
Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 1

Part II
Addition / Subtraction

 Number Representation

 Numbers and Arithmetic
 Representing Signed Numbers
 Redundant Number Systems
 Residue Number Systems

 Addition / Subtraction

 Basic Addition and Counting
 Carry-Lookahead Adders
 Variations in Fast Adders
 Multioperand Addition

 Multiplication

 Basic Multiplication Schemes
 High-Radix Multipliers
 Tree and Array Multipliers
 Variations in Multipliers

 Division

 Basic Division Schemes
 High-Radix Dividers
 Variations in Dividers
 Division by Convergence

 Real Arithmetic

 Floating-Point Reperesentations
 Floating-Point Operations
 Errors and Error Control
 Precise and Certifiable Arithmetic

 Function Evaluation

 Square-Rooting Methods
 The CORDIC Algorithms
 Variations in Function Evaluation
 Arithmetic by Table Lookup

 Implementation Topics

 High-Throughput Arithmetic
 Low-Power Arithmetic
 Fault-Tolerant Arithmetic
 Past, Present, and Future

 Parts Chapters

I.

II.

III.

IV.

V.

VI.

VII.

 1.
 2.
 3.
 4.

5.
6.
7.
8.

9.
10.
11.
12.

25.
26.
27.
28.

21.
22.
23.
24.

17.
18.
19.
20.

13.
14.
15.
16.

E
le

m
e

nt
a

ry
 O

p
e

ra
tio

ns

28. Reconfigurable Arithmetic

Appendix: Past, Present, and Future

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 2

About This Presentation

This presentation is intended to support the use of the textbook
Computer Arithmetic: Algorithms and Hardware Designs (Oxford
U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated
regularly by the author as part of his teaching of the graduate
course ECE 252B, Computer Arithmetic, at the University of
California, Santa Barbara. Instructors can use these slides freely
in classroom teaching and for other educational purposes.
Unauthorized uses are strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised Revised

First Jan. 2000 Sep. 2001 Sep. 2003 Oct. 2005 Apr. 2007

Apr. 2008 Apr. 2009

Second Apr. 2010 Mar. 2011 Apr. 2012 Apr. 2015 Apr. 2020

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 3

II Addition /Subtraction

Topics in This Part
Chapter 5 Basic Addition and Counting

Chapter 6 Carry-Lookahead Adders

Chapter 7 Variations in Fast Adder

Chapter 8 Multioperand Addition

Review addition schemes and various speedup methods
• Addition is a key op (in itself, and as a building block)
• Subtraction = negation + addition
• Carry propagation speedup: lookahead, skip, select, …
• Two-operand versus multioperand addition

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 4

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 5

5 Basic Addition and Counting

Chapter Goals

Study the design of ripple-carry adders,
discuss why their latency is unacceptable,
and set the foundation for faster adders

Chapter Highlights

Full adders are versatile building blocks
Longest carry chain on average: log2k bits
Fast asynchronous adders are simple
Counting is relatively easy to speed up
Key part of a fast adder is its carry network

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 6

Basic Addition and Counting: Topics

Topics in This Chapter

5.1 Bit-Serial and Ripple-Carry Adders

5.2 Conditions and Exceptions

5.3 Analysis of Carry Propagation

5.4 Carry Completion Detection

5.5 Addition of a Constant

5.6 Manchester Carry Chains and Adders

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 7

5.1 Bit-Serial and Ripple-Carry Adders

Half-adder (HA): Truth table and block diagram

Full-adder (FA): Truth table and block diagram

x y c c s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 Inputs Outputs

c out c in

out in x

y

 s

FA

x y c s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Inputs Outputs

HA

x y

c

s

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 8

Half-Adder Implementations

Fig. 5.1 Three implementations of a half-adder.

c

s

(b) NOR-gate half-adder.

x

y

x

y

(c) NAND-gate half-adder with complemented carry.

x

y

c

s

s

c
x

y

x

y

(a) AND/XOR half-adder.
_

_

_c

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 9

Full-Adder Implementations

Fig. 5.2 Possible designs for a full-adder
in terms of half-adders, logic gates, and
CMOS transmission gates.

HA

HA

xy

cin

cout

(a) Built of half-adders.

s

(b) Built as an AND-OR circuit.

(c) Suitable for CMOS realization.

cout

s

cin

xy

0
1
2
3

0
1
2
3

xy

cin

cout

s

0

1

Mux

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 10

Full-Adder Implementations

Fig. 5.2 (alternate version) Possible designs for a full-adder in
terms of half-adders, logic gates, and CMOS transmission gates.

(a) FA built of two HAs

(c) Two-level AND-OR FA (b) CMOS mux-based FA

 1

 0

 3

 2

HA

HA

 1

 0

 3

 2

0

1

x
y

x
y

x
y

s

s
s

c out

c out

c out

c in

c in

c in

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 11

Some Full-Adder Details

CMOS transmission gate and its use in a 2-to-1 mux.

z

x

x

0

1

(a) CMOS transmission gate:
circuit and symbol

(b) Two-input mux built of two
transmission gates

TG

TG
TG

y
 P

N

Logic equations for a full-adder:
s = x  y  cin (odd parity function)

= xy cin  x y cin  x ycin  xy cin

cout = x y  x cin  y cin (majority function)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 12

Full-Adder Realization with Majority Gates

Full-adder built of three fully-utilized majority elements.

Majority-based logic equations for a full-adder:

s = maj(maj(x, y, cin), cin, cout) (odd parity function)

cout = maj(x, y, cin) (majority function)

cin

cout s

x y
Majority gates can be used as AND and OR:

ab = maj(a, b, 0)

a  b = maj(a, b, 1)

Using majority gates in the above partially-
utilized form is inefficient

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 13

Simple Adders Built of Full-Adders

Fig. 5.3 Using full-adders
in building bit-serial and
ripple-carry adders.

x y

c

x

s

y

c

x

s

y

c out c in

0 0

0

c 0

31

31

31

31

FA

s

c c

1 1

1

1 2
FA FA

32 . . .

s 32

x

s

y

c c

i i

i

i i+1
FA Carry

FF Shift

Shift

x

y

s

(a) Bit-serial adder.

(b) Ripple-carry adder.

