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[l  Addition/Subtraction

Review addition schemes and various speedup methods
« Addition is a key op (in itself, and as a building block)
* Subtraction = negation + addition
« Carry propagation speedup: lookahead, skip, select, ...
« Two-operand versus multioperand addition

Topics in This Part

Chapter 5 Basic Addition and Counting
Chapter 6 Carry-Lookahead Adders
Chapter 7 Variations in Fast Adder
Chapter 8 Multioperand Addition
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“You can’t add apples
and oranges, son; only the
government can do that.”

KNOCK T OFE! you KNOW
PERVECTLY WELL THRT'S
A PLOS SIGN ...
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5 Basic Addition and Counting

Chapter Goals

Study the design of ripple-carry adders,
discuss why their latency is unacceptable,
and set the foundation for faster adders

Chapter Highlights

Full adders are versatile building blocks
Longest carry chain on average: log,k bits
Fast asynchronous adders are simple
Counting is relatively easy to speed up
Key part of a fast adder is its carry network
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Basic Addition and Counting: Topics

Topics in This Chapter

5.1 Bit-Serial and Ripple-Carry Adders

5.2 Conditions and Exceptions

5.3 Analysis of Carry Propagation

5.4 Carry Completion Detection

5.5 Addition of a Constant

5.6 Manchester Carry Chains and Adders
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5.1 Bit-Serial and Ripple-Carry Adders

Inputs Outputs M l ly
X Y C S .
0 0 0 0 “<— HA _ @
0 1 0 1 A | X
1 0 0 1 L
1 1 1 0 S
Half-adder (HA): Truth table and block diagram
Inputs Outputs
oY Gn| Sow  Z. X y
0 0 o | o 0 L l
0 0 1 0 1 o
0 1 0 0 1 ®
0 1 1 1 0 &1 FA o
1 0 0 0 1 ou A n Y
1 0 1 1 0 L
1 1 0 1 0
1 1 1 1 1 S
Full-adder (FA): Truth table and block diagram
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Half-Adder Implementations
— X
CFy o CC
&, ‘g
S r : S y
(a) AND/XOR half-adder. (b) NOR-gate half-adder.
CH =T
L —HC
L T

(c) NAND-gate half-adder with complemented carry.

ol

<

c

S

Fig. 5.1  Three implementations of a half-adder.
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Ful
Jy X
cout( HA
HA
Cin
s |
(a) Built of half-adders.
y X

Mux

X

X
ﬁ(\{

W N — O\

<}

o< Cin

(¢) Suitable for CMOS realization.
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A

-Adder Implementations

Yy X

(b) Built as an AND-OR circuit.

Fig. 5.2 Possible designs for a full-adder
in terms of half-adders, logic gates, and
CMOQOS transmission gates.
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Full-Adder Implementations

«—X ——e—X
C w ] plimsa
out o < F Yo
HA 1—Cln Cout \—_
i ]
S l _C »
(@) FA built of two HAs
SR— =
y ®
—®
o0 Of« T o
1 1 | o—®
Cout | 2 2 ‘LCO ® .
31 3
——c,
C. v
in S
Sy
(b) CMOS mux-based FA (c) Two-level AND-OR FA

Fig. 5.2 (alternate version) Possible designs for a full-adder in
terms of half-adders, logic gates, and CMOS transmission gates.
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Some Full-Adder Details

Logic equations for a full-adder:
S = XxX®y®c, (odd parity function)
= XYCpV X’y’Cin v X’yCin’ v Xy’Cin’

Cout = XYV XCi, VY Ci, (majority function)
P y‘g—L
N s I
X0 TG

z

—— — ﬁ ’—

N‘ T [ X, TG

(a) CMOS transmission gate: (b) Two-input mux built of two
circuit and symbol transmission gates

CMOS transmission gate and its use in a 2-to-1 mux.
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Full-Adder Realization with Majority Gates

Majority-based logic equations for a full-adder:

S = maj(maj(x, ¥, Ci'), Cins Cout’) (odd parity function)
Cout = Maj(x, y, c,) (majority function)
X y

Majority gates can be used as AND and OR:

ab = maj(a, b, 0)

av b= majla, b, 1)

Using majority gates in the above partially-
utilized form is inefficient

C
out S

Full-adder built of three fully-utilized majority elements.
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Simple Adders Built of Full-Adders

4 Fig. 5.3 Using full-adders
X | in building bit-serial and
—_— :
Shift X; ‘ Yi ripple-carry adders.
Ci+1 Ci
Carry g FA <
FF Shift
+ _
Clock S; | > S
(a) Bit-serial adder.
131 }131 T }f ]io }10
C32 C31 C2 C1 Co
«— FA lk— « « « «— FA I« FA |—
Cout l l l Cin
S32 S31 S So

(b) Ripple-carry adder.
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VLSI Layout of a Ripple-Carry Adder

Y3 X3 Y2 X2 Y1 X1 Yo X0
- o I — 1 F——A17 I _VDDT
4 L L o [ 1inverters _Vgg
out] I Lo | LSl Two __ G |150%
L ] C ] C ] C ] 4-t0-1 G

Mux’s  Clock W
.| o | s 1 5ol
- >
T60A

Fig. 5.4 The layout of a 4-bit ripple-carry adder in
CMOS implementation [Puck94].
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BD

AD
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o
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| o
—> —/ -yt XORCY
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Cn-1 ,' ,I /__1-1
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—
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Two views of Xilinx Virtex-5

ripple-carry adder
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COUT (To Next Slice)

[] Carry Chain Block
(CARRY4)

05 From LUTD I pia —
DX g:l]

> DMUX/DO*

> DMUX

o= Da

(Optional)

o CMUK/CO®

|

|

|

: | co2
S2

: /MUXCY

] y 0z

>

— CMUX

o= ca

(Optional)

[ BMUX/BO®

Q6 From LUTA

> BMLUX

opH—=EBaQ
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05 From LUTA
AX

[ AMLUX/ACY
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— — —— — —— i —— — — ]

01
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Critical Path Through a Ripple-Carry Adder

Tippie-ada = Tea(X,Y—=>Cou) T (K — 2)x Tea(Cii—>Cout) + Tea(Cii—>S)

I Ly b
Ck Ck—1 Ck—2 C2 C1 Co
—-—4¢— FA 4 FA <¢— ... ¢ FA ¢ FA <—
E Cout . . . . Cin
‘ v ' ' v
Sk Sk—1 Sk-2 S1 So

Fig. 5.5 Critical path in a k-bit ripple-carry adder.
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Binary Adders as Versatile Building Blocks

X y
Set one input to O: C.ut = AND of other inputs L l
Set one input to 1: C.,t = OR of other inputs & FA
ou in
Set one input to O L
and another to 1: S = NOT of third input 4
Bit 3 Bit 2 Bit 1 Bit 0
0 1 w 1 z 0 y X
Cc Cc Cc Cc Cc
4 3 2 1 0
Wy Xyz WV XyZ XyZ Xy 0

¥ { { {
Fig. 5.6  Four-bit binary adder used to realize the
logic function f= w v xyz and its complement.
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5.2 Conditions and Exceptions

Yik-1 Xk-1 Yk-2 Xk-2 Y1 X1 Yo
| i ]| ||

X0

Ck2 €2 C1

Cout (Lr FA FA FA FA
Overflow Q

Negative
®
Zero —OCE
[

Sk—1 Sk-2 S1 SO

Fig. 5.7 Two’s-complement adder with provisions
for detecting conditions and exceptions.

