Another way to implement a folding ADC

Fig. 12. System overview.

Coupled Differential Pair

VAN VALBURG AND VAN DE PLASSCHE: 8-b 650-MHz FOLDING ADC

Fig. 2. Coupled differential pair.

1 bit ADC with 2 CDPs

Fig. 3. 1-b ADC.

2-b ADC with 4 CDPs

3-b ADC with 8 CDPs

Fig. 5. 3-b ADC.

I-Q folding; offset by 1/2 LSB

Resolution can be increased by 1 bit using parallelism without increasing folding rate. 4 folding blocks needed to get to 5 bits by folding alone.

Fig. 6. Parallel use of folding blocks.

You could build all 8 bits this way, but the complexity would be as great As a flash converter. So, use interpolation to get the last 3 bits.

Fine bit generation through interpolation

Interpolation rate = 8. provides last 3 bits

Resistive interpolator

Fig. 7. Resistive interpolation.

Interpolation rate = 8. provides last 3 bits

Now, the MSFF comparators are all referenced to zero diff input. They are sensing zero crossings

Fig. 12. System overview.

Total number of comparators is reduced (from flash) by folding rate: 256/8=32

Pipeline architecture

Typically used up to about 100 MS/s

(Imaging, digital receiver, base station, HDTV, xDSL, cable modems, ethernet)

. Pipelined ADC with four 3-bit stages (each stage resolves 2 bits)

Maxim AN383

Pipeline example

- Increased sampling rate in exchange for latency
- First 4 stages: S/H; 3 bit flash; DAC; residue multiplied by 4x; 4 bit accuracy.
- 2 bits output per stage. Digital error correction uses 3rd bit to allow extra range in next stage. This can correct for offset errors.
- Final stage must have >4 bit accuracy.
- Shift registers needed for digital time alignment

14 bits; 105 MS/s

Features

- 75 dB SNR, Fin = 15 MHz up to 105 MSPS
- 72 dB SNR, Fin = 200 MHz up to 105 MSPS
- 89 dBc SFDR, Fin = 70 MHz up to 105 MSPS
- 100 dB Multitone SFDR
- IF Sampling to 200 MHz
- Sampling Jitter 0.1 ps

- 1.5 W Power Dissipation
- Differential Analog Inputs
- Pin-Compatible to AD6644
- Twos Complement Digital Output Format
- 3.3 V CMOS Compatible
- DataReady for Output Latching

Analog Devices AD6645 6/2003

20 Gs/s 8-b Pipelined – Interleaved ADC

High bandwidth oscilloscope application - Agilent

Figure 18.1.1: ADC architecture.

Design details

- BiCMOS buffer chip used to drive the 4pF input capacitance of the ADC
- ADC is organized in 80 slices parallelism used to increase throughput
 - Each block works at 250 MS/s
 - T/H, V-I converter, current-mode pipelined 1-bit ADC
 - Residue is amplified by 1.6X
 - Radix 1.6 to binary conversion
 - Data capture in 1MB on-chip SRAM

Figure 18.1.2: Input buffer chip - simplified schematic.

Clock Generation

K. Poulton, et al."A 4Gs/s 8b ADC in 0.35 um CMOS," ISSCC 2002, paper 10.1.

Clock generation

- The 20 GS/s ADC requires 80 250 MHz clocks, each offset by 50 ps with error < 1ps
- 1 GHz clock; 5 DLL stages => 5 diff clocks
- Interpolate to get 20 clocks
- Divide by 4 to get 80 clocks
- Each has digital time adjustment

Track-Hold slice

Figure 10.1.2: Input T/H.

K. Poulton, et al."A 4Gs/s 8b ADC in 0.35 um CMOS," ISSCC 2002, paper 10.1.

Figure 18.1.3: Simplified pipeline stage schematic.

12 stages of radix 1.6 produces 12 bits; convert to 8 bits binary

Extensive calibration

- Sawtooth input
 - Per slice gain and offset correction 160
 DACs on-chip
 - Gain coefficients loaded into radix converter
- Pulse input
 - Fourier analysis used to set timing adjustments

Figure 18.1.6: Effective bits vs. input frequency.

Figure 18.1.5: 1.2 x 2.6mm BiCMOS chip, 14 x 14mm CMOS chip.

Sample Rate	20 (^{GSa/s} 5x any other CM	DS ADC
Resolution	8 bits		
INL Intrinsic With linearity correction	<u>+</u> 1.7 LSBs <u>+</u> 0.4 LSBs		
DNL	<u>+</u> 0.3 LSBs		
Bandwidth	6.6 GHz		
Accuracy @ 500 MHz input @ 6 GHz input	6.5 effective bits 4.6 effective bits		
Jitter	0.7 ps rms		
Input Range	0.25 Vpk differential		
	Buffer Chip	ADC Chip	
Input Capacitance	0.2 pF	4 pF	
Power	1 W	9 W	
Chip Size	1.2 x 2.6 mm	14 x 14 mm	
Technology	40-GHz SiGe BiCMOS	0.18-mm CMOS	
Transistors	1000	50M	
Package	438-ball BGA		

Figure 18.1.7: ADC results.

8-Bit, 250 MSPS 3.3 V A/D Converter

AD9480

Analog Devices 4/2005

Figure 8. Analog Input Frequency Sweep, $A_{IN} = -1 dBFS$, FS = 1 V, $f_S = 250 MSPS$

12-Bit, 170/210 MSPS 3.3 V A/D Converter

AD9430

Analog Devices 11/2004

Figure 19. SNR, SINAD, and SFDR vs. A_{IN} Frequency, f_s = 210 MSPS, A_{IN} @ −0.5 dBFS, LVDS Mode

±5V, 1.5Gsps, 8-Bit ADC with On-Chip 2.2GHz Track/Hold Amplifier

MAX108

Maxim Integrated Products MAX108

Applications

Digital RF/IF Signal Processing Direct RF Downconversion High-Speed Data Acquisition Digital Oscilloscopes High-Energy Physics Radar/ECM Systems ATE Systems

Maxim Integrated Products MAX108

Successive Approximation ADC Up to 5 MS/s (SAR ADC)

Low power

Simplified N-bit SAR ADC architecture

Maxim AN387

. SAR operation (4-bit ADC example)

Maxim AN387