Clock

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 14

VLSI Layout of a Ripple-Carry Adder

Fig. 5.4 The layout of a 4-bit ripple-carry adder in
CMOS implementation [Puck94].

xy 11 x0y0

c1c2cout cinc3

x2y2x3y3

Clock

s 1 s 0s 2s 3

150

760



7 inverters

 Two
4-to-1
Mux's

VDD

V SS

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 15

Carry Chain on an FPGA

Two views of Xilinx Virtex-5
ripple-carry adder

[From: Virtex-5 User Guide]

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 16

Critical Path Through a Ripple-Carry Adder

Fig. 5.5 Critical path in a k-bit ripple-carry adder.

x

s

y

c

x

s

y

c

x

s

y

c

x

s

y

c

c out c in

0 0

0

c 0

1 1

1

1

k-2 k–2

k–2

2 k

k–1

k–1

k–1

k–1

FA FA FA FA . . .
c k–2

s k

Tripple-add = TFA(x,ycout) + (k – 2)TFA(cincout) + TFA(cins)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 17

x y c c s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 Inputs Outputs

c out c in

out in x

y

 s

FA

Binary Adders as Versatile Building Blocks

Fig. 5.6 Four-bit binary adder used to realize the
logic function f = w  xyz and its complement.

c

3

c

4

c

2

c

1

c

0

0

1 w

1 z

0 y

x
Bit 3 Bit 2 Bit 1 Bit 0

w  xyz

(w  xyz)

w  xyz xyz xy 0

Set one input to 0: cout = AND of other inputs

Set one input to 1: cout = OR of other inputs

Set one input to 0
and another to 1: s = NOT of third input

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 18

5.2 Conditions and Exceptions

Fig. 5.7 Two’s-complement adder with provisions
for detecting conditions and exceptions.

FAFA

xy 11 x0y0

c0c1

s0s 1

FA
c2

s k–1

cout cin
...

ck–1
ck–2

sk–2

ck

xk–2yk–2xk–1yk–1

FA

Overflow

Negative

Zero

overflow2’s-compl = xk–1 yk–1 sk–1  xk–1 yk–1 sk–1

overflow2’s-compl = ck  ck–1 = ck ck–1  ck ck–1

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 19

Saturating Adders

Saturating (saturation) arithmetic:

When a result’s magnitude is too large, do not wrap around;
rather, provide the most positive or the most negative value
that is representable in the number format

Designing saturating adders

Saturating arithmetic in desirable in many DSP applications

Saturation value

Overflow

0

1

Adder

Unsigned (quite easy)

Signed (only slightly harder)

Example – In 8-bit 2’s-complement format, we have:
120 + 26  18 (wraparound); 120 +sat 26  127 (saturating)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 20

5.3 Analysis of Carry Propagation

Bit positions
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
----------- ----------- ----------- -----------
1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0

cout 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 cin
__________/__________________/ ________/____/

4 6 3 2
Carry chains and their lengths

Fig. 5.8 Example addition and its carry propagation chains.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 21

Using Probability to Analyze Carry Propagation

Given binary numbers with random bits, for each position i we have

Probability of carry generation = ¼ (both 1s)
Probability of carry annihilation = ¼ (both 0s)
Probability of carry propagation = ½ (different)

Probability that carry generated at position i propagates through
position j – 1 and stops at position j (j > i)

2–(j–1–i)  1/2 = 2–(j–i)

Expected length of the carry chain that starts at position i

2 – 2–(k–i–1)

Average length of the longest carry chain in k-bit addition is strictly
less than log2k; it is log2(1.25k) per experimental results

Analogy: Expected number when rolling one die is 3.5; if one rolls
many dice, the expected value of the largest number shown grows

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 22

5.4 Carry Completion Detection

Fig. 5.9 The carry network of an adder with two-rail carries
and carry completion detection logic.

. . .

. . .

. . .

. . .

x y = x +y

alldone
From other bit positions

i+1

c = c

b = c

b = 1: No carry
c = 1: Carry

b

i+1c
0

i i i i

ib

ic

x + yi i

x y i i

x y i i

0

in

in

}

di+1
i
i

c = c k out

b k

bi ci

0 0 Carry not yet known
0 1 Carry known to be 1
1 0 Carry known to be 0

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 23

5.5 Addition of a Constant: Counters

Count register

Mux

Incrementer
(Decrementer)

+1 (1)

Data in

Load

Count / Initialize

x + 1

x

0 1

Data out

Reset Clear

Enable Clock

Counter
overflow

(x  1)

c out

Fig. 5.10 An up (down) counter built of a register,
an incrementer (decrementer), and a multiplexer.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 24

Implementing a Simple Up Counter

Fig. 5.11 Four-bit asynchronous up counter built only of
negative-edge-triggered T flip-flops.

T

Q

Q T

Q

Q T

Q

Q T

Q

Q
Increment

0

0

1

1

2

2

3

3

Count Output

(Fm arch text) Ripple-carry incrementer for use in an up counter.

1

0

k2

k1

. . .
c

k1

c

k

c

k2

c

1

x

x

x

x

c

2

1

0

k2

k1

s s s s 2 s

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 25

Faster and Constant-Time Counters

Any fast adder design can be specialized and optimized to yield
a fast counter (carry-lookahead, carry-skip, etc.)

Fig. 5.12 Fast (constant-time) three-stage up counter.

Load

Load Increment

Control
 1

Control
 2

Incrementer

1

Incrementer

1

Count register divided into three stages

One can use redundant representation to build a constant-time
counter, but a conversion penalty must be paid during read-out

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 26

5.6 Manchester Carry Chains and Adders

Sum digit in radix r si = (xi + yi + ci) mod r

Special case of radix 2 si = xi  yi  ci

Computing the carries ci is thus our central problem
For this, the actual operand digits are not important
What matters is whether in a given position a carry is

generated, propagated, or annihilated (absorbed)

For binary addition:

gi = xi yi pi = xi  yi ai = xiyi  = (xi  yi) 
It is also helpful to define a transfer signal:

ti = gi  pi = ai = xi  yi

Using these signals, the carry recurrence is written as

ci+1 = gi  ci pi = gi  ci gi  ci pi = gi  ci ti

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 27

Manchester Carry Network

Fig. 5.13 One stage in a Manchester carry chain.

p

g

a

Logic 1

Logic 0

c

c

i+1

i

i

i

i

0

1

0

1

0
 1

(a) Conceptual representation

c'i+1 ic'

Clock

ip

VDD

VSS

ig

(b) Possible CMOS realization.

The worst-case delay of a Manchester carry chain has three components:

1. Latency of forming the switch control signals
2. Set-up time for switches
3. Signal propagation delay through k switches

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 28

Details of a 5-Bit Manchester Carry Network

Carry chain of a 5-bit Manchester adder.