— ! ! !
overflow,g compl = Xk Vi1 Skct’ Vv Xkt Yier' Skt

— — ! !
overflowys compi = Cx @ Cyq = Cx Chy' v G’ Cpg
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Saturating Adders

Saturating (saturation) arithmetic:

When a result’'s magnitude is too large, do not wrap around;
rather, provide the most positive or the most negative value
that is representable in the number format

Example — In 8-bit 2’'s-complement format, we have:
120 + 26 - 18 (wraparound); 120 +_,, 26 - 127 (saturating)

Saturating arithmetic in desirable in many DSP applications

Designing saturating adders

Adder "0
Unsigned (quite easy) 1

Signed (only slightly harder) Overflow ™" F

Saturation value
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5.3 Analysis of Carry Propagation

Bit positions
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Carry chains and their lengths
Fig. 5.8 Example addition and its carry propagation chains.
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Using Probability to Analyze Carry Propagation

Given binary numbers with random bits, for each position / we have

Ya  (both 1s)
Ya  (both 0s)
Y2 (different)

Probability of carry generation
Probability of carry annihilation
Probability of carry propagation

Probability that carry generated at position / propagates through
position j — 1 and stops at position j (j > /)

2-1-1) x 1/2 = 21
Expected length of the carry chain that starts at position i
2 _ D—(k=i-1)

Average length of the longest carry chain in k-bit addition is strictly
less than log,k; it is log,(1.25k) per experimental results

Analogy: Expected number when rolling one die is 3.5; if one rolls
many dice, the expected value of the largest number shown grows
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5.4 Carry Completion Detection

Xi ¥i 7 XiTYj

by o _bin +—( g C b . __bo=ci

Ck ~ Cout ... Ci+1 P Co = Cin
( 3 .
c
jﬁ_lq (1) Carry not yet known
~ 0

Carry known to be 1
alldone: | } From other bit positions

Carry known to be 0
Fig. 5.9 The carry network of an adder with two-rail carries
and carry completion detection logic.
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5.5 Addition of a Constant: Counters

l L Data in
' Mux /e------ Count / Initialize
Reset Clear
Clock ---------------- » Countregister [¢-22Z2227C

Load Enable
+1l(_1) EX—
\/
Counter ¢\ Incrementer/
overflow Cout (Decrementer)

X+ 1
(x—1) v Data out

Fig. 5.10 An up (down) counter built of a register,
an incrementer (decrementer), and a multiplexer.
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Implementing a Simple Up Counter

Xk—1 Xk—2 X1 Xo

e oI

\l

yoy oY Y

Sk-_1 Sk_2 S2 S1 So

(Fm arch text) Ripple-carry incrementer for use in an up counter.

CountAOutput
[ t
41(23 Tiqz Tiql TiQo Tl
Q3 Q) Q1 Qo

Fig. 5.11  Four-bit asynchronous up counter built only of
negative-edge-triggered T flip-flops.
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Faster and Constant-Time Counters

Any fast adder design can be specialized and optimized to yield
a fast counter (carry-lookahead, carry-skip, etc.)

One can use redundant representation to build a constant-time
counter, but a conversion penalty must be paid during read-out

Count register divided into three stages

/\
/ AN
| | Load Increment
>l e
1 Load? — ¢
\V4 6 \V4
Incrementer Incrementer
Control Control @
2 < Iy 1

Fig. 5.12 Fast (constant-time) three-stage up counter.
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5.6 Manchester Carry Chains and Adders

Sum digit in radix r S = (xty+c)modr
Special case of radix 2 S = X9y ®c
Computing the carries c; is thus our central problem

For this, the actual operand digits are not important
What matters is whether in a given position a carry is

generated, propagated, or annihilated (absorbed)
For binary addition:
g =XV P =X @Y, a; =x'y,"=(x;vy)'

It is also helpful to define a transfer signal:
L =g,vp = a = xVvYy,

Using these signals, the carry recurrence is written as
Cu1=G;VCiP = giVCQivep = gV Gl
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Manchester Carry Network

The worst-case delay of a Manchester carry chain has three components:

1. Latency of forming the switch control signals
2. Set-up time for switches

v
3. Signal propagation delay through k switches bb

—[

0
' !
Cit1 (00_1 Ci Cit1 rcl
P
1] 0 1] 0

sl
of gi
f@ Clock [

Pi
Logic0 Logic 1 < Vg
(a) Conceptual representation (b) Possible CMOS realization.

Fig. 5.13 One stage in a Manchester carry chain.
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Details of a 5-Bit Manchester Carry Network

Dynamic logic, with 2-phase operation
Clock low: Precharge (c; = 0) Clock high: Pull-down (if g; = 1)

The transistors must be sized appropriately for maximum speed

Smaller transistors Larger transistors
i=4 i=3 i=2 i=1 i=0
T Vob T Vob T Vob T Vob T Vob T Vob
— - o - o~ - A - —d -
C, Cs C, C; Co
AT (AT [T [T [T
g—[ D g—[ D g—[ D g—[ D g—[ D gi‘;I:_CO
[ [ I I [ [
\VALS 7 Vss \WVALS \WVALS 7 Vss \VALS

Carry chain of a 5-bit Manchester adder.
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Carry Network is the Essence of a Fast Adder

g; P;| Carryis: X; Y

0 O [ annihilated or killed gi=Xy;
0 1

10

1 1

propagated -
generated N Pi = X; ® Yi
(impossible)
92 Pk2 9i+1Pirq [9;  [Pj
g.p
Ik Pr_1 151 90Pg
o
Carry network .
: - " Ripple; Skip;
c l C; 0 Lookahead,
k—1 C

0 .
k-2 ¢\, ? €1 Parallel-prefix
S.
)

Fig. 5.14  Generic structure of a binary adder,
highlighting its carry network.
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Ripple-Carry Adder Revisited
The carry recurrence: ¢, =g,V p;C

Latency of k-bit adder is roughly 2k gate delays:

1 gate delay for production of p and g signals, plus
2(k — 1) gate delays for carry propagation, plus
1 XOR gate delay for generation of the sum bits

1 P 9o

|

C1

B

S

Fig. 5.15 Alternate view of a ripple-carry network in connection
with the generic adder structure shown in Fig. 5.14.
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The Complete Design of a Ripple-Carry Adder

;| Carryis:

propagated
generated
(impossible)

p
0 | annihilated or killed
1
0
1

9y Py_2 9i+1Pj+1

;

i+1

S,
I

Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).
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6 Carry-Lookahead Adders

Chapter Goals

Understand the carry-lookahead method
and its many variations
used in the design of fast adders

Chapter Highlights

Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem
to parallel prefix computation
Implementing fast adders in VLSI
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Carry-Lookahead Adders: Topics

Topics in This Chapter

6.1 Unrolling the Carry Recurrence

6.2 Carry-Lookahead Adder Design

6.3 Ling Adder and Related Designs

6.4 Carry Determination as Prefix Computation

6.5 Alternative Parallel Prefix Networks

6.6 VLSI Implementation Aspects
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6.1 Unrolling the Carry Recurrence

Recall the generate, propagate, annihilate (absorb), and transfer signals:

Signal Radix r

gi
P;
a;
L.

/

S

/

is1iff x,+y,>r

is1iff x;+y,=r—1
is1iff x;+y,<r—1
is1iff x,+y,>r—1

(x;+y;+c)modr

Binary

Xi Yi

X;®y;

X'yi"' =X vy
Xi V'Y

Y AR AN

The carry recurrence can be unrolled to obtain each carry signal directly
from inputs, rather than through propagation

Ci =01V Ci1Pi
=011 V(9o V CioPio)Piy

=091V gioPi1 VvV CioPioPig

Note:
Addition symbol
vs logical OR

=01V Gi2P1V 9i3Pi2Pii1 V Ci3Pi_3Pj—2P1

-9

Apr. 2020

J

i1V Gi2Pi1 vV 9i3Pi2Pi1 vV GiiaPi3Pi2Pi—1V CiaPi4Pi3Pi2Pj1
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Full Carry Lookahead

X3 V3 X2 Yo X1 Yq Xo Yo

133 132 131 lSO

Theoretically, it is possible to derive each sum digit directly
from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing
the complexity of this ideal, but impractical, arrangement by
hardware sharing among the various lookahead circuits
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Full carry lookahead is quite practical
for a 4-bit adder

Four-Bit Carry-Lookahead Adder

Complexity 4L

reduced by i

deriving the

carry-out _<
indirectly o, | (

9o Vv CoPg

gdq1 vV GoP1V CyPoPA

T
n
.

