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II   Addition /Subtraction

Topics in This Part
Chapter 5 Basic Addition and Counting

Chapter 6 Carry-Lookahead Adders

Chapter 7 Variations in Fast Adder

Chapter 8 Multioperand Addition

Review addition schemes and various speedup methods
• Addition is a key op (in itself, and as a building block)
• Subtraction = negation + addition
• Carry propagation speedup: lookahead, skip, select, …
• Two-operand versus multioperand addition
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5  Basic Addition and Counting

Chapter Goals

Study the design of ripple-carry adders,
discuss why their latency is unacceptable,
and set the foundation for faster adders

Chapter Highlights

Full adders are versatile building blocks
Longest carry chain on average: log2k bits
Fast asynchronous adders are simple
Counting is relatively easy to speed up
Key part of a fast adder is its carry network
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Basic Addition and Counting: Topics

Topics in This Chapter

5.1 Bit-Serial and Ripple-Carry Adders

5.2 Conditions and Exceptions

5.3 Analysis of Carry Propagation

5.4 Carry Completion Detection

5.5 Addition of a Constant

5.6 Manchester Carry Chains and Adders
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5.1  Bit-Serial and Ripple-Carry Adders

Half-adder (HA): Truth table and block diagram

Full-adder (FA): Truth table and block diagram

x    y    c     c    s 
---------------------- 
0    0    0     0    0 
0    0    1     0    1 
0    1    0     0    1 
0    1    1     1    0 
1    0    0     0    1 
1    0    1     1    0 
1    1    0     1    0 
1    1    1     1    1 

      Inputs               Outputs 

c out c in 

out in x 
 

y 
 

 s 
 

FA 

x    y    c     s 
---------------- 
0    0    0     0 
0    1    0     1 
1    0    0     1 
1    1    1     0 

Inputs          Outputs 

HA 

x y 

c 

s 
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Half-Adder Implementations

Fig. 5.1 Three implementations of a half-adder.
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Full-Adder Implementations

Fig. 5.2 Possible designs for a full-adder 
in terms of half-adders, logic gates, and 
CMOS transmission gates.
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xy

cin

cout

(a) Built of half-adders.

s

(b) Built as an AND-OR circuit.

(c) Suitable for CMOS realization.
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0
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Full-Adder Implementations

Fig. 5.2 (alternate version) Possible designs for a full-adder in 
terms of half-adders, logic gates, and CMOS transmission gates.

(a) FA built of two HAs 

(c) Two-level AND-OR FA (b) CMOS mux-based FA 
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Some Full-Adder Details

CMOS transmission gate and its use in a 2-to-1 mux.

z 
 

x 
 

x 
 

0 
 

1 
 

(a) CMOS transmission gate:  
circuit and symbol 

(b) Two-input mux built of two 
transmission gates  

TG 

TG 
TG 

y 
 P 

 

N 
 

Logic equations for a full-adder:
s =  x  y  cin (odd parity function)

=  xy cin  x y cin  x ycin  xy cin

cout =  x y  x cin  y cin (majority function)
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Full-Adder Realization with Majority Gates

Full-adder built of three fully-utilized majority elements.

Majority-based logic equations for a full-adder:

s =  maj(maj(x, y, cin), cin, cout) (odd parity function)

cout =  maj(x, y, cin) (majority function)

cin

cout s

x y
Majority gates can be used as AND and OR:

ab =  maj(a, b, 0)

a  b =  maj(a, b, 1)

Using majority gates in the above partially-
utilized form is inefficient
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Simple Adders Built of Full-Adders

Fig. 5.3 Using full-adders 
in building bit-serial and 
ripple-carry adders.

x y 

c 

x 

s 

y 

c 

x 

s 

y 

c out c in 

0 0 

0 

c 0 

31 

31 

31 

31 

FA 

s 

c c 

1 1 

1 

1 2 
FA FA 

32 .  .  . 

s 32 

x 

s 

y 

c c 

i i 

i 

i i+1 
FA Carry 

FF Shift 

Shift 

x 

y 

s 

(a) Bit-serial adder. 

(b) Ripple-carry adder. 

Clock 



Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 14

VLSI Layout of a Ripple-Carry Adder

Fig. 5.4 The layout of a 4-bit ripple-carry adder in 
CMOS implementation [Puck94].
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Carry Chain on an FPGA

Two views of Xilinx Virtex-5 
ripple-carry adder

[From: Virtex-5 User Guide]
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Critical Path Through a Ripple-Carry Adder

Fig. 5.5 Critical path in a k-bit ripple-carry adder.
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x    y    c     c    s 
---------------------- 
0    0    0     0    0 
0    0    1     0    1 
0    1    0     0    1 
0    1    1     1    0 
1    0    0     0    1 
1    0    1     1    0 
1    1    0     1    0 
1    1    1     1    1 

      Inputs               Outputs 

c out c in 

out in x 
 

y 
 

 s 
 

FA 

Binary Adders as Versatile Building Blocks

Fig. 5.6 Four-bit binary adder used to realize the 
logic function f = w  xyz and its complement.
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1 z 
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Bit 3 Bit 2 Bit 1 Bit 0 

w   xyz 

(w   xyz) 

w   xyz xyz  xy 0 

Set one input to 0: cout = AND of other inputs

Set one input to 1: cout = OR of other inputs

Set one input to 0 
and another to 1: s = NOT of third input
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5.2  Conditions and Exceptions

Fig. 5.7 Two’s-complement adder with provisions 
for detecting conditions and exceptions.

FAFA

xy 11 x0y0

c0c1

s0s 1

FA
c2

s k–1

cout cin
...

ck–1
ck–2

sk–2

ck

xk–2yk–2xk–1yk–1

FA

Overflow

Negative

Zero

overflow2’s-compl =  xk–1 yk–1 sk–1  xk–1 yk–1 sk–1

overflow2’s-compl =  ck  ck–1 =  ck ck–1  ck ck–1
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Saturating Adders

Saturating (saturation) arithmetic: 

When a result’s magnitude is too large, do not wrap around; 
rather, provide the most positive or the most negative value 
that is representable in the number format

Designing saturating adders

Saturating arithmetic in desirable in many DSP applications

Saturation value

Overflow

0

1

Adder

Unsigned (quite easy)

Signed (only slightly harder)

Example – In 8-bit 2’s-complement format, we have:
120 + 26  18 (wraparound);   120 +sat 26  127 (saturating)
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5.3  Analysis of Carry Propagation

Bit positions
15 14 13 12  11 10  9  8   7  6  5  4   3  2  1  0
----------- ----------- ----------- -----------
1  0  1  1   0  1  1  0   0  1  1  0   1  1  1  0

cout 0  1  0  1   1  0  0  1   1  1  0  0   0  0  1  1 cin
\__________/\__________________/      \________/\____/

