

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_{87} = 87$	0.25	01010111	8	01	2
$r_{128} = 128$	0.47	10000000	8	1	1
$r_{186} = 186$	0.25	11000100	8	000	3
$r_{255} = 255$	0.03	11111111	8	001	3
r_k for $k \neq 87, 128, 186, 255$	0	_	8	_	0

			Codi	ng: Example
Example	e (From tex	t)		
r_k	$p_r(r_k)$	Code	$l(r_k)$	
$r_0 = 0$	0.19	11	2	Lavg
$r_1 = \frac{1}{7}$	0.25	01	2	$= \sum \rho(r_k) l(r_k)$
$r_2 = \frac{2}{7}$	0.21	10	2	= 2.7 Bits
$r_3 = \frac{3}{7}$	0.16	001	3	10% less code
$r_4 = \frac{4}{7}$	0.08	0001	4	
$r_5 = \frac{5}{7}$	0.06	00001	5	
$r_6 = \frac{6}{7}$	0.03	000001	6	
$r_{7} = 1$	0.02	000000	6	
		Image C	ompression-I	10

ENTROPY

Average information per source output is

$$H = -\sum_{i=0}^{L-1} p(a_i) \log_2 p(a_i) \quad \text{bits / symbol}$$

H is called the **uncertainity** or the **entropy** of the source.

- If all the source symbols are equally probable then the source has a maximum entropy.
- <u>*H* gives the lower bound on the number of bits required to</u> <u>code a signal.</u>

Image Compression-I

19