9oV g1P2 VvV goP1P2 VvV CoPoP1P2

g3V goP3 Vv g1P2P3 VvV GoP1P2P3
V CoPoP1P2P3

o
Fig. 6.1 Four-bit carry
network with full lookahead.
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Carry Lookahead Beyond 4 Bits

Consider a 32-bit adder
No circuit sharing:

°1~ 9oV CoPo Repeated computations
C2 = g1V GoP1V CoPoP1
Cz3 = go VvV gi1PaV goP1P2 VvV €CoPoP1P

32-input AND
C31= G30 V G29P30 V GogP2gP30 V G27P28P29P30 vV - - .(V CoPoP1P2P3... Pog
P30

_ High fan-ins necessitate
32-input OR tree-structured circuits
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Two Solutions to the Fan-in Problem

High-radix addition (i.e., radix 2")

Increases the latency for generating g and p signals and sum digits,
but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition
Radix-16 (four digits)

Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c,, cg, and c,, are determined first

Ci6 C15 C14 C13 C15 C11 C190 C9 Cg C; C¢ C5 C4 C3 C, C; G

P ? P
Cout . ° . Cin
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6.2 Carry-Lookahead Adder Design

Block generate and propagate signals

g[/ /+3] gl+3 4 gl+2pl+3 Vv g/+1 p/+2p/+3 Vv g/ p/+1 p/+2p/+3
p[/ /+3] p/ p/+1 p/+2p/+3

C.

Ci+3 < Ci+2 < i+1 <
&+3Pi+3| &i2Pit2 | &1 Pi1| & D;

4-bit lookahead carry generator [«@——

2

1 Ji+3] 1 Ji+3]

Fig. 6.2b Schematic diagram of a 4-bit lookahead carry generator.
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A Building Block for P
Carry-Lookahead Addition

—
N
Fig. 6.2a A 4-bit —g
ig. 6.2a -bi €y —
lookahead
-

carry generator P

C
) ‘ J &3
[ Py Block Signal Generation
Intermediate Carries

v

&

C.in o
i+3,¢
/

- - ~
-
~ . ~
N 4 ~
A N
N N
S N
A N
N N
A \
\ \
A \
\ / \

/ \ / \

’ \ / p \
. p2 A ! 1+2 \

’
\ \
Fig. 6.1 : /
. . /
\
\ ]

A 4 = b it \ II
g2 ‘ll ! gi+2

carry
network .

| \
) 1
h 1
h 1
h 1
1
'a :_ ! 'k :
“ " ‘\ / p II
1
\\ 02 - pl h \\ Cl+2 1+1 l/
\ / \ \ ]
\ 1 // \\ ; ,
\ / \ ’
\ /
\
\
\ C_

\ . /7
& : Sl
/
. po \\\ p.L//
N , N ,
¢, — f— f
— £ — &
~<_ ’/,f’ \\\\\ C,/,f’
SN e __-- __’CO S~ ____ ___,'l
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Combining Block g and p Signals

_ Jo 10
| 2 i
, 12 1) Block generate and
3 1 g propagate signals
| ' can be combined in
Cj2§+1 ¢; i“ C?joﬂ the same.way as bit
- < <4 g and p signals to
form g and p signals
glp g|p R g(p for wider blocks
LA vy \A 2R A / .
4-bit lookahead carry generator <+—
lgip Fig. 6.3 Combining of g and p signals of four
(contiguous or overlapping) blocks of arbitrary widths

into the g and p signals for the overall block [iy, j5]-
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A Two-Level Carry-Lookahead Adder
O

012 <C§| <Céi| Ci
C48 C32 C16 g[12 15] 8,111 21471 [8[0.3]
@« 43- “ [12,15] [8.11] p 4.7 P03

4-bit lookahead carry generator "J

16-bit
£[48,63] 8[32,47] 8[16,31] -1 8[0,15] Carry-Lookahead
P 48,631 P 32,47 Pri6a1] Pro,15] Adder
v
4-bit lookahead carry generator <4

¢§[0,63] Fig. 6.4 Building a 64-bit carry-lookahead adder from 16
9031 4.pit adders and 5 lookahead carry generators.

Carry-out: Cout = Gpor1V CoProk-1] = XetVi1V St (X1 v Yier)
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Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions 1 gate level
g and p signals for 4-bit blocks 2 gate levels
Block carry-in signals c,, cg, and ¢,, 2 gate levels
Internal carries within 4-bit blocks 2 gate levels
Sum bits 2 gate levels
Total latency for the 16-bit adder 9 gate levels

(compare to 32 gate levels for a 16-bit ripple-carry adder)
Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder: Tookahead-add = 41094k + 1 gate levels
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6.3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:
Ci = Qi1 V Ciqliy
= gi—1 Vv gi—2 ti—1 Vv gi—3 ti—2 ti—1 Vv gi—4 ti—3 ti—2 ti—1 Vv Ci—4 ti—4 ti—3 ti—2 ti—1
Ling’s maodification: Propagate h; = ¢; v ¢,_, instead of c; Propagate

hj =914 v b4t harry,
=91V 92V GislioV Gialislio Vv hi gt 4t 3t not carry!

CLA: 5 gates max 5 inputs 19 gate inputs
Ling: 4 gates max 5 inputs 14 gate inputs
The advantage of h; over c; is even greater with wired-OR:

CLA: 4 gates max 5 inputs 14 gate inputs
Ling: 3 gates max 4 inputs 9 gate inputs

Once h; is known, however, the sum is obtained by a slightly more
complex expression compared with s; = p; @ c;

S;=p;®h;t_,

Apr. 2020 B J Ej Computer Arithmetic, Addition/Subtraction Slide 44



6.4 Carry Determination as Prefix Computation

Block B' r 1
4—== [ g p
'Block B". g,
] i
. 0 0 vy

g",p") (g,p) -

g=gngb"

pP=PPp

(g,
< Block B > &) g P

Fig. 6.5 Combining of g and p signals of two (contiguous or overlapping)
blocks B' and B" of arbitrary widths into the g and p signals for block B.
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Formulating the Prefix Computation Problem

The problem of carry determination can be formulated as:
Given  (go, o) (91, P1) - - - (k2 Pro) (911 Pr1)

Find (9[0,0] : P[o,O]) (9[0,1] : P[o,1]) . (g[O,k—Z] : P[o,k—z]) (Q[o,k—1] : P[o,k—1])
Carry-in can be viewed as an extra (-1) position: (g_4, p_4) = (¢, 0)

The desired pairs are found by evaluating all prefixes of
(9o, Po) ¢ (91, P1) & - - . € (Gko Pxo) ¢ (9koty Prr)

»
»

»
»

»
»

The carry operator ¢ is associative, but not commutative
[(91, 1) € (92, P2)] € (93, P3) = (91, P1) € [(92, P2) € (T3, P3)]

Prefix sums analogy:

Given Xy X Xy C X)_1
Find Xy XotX;  XotX+X, Coe Xot X t... X
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Example Prefix-Based Carry Network

?/.—1 2/.5 Fig. 6.6 Four-input
_ parallel prefix
(@) Ad-input  syms network and

+)
] prefix sums jts corresponding
A/QD/ network carry network.

e 6 ________________ 7 ________________ 5 ______ Scan g "
order
93, P3 9o, P> 91> Py 90> Po
(@) (b) A 4-bit
Carry

k/////// lookahead
Cf) network

1

Yo Poa Jo2r Pzt o Py Joor Proor
= (C4’ ") = (C3’ ") = (CZ’ ") = (C1’ ")
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6.5 Alternative Parallel Prefix Networks

Xe-1 -+ Xk X1 - X
I

Prefix Sums k/2 Prefix Sums k/2

Sk-1 *° Skn»

Fig. 6.7 Ladner-Fischer parallel prefix sums network
built of two k/2-input networks and k/2 adders.