4               6                    3       2
Carry chains and their lengths

Fig. 5.8 Example addition and its carry propagation chains.
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Using Probability to Analyze Carry Propagation

Given binary numbers with random bits, for each position i we have 

Probability of carry generation =  ¼ (both 1s)
Probability of carry annihilation =  ¼ (both 0s)
Probability of carry propagation =  ½ (different)

Probability that carry generated at position i propagates through 
position j – 1 and stops at position j (j > i)

2–(j–1–i)  1/2 = 2–(j–i)

Expected length of the carry chain that starts at position i

2 – 2–(k–i–1)

Average length of the longest carry chain in k-bit addition is strictly 
less than log2k; it is log2(1.25k) per experimental results

Analogy: Expected number when rolling one die is 3.5; if one rolls 
many dice, the expected value of the largest number shown grows
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5.4  Carry Completion Detection

Fig. 5.9 The carry network of an adder with two-rail carries 
and carry completion detection logic.
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5.5  Addition of a Constant: Counters

Count register 

Mux 

Incrementer 
(Decrementer) 

+1  (1) 

Data in 

Load 

Count / Initialize 
_____ 

x + 1 

x  

0      1 

Data out 

Reset Clear 

Enable Clock 

Counter 
overflow 

(x  1) 

c out 

Fig. 5.10    An up (down) counter built of a register, 
an incrementer (decrementer), and a multiplexer.
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Implementing a Simple Up Counter

Fig. 5.11     Four-bit asynchronous up counter built only of 
negative-edge-triggered T flip-flops.
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Faster and Constant-Time Counters

Any fast adder design can be specialized and optimized to yield 
a fast counter (carry-lookahead, carry-skip, etc.)

Fig. 5.12     Fast (constant-time) three-stage up counter.

Load

Load Increment

Control 
    1

Control 
    2

Incrementer

1

Incrementer

1

Count register divided into three stages

One can use redundant representation to build a constant-time 
counter, but a conversion penalty must be paid during read-out
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5.6  Manchester Carry Chains and Adders

Sum digit in radix r si = (xi + yi + ci) mod r

Special case of radix 2 si = xi  yi  ci

Computing the carries ci is thus our central problem 
For this, the actual operand digits are not important 
What matters is whether in a given position a carry is

generated,   propagated,    or    annihilated (absorbed) 

For binary addition:

gi = xi yi pi = xi  yi ai = xiyi  = (xi  yi) 
It is also helpful to define a transfer signal:

ti =  gi  pi =  ai =  xi  yi

Using these signals, the carry recurrence is written as

ci+1 = gi  ci pi =  gi  ci gi  ci pi =  gi  ci ti
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Manchester Carry Network

Fig. 5.13     One stage in a Manchester carry chain.
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VDD
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(b) Possible CMOS realization.

The worst-case delay of a Manchester carry chain has three components:

1. Latency of forming the switch control signals
2. Set-up time for switches
3. Signal propagation delay through k switches
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Details of a 5-Bit Manchester Carry Network

Carry chain of a 5-bit Manchester adder.

Dynamic logic, with 2-phase operation
Clock low: Precharge (ci = 0) Clock high: Pull-down (if gi = 1)

The transistors must be sized appropriately for maximum speed

Clock

ip

VDD

VSS

ig

Clock

ip

VDD
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ig
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ip
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ig

Clock

ip

VDD
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VDD
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Clock

ip

VDD

VSS

ig
c0

c5 c0c1c2c3c4

Smaller transistors Larger transistors

i = 4 i = 3 i = 2 i = 1 i = 0
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Carry Network is the Essence of a Fast Adder

Fig. 5.14     Generic structure of a binary adder, 
highlighting its carry network.
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Ripple-Carry Adder Revisited

Fig. 5.15     Alternate view of a ripple-carry network in connection 
with the generic adder structure shown  in Fig. 5.14.
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The carry recurrence:   ci+1 = gi  pi ci

Latency of k-bit adder is roughly 2k gate delays:

1 gate delay for production of p and g signals, plus 
2(k – 1) gate delays for carry propagation, plus
1 XOR gate delay for generation of the sum bits
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The Complete Design of a Ripple-Carry Adder

Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).
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6  Carry-Lookahead Adders

Chapter Goals

Understand the carry-lookahead method
and its many variations
used in the design of fast adders

Chapter Highlights

Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem

to parallel prefix computation
Implementing fast adders in VLSI
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Carry-Lookahead Adders: Topics

Topics in This Chapter

6.1 Unrolling the Carry Recurrence

6.2 Carry-Lookahead Adder Design

6.3 Ling Adder and Related Designs

6.4 Carry Determination as Prefix Computation

6.5 Alternative Parallel Prefix Networks

6.6 VLSI Implementation Aspects
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6.1  Unrolling the Carry Recurrence

Recall the generate, propagate, annihilate (absorb), and transfer signals:

Signal Radix r Binary
gi is 1 iff xi + yi  r xi yi
pi is 1 iff xi + yi = r – 1 xi  yi
ai is 1 iff xi + yi < r – 1 xiyi  = (xi  yi) 
ti is 1 iff xi + yi  r – 1 xi  yi

si (xi + yi + ci) mod r xi  yi  ci

The carry recurrence can be unrolled to obtain each carry signal directly 
from inputs, rather than through propagation 

ci    = gi–1  ci–1 pi–1

= gi–1  (gi–2  ci–2 pi–2)pi–1

= gi–1  gi–2pi–1  ci–2 pi–2pi–1

= gi–1  gi–2pi–1  gi–3 pi–2pi–1  ci–3 pi–3 pi–2pi–1

= gi–1  gi–2pi–1  gi–3 pi–2pi–1  gi–4 pi–3 pi–2pi–1  ci–4 pi–4 pi–3 pi–2pi–1

= . . .

Note:
Addition symbol 
vs logical OR
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Full Carry Lookahead

Theoretically, it is possible to derive each sum digit directly 
from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing 
the complexity of this ideal, but impractical, arrangement by 
hardware sharing among the various lookahead circuits

s0s1s2s3

y0y1y2y3 x0x1x2x3

cin

. . .



Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 36

Four-Bit Carry-Lookahead Adder

Complexity 
reduced by 
deriving the 
carry-out 
indirectly

Fig. 6.1 Four-bit carry 
network with full lookahead.