Dynamic logic, with 2-phase operation
Clock low: Precharge (ci = 0) Clock high: Pull-down (if gi = 1)

The transistors must be sized appropriately for maximum speed

Clock

ip

VDD

VSS

ig

Clock

ip

VDD

VSS

ig

Clock

ip

VDD

VSS

ig

Clock

ip

VDD

VSS

ig

Clock

ip

VDD

VSS

ig

Clock

ip

VDD

VSS

ig
c0

c5 c0c1c2c3c4

Smaller transistors Larger transistors

i = 4 i = 3 i = 2 i = 1 i = 0

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 29

Carry Network is the Essence of a Fast Adder

Fig. 5.14 Generic structure of a binary adder,
highlighting its carry network.

Carry network

.

x i y i

g p

s

i i

i

c i
c i+1

c k1

c k

c k2 c 1

c 0

g p 1 1 g p 0 0

g p k2 k2 g p i+1 i+1
g p k1 k1

c 0
.

0 0
0 1
1 0
1 1

annihilated or killed
propagated
generated
(impossible)

Carry is: g i p i

gi = xi yi
pi = xi  yi

Ripple; Skip;
Lookahead;
Parallel-prefix

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 30

Ripple-Carry Adder Revisited

Fig. 5.15 Alternate view of a ripple-carry network in connection
with the generic adder structure shown in Fig. 5.14.

. . .
c

k1

c

k
 c

k2

c

1

g

p

1

1

g

p

0

0

g

p

k2

k2

g

p

k1

k1

c

0
 c

2

The carry recurrence: ci+1 = gi  pi ci

Latency of k-bit adder is roughly 2k gate delays:

1 gate delay for production of p and g signals, plus
2(k – 1) gate delays for carry propagation, plus
1 XOR gate delay for generation of the sum bits

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 31

The Complete Design of a Ripple-Carry Adder

Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).

Carry network

.

x i y i

g p

s

i i

i

c i
c i+1

c k1

c k

c k2 c 1

c 0

g p 1 1 g p 0 0

g p k2 k2 g p i+1 i+1
g p k1 k1

c 0
.

0 0
0 1
1 0
1 1

annihilated or killed
propagated
generated
(impossible)

Carry is: g i p i

gi = xi yi
pi = xi  yi

. . .
c

1

g

p

1

1

g

p

0

0

c

0
 c

2

. . .
c

k1

c

k
 c

k2

g

p

k2

k2

g

p

k1

k1

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 32

6 Carry-Lookahead Adders

Chapter Goals

Understand the carry-lookahead method
and its many variations
used in the design of fast adders

Chapter Highlights

Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem

to parallel prefix computation
Implementing fast adders in VLSI

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 33

Carry-Lookahead Adders: Topics

Topics in This Chapter

6.1 Unrolling the Carry Recurrence

6.2 Carry-Lookahead Adder Design

6.3 Ling Adder and Related Designs

6.4 Carry Determination as Prefix Computation

6.5 Alternative Parallel Prefix Networks

6.6 VLSI Implementation Aspects

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 34

6.1 Unrolling the Carry Recurrence

Recall the generate, propagate, annihilate (absorb), and transfer signals:

Signal Radix r Binary
gi is 1 iff xi + yi  r xi yi
pi is 1 iff xi + yi = r – 1 xi  yi
ai is 1 iff xi + yi < r – 1 xiyi  = (xi  yi) 
ti is 1 iff xi + yi  r – 1 xi  yi

si (xi + yi + ci) mod r xi  yi  ci

The carry recurrence can be unrolled to obtain each carry signal directly
from inputs, rather than through propagation

ci = gi–1  ci–1 pi–1

= gi–1  (gi–2  ci–2 pi–2)pi–1

= gi–1  gi–2pi–1  ci–2 pi–2pi–1

= gi–1  gi–2pi–1  gi–3 pi–2pi–1  ci–3 pi–3 pi–2pi–1

= gi–1  gi–2pi–1  gi–3 pi–2pi–1  gi–4 pi–3 pi–2pi–1  ci–4 pi–4 pi–3 pi–2pi–1

= . . .

Note:
Addition symbol
vs logical OR

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 35

Full Carry Lookahead

Theoretically, it is possible to derive each sum digit directly
from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing
the complexity of this ideal, but impractical, arrangement by
hardware sharing among the various lookahead circuits

s0s1s2s3

y0y1y2y3 x0x1x2x3

cin

. . .

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 36

Four-Bit Carry-Lookahead Adder

Complexity
reduced by
deriving the
carry-out
indirectly

Fig. 6.1 Four-bit carry
network with full lookahead.

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

Full carry lookahead is quite practical
for a 4-bit adder

c1 = g0  c0 p0

c2 = g1  g0p1  c0 p0p1

c3 = g2  g1p2  g0 p1p2  c0 p0 p1p2

c4 = g3  g2p3  g1 p2p3  g0 p1 p2p3

 c0 p0 p1 p2p3

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 37

Carry Lookahead Beyond 4 Bits

32-input AND

Consider a 32-bit adder

c1 = g0  c0 p0

c2 = g1  g0p1  c0 p0p1

c3 = g2  g1p2  g0 p1p2  c0 p0 p1p2
.
.
.

c31 = g30  g29p30  g28 p29p30  g27 p28 p29p30  . . .  c0 p0 p1p2p3 ... p29

p30

32-input OR
. . . High fan-ins necessitate

tree-structured circuits

No circuit sharing:
Repeated computations

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 38

Two Solutions to the Fan-in Problem

High-radix addition (i.e., radix 2h)

Increases the latency for generating g and p signals and sum digits,
but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition

Radix-16 (four digits)

Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c4, c8, and c12 are determined first

c16 c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0
cout ? ? ? cin

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 39

6.2 Carry-Lookahead Adder Design

Block generate and propagate signals

g [i,i+3] = gi+3  gi+2pi+3  gi+1 pi+2pi+3  gi pi+1 pi+2pi+3

p [i,i+3] = pi pi+1 pi+2pi+3

ic
4-bit lookahead carry generator

g p g p g p g p

 [i,i+3]
p

 i+1
c

 i+2
c

 i+3c

g

iii+1i+1i+2 i+2 i+3 i+3

 [i,i+3]

Fig. 6.2b Schematic diagram of a 4-bit lookahead carry generator.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 40