Delay recurrence D(k) = D(k/2) + 1 = log,k
Cost recurrence C(k) = 2C(kI2) + ki2 = (k/2) log,k
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The Brent-Kung Recursive Construction

Xk—l Xk_2 . e . X3 X2 Xl XO

& | &

Prefix Sums k/2

g |

Sk-1 Sk=2 Co $3 82 81 Sy
Fig. 6.8 Parallel prefix sums network built of one
k/2-input network and k — 1 adders.

Delay recurrence D(k) = D(k/2)+2 = 2 log,k—1 (-2 really)
Cost recurrence C(k) = C(ki2) + k—1 =2k -2 —log,k
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Brent-Kung Carry Network (8-Bit Adder)

[7,7] [6,6] [5,5] [4,4] [3,3] [2,2] [1,1] [O,0]

91,11 P1,1]
/J' 910,0]

\ A PI0,0]

— @
—

90,11 P[o,1]

0,7] [0,6] [0,5] [0,4] [0,3] [0,2] [O,1] [O,0]
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Brent-Kung Carry Network (16-Bit Adder)

X5 X1a %13 X2 Xy X X9 X X

Level
1
Reason for ;
latency being
2 log,k—2 :

Fig. 6.9 -
Brent-Kung >
parallel prefix

graph for 0
16 inputs.

\
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Kogge-Stone Carry Network (16-Bit Adder)

15 X143 *2 X XX KR X X X Xy XX X X
Cost formula

Clk) = (k= 1) AAAAAAAAAAAA L
{00 680960656060 0/
o | (CIIIIIIIIIILLS)
sk | TP,
92529252572
log,k Ievels< Cf AAAALS /‘f AL
(minimum 1L 1
possible) 1111
B ez e e
Fig. 6.10 B ord
Kogge-Stone A ’ 7
parallel prefix \(fffﬁii ‘
graph for
16 inputs. S15 514513 S128;; S9Sg Sg S, S, S. S, S, S, S, S,
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Speed-Cost Tradeoffs in Carry Networks

Method Delay Cost

Ladner-Fischer |log,k (k/2) log,k

Kogge-Stone log,k klog,k — k + 1

Brent-Kung 2 log,k—2 2k — 2 —log,k
X1 -+ X2 Xpo-1 -0 X

Improving the | ] |

Ladner/Fischer These outputs can
design Prefix Sums k/2 | |Prefix Sums k/2 | e produced one
time unit later without

S increasing the overall
latency
@ ... @ Wt So

This strategy saves enough to make
Sk-1 """ Sk2 the overall cost linear (best possible)
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Hybrid B-K/K-S Carry Network (16-Bit Adder)

15 X145 Xt Xt K X X X5 X X X X X Xis Xa X3 X2 X X0% X X Xo X5 X Xy X, X, X

l AAAAS «"%’ ¢

2 | B 0800080000
Brent-Kung: . &7 [ | L&t PP R | Kogge-Stone:

/// A~F
6 levels { 11 L q ‘e 4 levels
L

26 cels ?}?7 gﬁ; 9}? | 49 cells

S S 48 S
S15 514513 512 5] S1059 Sg S, Sg S5 Sy S5 S, S, S, 15514513 %1281 8198 S3 87 8¢ S5 84 S5 S, 8y 8

7]
=
@]
=]
¢}

/;
L —

Mis Ma s Xy XX XX Xo X X Xy X, XX,
Fig. 6.11 / ! ( : ' !
A Hybrid o |
Brent-Kung/ o1 j ~ Hybrid:
Kogge-Stone - S levels
parallel prefix O//

/| \
16 inputs. (é 95‘ gj ﬂj 9§ 95 Cé Tm'

Brent-
)C % 32 cells
graph for g / /
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6.6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers
as implemented in the AMD Am29050 CMOS micro

Our description is based on the 64-bit version of the adder
In radix-256, 64-bit addition, only these carries are needed:

Csg Cus Cao C3) Co4 Ci6 Cg

First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are
used to derive g and p signals for 4-bit blocks

Next, the g and p signals for 4-bit blocks are combined to form
the desired carries, using the MCCs in Fig. 6.12b
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Four-Bit Manchester Carry Chains

PH2

PH2 PH2
537 P = £3 S &
- | — e
75 = = F“__H =~ " 203
—— —> —>
P3 ICy P3 4 :f* P[o,3)
PH2 PH2
&2 PH2 PH2 %) 5 S
- 1 £ 1 - i g02]
5t T T 1 T :
) Ly ) HE— A 0
81 PH2 g S &
T L 1 e e,
l 1 — o—T—1 [0,1]
I — T - 7 —
Py ICy P e — If+ N Pro,1]
) P2 g0 S S
- = | g3 — - ]
 — T — —
Po ICy Po ICA
PH2 * *
I _.% I P[0,3] PH2 |5 PH2 |
(a) (b)

Fig. 6.12  Example 4-bit Manchester carry chain designs in
CMOS technology [Lync92].
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Carry Network for 64-Bit Adder

Level 1 Level 2 Legend: [/, j] represents the
i— ------- i_ (60, 63] — - 148, 63] pair of signals p li ] and g i J]
! — [56,59] | Type-b = [48, 59
i E_ [52,55]| MCC - [48,55] —] Level 3
i 148,511 L [48, 55] - [-1,55]— Cg
| — (44, 47 - 32, 47] 32,474 Type-b T [-1,47]—»Cag
: — [40,43] Type-b 1 [32,43] — [16,31 MCC  [-1, 31]
i " E— [36,39] | MCC - [32,39] [-1,15]7
. Type-a L [32, 35 [32, 39] — — [-1,39]—>C g
i MCC +— g 31]— — [16,31] —®7— [16,31] 7 Type-b [~ [-1,31]—>C3)
| PIookS L— 124,271 Type-b [ 116, 27] (16,231 MCC I~ [-1,23)—>C
| :— [20,23]4 MCC 1 [16,23]— @— [-1,15]
! — [16, 19]
! L 12, 15] — — [-1, 15] . »C16
i — [8,11] ~ L L1
: — 4,7 - Tyl\ljl’gg’ - [-1,7] >Cs
L — [0,3]

-1, -1
. [-1, ]E o

Eig. 6.13 Spanning-tree carry-lookahead network [Lync92].