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

Full carry lookahead is quite practical 
for a 4-bit adder

c1 =  g0  c0 p0

c2 = g1  g0p1  c0 p0p1

c3 = g2  g1p2  g0 p1p2  c0 p0 p1p2

c4 = g3  g2p3  g1 p2p3  g0 p1 p2p3

 c0 p0 p1 p2p3
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Carry Lookahead Beyond 4 Bits

32-input AND

Consider a 32-bit adder

c1 =  g0  c0 p0

c2 = g1  g0p1  c0 p0p1

c3 = g2  g1p2  g0 p1p2  c0 p0 p1p2
.
.
.

c31 = g30  g29p30  g28 p29p30  g27 p28 p29p30  . . .  c0 p0 p1p2p3 ... p29

p30

32-input OR
. . . High fan-ins necessitate 

tree-structured circuits

No circuit sharing:
Repeated computations
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Two Solutions to the Fan-in Problem

High-radix addition (i.e., radix 2h)

Increases the latency for generating g and p signals and sum digits,
but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition

Radix-16 (four digits)

Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c4, c8, and c12 are determined first

c16 c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0
cout ? ? ? cin
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6.2  Carry-Lookahead Adder Design

Block generate and propagate signals

g [i,i+3] = gi+3  gi+2pi+3  gi+1 pi+2pi+3  gi pi+1 pi+2pi+3

p [i,i+3] = pi pi+1 pi+2pi+3

ic
4-bit lookahead carry generator

g p g p g p g p

 [i,i+3]
p

 i+1
c

 i+2
c

 i+3c

g

iii+1i+1i+2 i+2 i+3  i+3

 [i,i+3]

Fig. 6.2b    Schematic diagram of a 4-bit lookahead carry generator.
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A Building Block for 
Carry-Lookahead Addition

Fig. 6.2a A 4-bit 
lookahead 
carry generator

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

gi

gi+1

g
i+2

gi+3

ci

ci+1

ci+2

ci+3

pi+3

pi+2

pi+1

pi

g

p [i,i+3]

Block Signal Generation
Intermediate Carries

[i,i+3]

Fig. 6.1
A 4-bit 
carry 
network
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Combining Block g and p Signals

Block generate and 

propagate signals 

can be combined in 

the same way as bit 

g and p signals to 

form g and p signals 

for wider blocks

Fig. 6.3 Combining of g and p signals of four 
(contiguous or overlapping) blocks of arbitrary widths 
into the g and p signals for the overall block [i0, j3].

j   +1j   +1 c
0

ic
4-bit lookahead carry generator

g p

0

i 0
i 1

i 2
i 3

j 0
j 1

j 2
j 3

j   +1c
1c

2

g pg p g p

g p
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A Two-Level Carry-Lookahead Adder

cccc

4-bit lookahead carry generator

4-bit lookahead carry generator

g 
p

ccc

g 
p

12 8 4 0

48 32 16

[0,63]

16-bit 
Carry-Lookahead 
Adder

[0,63]

[48,63]

[48,63] g 
p [32,47]

[32,47] g 
p [0,15]

[0,15]g 
p [16,31]

[16,31]

g 
p [12,15]

[12,15] g 
p [8,11]

[8,11] g 
p [4,7]

[4,7] g 
p [0,3]

[0,3]

Fig. 6.4 Building a 64-bit carry-lookahead adder from 16  
4-bit adders and 5 lookahead carry generators.

Carry-out: cout =  g [0,k–1]  c0 p [0,k–1] =  xk–1yk–1  sk–1 (xk–1  yk–1)
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Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions 1 gate level
g and p signals for 4-bit blocks 2 gate levels
Block carry-in signals c4, c8, and c12 2 gate levels
Internal carries within 4-bit blocks 2 gate levels
Sum bits 2 gate levels

Total latency for the 16-bit adder 9 gate levels

(compare to 32 gate levels for a 16-bit ripple-carry adder)

Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder: Tlookahead-add = 4 log4k + 1 gate levels



Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 44

6.3  Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:
ci = gi–1  ci–1 ti–1

= gi–1  gi–2 ti–1  gi–3 ti–2 ti–1  gi–4 ti–3 ti–2 ti–1  ci–4 ti–4 ti–3 ti–2 ti–1

Ling’s modification: Propagate hi = ci  ci–1 instead of ci
hi = gi–1  hi–1 ti–2

= gi–1  gi–2 gi–3 ti–2  gi–4 ti–3 ti–2  hi–4 ti–4 ti–3 ti–2

CLA: 5 gates max 5 inputs 19 gate inputs
Ling: 4 gates max 5 inputs 14 gate inputs

The advantage of hi over ci is even greater with wired-OR: 

CLA: 4 gates max 5 inputs 14 gate inputs
Ling: 3 gates max 4 inputs 9 gate inputs

Once hi is known, however, the sum is obtained by a slightly more 
complex expression compared with si = pi  ci

si = pi  hi ti–1

Propagate 
harry, 
not carry!
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6.4  Carry Determination as Prefix Computation

Fig. 6.5 Combining of g and p signals of two (contiguous or overlapping) 
blocks B' and B" of arbitrary widths into the g and p signals for block B.

g        p 

g     p 

g 
         p 

g" p"

i 0
i 1

j 0
j 1

g p

g' p'

Block B'

Block B"

Block B
(g, p)

(g", p")    (g', p')

¢

g = g" + g'p" 
p = p'p"
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Formulating the Prefix Computation Problem

The problem of carry determination can be formulated as:
Given (g0, p0) (g1, p1) .  .  . (gk–2, pk–2) (gk–1, pk–1)                                           
Find  (g [0,0] , p [0,0]) (g [0,1] , p [0,1]) . . . (g [0,k–2] , p [0,k–2]) (g [0,k–1] , p [0,k–1]) 

c1 c2 .  .  . ck–1 ck

Carry-in can be viewed as an extra (1) position:   (g–1, p–1) = (cin, 0)

The desired pairs are found by evaluating all prefixes of
(g0, p0)  ¢  (g1, p1)  ¢   .  .  .   ¢  (gk–2, pk–2)  ¢  (gk–1, pk–1) 

The carry operator ¢ is associative, but not commutative
[(g1, p1) ¢ (g2, p2)] ¢ (g3, p3) = (g1, p1) ¢ [(g2, p2) ¢ (g3, p3)]

Prefix sums analogy:
Given x0 x1 x2 .  .  . xk–1
Find x0 x0+x1 x0+x1+x2 .  .  . x0+x1+...+xk–1
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g0, p0g1, p1g2, p2g3, p3

g[0,0], p[0,0]
= (c1, --)

g[0,1], p[0,1]
= (c2, --)

g[0,2], p[0,2]
= (c3, --)

g[0,3], p[0,3]
= (c4, --)

Example Prefix-Based Carry Network

g        p 

g     p 

g 
         p 

++

++

26 51

712 56

g0, p0g1, p1g2, p2g3, p3

g[0,0], p[0,0]
= (c1, --)

g[0,1], p[0,1]
= (c2, --)

g[0,2], p[0,2]
= (c3, --)

g[0,3], p[0,3]
= (c4, --)

¢¢

¢¢

(a) A 4-input 
prefix sums 
network

Scan 
order

(b) A 4-bit
Carry 
lookahead 
network

Fig. 6.6 Four-input 
parallel prefix 
sums network and 
its corresponding 
carry network.
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6.5  Alternative Parallel Prefix Networks

Delay recurrence D(k) = D(k/2) + 1 = log2k
Cost recurrence C(k) = 2C(k/2) + k/2 = (k/2) log2k

Fig. 6.7 Ladner-Fischer parallel prefix sums network 
built of two k/2-input networks and k/2 adders.