A Building Block for
Carry-Lookahead Addition

Fig. 6.2a A 4-bit
lookahead
carry generator

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

gi

gi+1

g
i+2

gi+3

ci

ci+1

ci+2

ci+3

pi+3

pi+2

pi+1

pi

g

p [i,i+3]

Block Signal Generation
Intermediate Carries

[i,i+3]

Fig. 6.1
A 4-bit
carry
network

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 41

Combining Block g and p Signals

Block generate and

propagate signals

can be combined in

the same way as bit

g and p signals to

form g and p signals

for wider blocks

Fig. 6.3 Combining of g and p signals of four
(contiguous or overlapping) blocks of arbitrary widths
into the g and p signals for the overall block [i0, j3].

j +1j +1 c
0

ic
4-bit lookahead carry generator

g p

0

i 0
i 1

i 2
i 3

j 0
j 1

j 2
j 3

j +1c
1c

2

g pg p g p

g p

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 42

A Two-Level Carry-Lookahead Adder

cccc

4-bit lookahead carry generator

4-bit lookahead carry generator

g
p

ccc

g
p

12 8 4 0

48 32 16

[0,63]

16-bit
Carry-Lookahead
Adder

[0,63]

[48,63]

[48,63] g
p [32,47]

[32,47] g
p [0,15]

[0,15]g
p [16,31]

[16,31]

g
p [12,15]

[12,15] g
p [8,11]

[8,11] g
p [4,7]

[4,7] g
p [0,3]

[0,3]

Fig. 6.4 Building a 64-bit carry-lookahead adder from 16
4-bit adders and 5 lookahead carry generators.

Carry-out: cout = g [0,k–1]  c0 p [0,k–1] = xk–1yk–1  sk–1 (xk–1  yk–1)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 43

Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions 1 gate level
g and p signals for 4-bit blocks 2 gate levels
Block carry-in signals c4, c8, and c12 2 gate levels
Internal carries within 4-bit blocks 2 gate levels
Sum bits 2 gate levels

Total latency for the 16-bit adder 9 gate levels

(compare to 32 gate levels for a 16-bit ripple-carry adder)

Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder: Tlookahead-add = 4 log4k + 1 gate levels

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 44

6.3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:
ci = gi–1  ci–1 ti–1

= gi–1  gi–2 ti–1  gi–3 ti–2 ti–1  gi–4 ti–3 ti–2 ti–1  ci–4 ti–4 ti–3 ti–2 ti–1

Ling’s modification: Propagate hi = ci  ci–1 instead of ci
hi = gi–1  hi–1 ti–2

= gi–1  gi–2 gi–3 ti–2  gi–4 ti–3 ti–2  hi–4 ti–4 ti–3 ti–2

CLA: 5 gates max 5 inputs 19 gate inputs
Ling: 4 gates max 5 inputs 14 gate inputs

The advantage of hi over ci is even greater with wired-OR:

CLA: 4 gates max 5 inputs 14 gate inputs
Ling: 3 gates max 4 inputs 9 gate inputs

Once hi is known, however, the sum is obtained by a slightly more
complex expression compared with si = pi  ci

si = pi  hi ti–1

Propagate
harry,
not carry!

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 45

6.4 Carry Determination as Prefix Computation

Fig. 6.5 Combining of g and p signals of two (contiguous or overlapping)
blocks B' and B" of arbitrary widths into the g and p signals for block B.

g p

g p

g
 p

g" p"

i 0
i 1

j 0
j 1

g p

g' p'

Block B'

Block B"

Block B
(g, p)

(g", p") (g', p')

¢

g = g" + g'p"
p = p'p"

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 46

Formulating the Prefix Computation Problem

The problem of carry determination can be formulated as:
Given (g0, p0) (g1, p1) . . . (gk–2, pk–2) (gk–1, pk–1)
Find (g [0,0] , p [0,0]) (g [0,1] , p [0,1]) . . . (g [0,k–2] , p [0,k–2]) (g [0,k–1] , p [0,k–1])

c1 c2 . . . ck–1 ck

Carry-in can be viewed as an extra (1) position: (g–1, p–1) = (cin, 0)

The desired pairs are found by evaluating all prefixes of
(g0, p0) ¢ (g1, p1) ¢ . . . ¢ (gk–2, pk–2) ¢ (gk–1, pk–1)

The carry operator ¢ is associative, but not commutative
[(g1, p1) ¢ (g2, p2)] ¢ (g3, p3) = (g1, p1) ¢ [(g2, p2) ¢ (g3, p3)]

Prefix sums analogy:
Given x0 x1 x2 . . . xk–1
Find x0 x0+x1 x0+x1+x2 . . . x0+x1+...+xk–1

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 47

g0, p0g1, p1g2, p2g3, p3

g[0,0], p[0,0]
= (c1, --)

g[0,1], p[0,1]
= (c2, --)

g[0,2], p[0,2]
= (c3, --)

g[0,3], p[0,3]
= (c4, --)

Example Prefix-Based Carry Network

g p

g p

g
 p

++

++

26 51

712 56

g0, p0g1, p1g2, p2g3, p3

g[0,0], p[0,0]
= (c1, --)

g[0,1], p[0,1]
= (c2, --)

g[0,2], p[0,2]
= (c3, --)

g[0,3], p[0,3]
= (c4, --)

¢¢

¢¢

(a) A 4-input
prefix sums
network

Scan
order

(b) A 4-bit
Carry
lookahead
network

Fig. 6.6 Four-input
parallel prefix
sums network and
its corresponding
carry network.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 48

6.5 Alternative Parallel Prefix Networks

Delay recurrence D(k) = D(k/2) + 1 = log2k
Cost recurrence C(k) = 2C(k/2) + k/2 = (k/2) log2k

Fig. 6.7 Ladner-Fischer parallel prefix sums network
built of two k/2-input networks and k/2 adders.

. . .

Prefix Sums k/2 Prefix Sums k/2

. . .

xk–1 xk/2 xk/2–1 x0

s k–1 s k/2

s k/2–1 s 0+ +
. . .

. . .

.

. . .

.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 49

The Brent-Kung Recursive Construction

Delay recurrence D(k) = D(k/2) + 2 = 2 log2k – 1 (–2 really)
Cost recurrence C(k) = C(k/2) + k – 1 = 2k – 2 – log2k

Fig. 6.8 Parallel prefix sums network built of one
k/2-input network and k – 1 adders.

Prefix Sums k/2

xk–1 xk–2 x3 x2 x1 x0

s k–1 s k–2 s 3 s 2 s 1 s 0

++

+

+

+

. . .

. . .

. . .

. . .