0

Type-a and Type-b MCCs refer to the circuits of Figs. 6.12a

and 6.12Db, respectively.
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/ Variations in Fast Adders

Chapter Goals

Study alternatives to the carry-lookahead
method for designing fast adders

Chapter Highlights

Many methods besides CLA are available
(both competing and complementary)

Best design is technology-dependent
(often hybrid rather than pure)

Knowledge of timing allows optimizations
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Variations in Fast Adders: Topics

Topics in This Chapter

7.1 Simple Carry-Skip Adders

7.2 Multilevel Carry-Skip Adders

7.3 Carry-Select Adders

7.4 Conditional-Sum Adder

7.5 Hybrid Designs and Optimizations

7.6 Modular Two-Operand Adders
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7.1 Simple Carry-Skip Adders

Ci6 4-bit block |C45 4-bit block | Cg 4-bit block | C4

<
«

A

A
A

(a) Ripple-carry adder

P12,15] Pis, 11 Ppa, 7 Pro,3)

4-bit block |Cyy | 4-bit block 4-bit block

(b) Simple carry-skip adder

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple
carry-skip adder with 4-bit skip blocks.
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Another View of Carry-Skip Addition

P 4-bitblock [+ 4-bit block
— | /o or | [or
] 1le 1 1le—

09 )
09 )
09 )
CC®
CC®
CC®
09 )
09 )
09 )
0

<+— One-way street «—

Z
|
.
Z
N
>
<

Freeway

Street/freeway analogy for carry-skip adder.
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Skip Carry Logic with OR Gate vs. Mux
Fig. 10.7 of 4j+3  PAj+3 4jv2  Paj+2 4j+1  Paj+1 4j Pa4;
arch book _C—o _C _C _C—o
Caj+4 C4j+3 Cy4j+2 C4j+1 Cyj
-k
v v v v
Paj+1 4 P4
o
0 { -
Cajra e C4j+1 Caj
Praj, 4j+317
N
\4 v v

The carry-skip adder with “OR combining” works fine if we begin
with a clean slate, where all signals are Os at the outset; otherwise,
it will run into problems, which do not exist in mux-based version
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Carry-Skip Adder with Fixed Block Size
Block width b; k/b blocks to form a k-bit adder (assume b divides k)

Tfixed-skip-add = (b - 1) + (k/b _ 1) + (b - 1)
in block 0 skips in last block

~ 2b + kib — 3 stages
dTldb = 2—-kib°>=0 = bort = \Vk/2

Topt = 22k~ 3

|

— £

Example: k= 32, bort = 4, Tort= 13 stages
(contrast with 32 stages for a ripple-carry adder)
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Carry-Skip Adder with Variable-Width Blocks

b1 bt2 Coe by bo Block widths
Carry path (1
o y path (1)
Carry path (2)
Carry path (3)
Fig. 7.2  Carry-skip adder with variable-size blocks = Skip

and three sample carry paths.

The total number of bits in the ¢ blocks is k:
2lb+(b+1)+ ...+ (b+t/2-1)] = tb+tl4-1/2) = k
b = kit—1tl4 +1/2

T =2b-1)+ t—1 = 2Klt+ 12 -2

var-skip-add —

dTidb = —2kit2 +1/2=0 =  tot=2k
Topt = 2\k— 2 (a factor of \2 smaller than for fixed-block)
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7.2 Multilevel Carry-Skip Adders

out C.

S 4 S 4 S 1 S 1 S 1

Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

Cc

out C.

S, S, S, S, S,

Sy

Fig. 7.4 Example of a two-level carry-skip adder.

C

out

S S S

Sy

Fig. 7.5 Two-level carry-skip adder optimized by removing the
short-block skip circuits.
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Designing a Single-Level Carry-Skip Adder

Example 7.1

Each of the following takes one unit of time: generation of g; and p;,
generation of level-i skip signal from level-(i—1) skip signals, ripple, skip,
and formation of sum bit once the incoming carry is known

Build the widest possible one-level carry-skip adder with total delay of 8

Cout  Cin
- be bs b4 bs b2 b, bo 0

Sy S S S1 Sq

Fig. 7.6  Timing constraints of a single-level = Max adder width = 18
carry-skip adder with a delay of 8 units. (1+2+3+4+4+3+1)

Generalization of Example 7.1 for total time T (even or odd)
1 2 3 ... T2 T2 ... 4 3 1
1 2 3 ... (T+1DH2 ... 4 3 1

Thus, for any T, the total width is L (T + 1)2/4] - 2
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Designing a Two-Level Carry-Skip Adder

Example 7.2

Each of the following takes one unit of time: generation of g; and p;,
generation of level-i skip signal from level-(i—1) skip signals, ripple, skip,
and formation of sum bit once the incoming carry is known

Build the widest possible two-level carry-skip adder with total delay of 8
Tproduce—l l_ T assimilate

8,1 {7,2) (6, 3} (5, 4} 4,5 {3,8} e
Cou[ e b be {bB } b i (a) Initial tllmlng
0 constraints
8 7 6 5 4 13 I3
S2 S2 S2 S2 S2 Max adder width = 30

(a) (1+3+6+8+8+4)

| FIBlock B— Block D—+—— Block C———+—— Block B—— Block 2d

X i .
Al &

3 3 (b) Final design

Cout
t=8

Fig. 7.7 Two-level carry-skip adder
with a delay of 8 units.
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Elaboration on Two-Level Carry-Skip Adder
Example 7.2

Given the delay pair {B, o} for a level-2 block in Fig. 7.7a, the number
of level-1 blocks that can be accommodated is y = min(f—1, o)

a

Cout a_l ba_z by bl bo Cin
| o—1 o—2 3 2 ‘ 1 0
Si Si Si Si Si Si S
Single-level carry-skip adder with T_ i mijate = @ |
C .
out | B_ bB_3 b2 b1 bo Cin
P ‘ p- ‘ p-2 4 3 2 I
S1 Sq Sq S S Si S|

Single-level carry-skip adder with T,,4,ce = B

Width of the ith level-1 block in the level-2 block characterized by {, o}
is b;=min(B —y +i+1, a—1i); the total block width is then 2>.,,, 1 b,
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Carry-Skip Adder Optimization Scheme

Block of b full-adder units

Level-h skip

Fig. 7.8 Generalized delay model for carry-skip adders.
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7.3 Carry-Select Adders

k-1 kl2  ki2 -1 0

______ k/2-bit adder j@o .
L - _ .
' | k/2-bitadder 1 k/2-bit adder [«

A kl2

v
High k/2 bits Low k/2 bits

Fig. 7.9 Carry-select adder for k-bit numbers
built from three k/2-bit adders.

Cselect-add(k) = 3Cadd(klz) + k/2 + 1
Tselect-add(k) = add(k/2) + 1
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Multilevel Carry-Select Adders

k-1 3kl4 3k/4 - 1 ki2 ki2 -1 kl4 ki4 -1 0
[ 0 [ 0 [ 0
|- C.
k/4-bit adder ji%i;-" k/4-bit adder ji%i k/4-bit adder jhi -1 k/4-bitadder [P
kld+1 1~ A kl4+1 ~kli4 A ki4  kl4+1 A kl4+1 1 kl4

\

A 4

\ 1 0!
Mux C 4
1 % ______ A ki4
\ Mux Cri2

c. .. High k/2 bits Middle k/4 bits Low k/4 bits

_— -

Mu;

K
i Lﬁ\‘
o
y
A
:I
1

Fig. 7.10 Two-level carry-select adder built of k/4-bit adders.
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7.4 Conditional-Sum Adder

Multilevel carry-select idea carried out to the extreme (to 1-bit blocks.
C(k) =z 2C(k/I2)+ k+ 2 = k(log,k + 2) + k C(1)
T(k) = T(k/l2) +1 = log,k + T(1)

where C(1) and T(1) are the cost and delay of the circuit of Fig. 7.11
for deriving the sum and carry bits with a carry-in of 0 and 1

Yi X4
k + 2 is an upper bound on

number of single-bit 2-to-1
( g_.

multiplexers needed for
. F—e combining two k/2-bit adders
\ ’ into a k-bit adder

‘ <] rg(l Fig. 7.11  Top-level
w1 Si

block for one bit position of

C; Si % it
it a conditional-sum adder.