.   .   .

Prefix Sums k/2 Prefix Sums k/2

. . .

xk–1 xk/2 xk/2–1 x0

s k–1 s k/2

s k/2–1 s 0+ +
. . .

. . .

. . . . . .

.   .   .

.   .   ..   .   .
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The Brent-Kung Recursive Construction

Delay recurrence D(k) = D(k/2) + 2 = 2 log2k – 1 (–2 really)
Cost recurrence C(k) = C(k/2) + k – 1 = 2k – 2 – log2k

Fig. 6.8 Parallel prefix sums network built of one 
k/2-input network and k – 1 adders.

Prefix Sums k/2

xk–1 xk–2 x3 x2 x1 x0

s k–1 s k–2 s 3 s 2 s 1 s 0

++

+

+

+

.   .   .

.   .   .

.   .   .

.   .   .
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Brent-Kung Carry Network (8-Bit Adder)

¢ ¢ ¢ ¢ 

¢ ¢ 

¢ ¢ 

¢ ¢ ¢ 

[7, 7 ] [6, 6 ] [5, 5] [4, 4 ] [3, 3 ] [2, 2 ] [1, 1] [0, 0 ] 

[0, 7 ] [0, 6 ] [0, 5] [0, 4 ] [0, 3 ] [0, 2 ] [0, 1] [0, 0 ] 

g         p [0,1]    [0,1] 

g         p [1,1]    [1,1] 
g 
         p 
[0,0]     
         [0,0] 

[2, 3 ] 
[4, 5] 

[6, 7] 

[4, 7] 
[0, 3 ] 

[0, 1] 
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Brent-Kung Carry Network (16-Bit Adder)
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Fig. 6.9     
Brent-Kung 
parallel prefix 
graph for 
16 inputs. 

Reason for 
latency being 
2 log2k – 2 
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Kogge-Stone Carry Network (16-Bit Adder)

Fig. 6.10     
Kogge-Stone 
parallel prefix 
graph for 
16 inputs. 

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

log2k levels 
(minimum 
possible)

Cost formula
C(k) = (k – 1)

+ (k – 2)
+ (k – 4) + . . .
+ (k – k/2)

= k log2k – k + 1
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Speed-Cost Tradeoffs in Carry Networks

Method Delay Cost

Ladner-Fischer log2k (k/2) log2k

Kogge-Stone log2k k log2k – k + 1

Brent-Kung 2 log2k – 2 2k – 2 – log2k

.   .   .

Prefix Sums k/2 Prefix Sums k/2

. . .

xk–1 xk/2 xk/2–1 x0

s k–1 s k/2

s k/2–1 s 0+ +
. . .

. . .

. . . . . .

.   .   .

.   .   ..   .   .Improving the 
Ladner/Fischer 
design

These outputs can 
be produced one 
time unit later without 
increasing the overall 
latency

This strategy saves enough to make 
the overall cost linear (best possible)



Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 54

Hybrid B-K/K-S Carry Network (16-Bit Adder)
x0x1x2x3x4x5x6x7

x8x9x10x11
x12x13x14x15

s0s1s2s3s4s5s6s7s8s9s 10s11
s12s13s14s15
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x12x13x14x15

s
0

s
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s
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s
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s
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s
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Brent- 
Kung

Brent- 
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Kogge- 
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Fig. 6.11     
A Hybrid 
Brent-Kung/ 
Kogge-Stone 
parallel prefix 
graph for 
16 inputs. 

Brent-Kung: 
6 levels 

26 cells 

Kogge-Stone: 
4 levels

49 cells 

Hybrid: 
5 levels 

32 cells 



Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 55

6.6  VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers 
as implemented in the AMD Am29050 CMOS micro

Our description is based on the 64-bit version of the adder

In radix-256, 64-bit addition, only these carries are needed:

c56 c48 c40 c32 c24 c16 c8

First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are
used to derive g and p signals for 4-bit blocks

Next, the g and p signals for 4-bit blocks are combined to form
the desired carries, using the MCCs in Fig. 6.12b
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Four-Bit Manchester Carry Chains

Fig. 6.12      Example 4-bit Manchester carry chain designs in 
CMOS technology [Lync92].
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Carry Network for 64-Bit Adder

Fig. 6.13     Spanning-tree carry-lookahead network [Lync92]. 
Type-a and Type-b MCCs refer to the circuits of Figs. 6.12a 
and 6.12b, respectively.
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7   Variations in Fast Adders

Chapter Goals

Study alternatives to the carry-lookahead
method for designing fast adders

Chapter Highlights

Many methods besides CLA are available
(both competing and complementary)

Best design is technology-dependent
(often hybrid rather than pure)

Knowledge of timing allows optimizations
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Variations in Fast Adders: Topics

Topics in This Chapter

7.1 Simple Carry-Skip Adders

7.2 Multilevel Carry-Skip Adders

7.3 Carry-Select Adders

7.4 Conditional-Sum Adder

7.5 Hybrid Designs and Optimizations

7.6 Modular Two-Operand Adders
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7.1  Simple Carry-Skip Adders

Fig. 7.1     Converting a 16-bit ripple-carry adder into a simple 
carry-skip adder with 4-bit skip blocks.

(a) Ripple-carry adder

(b) Simple carry-skip adder

Ripple-carry stages

4-bit block 4-bit block 4-bit block c0c4c12c16 c8 3   2   1   0

c03   2   1   0
c4

0

1

p[0,3]

4-bit block

0

1

p[4,7]

c84-bit block

0

1

p[8,11]

c124-bit block

0

1

p[12,15]

c16
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Another View of Carry-Skip Addition

Street/freeway analogy for carry-skip adder.

One-way street  

Freeway 

0

1

4-bit block4-bit block

0

1

0

1
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Skip Carry Logic with OR Gate vs. Mux

The carry-skip adder with “OR combining” works fine if we begin 
with a clean slate, where all signals are 0s at the outset; otherwise, 
it will run into problems, which do not exist in mux-based version
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Carry-Skip Adder with Fixed Block Size

Block width b; k/b blocks to form a k-bit adder (assume b divides k)

Example: k = 32, bopt = 4, T opt = 13 stages
(contrast with 32 stages for a ripple-carry adder)

Tfixed-skip-add =  (b – 1)   +    (k/b – 1)    +    (b – 1) 
in block 0             skips           in last block

 2b + k/b – 3  stages

dT/db =  2 – k/b2 = 0      bopt = k/2

T opt = 22k – 3

.  .  .
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Carry-Skip Adder with Variable-Width Blocks

Fig. 7.2     Carry-skip adder with variable-size blocks 
and three sample carry paths.

b b b b.  .  .

