ Vs I_{C}

Fig. 4. f_{T} and $f_{\text {max }}$ of the SiGe HBT extracted from h_{21} and U, respectively, from 40 GHz with $-20 \mathrm{~dB} /$ dec rolloff. $T=25^{\circ} \mathrm{C}$.
J.S. Rieh, et al.,"SiGe Heterojunction Bipolar Transistors and Circuits Towards Terahertz Communication Applications," IEEE Trans. On Microwave Theory and Techn., Oct. 2004.

SiGe Generations

TABLE I

Comparison of Key Performance Parameters for SiGe Technologies From IBM. The Experimental
Technology (Exp. Tech.) Is Under Development and the Data Thus Far Achieved Are Listed

	$\mathbf{5 H P}$	$\mathbf{6 H P}$	$\mathbf{7 H P}$	$\mathbf{8 H P}$	Exp. Tech
Lithographic node $[\mu \mathrm{m}]$	0.5	0.25	0.18	0.13	0.13
$\mathbf{f}_{\mathrm{T}}[\mathrm{GHz}]$	47	47	120	210	375
$\mathbf{f}_{\max }[\mathbf{G H z}]$	65	65	100	285	210
Beta	100	100	350	300	3500
$\mathbf{B V}_{\mathbf{C E O}}[\mathbf{V}]$	3.4	3.4	1.8	1.7	1.4
$\mathbf{B V}_{\mathbf{c B o}}[\mathbf{V}]$	10.5	10.5	6.5	5.5	5.0
$\mathbf{J}_{\mathbf{c}} @ \mathbf{f}_{\mathrm{T}, \text { peak }}\left[\mathbf{m A} / \mu \mathbf{m}^{2}\right]$	1.5	1.5	8	12	20

J.S. Rieh, et al.,"SiGe Heterojunction Bipolar Transistors and Circuits Towards Terahertz Communication Applications," IEEE Trans. On Microwave Theory and Techn., Oct. 2004.

References

1. Sunlin Chou, "Innovation and Integation in the Nanoelectronics Era," IEEE ISSCC 2005 Plenary Speech
2. S. Long, D. Estreich, C. Chang, M. Venkataraman, "Compound Semiconductor Digital IC Technology," Chap. 69, in VLSI Handbook, CRC Press, 2000.
3. P. Zeitzoff, J. Chung, "A Perspective from the 2003 ITRS Roadmap, IEEE Circuits and Devices Magazine," Jan-Feb 2005.
4. J. Rabaey, et al, Digital Integrated Circuits, $2^{\text {nd }}$ Ed., Prentice-Hall, 2003.
5. International Technology Roadmap for Semiconductors, 2003 Edition, Executive Summary. public.itrs.net
6. International Technology Roadmap for Semiconductors, Update 2004, Lithography. public.itrs.net
7. C.T. Chuang et al., "Scaling Planar Silicon Devices," IEEE Circuits and Devices Magazine," Jan-Feb 2004.
8. Prof. M.F. Chang, Short Course Notes on High Speed Data Conversion, IEEE Compound Semiconductor IC Symposium, Oct. 2004.
9. Larson, "Silicon Technology Tradeoffs for MS/RF SOC," IEEE Trans Elect Dev., March 2003.
10. K. Washio, SiGe HBT and BiCMOS Technologies for Optical Transmission and Wireless Communication Systems," IEEE Trans. On Elect. Dev., Vol. 50, \#3, pp. 656-668, March 2003.
11. J.S. Rieh, et al.,"SiGe Heterojunction Bipolar Transistors and Circuits Towards Terahertz Communication Applications," IEEE Trans. On Microwave Theory and Techn., Oct. 2004.

[^0]: D. Estreich, Compound Semiconductor IC Symposium 2004 Primer Course

[^1]: D. Estreich, Compound Semiconductor IC Symposium 2004 Primer Course

[^2]: D. Estreich, Compound Semiconductor IC Symposium 2004 Primer Course