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 50

Brent-Kung Carry Network (8-Bit Adder)

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

¢ ¢ ¢

[7, 7] [6, 6] [5, 5] [4, 4] [3, 3] [2, 2] [1, 1] [0, 0]

[0, 7] [0, 6] [0, 5] [0, 4] [0, 3] [0, 2] [0, 1] [0, 0]

g p [0,1] [0,1]

g p [1,1] [1,1]
g
 p
[0,0]
 [0,0]

[2, 3]
[4, 5]

[6, 7]

[4, 7]
[0, 3]

[0, 1]

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 51

Brent-Kung Carry Network (16-Bit Adder)

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x12x13x14x15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

1

2

3

4

5

6

Level

Fig. 6.9
Brent-Kung
parallel prefix
graph for
16 inputs.

Reason for
latency being
2 log2k – 2

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 52

Kogge-Stone Carry Network (16-Bit Adder)

Fig. 6.10
Kogge-Stone
parallel prefix
graph for
16 inputs.

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

log2k levels
(minimum
possible)

Cost formula
C(k) = (k – 1)

+ (k – 2)
+ (k – 4) + . . .
+ (k – k/2)

= k log2k – k + 1

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 53

Speed-Cost Tradeoffs in Carry Networks

Method Delay Cost

Ladner-Fischer log2k (k/2) log2k

Kogge-Stone log2k k log2k – k + 1

Brent-Kung 2 log2k – 2 2k – 2 – log2k

. . .

Prefix Sums k/2 Prefix Sums k/2

. . .

xk–1 xk/2 xk/2–1 x0

s k–1 s k/2

s k/2–1 s 0+ +
. . .

. . .

.

. . .

. Improving the
Ladner/Fischer
design

These outputs can
be produced one
time unit later without
increasing the overall
latency

This strategy saves enough to make
the overall cost linear (best possible)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 54

Hybrid B-K/K-S Carry Network (16-Bit Adder)
x0x1x2x3x4x5x6x7

x8x9x10x11
x12x13x14x15

s0s1s2s3s4s5s6s7s8s9s 10s11
s12s13s14s15

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s0s1s2s3s4s5s6s7
s8s 9s10s11s12s13s14s15

1

2

3

4

5

6

Level

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s8s9s10s11
s12s13s14s15

Brent-
Kung

Brent-
Kung

Kogge-
Stone

Fig. 6.11
A Hybrid
Brent-Kung/
Kogge-Stone
parallel prefix
graph for
16 inputs.

Brent-Kung:
6 levels

26 cells

Kogge-Stone:
4 levels

49 cells

Hybrid:
5 levels

32 cells

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 55

6.6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers
as implemented in the AMD Am29050 CMOS micro

Our description is based on the 64-bit version of the adder

In radix-256, 64-bit addition, only these carries are needed:

c56 c48 c40 c32 c24 c16 c8

First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are
used to derive g and p signals for 4-bit blocks

Next, the g and p signals for 4-bit blocks are combined to form
the desired carries, using the MCCs in Fig. 6.12b

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 56

Four-Bit Manchester Carry Chains

Fig. 6.12 Example 4-bit Manchester carry chain designs in
CMOS technology [Lync92].

PH2
g2

PH2
g3

PH2
g1

PH2
g0

p3

p2

p1

p0

g[0,3]

PH2
p[0,3]

(a)

PH2

PH2

g2

g3

g1

g0

p3

p2

p1

p0

g[0,3]

p[0,3]

g[0,2]

p[0,2]

g[0,1]

p[0,1]

PH2PH2

(b)

PH2 PH2

PH2 PH2

PH2 PH2

PH2PH2

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 57

Carry Network for 64-Bit Adder

Fig. 6.13 Spanning-tree carry-lookahead network [Lync92].
Type-a and Type-b MCCs refer to the circuits of Figs. 6.12a
and 6.12b, respectively.

[48, 55]

[32, 47]

[16, 31]

[-1, 15]

[32, 39]

[16, 31]

[16, 23]
[-1, 15]

[-1, 55]

[-1, 47]

[-1, 31]

[-1, 39]

[-1, 31]

[-1, 23]

[48, 63]

[48, 59]

[48, 55]

[32, 47]

[32, 43]

[32, 39]

[16, 31]

[16, 27]
[16, 23]

[-1, 15]

[-1, 11]
[-1, 7]

[60, 63]

[56, 59]

[52, 55]

[48, 51]

[44, 47]

[40, 43]

[36, 39]

[32, 35]

[28, 31]

[24, 27]
[20, 23]

[16, 19]

[12, 15]

[8, 11]
[4, 7]

[0, 3]
[-1, -1]

Type-b
MCC

Type-b
MCC

Type-b
MCC

Type-b
MCC Type-b

MCC

c 56
c 48

c 40
c 32
c

24

c 16

c 8

c 0 c in

16
Type-a
MCC

blocks

Type-b*
MCC

Level 1 Level 2

Level 3

Legend: [i, j] represents the
pair of signals p and g [i, j] [i, j]

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 58

7 Variations in Fast Adders

Chapter Goals

Study alternatives to the carry-lookahead
method for designing fast adders

Chapter Highlights

Many methods besides CLA are available
(both competing and complementary)

Best design is technology-dependent
(often hybrid rather than pure)

Knowledge of timing allows optimizations

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 59

Variations in Fast Adders: Topics

Topics in This Chapter

7.1 Simple Carry-Skip Adders

7.2 Multilevel Carry-Skip Adders

7.3 Carry-Select Adders

7.4 Conditional-Sum Adder

7.5 Hybrid Designs and Optimizations

7.6 Modular Two-Operand Adders

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 60

7.1 Simple Carry-Skip Adders

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple
carry-skip adder with 4-bit skip blocks.

(a) Ripple-carry adder

(b) Simple carry-skip adder

Ripple-carry stages

4-bit block 4-bit block 4-bit block c0c4c12c16 c8 3 2 1 0

c03 2 1 0
c4

0

1

p[0,3]

4-bit block

0

1

p[4,7]

c84-bit block

0

1

p[8,11]

c124-bit block

0

1

p[12,15]

c16

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 61

Another View of Carry-Skip Addition

Street/freeway analogy for carry-skip adder.