Ripple
Skip

Carry path (1)

01t–1 t–2 Block widths

Carry path (3)

Carry path (2)

The total number of bits in the t blocks is k:

2[b + (b + 1) + . . . + (b + t/2 – 1)] = t(b + t/4 – 1/2) = k

b = k/t – t/4 + 1/2

Tvar-skip-add = 2(b – 1) + t – 1 = 2k/t + t/2 – 2

dT/db =  –2k/t 2 + 1/2 = 0  topt = 2k

T opt = 2k – 2   (a factor of 2 smaller than for fixed-block)
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7.2  Multilevel Carry-Skip Adders

Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

 S   1 

 c   out  c   in 

 S   1  S   1  S   1  S   1 

Fig. 7.4 Example of a two-level carry-skip adder.

 S   2 

 S   1 

 c   out  c   in 

 S   1  S   1  S   1  S   1 

 c   out  c   in 

 S 
 

  2 
 

 S 
 

  1 
 

 S 
 

  1 
 

 S 
 

  1 
 

Fig. 7.5 Two-level carry-skip adder optimized by removing the 
short-block skip circuits.
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Designing a Single-Level Carry-Skip Adder

Each of the following takes one unit of time: generation of gi and pi, 
generation of level-i skip signal from level-(i–1) skip signals, ripple, skip, 
and formation of sum bit once the incoming carry is known

Build the widest possible one-level carry-skip adder with total delay of 8

Example 7.1 

Fig. 7.6 Timing constraints of a single-level 
carry-skip adder with a delay of 8 units. 

c c
bbbbbbb

0
234567

8
2

inout

S1 S1 S1 S1 S1

0123456

Max adder width = 18
(1 + 2 + 3 + 4 + 4 + 3 + 1)

Generalization of Example 7.1 for total time T (even or odd)
1 2 3    . . . T/2 T/2    . . .    4 3 1
1 2 3    . . .  (T + 1)/2     . . .    4 3 1

Thus, for any T, the total width is (T + 1)2/4 – 2
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Designing a Two-Level Carry-Skip Adder

Each of the following takes one unit of time: generation of gi and pi, 
generation of level-i skip signal from level-(i–1) skip signals, ripple, skip, 
and formation of sum bit once the incoming carry is known

Build the widest possible two-level carry-skip adder with total delay of 8

Example 7.2 

Max adder width = 30
(1 + 3 + 6 + 8 + 8 + 4)

c c

8

0

7 6 5 34 3

b b b b b b
{8, 1} {7, 2} {6, 3} {5, 4} {4, 5} {3, 8}

inout
ABCDEF

S2 S2 S2 S2 S2

Tproduce Tassimilate

(a)

3457 6

2 t=0t=8
cout cin2

3

Block E Block D Block C Block B Block AF

(b)Fig. 7.7 Two-level carry-skip adder 
with a delay of 8 units.

(a) Initial timing 
constraints

(b) Final design
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Elaboration on Two-Level Carry-Skip Adder

c c
bb

0123


inout

S1 S1 S1 S1 S1

12

– 1 – 2
S1

b0

S1

b –1 b –2

Given the delay pair {b, } for a level-2 block in Fig. 7.7a, the number 
of level-1 blocks that can be accommodated is g = min(b–1, )

Example 7.2 

c c
bb

234b

inout

S1 S1 S1 S1 S1

12

– 1b – 2b

b –3bb –2b

S1

b0

S1

1
Single-level carry-skip adder with Tassimilate = 

Single-level carry-skip adder with Tproduce = b

Width of the ith level-1 block in the level-2 block characterized by {b, } 
is bi = min(b – g + i + 1,  – i); the total block width is then  i=0 to g–1 bi
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Carry-Skip Adder Optimization Scheme

Fig. 7.8 Generalized delay model for carry-skip adders. 

Inputs 

Level-h  skip 

Block of b full-adder uni ts 

I(b) 

A(b) 

G(b) 

E  (b)  h 
S  (b)  h 
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7.3  Carry-Select Adders

Cselect-add(k) = 3Cadd(k/2) + k/2 + 1

Tselect-add(k)   =  Tadd(k/2) + 1

Fig. 7.9 Carry-select adder for k-bit numbers 
built from three k/2-bit adders. 

k /2-bit adder 
k/2-bit adder 

k  - 1                k /2 k - 1                  0 
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k /2-bit adder 
k/2 – 1k – 1
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Multilevel Carry-Select Adders
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  0 
 
1 

k/4+1 k/4+1 k/4 

1              0 
Mux 

k /4-bit adder 

3k/4 - 1            k/2 
  0 
 
1 

1         0      
Mux 

k/2+1 

k/4 

c k/2 

c k/4 

c out 

c in 

, High k /2 bits Middle k /4 bits Low k /4 bits 

Fig. 7.10    Two-level carry-select adder built of k/4-bit adders. 
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7.4  Conditional-Sum Adder

Fig. 7.11     Top-level 
block for one bit position of 
a conditional-sum adder.

Multilevel carry-select idea carried out to the extreme (to 1-bit blocks.

C(k)  2C(k/2) + k + 2  k (log2k + 2) + k C(1)

T(k) = T(k/2) + 1 = log2k + T(1)

where C(1) and T(1) are the cost and delay of the circuit of Fig. 7.11
for deriving the sum and carry bits with a carry-in of 0 and 1

sc

xy

sc

ii

ii+1 i+1 i

For c  = 0iFor c  = 1i

k + 2 is an upper bound on  
number of single-bit 2-to-1 
multiplexers needed for 
combining two k/2-bit adders 
into a k-bit adder 
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Conditional-Sum 
Addition Example

Table 7.2 

Conditional-sum 
addition of two 16-bit 
numbers. The width 
of the block for which 
the sum and carry 
bits are known 
doubles with each 
additional level, 
leading to an 
addition time that 
grows as the 
logarithm of the 
word width k. 