1
Forc;=1 Forc;=0
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Conditional-Sum
Addition Example

Table 7.2

Conditional-sum
addition of two 16-bit
numbers. The width
of the block for which
the sum and carry
bits are known
doubles with each
additional level,
leading to an
addition time that
grows as the
logarithm of the
word width k.

Apr. 2020 Bl

ofolr1o0|0j2 (2021110121011 10
ofr1o010|1jof1f2{of1(0(111211210 |1
Block  Block Block sum and block carry-out
width carry-in 514 1312 1110 9 8 7 6 5 4 3 2 1 0
1 0 ofr(1210|24j12(of1 ({1202 1210 1111 |1
0101010001 (OfO|1(0O10111]01]0]0
1 110(O0O1]JOJ0J1(O(Of2(0O]0O 110 |0
o110 |1 (2222111121111
2 0 O 1|1 0J1 10 10 01 110 111 1
0 0 0 1 1 0 1 0
1 1 01 1|10 Of1 O0f0 110 O0]1 O
0 0 1 1 1 1 1
4 0 0110J]00O01l001 1101 11
0 1 1 1
1 01 1 1]j]00 1 001 0O
0 1 1
8 0 0111000101 000111
0 1
1 01110010
0
1o 0 0111001001 O00O0111
0
l H
Co;ut
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Elaboration on Conditional-Sum Addition

Two versions
of sum bits
and carry-out
in 4-bit blocks

Two versions
of sum bits
and carry-out
in 8-bit block

Apr. 2020 |

Two adjacent 4-bit blocks, forming an 8-bit block

Left 4-bit block

Right 4-bit block

8j+7 ... 8j+4 8j+3 ... 8
0—00110 0—1111+—0
0—0100 1 1<=0000 1
-
8j+7 ... 8+3...8§
0«—-=0011|1111—0
0<--0100/0000— 1
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7.5 Hybrid Designs and Optimizations

The most popular hybrid addition scheme:

Cin
Lookahead Carry Generator <4+
4 4 Block
Carry-Select g p
| K | 0 |0 4_
T 1 T | T 1
Niuyg | N\uyg | \Muy‘g

Cout v

:

v v

Fig. 7.12 A hybrid carry-lookahead/carry-select adder.
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Details of a 64-Bit Hybrid CLA/Select Adder

Level 1 Level 2 Legend: [/, j] represents the
i‘ """" i_ 60, 63] — - 48, 63] pair of signals p li ] and g i J]
! — [56,59] | Type-b [~ [48, 59]
i E— [52,55] | MCC 1= [48,55] — Level 3
i 148,511 L [48, 55] - [-1,55]— Cg
! — (44, 47) - [32, 47] [32,47) Type-b 1~ [-1,47]—>Cyg
! L— [40,43] - Type-b 1~ [32,43] — [16,31]1—| MCC 1= [-1,31]
i 16 E— 36,39 MCC - [32, 39] [-1,15] 7
. Type-a L [32, 35 [32, 39] — — [-1,39]—>C g
i MCC +— g 31]— — [16,31] —®T— [16,31] 7] Type-b [~ [-1,31]—>C32
| PIookS L— 124,271 Type-b [ 116, 27] (16,231 MCC I~ [-1,23)—>C
i — [20,23]7 MCC - [16,23]— @®— [-1,15]]
! — [16, 19]
| L— [12, 15] — - [-1, 15] . >C16
i — 18, 11] — -1, 11]
! — 4,7 - PeD T g 7 >Cg
. L | MCC
Lo - [[(1” 3]1] Fig. 6.13 [Lync92].

n E »Co

Each of the carries cg;, produced by the tree network above is used
to select one of the two versions of the sum in positions 8/to 8/ + 7
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C48 C32 C16

Any Two Addition Schemes Can Be Combined

C8 C4 Co

< < L * | ey

[g112,15] ] [811 247 L&[o3]
[12,15] P s, 11] p [4.7] P03

4-Bit Lookahead Carry Generator <J

(with carry-out)

L 16-bit Carry-Lookahead Adder

Fig. 7.13 Example 48-bit adder with hybrid
ripple-carry/carry-lookahead design.

Other possibilities: hybrid carry-select/ripple-carry
hybrid ripple-carry/carry-select
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Optimizations in Fast Adders

What looks best at the block diagram or gate level may
not be best when a circuit-level design is generated
(effects of wire length, signal loading, .. .)

Modern practice: Optimization at the transistor level
Variable-block carry-lookahead adder

Optimizations for average or peak power consumption

Timing-based optimizations (next slide)
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Optimizations Based on Signal Timing
So far, we have assumed that all input bits are presented at the same
time and all output bits are also needed simultaneously

Latency from inputs
in XOR-gate delays

15T
10T
5 —
Bit Position
0 + + +
0 20 40 60

Fig. 7.14 Example arrival times for operand bits
in the final fast adder of a tree multiplier [Oklo96].
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Modern Low-Power Adders Implemented in CMOS

130nm, 1.2V CMOS

700 A
3 64-Bit Adder Designs f_;’“j '2 13m;n “é're
3 600 e e s e i e 5 e , SRR o S, ek SIC, sl SRR
h .
o \ng
I 500 --------=-s=ssmsommomsemcemseemesmseocemsomnsenes SiSatmansscesesvonase
Naffziger [4]
400 ___________________________________________________-__\__1 _______________________
\X
\
x
00 -=- === =m=mmmm == P A e o e e e e
200 - e g e
Park 5] Three-Stage Ling
CSL  =a TSL
100 + “"“*=¢:ii'_:;_;';'_"_"; —— |
O I I 1 I
6 7 8 9 10 11

Zeydel, Kluter, Oklobdzija, ARITH-17, 2005  Delay [FO4]
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Taxonomy of Parallel Prefix Networks
&

I(Logic Levels)

Fanout = 27+ 1

R Logic
levels
= log,k + |
"Store |2 ® :
From: Harris, David, 2003 Wire tracks = 2!
http://www.stanford.edu/class/ee371/handouts/harris03.pdf y
t (Wire Tracks)
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7.6 Modular Two-Operand Adders

mod-2¥: Ignore carry out of position k — 1
mod-(2X - 1): Use end-around carry because 2k = (2k—- 1) + 1

mod-(2% + 1): Residue representation needs k + 1 bits

Number  Std. binary Diminished-1 X+ y>2k+1iff

0 00...000 TX...XXX (x=1)+ (y-1)+1>2k
1 00...001 O;O...OOO}

2 00...010 OEO...OO1E (x+y)—1=

(x=1)+(y—=1)+1

Dk_1 01...111  01...
ok 10...000 01...
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General Modular Adders

X y
+
(x + y) mod m | _m
fx+y>m . l
thenx+y—m v v
else x +y Carry-Save Adder

A\ 4 A\ 4 A\ 4
Adder Adder
Xty !

X+y—m

A 4 A 4

Fig. 7.15 Fast modular addition. \M‘M&gn bit

(x + y) mod m
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8 Multioperand Addition

Chapter Goals

Learn methods for speeding up the
addition of several numbers (needed
for multiplication or inner-product)

Chapter Highlights

Running total kept in redundant form
Current total + Next number — New total
Deferred carry assimilation
Wallace/Dadda trees, parallel counters
Modular multioperand addition
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Multioperand Addition: Topics

Topics in This Chapter

8.1 Using Two-Operand Adders

8.2 Carry-Save Adders

8.3 Wallace and Dadda Trees

8.4 Parallel Counters and Compressors

8.5 Adding Multiple Signed Numbers

8.6 Modular Multioperand Adders

Apr. 2020 1 14 q Computer Arithmetic, Addition/Subtraction Slide 85



8.1 Using Two-Operand Adders

Some applications of multioperand addition

Fig. 8.1
or inner-product computation in dot notation.