One-way street

Freeway

0

1

4-bit block4-bit block

0

1

0

1

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 62

Skip Carry Logic with OR Gate vs. Mux

The carry-skip adder with “OR combining” works fine if we begin
with a clean slate, where all signals are 0s at the outset; otherwise,
it will run into problems, which do not exist in mux-based version

c

g

p

4j+1

4j+1

g

p

4j

4j

g

p

4j+2

4j+2

g

p

4j+3

4j+3

c

4j

4j+4

c

4j+3

c

4j+2

c

4j+1

0
1

p[4j, 4j+3]

c4j+4

c

g

p

4j+1

4j+1

g

p

4j

4j

g

p

4j+2

4j+2

g

p

4j+3

4j+3

c

4j

4j+4

c

4j+3

c

4j+2

c

4j+1

Fig. 10.7 of
arch book

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 63

Carry-Skip Adder with Fixed Block Size

Block width b; k/b blocks to form a k-bit adder (assume b divides k)

Example: k = 32, bopt = 4, T opt = 13 stages
(contrast with 32 stages for a ripple-carry adder)

Tfixed-skip-add = (b – 1) + (k/b – 1) + (b – 1)
in block 0 skips in last block

 2b + k/b – 3 stages

dT/db = 2 – k/b2 = 0  bopt = k/2

T opt = 22k – 3

. . .

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 64

Carry-Skip Adder with Variable-Width Blocks

Fig. 7.2 Carry-skip adder with variable-size blocks
and three sample carry paths.

b b b b. . .

Ripple
Skip

Carry path (1)

01t–1 t–2 Block widths

Carry path (3)

Carry path (2)

The total number of bits in the t blocks is k:

2[b + (b + 1) + . . . + (b + t/2 – 1)] = t(b + t/4 – 1/2) = k

b = k/t – t/4 + 1/2

Tvar-skip-add = 2(b – 1) + t – 1 = 2k/t + t/2 – 2

dT/db = –2k/t 2 + 1/2 = 0  topt = 2k

T opt = 2k – 2 (a factor of 2 smaller than for fixed-block)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 65

7.2 Multilevel Carry-Skip Adders

Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

 S 1

 c out c in

 S 1 S 1 S 1 S 1

Fig. 7.4 Example of a two-level carry-skip adder.

 S 2

 S 1

 c out c in

 S 1 S 1 S 1 S 1

 c out c in

 S

 2

 S

 1

 S

 1

 S

 1

Fig. 7.5 Two-level carry-skip adder optimized by removing the
short-block skip circuits.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 66

Designing a Single-Level Carry-Skip Adder

Each of the following takes one unit of time: generation of gi and pi,
generation of level-i skip signal from level-(i–1) skip signals, ripple, skip,
and formation of sum bit once the incoming carry is known

Build the widest possible one-level carry-skip adder with total delay of 8

Example 7.1

Fig. 7.6 Timing constraints of a single-level
carry-skip adder with a delay of 8 units.

c c
bbbbbbb

0
234567

8
2

inout

S1 S1 S1 S1 S1

0123456

Max adder width = 18
(1 + 2 + 3 + 4 + 4 + 3 + 1)

Generalization of Example 7.1 for total time T (even or odd)
1 2 3 . . . T/2 T/2 . . . 4 3 1
1 2 3 . . . (T + 1)/2 . . . 4 3 1

Thus, for any T, the total width is (T + 1)2/4 – 2

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 67

Designing a Two-Level Carry-Skip Adder

Each of the following takes one unit of time: generation of gi and pi,
generation of level-i skip signal from level-(i–1) skip signals, ripple, skip,
and formation of sum bit once the incoming carry is known

Build the widest possible two-level carry-skip adder with total delay of 8

Example 7.2

Max adder width = 30
(1 + 3 + 6 + 8 + 8 + 4)

c c

8

0

7 6 5 34 3

b b b b b b
{8, 1} {7, 2} {6, 3} {5, 4} {4, 5} {3, 8}

inout
ABCDEF

S2 S2 S2 S2 S2

Tproduce Tassimilate

(a)

3457 6

2 t=0t=8
cout cin2

3

Block E Block D Block C Block B Block AF

(b)Fig. 7.7 Two-level carry-skip adder
with a delay of 8 units.

(a) Initial timing
constraints

(b) Final design

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 68

Elaboration on Two-Level Carry-Skip Adder

c c
bb

0123


inout

S1 S1 S1 S1 S1

12

– 1 – 2
S1

b0

S1

b –1 b –2

Given the delay pair {b, } for a level-2 block in Fig. 7.7a, the number
of level-1 blocks that can be accommodated is g = min(b–1, )

Example 7.2

c c
bb

234b

inout

S1 S1 S1 S1 S1

12

– 1b – 2b

b –3bb –2b

S1

b0

S1

1
Single-level carry-skip adder with Tassimilate = 

Single-level carry-skip adder with Tproduce = b

Width of the ith level-1 block in the level-2 block characterized by {b, }
is bi = min(b – g + i + 1,  – i); the total block width is then i=0 to g–1 bi

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 69

Carry-Skip Adder Optimization Scheme

Fig. 7.8 Generalized delay model for carry-skip adders.

Inputs

Level-h skip

Block of b full-adder uni ts

I(b)

A(b)

G(b)

E (b) h
S (b) h

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 70

7.3 Carry-Select Adders

Cselect-add(k) = 3Cadd(k/2) + k/2 + 1

Tselect-add(k) = Tadd(k/2) + 1

Fig. 7.9 Carry-select adder for k-bit numbers
built from three k/2-bit adders.

k /2-bit adder
k/2-bit adder

k - 1 k /2 k - 1 0

 0

1

k/2+1 k/2+1 k/2

1 0
Mux

k/2
c out

c k/2

c in

High k /2 bits Low k /2 bits

k /2-bit adder
k/2 – 1k – 1

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 71

Multilevel Carry-Select Adders

k /4-bit adder k /4-bit adder

k /2 - 1 k /4 k/4 - 1 0

 0

1

k/4+1 k/4+1 k/4

1 0
Mux

k/4

k /4-bit adder

k - 1 3k/4
 0

1

k/4+1 k/4+1 k/4

1 0
Mux

k /4-bit adder

3k/4 - 1 k/2
 0

1

1 0
Mux

k/2+1

k/4

c k/2

c k/4

c out

c in

, High k /2 bits Middle k /4 bits Low k /4 bits

Fig. 7.10 Two-level carry-select adder built of k/4-bit adders.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 72

7.4 Conditional-Sum Adder

Fig. 7.11 Top-level
block for one bit position of
a conditional-sum adder.

Multilevel carry-select idea carried out to the extreme (to 1-bit blocks.