 

           x   0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0      
           y   0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1  
  
  
  
  
 1    0    s   0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1  
           c   0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 
  
      1    s   1 0 0 1 0 0 1 0 0 1 0 0 1 0 0  
           c   0 1 1 0 1 1 1 1 1 1 1 1 1 1 1  
  
 2    0    s   0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1  
           c   0   0   0   1   1   0   1   0     
  
      1    s   1 0 1 1 0 0 1 0 0 1 0 0 1 0  
           c   0   0   1   1   1   1   1  
  
 4    0    s   0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1  
           c   0       1       1       1         
  
      1    s   0 1 1 1 0 0 1 0 0 1 0 0  
           c   0       1       1  
  
 8    0    s   0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1  
           c   0               1                 
  
      1    s   0 1 1 1 0 0 1 0  
           c   0  
  
16    0    s   0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1  
           c   0                                 
  
      1    s  
           c 

Block  
width 

Block  
carry-in 

Block sum and block carry-out 
 15  14   13  12   11  10    9     8     7     6    5    4     3    2     1    0 

c in 

c out 
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Elaboration on Conditional-Sum Addition

Two adjacent 4-bit blocks, forming an 8-bit block

1 1 1 1

8j + 3  .  .  .  8j

0 0

0 0 0 01 1

0 0 1 1

8j + 7  . . .  8j + 4

0 0

0 1 0 00 1

0 0 1 10

0 1 0 00

Left 4-bit block Right 4-bit block

Two versions 
of sum bits 

and carry-out 
in 4-bit blocks

1 1 1 1

8j + 3  .  .  .  8j8j + 7    .  .  .  

0

0 0 0 0 1

Two versions 
of sum bits 

and carry-out 
in 8-bit block
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7.5  Hybrid Designs and Optimizations

Fig. 7.12     A hybrid carry-lookahead/carry-select adder.

Lookahead Carry Generator

Carry-Select

c

g, p

in

MuxMuxMux

cout

0

1
0

1

0

1

Block

The most popular hybrid addition scheme:
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Details of a 64-Bit Hybrid CLA/Select Adder

Fig. 6.13 [Lync92]. 

[48, 55] 

[32, 47] 

[16, 31] 

[-1, 15] 

[32, 39] 

[16, 31] 

[16, 23] 
[-1, 15] 

[-1, 55] 

[-1, 47] 

[-1, 31] 

[-1, 39] 

[-1, 31] 

[-1, 23] 

[48, 63] 

[48, 59] 

[48, 55] 

[32, 47] 

[32, 43] 

[32, 39] 

[16, 31] 

[16, 27] 
[16, 23] 

[-1, 15] 

[-1, 11] 
[-1, 7] 

[60, 63] 

[56, 59] 

[52, 55] 

[48, 51] 

[44, 47] 

[40, 43] 

[36, 39] 

[32, 35] 

[28, 31] 

[24, 27] 
[20, 23] 

[16, 19] 

[12, 15] 

[8, 11] 
[4, 7] 

[0, 3] 
[-1, -1] 

 

Type-b 
MCC 

Type-b 
MCC 

Type-b 
MCC 

Type-b 
MCC Type-b 

MCC 

c 56 
c 48 

c 40 
c 32 
c 

24 

c 16 

c 8 

c 0 c in 

16 
Type-a 
MCC 

blocks 

Type-b* 
MCC 

Level 1 Level 2 

Level 3 

Legend: [i, j] represents the 
pair of signals p      and g [i, j] [i, j] 

Each of the carries c8j, produced by the tree network above is used 
to select one of the two versions of the sum in positions 8j to 8j + 7
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Any Two Addition Schemes Can Be Combined

Other possibilities: hybrid carry-select/ripple-carry
hybrid ripple-carry/carry-select
. . .

Fig. 7.13     Example 48-bit adder with hybrid 
ripple-carry/carry-lookahead design.

cccc

4-Bit Lookahead Carry Generator

c
12 8 4 016

16-bit Carry-Lookahead Adder

g 
p [12,15]

[12,15] g 
p [8,11]

[8,11] g 
p [4,7]

[4,7] g 
p [0,3]

[0,3]

c32c48

(with carry-out)
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Optimizations in Fast Adders

What looks best at the block diagram or gate level may
not be best when a circuit-level design is generated
(effects of wire length, signal loading, . . . )

Modern practice: Optimization at the transistor level

Variable-block carry-lookahead adder

Optimizations for average or peak power consumption

Timing-based optimizations (next slide)
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Optimizations Based on Signal Timing

So far, we have assumed that all input bits are presented at the same 
time and all output bits are also needed simultaneously

Fig. 7.14     Example arrival times for operand bits 
in the final fast adder of a tree multiplier [Oklo96].

 
 
 
15 
 
 
10 
 
 
 5 
 
 
 0

Bit Position

Latency from inputs 
in XOR-gate delays

0               20               40               60
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Modern Low-Power Adders Implemented in CMOS

Zeydel, Kluter, Oklobdzija, ARITH-17, 2005

Cond’l-Sum Ling Three-Stage Ling

64-Bit Adder Designs
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From: Harris, David, 2003
http://www.stanford.edu/class/ee371/handouts/harris03.pdf

Taxonomy of Parallel Prefix Networks

Fanout = 2f + 1

Logic 
levels 
= log2k + l 

Wire tracks = 2t
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7.6 Modular Two-Operand Adders
mod-2k: Ignore carry out of position k – 1

mod-(2k – 1): Use end-around carry because 2k = (2k – 1) + 1

Std. binary
0 0 . . . 0 0 0
0 0 . . . 0 0 1
0 0 . . . 0 1 0
.
.
.
0 1 . . . 1 1 1
1 0 . . . 0 0 0

Diminished-1
1 x . . . x x x
0 0 . . . 0 0 0
0 0 . . . 0 0 1
.
.
.
0 1 . . . 1 1 0
0 1 . . . 1 1 1

mod-(2k + 1): Residue representation needs k + 1 bits

Number
0
1
2
.
.
.
2k–1
2k

x + y  2k + 1 iff
(x–1) + (y–1) + 1  2k

(x + y ) – 1 =
(x – 1) + (y – 1) +1

xy – 1 =
(x–1)(y–1)+(x–1)+(y–1)
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General Modular Adders

(x + y) mod m

if x + y  m
then x + y – m
else x + y Carry-Save Adder

–m
x y

Mux
Sign bit

(x + y) mod m

x + y – mx + y

Adder Adder

Fig. 7.15    Fast modular addition.
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8   Multioperand Addition

Chapter Goals

Learn methods for speeding up the
addition of several numbers (needed
for multiplication or inner-product)

Chapter Highlights

Running total kept in redundant form
Current total + Next number  New total
Deferred carry assimilation
Wallace/Dadda trees, parallel counters
Modular multioperand addition
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Multioperand Addition: Topics

Topics in This Chapter

8.1 Using Two-Operand Adders

8.2 Carry-Save Adders

8.3 Wallace and Dadda Trees

8.4 Parallel Counters and Compressors

8.5 Adding Multiple Signed Numbers

8.6 Modular Multioperand Adders
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8.1  Using Two-Operand Adders

Some applications of multioperand addition

         • • • •  a  
        • • • •  x  
      ----------  
        • • • •  x a   
      • • • •    x a   
    • • • •      x a   
  • • • •        x a   
----------------  
• • • • • • • •  p 