Apr. 2020

| 1(

° ° a b
° ° X b
e o Xoazo °
. % a2 .

X2 a2 2 °

X3 8.23 *
e o P e o o o

Multioperand addition problems for multiplication

Computer Arithmetic, Addition/Subtraction
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Serial Implementation with One Adder

L’ k +log n blts i— n
K bits > Adde 7 zt)x
X() ——p
Partial sum
register

Fig. 8.2 Serial implementation of multioperand
addition with a single 2-operand adder.

Teoriatmuticadg = O(n log(k + log n))

serial-multi-add

= O(nlog k + nlog log n)

Therefore, addition time grows superlinearly with n when k is fixed
and logarithmically with k for a given n

Apr. 2020 Bl J ;j Computer Arithmetic, Addition/Subtraction Slide 87



Pipelined Implementation for Higher Throughput

Problem to think about: Ignoring start-up and other overheads, this
scheme achieves a speedup of 4 with 3 adders. How is this possible?

«(-6) 1 x(i-7)

x(1)
Ready to
compute Delays g (i-12)
; -
Delay x® + x07V I-I:H:I_> >
“I I‘V >
x(® x(i-8) 4+ x(-9) 4 x(-10) 4 (i-11)

x(i—4) 4+ x(i-5)
Fig. 8.3 Serial multioperand addition when each
adder is a 4-stage pipeline.
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Parallel Implementation as Tree of Adders

tk tk 4

k ’fk +k +k 4k

Adder

Adder

Adder

k+1\ / Kk+1
1

n_

Adder

adders

+2\\ / k2

\\kﬂ
[log,n |

Adder adder levels

Fig. 8.4 Adding 7 numbers in a binary tree of adders.

Tt : =

ree-fast-multi-add

T. : . =

tree-ripple-multi-add

Apr.2020 | ¢

O(log k + log(k + 1) +
O(log nlog k + log n log log n)

O(k +

log n)

.+ log(k +[log,n |- 1))

[Justified on the next slide]
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Elaboration on Tree of Ripple-Carry Adders
k HN%\/

,|—k ,|-k ,|—k ’fk +k ,|—k

| Adder | | Adder | [ Adder |
kel ktl Level 1
-\ t+2 t+1
( ) \ X.‘/
~ Koo k+2 t+2
’ .
(\. .. Level i+1
- .t.+3_ - _L+2_
7-tree-ripple-multi-add = O(k + |Og n) t+3 ‘- t+2

Fig. 8.5 Ripple-carry adders atlevelsjand i+ 1 in
the tree of adders used for multi-operand addition.
The absolute best latency that we can hope for is O(log k + log n)

There are kn data bits to process and using any set of computation
elements with constant fan-in, this requires O(log(kn)) time

We will see shortly that carry-save adders achieve this optimum time
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Fig. 8.6 A-ripple-carry

8.2 Carry-Save Adders

adder turns into a

carry-save adder if the
carries are saved

(stored) rather than
propagated.

o o
Cout

Fig. 8.7

Apr. 2020

}

Cut
|57 1 || || ||

FAF— FA[—{FA F—|FA[—FA[

L

Pl

h

Cin} Carry-propagate adder

Carry-save adder (CSA)
or

(3; 2)-counter

or

3-to-2 reduction circuit

Carry-propagate adder
(CPA) and carry-save adder (CSA)
functions in dot notation.

Computer Arithmetic, Addition/Subtraction

|

IIJ II‘ II‘ II‘ II‘
FA |—FA- |—FA— G FAF A FA[

Full-adder ‘/‘ ‘/‘ ,X:/. ‘/. ‘/. Half-adder

Fig. 8.8 Specifying full-
and half-adder blocks,
with their inputs and
outputs, in dot notation.
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Multioperand Addition Using Carry-Save Adders

7-c:arry-save-multi-add = O(tree height + TCPA) CSA CSA
= O(log n + log k) \\ /
Ccarry-save-multi-add = (n _ 2)CCSA + CCPA CSA\ /
—] ‘Input CSA
CSA / /
— | Sum register CSA
— | Carry register
CPA Carry-propagate adder
Output
Fig. 8.13 Serial carry-save Fig. 8.9 Tree of carry-save adders
addition using a single CSA. reducing seven numbers to two.

Apr. 2020 Bl J fj Computer Arithmetic, Addition/Subtraction Slide 92



Example Reduction by a CSA Tree

0o 00 00 , o
© 0 000 O 8 7 o 5 4 3 2 1 0 Bit position
o 06 06 06 0 o

© 0000 0 [ A A A 6x2 = 12 FAs
e .0 .0 .0 0.0 2 5 5 5 5 5 3 6 FAs

o &6 6 0 0 o

00000.12FA 3 4 4 4 4 4 1 6 FAs

S
1 2 2 1 4 FAs + 1 HA

./:/:/:/:/:/‘ 3 3 3 3 S

2 9.0 0 0 0 2 2 2 2 2 1 2 1 7-bit adder
XK KKE

© 060060 0 -—-Carry-propagate adder--

6 FAs

./:/:/:/:/:/. 1 1r 1 1 1 1 1 1 1

©ceeeee Fig. 8.11 Representing a seven-
O operand addition in tabular form.
299960 4 FAs + 1 HA
ce e ses o | A full-adder compacts 3 dots into 2
cecccccee (compression ratio of 1.5)

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.10 Addition of seven
6-bit numbers in dot notation.
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Width of Adders in a CSA Tree

O 0, 1) [°’|k ! [O’k|” 0, k-1] [°|’k Y 011 Fig. 812 Adding seven -
| | bit numbers and the
k-bit CSA k-bit CSA CSA/CPA widths required.
[LkI\ [0, k-1] (1, k] [0, k—1]

Due to the gradual
k-bit CSA retirement (dropping out)
/[l,k] [0, k1] of some of the result bits,
CSA widths do not vary

k-bit CSA much as we go down the
tree levels
[2, k+1] [1, k] [1, k-1]
. k1 k k1 4 3 2 1
The index pair k-bit CSA 1|
[1, j] means that k1] | T ® : : : : :
bit positions K 2 K+l
from i up to ] 2, k1] 12, k] oo oo
are involved. k-bit CPA w ./:/. ./:)/.
EZ | [2, k+1] 1 0
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8.3 Wallace and Dadda Trees

n inputs

\ | h Ievels

2 outputs

h(n) =
n(h) =

2x1.51< n(h)<2x1.5"

Apr. 2020

1+ h( 2n/3 1)
[3n(h - 1)/2]

| |

-

i
y a9

g—

Table 8.1 The maximum number n(h)
of inputs for an h-level CSA tree

h n(h) h n(h) h n(h)
0 2 7 28 14 474
1 3 8 42 15 711
2 4 9 63 16 1066
3 6 10 94 17 1599
4 9 11 141 18 2398
5 13 12 211 19 3597
6 19 13 316 20 5395

Computer Arithmetic, Addition/Subtraction

n(h): Maximum number of inputs for h levels
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Example Wallace and Dadda Reduction Trees

o ioiigiigiione Wallace tree: o o 9999
o000 00 Reduce the number © 000 00
o i igligiigie of operands at the c e oo oo
S g e e e o earlleit pf{)SSlbIe c e e e S -
12 FAs Opportunity T i
o o 0 0
SE 555 h oo eSS e .
LK 2 & ®eo o000
3 6 o 0000
©eeeo0ece 1 9 cececce
5 13 ®
o s s 6 19 eesesse o
o 6 6 06 0 o e 0 0 0 .
© 09900 ras Dadda tree: s s 7 EAs
cesssss Postpone the o s eesee
9.9 9908 @ aiiHa reduction to the © 000 4 FAs s 1 HA
P : o extent possible  $-4-%%%* $ ®
0 060000 00 rrbit adder without causing 0 0000 000 ot adder
| added delay o
Total cost = 7-bit adder + 28 FAs + 1 HA Total cost = 7-bit adder + 28 FAs + 1 HA
Fig. 8.10 Addition of seven Fig. 8.14 Adding seven 6-bit
6-bit numbers in dot notation. numbers using Dadda’s strategy.
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A Small Optimization in Reduction Trees

6 FAs

\

000000 0000000

\

000000 0000000

\

000000 000000FO

ooooq\b 000000
ve0/000e b/ ecccsee

.\

000000 0000000

:/../../../../. 11 FAs
“osse ¢
e e see

e s o

FAs

4 FAs + 1HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.14 Adding seven 6-bit

Fig. 8.15
Adding seven
6-bit numbers
by taking
advantage of
the final
adder’s carry-
in.

numbers using Dadda’s strategy.