C(k)  2C(k/2) + k + 2  k (log2k + 2) + k C(1)

T(k) = T(k/2) + 1 = log2k + T(1)

where C(1) and T(1) are the cost and delay of the circuit of Fig. 7.11
for deriving the sum and carry bits with a carry-in of 0 and 1

sc

xy

sc

ii

ii+1 i+1 i

For c = 0iFor c = 1i

k + 2 is an upper bound on
number of single-bit 2-to-1
multiplexers needed for
combining two k/2-bit adders
into a k-bit adder

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 73

Conditional-Sum
Addition Example

Table 7.2

Conditional-sum
addition of two 16-bit
numbers. The width
of the block for which
the sum and carry
bits are known
doubles with each
additional level,
leading to an
addition time that
grows as the
logarithm of the
word width k.

 x 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0
 y 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1

 1 0 s 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1
 c 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

 1 s 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
 c 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

 2 0 s 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1
 c 0 0 0 1 1 0 1 0

 1 s 1 0 1 1 0 0 1 0 0 1 0 0 1 0
 c 0 0 1 1 1 1 1

 4 0 s 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1
 c 0 1 1 1

 1 s 0 1 1 1 0 0 1 0 0 1 0 0
 c 0 1 1

 8 0 s 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1
 c 0 1

 1 s 0 1 1 1 0 0 1 0
 c 0

16 0 s 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1
 c 0

 1 s
 c

Block
width

Block
carry-in

Block sum and block carry-out
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

c in

c out

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 74

Elaboration on Conditional-Sum Addition

Two adjacent 4-bit blocks, forming an 8-bit block

1 1 1 1

8j + 3 . . . 8j

0 0

0 0 0 01 1

0 0 1 1

8j + 7 . . . 8j + 4

0 0

0 1 0 00 1

0 0 1 10

0 1 0 00

Left 4-bit block Right 4-bit block

Two versions
of sum bits

and carry-out
in 4-bit blocks

1 1 1 1

8j + 3 . . . 8j8j + 7 . . .

0

0 0 0 0 1

Two versions
of sum bits

and carry-out
in 8-bit block

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 75

7.5 Hybrid Designs and Optimizations

Fig. 7.12 A hybrid carry-lookahead/carry-select adder.

Lookahead Carry Generator

Carry-Select

c

g, p

in

MuxMuxMux

cout

0

1
0

1

0

1

Block

The most popular hybrid addition scheme:

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 76

Details of a 64-Bit Hybrid CLA/Select Adder

Fig. 6.13 [Lync92].

[48, 55]

[32, 47]

[16, 31]

[-1, 15]

[32, 39]

[16, 31]

[16, 23]
[-1, 15]

[-1, 55]

[-1, 47]

[-1, 31]

[-1, 39]

[-1, 31]

[-1, 23]

[48, 63]

[48, 59]

[48, 55]

[32, 47]

[32, 43]

[32, 39]

[16, 31]

[16, 27]
[16, 23]

[-1, 15]

[-1, 11]
[-1, 7]

[60, 63]

[56, 59]

[52, 55]

[48, 51]

[44, 47]

[40, 43]

[36, 39]

[32, 35]

[28, 31]

[24, 27]
[20, 23]

[16, 19]

[12, 15]

[8, 11]
[4, 7]

[0, 3]
[-1, -1]

Type-b
MCC

Type-b
MCC

Type-b
MCC

Type-b
MCC Type-b

MCC

c 56
c 48

c 40
c 32
c

24

c 16

c 8

c 0 c in

16
Type-a
MCC

blocks

Type-b*
MCC

Level 1 Level 2

Level 3

Legend: [i, j] represents the
pair of signals p and g [i, j] [i, j]

Each of the carries c8j, produced by the tree network above is used
to select one of the two versions of the sum in positions 8j to 8j + 7

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 77

Any Two Addition Schemes Can Be Combined

Other possibilities: hybrid carry-select/ripple-carry
hybrid ripple-carry/carry-select
. . .

Fig. 7.13 Example 48-bit adder with hybrid
ripple-carry/carry-lookahead design.

cccc

4-Bit Lookahead Carry Generator

c
12 8 4 016

16-bit Carry-Lookahead Adder

g
p [12,15]

[12,15] g
p [8,11]

[8,11] g
p [4,7]

[4,7] g
p [0,3]

[0,3]

c32c48

(with carry-out)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 78

Optimizations in Fast Adders

What looks best at the block diagram or gate level may
not be best when a circuit-level design is generated
(effects of wire length, signal loading, . . .)

Modern practice: Optimization at the transistor level

Variable-block carry-lookahead adder

Optimizations for average or peak power consumption

Timing-based optimizations (next slide)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 79

Optimizations Based on Signal Timing

So far, we have assumed that all input bits are presented at the same
time and all output bits are also needed simultaneously

Fig. 7.14 Example arrival times for operand bits
in the final fast adder of a tree multiplier [Oklo96].

15

10

 5

 0

Bit Position

Latency from inputs
in XOR-gate delays

0 20 40 60

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 80

Modern Low-Power Adders Implemented in CMOS

Zeydel, Kluter, Oklobdzija, ARITH-17, 2005

Cond’l-Sum Ling Three-Stage Ling

64-Bit Adder Designs

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 81

From: Harris, David, 2003
http://www.stanford.edu/class/ee371/handouts/harris03.pdf

Taxonomy of Parallel Prefix Networks

Fanout = 2f + 1

Logic
levels
= log2k + l

Wire tracks = 2t

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 82

7.6 Modular Two-Operand Adders
mod-2k: Ignore carry out of position k – 1

mod-(2k – 1): Use end-around carry because 2k = (2k – 1) + 1

Std. binary
0 0 . . . 0 0 0
0 0 . . . 0 0 1
0 0 . . . 0 1 0
.
.
.
0 1 . . . 1 1 1
1 0 . . . 0 0 0

Diminished-1
1 x . . . x x x
0 0 . . . 0 0 0
0 0 . . . 0 0 1
.
.
.
0 1 . . . 1 1 0
0 1 . . . 1 1 1

mod-(2k + 1): Residue representation needs k + 1 bits

Number
0
1
2
.
.
.
2k–1
2k

x + y  2k + 1 iff
(x–1) + (y–1) + 1  2k

(x + y) – 1 =
(x – 1) + (y – 1) +1

xy – 1 =
(x–1)(y–1)+(x–1)+(y–1)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 83