 

0 
1 
2 
3 

0 
1 
2 
3 

2  
2  
2  
2 

       • • • • • •   p   
      • • • • • •   p     
      • • • • • •   p   
      • • • • • •   p   
      • • • • • •   p    
      • • • • • •   p   
      • • • • • •   p       
-----------------  
• • • • • • • • •   s  

(0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

Fig. 8.1     Multioperand addition problems for multiplication 
or inner-product computation in dot notation.
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Serial Implementation with One Adder

Tserial-multi-add =  O(n log(k + log n)) 

=  O(n log k + n log log n) 

Therefore, addition time grows superlinearly with n when k is fixed 
and logarithmically with k for a given n

 

Adder 
x 

k bits 

k + log  n bits

 x 
j=0 

i–1 

(i) 

2 (j) 

Partial sum 
register 

Fig. 8.2     Serial implementation of multioperand 
addition with a single 2-operand adder.
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Pipelined Implementation for Higher Throughput

Fig. 8.3     Serial multioperand addition when each 
adder is a 4-stage pipeline.

(i–10)(i–9)

Delay

Delays
Ready to 
compute s (i–12)

x(i–1)

x(i)

x    +(i) x(i–1)

x       +(i–8) x       + (i–11)x         + x  

(i–7)x       +(i–6) x         

(i–5)x       +(i–4) x       

Problem to think about: Ignoring start-up and other overheads, this 
scheme achieves a speedup of 4 with 3 adders. How is this possible?
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Parallel Implementation as Tree of Adders

Fig. 8.4     Adding 7 numbers in a binary tree of adders.

Adder Adder Adder

AdderAdder

Adder

k

k+1

k+2

k+3

k+2

k+1k+1

k kk kk k

Ttree-fast-multi-add =  O(log k + log(k + 1) + . . . + log(k + log2n – 1))

=  O(log n log k + log n log log n) 

Ttree-ripple-multi-add=  O(k + log n)                [Justified on the next slide]

log2n
adder levels

n – 1
adders
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Elaboration on Tree of Ripple-Carry Adders

Ttree-ripple-multi-add = O(k + log n)

Adder Adder Adder

AdderAdder

Adder

k

k+1

k+2

k+3

k+2

k+1k+1

k kk kk k

Fig. 8.5    Ripple-carry adders at levels i and i + 1 in 
the tree of adders used for multi-operand addition.

. . .

  . . . Level i

Level i+1

HAFA

HAFA

t

t+1

tt+1t+1

t+1

t+1

t+2

t+2 t+2

t+2

t+3
t+2t+3

The absolute best latency that we can hope for is O(log k + log n)

There are kn data bits to process and using any set of computation 
elements with constant fan-in, this requires O(log(kn)) time

We will see shortly that carry-save adders achieve this optimum time
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8.2  Carry-Save Adders

FA FAFA FA FAFA

FA FAFA FA FAFA

Cut
Fig. 8.6   A ripple-carry 
adder turns into a 
carry-save adder if the 
carries are saved 
(stored) rather than 
propagated.

              
 

Carry-propagate adder 
 

Carry-save adder (CSA)  
or 
(3; 2)-counter  
or 
3-to-2 reduction circuit 
 

c 
 

in 
 

c 
 

out 
 

              
 

Fig. 8.7     Carry-propagate adder 
(CPA) and carry-save adder (CSA) 
functions in dot notation.

Half-adder 
 

              
 Full-adder 

 

Fig. 8.8   Specifying full-
and half-adder blocks, 
with their inputs and 
outputs, in dot notation.
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Multioperand Addition Using Carry-Save Adders

Fig. 8.9   Tree of carry-save adders 
reducing seven numbers to two.

CSACSA

CSA

CSA

CSA

Tcarry-save-multi-add =  O(tree height + TCPA)

=  O(log n + log k)

Ccarry-save-multi-add =  (n – 2)CCSA + CCPA

Carry-propagate adder

Fig. 8.13   Serial carry-save 
addition using a single CSA.

CSA

Input

Sum register
Carry register

Output

CPA
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Example Reduction by a CSA Tree

12 FAs 
 

  
 

6 FAs 
 

6 FAs 
 

4 FAs + 1 HA 
 

7-bit adder 
 

Total cost  =  7-bit adder  +  28 FAs  +  1 HA 
 

Fig. 8.10   Addition of seven 
6-bit numbers in dot notation.

8  7  6  5  4  3  2  1  0 Bit position

7  7  7  7  7  7   62 = 12 FAs
2  5  5  5  5  5  3   6 FAs

3  4  4  4  4  4  1   6 FAs

1  2  3  3  3  3  2  1   4 FAs + 1 HA 

2  2  2  2  2  1  2  1   7-bit adder

--Carry-propagate adder--

1  1  1 1  1  1  1  1  1

Fig. 8.11   Representing a seven-
operand addition in tabular form.

A full-adder compacts 3 dots into 2
(compression ratio of 1.5)

A half-adder rearranges 2 dots
(no compression, but still useful)
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Width of Adders in a CSA Tree

Fig. 8.12   Adding seven k-
bit numbers and the 
CSA/CPA widths required.

Due to the gradual 
retirement (dropping out) 
of some of the result bits, 
CSA widths do not vary 
much as we go down the 
tree levels

k-bit CPA

k-bit  CSA k-bit CSA

k-bit CSA

k-bit CSA

0k+2

The index pair  
[i, j] means that  
bit positions  
from i up to j  
are involved.

k-bit CSA

[0, k–1]  
[0, k–1]  

[0, k–1]  
[0, k–1]  

[0, k–1]  [0, k–1]  

[0, k–1]  
[0, k–1]  

[0, k–1]  

[1, k] [1, k]

[1, k]

[1, k]

[0, k–1]  

[2, k+1]  [2, k+1]  

[2, k+1]  

[2, k+1]  [1, k–1]  

1

[1, k+1]  

k+1 k k–1 1 3 2 4 
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8.3  Wallace and Dadda Trees

h(n) = 1 + h(2n/3)

n(h) = 3n(h – 1)/2

21.5h–1< n(h)  21.5h

.  .  .  
inputsn

2 outputs

levelshh levels

Table 8.1  The maximum number n(h) 
of inputs for an h-level CSA tree

––––––––––––––––––––––––––––––––––––
h n(h) h n(h) h n(h) 
––––––––––––––––––––––––––––––––––––
0 2 7 28 14 474

1 3 8 42 15 711

2 4 9 63 16 1066

3 6 10 94 17 1599

4 9 11 141 18 2398

5 13 12 211 19 3597

6 19 13 316 20 5395
––––––––––––––––––––––––––––––––––––
n(h): Maximum number of inputs for h levels
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Example Wallace and Dadda Reduction Trees

6 FAs 
 

  
 11 FAs 

 

7 FAs 
 

4 FAs + 1 HA 
 

7-bit adder 
 

Total cost  =  7-bit adder  +  28 FAs  +  1 HA 
 

Fig. 8.14   Adding seven 6-bit 
numbers using Dadda’s strategy.