J

\

000000 0000000

ooooq:b 0000000
ooooq\b 0000000

000000 0000000

o
000000 0000000

00 0000 \. 00000O0CGO

cvves
ceseee

ceo s sy

saalle
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6 FAs

11 FAs

6 FAs + 1 HA

3FAs + 2 HA

7-bit adder

Total cost = 7-bit adder + 26 FAs + 3 HA
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8.4 Parallel Counters and Compressors

|11 |11 | 1|
1-bit full-adder = (3; 2)-counter : FA FA FA 0
o ®©000 ° Lo 1o 1]]o
° o000 °
e XXX °
®
°° 0/:/. o/:/. : FA FA /
2 1 1] |0
Circuit reducing 7 bits to their : —
3-bit sum = (7; 3)-counter o HA
° 1
S g [ 3-bit
° o o FA > ripple-carry
® ° 25 adder
: e —
(N N 000 3 T2 | 0 —
Circuit reducing n bits to their
[log,(n + 1) bit sum Fig. 8.16 A 10-input parallel counter
= (n; [ log,(n+1))-counter also known as a (10; 4)-counter.
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Recursive Construction of Parallel Counters

An n-input parallel counting
network (PCN) can be built from
two |.n/2_-bit parallel counting
networks and a log, nJ-bit adder

X1 X2 X3 "F_J?"'S?IS PCN(1 5)
-
P
1
X4 X5 X6 (1} 213
X7 :
]
2
X8 Xa X10 H L
|
]
M3 2T
X11 X12 X13 B ‘
X14
X15
Apr. 2020 | _,' r" ’J 1j

LHEJI

BTN N n2]

Lni2 ]

e 4
RN 2

Computer Arithmetic, Addition/Subtraction

xnifrmodd, else 0

X1 X2

X3 X4
X5

Xa X7

Xe Xp

x10

PCN /

HAS

2 2
-\
]

2 Lo
—J

2 N2
M
b %

2 e
™) o

PCN(10)
2D
M0
tis)
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Accumulative Parallel Counters

True generalization of n increment signals v, 29~ < n < 29
sequential counters l l J l l J l l J J
FA — FA FA — FA
g-bit initial | Count \ | |
count x register
Yy v FA FA - ] FA FA j|<—
- |
Parallel n |‘
incrementer increment |
~— signals v: g-bit tally of up to 29— 1 Yy vy vy
J l of the increment§ignals — FA |FA | FA }—
g-bit
g-bit final count y = x + Zv, nitial T
\ \ A Yy Vv Yy Vv
- . . C PN .
Possible application: ¢ ~—-FA |FA |FA | FA

: , Ignore, or usé ™~
Compare Hamming weight ?‘or decision l l

of a vector to a constant g-bit Jinal count y
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Up/Down Parallel Counters

Generalization of n negabits (U) I
up/down counters :
n posibits } | ‘ ‘ i ‘
V) v I
a
Negabit and :
posibit parallel ,
counters
Possible application:

Compare Hamming weights
of two input vectors

Cq +——— FA | FA | FA) [e——

T 1 T 1

g-bit final count
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8.5 Generalized Parallel Counters

Multicolumn

reduction

(5, 5; 4)-counter

Unequal
columns

(2, 3; 3)-counter

Apr. 2020

",

~

o O ® & 6 6 o ¢
o O ® &6 6 6 o ©°
o O ® & 6 6 & o
o O ® & 6 6 o ¢
o O o &6 6 6 0 ¢
o—©o o—o 060 0 °
H/ H/H/H

Fig. 8.17 Dot notation for a (5, 5; 4)-counter
and the use of such counters for reducing five
numbers to two numbers.

Gen. parallel counter = Parallel compressor
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Column Compression: A Simple Example

Adding eight 6-digit decimal numbers: 052498
Add digits in each column separately and write 784067
down the 2-digit column sum under the column, 451674
with its 10s digit shifted left by one position
905724
Question: 695105
What is the maximum number of decimal 596230
values that can be added in this way 029136
(that is, with column compression
leading to two decimal numbers)? 827211
809315
443233
5241645
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A General Strategy for Column Compression

One circuit slice

n inputs
(n; 2)-counters
P -1 -2 -3
Toi+ 1 <):i|w1 v,
Toi+2 <::$\v2 7 '\v2
Toi+3 <::i|\lf3 // I\V3
— Ll

Fig. 8.1 h '
dilggfamSOfSa% ematic p Yity,tyst... < 3+ 2y, +4y, + 8y ...

(n; 2)-counter built of n—-3 < y,+3y, + 7y, +...
identical circuit slices

Example: Design a bit-slice of an (11; 2)-counter
Solution: Let’s limit transfers to two stages. Then, 8 <y, + 3y,
Possible choices include ¢y, =5, y, =1o0ry, =y, =2
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(4; 2)-Counters

@ O
= + +

Multicolumn ® O [O, 5] {0, 1} {O, 2} {O, 2}
4-to-2 : 8 4dots Outqoi
reduction ® O oS Sum and utgoing

and the transfer

. . carry

incoming

outputs
transfer

We will discuss (4; 2)-counters in greater detail in Section 11.2
(see, e.g., Fig. 11.5 for an efficient realization)
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8.5 Adding Multiple Signed Numbers

---------- Extended positions ---------- Sign  Magnitude positions
X1 X1 X1 X1 X1 X1 X2 Xk_3 Xk—4
= = = = = = Y2 V-3 V-4
Zy_1 Zy_1 Zy_1 Zy_1 Zy_1 Zy_1 Zi o Zy 3 Zy 4

(a) Using sign extension

---------- Extended positions ---------- Sign  Magnitude positions
1 1 1 1 0) X)_4' X5 X)_3 Xy _4
Yt Yz Yies Yi—a

-b=(1-b)+1-2 Zf—f ‘2 %k3 24

(b) Using negatively weighted bits
Fig. 8.19 Adding three 2's-complement numbers.
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8.6 Modular Multioperand Adders

® 6 0 O ® ®© 06 O ® 6 06 O
® 6 0 © ® 6 06 © ® 6 06 ©
® 6 0 © ® 6 06 © ® 6 0 ©

Drop,® @ © ® o o 00 o000 .
® 6 06 © ® 6 06 © ® 6 0 ©
(@) m= 2k (bym=2k-1 (c)m=2k+1

Fig. 8.20 Modular carry-save addition with special moduli.
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Modular Reduction W|th Pseudore3|dues

Six inputs
>in the range
[0, 20]

Fig. 8.21 Modulo-21
reduction of 6 numbers

Pseudoresidues
@ > in the range

taking advantage of the [0, 63]
fact that 64 = 1 mod 21
and using 6-bit
pseudoresidues. s s s s e s
LA E AL Add with

e 00600 o end-around carry

Final pseudoresidue (to be reduced)
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