12 FAs 
 

  
 

6 FAs 
 

6 FAs 
 

4 FAs + 1 HA 
 

7-bit adder 
 

Total cost  =  7-bit adder  +  28 FAs  +  1 HA 
 

Fig. 8.10   Addition of seven 
6-bit numbers in dot notation.

Wallace tree: 
Reduce the number 
of operands at the 
earliest possible 
opportunity 

Dadda tree: 
Postpone the 
reduction to the 
extent possible 
without causing 
added delay 

h n(h)
2 4
3 6
4 9
5 13
6 19
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A Small Optimization in Reduction Trees

6 FAs 
 

  
 11 FAs 

 

7 FAs 
 

4 FAs + 1 HA 
 

7-bit adder 
 

Total cost  =  7-bit adder  +  28 FAs  +  1 HA 
 

Fig. 8.14   Adding seven 6-bit 
numbers using Dadda’s strategy.

Fig. 8.15   
Adding seven 
6-bit numbers 
by taking 
advantage of 
the final 
adder’s carry-
in.

6 FAs 
 

  
 11 FAs 

 

6 FAs + 1 HA 
 

3 FAs + 2 HA 
 

7-bit adder 
 

Total cost  =  7-bit adder  +  26 FAs  +  3 HA 
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8.4  Parallel Counters and Compressors

Fig. 8.16   A 10-input parallel counter 
also known as a (10; 4)-counter.

0

1 0 1 0 1 0

2 1 1 0

1

0

2

13 2

3-bit 
ripple-carry 
adder

FA FA

HA

HA

FA

FAFAFA1-bit full-adder = (3; 2)-counter

Circuit reducing 7 bits to their
3-bit sum = (7; 3)-counter

Circuit reducing n bits to their 
log2(n + 1)-bit sum 

= (n; log2(n+1))-counter



Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 99

Recursive Construction of Parallel Counters

An n-input parallel counting 
network (PCN) can be built from 
two n/2-bit parallel counting 
networks and a log2 n-bit adder

PCN(15) PCN(10)
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Accumulative Parallel Counters

Possible application: 
Compare Hamming weight 
of a vector to a constant

True generalization of 
sequential counters

FA FA FA FA

FA FA FA

FA FA

FAFA

FA FA

FAFA

q-bit
initial 

count x

n increment signals vi, 2q–1 < n  2q

q-bit tally of up to 2q – 1 
of the increment signals

Ignore, or use 
for decision

q-bit final count y

cq

n
increment 
signals vi

q-bit final count y = x + Svi

Parallel 
incrementer

q-bit initial 
count x

Count 
register
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Up/Down Parallel Counters

Generalization of 
up/down counters

Possible application: 
Compare Hamming weights 
of two input vectors
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8.5  Generalized Parallel Counters

(5, 5; 4)-counter Fig. 8.17   Dot notation for a (5, 5; 4)-counter 
and the use of such counters for reducing five 
numbers to two numbers.

.    .    . 
 

Multicolumn 
reduction

(2, 3; 3)-counter

Unequal 
columns

Gen. parallel counter = Parallel compressor
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Column Compression: A Simple Example

Adding eight 6-digit decimal numbers:

Add digits in each column separately and write
down the 2-digit column sum under the column, 
with its 10s digit shifted left by one position 

Question: 
What is the maximum number of decimal 
values that can be added in this way 
(that is, with column compression 
leading to two decimal numbers)?

9 5 2 4 9 8 
7 8 4 0 6 7
4 5 1 6 7 4
9 0 5 7 2 4
6 9 5 1 0 5
5 9 6 2 3 0
0 2 9 1 3 6
8 2 7 2 1 1

5
3
1

3
3

2
9

3
0

4

5 2 4 1 6 4 5

8
4
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A  General Strategy for Column Compression

n + y1 + y2 + y3 + . . .    3 + 2y1 + 4y2 + 8y3 + . . .

n – 3  y1 + 3y2 + 7y3 + . . .

. . . i – 3 i – 2 i – 1 i 

n inputs 

To i + 1 

To i + 2 

To i + 3 

One circuit slice 

y   1 

y   2 

y   3 

y   1 

y   2 

y   3 

(n; 2)-counters

Example: Design a bit-slice of an (11; 2)-counter
Solution: Let’s limit transfers to two stages. Then, 8  y1 + 3y2

Possible choices include y1 = 5, y2 = 1 or y1 = y2 = 2 

Fig. 8.18   Schematic 
diagram of an 
(n; 2)-counter built of 
identical circuit slices
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(4; 2)-Counters

We will discuss (4; 2)-counters in greater detail in Section 11.2 
(see, e.g., Fig. 11.5 for an efficient realization)

W

Multicolumn
4-to-2 
reduction

[0, 5]  =      {0, 1}    +    {0, 2}    +    {0, 2}

4 dots 
and the
incoming
transfer

Outgoing
transfer

Sum and 
carry 
outputs
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8.5  Adding Multiple Signed Numbers

---------- Extended positions ---------- Sign Magnitude positions ---------

xk–1 xk–1 xk–1 xk–1 xk–1 xk–1 xk–2 xk–3 xk–4 . . .
yk–1 yk–1 yk–1 yk–1 yk–1 yk–1 yk–2 yk–3 yk–4 . . .
zk–1 zk–1 zk–1 zk–1 zk–1 zk–1 zk–2 zk–3 zk–4 . . .

(a) Using sign extension

---------- Extended positions ---------- Sign Magnitude positions ---------

1 1 1 1 0 xk–1' xk–2 xk–3 xk–4 . . .
yk–1' yk–2 yk–3 yk–4 . . .
zk–1' zk–2 zk–3 zk–4 . . .
1

(b) Using negatively weighted bits

Fig. 8.19    Adding three 2's-complement numbers.

–b = (1 – b) + 1 – 2
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8.6  Modular Multioperand Adders

Fig. 8.20    Modular carry-save addition with special moduli.

(a) m = 2k

Drop

(b) m = 2k – 1 (c) m = 2k + 1

Invert
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Modular Reduction with Pseudoresidues

Fig. 8.21    Modulo-21 
reduction of 6 numbers 
taking advantage of the 
fact that 64 = 1 mod 21 
and using 6-bit 
pseudoresidues.

Final pseudoresidue (to be reduced)

Six inputs 
in the range 

[0, 20]

Pseudoresidues
in the range 

[0, 63]

Add with 
end-around carry