General Modular Adders

(x + y) mod m

if x + y  m
then x + y – m
else x + y Carry-Save Adder

–m
x y

Mux
Sign bit

(x + y) mod m

x + y – mx + y

Adder Adder

Fig. 7.15 Fast modular addition.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 84

8 Multioperand Addition

Chapter Goals

Learn methods for speeding up the
addition of several numbers (needed
for multiplication or inner-product)

Chapter Highlights

Running total kept in redundant form
Current total + Next number  New total
Deferred carry assimilation
Wallace/Dadda trees, parallel counters
Modular multioperand addition

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 85

Multioperand Addition: Topics

Topics in This Chapter

8.1 Using Two-Operand Adders

8.2 Carry-Save Adders

8.3 Wallace and Dadda Trees

8.4 Parallel Counters and Compressors

8.5 Adding Multiple Signed Numbers

8.6 Modular Multioperand Adders

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 86

8.1 Using Two-Operand Adders

Some applications of multioperand addition

 • • • • a
 • • • • x

 • • • • x a
 • • • • x a
 • • • • x a
 • • • • x a

• • • • • • • • p



0
1
2
3

0
1
2
3

2
2
2
2

 • • • • • • p
 • • • • • • p
 • • • • • • p
 • • • • • • p
 • • • • • • p
 • • • • • • p
 • • • • • • p

• • • • • • • • • s

(0)
(1)
(2)
(3)
(4)
(5)
(6)

Fig. 8.1 Multioperand addition problems for multiplication
or inner-product computation in dot notation.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 87

Serial Implementation with One Adder

Tserial-multi-add = O(n log(k + log n))

= O(n log k + n log log n)

Therefore, addition time grows superlinearly with n when k is fixed
and logarithmically with k for a given n

Adder
x

k bits

k + log n bits

 x
j=0

i–1

(i)

2 (j)

Partial sum
register

Fig. 8.2 Serial implementation of multioperand
addition with a single 2-operand adder.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 88

Pipelined Implementation for Higher Throughput

Fig. 8.3 Serial multioperand addition when each
adder is a 4-stage pipeline.

(i–10)(i–9)

Delay

Delays
Ready to
compute s (i–12)

x(i–1)

x(i)

x +(i) x(i–1)

x +(i–8) x + (i–11)x + x

(i–7)x +(i–6) x

(i–5)x +(i–4) x

Problem to think about: Ignoring start-up and other overheads, this
scheme achieves a speedup of 4 with 3 adders. How is this possible?

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 89

Parallel Implementation as Tree of Adders

Fig. 8.4 Adding 7 numbers in a binary tree of adders.

Adder Adder Adder

AdderAdder

Adder

k

k+1

k+2

k+3

k+2

k+1k+1

k kk kk k

Ttree-fast-multi-add = O(log k + log(k + 1) + . . . + log(k + log2n – 1))

= O(log n log k + log n log log n)

Ttree-ripple-multi-add= O(k + log n) [Justified on the next slide]

log2n
adder levels

n – 1
adders

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 90

Elaboration on Tree of Ripple-Carry Adders

Ttree-ripple-multi-add = O(k + log n)

Adder Adder Adder

AdderAdder

Adder

k

k+1

k+2

k+3

k+2

k+1k+1

k kk kk k

Fig. 8.5 Ripple-carry adders at levels i and i + 1 in
the tree of adders used for multi-operand addition.

. . .

 . . . Level i

Level i+1

HAFA

HAFA

t

t+1

tt+1t+1

t+1

t+1

t+2

t+2 t+2

t+2

t+3
t+2t+3

The absolute best latency that we can hope for is O(log k + log n)

There are kn data bits to process and using any set of computation
elements with constant fan-in, this requires O(log(kn)) time

We will see shortly that carry-save adders achieve this optimum time

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 91

8.2 Carry-Save Adders

FA FAFA FA FAFA

FA FAFA FA FAFA

Cut
Fig. 8.6 A ripple-carry
adder turns into a
carry-save adder if the
carries are saved
(stored) rather than
propagated.

Carry-propagate adder

Carry-save adder (CSA)
or
(3; 2)-counter
or
3-to-2 reduction circuit

c

in

c

out

Fig. 8.7 Carry-propagate adder
(CPA) and carry-save adder (CSA)
functions in dot notation.

Half-adder

 Full-adder

Fig. 8.8 Specifying full-
and half-adder blocks,
with their inputs and
outputs, in dot notation.

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 92

Multioperand Addition Using Carry-Save Adders

Fig. 8.9 Tree of carry-save adders
reducing seven numbers to two.

CSACSA

CSA

CSA

CSA

Tcarry-save-multi-add = O(tree height + TCPA)

= O(log n + log k)

Ccarry-save-multi-add = (n – 2)CCSA + CCPA

Carry-propagate adder

Fig. 8.13 Serial carry-save
addition using a single CSA.

CSA

Input

Sum register
Carry register

Output

CPA

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 93

Example Reduction by a CSA Tree

12 FAs

6 FAs

6 FAs

4 FAs + 1 HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.10 Addition of seven
6-bit numbers in dot notation.

8 7 6 5 4 3 2 1 0 Bit position

7 7 7 7 7 7 62 = 12 FAs
2 5 5 5 5 5 3 6 FAs

3 4 4 4 4 4 1 6 FAs

1 2 3 3 3 3 2 1 4 FAs + 1 HA

2 2 2 2 2 1 2 1 7-bit adder

--Carry-propagate adder--

1 1 1 1 1 1 1 1 1

Fig. 8.11 Representing a seven-
operand addition in tabular form.

A full-adder compacts 3 dots into 2
(compression ratio of 1.5)

A half-adder rearranges 2 dots
(no compression, but still useful)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 94

Width of Adders in a CSA Tree

Fig. 8.12 Adding seven k-
bit numbers and the
CSA/CPA widths required.

Due to the gradual
retirement (dropping out)
of some of the result bits,
CSA widths do not vary
much as we go down the
tree levels

k-bit CPA

k-bit CSA k-bit CSA

k-bit CSA

k-bit CSA

0k+2

The index pair
[i, j] means that
bit positions
from i up to j
are involved.

k-bit CSA

[0, k–1]
[0, k–1]

[0, k–1]
[0, k–1]

[0, k–1] [0, k–1]

[0, k–1]
[0, k–1]

[0, k–1]

[1, k] [1, k]

[1, k]

[1, k]

[0, k–1]

[2, k+1] [2, k+1]

[2, k+1]

[2, k+1] [1, k–1]

1

[1, k+1]

k+1 k k–1 1 3 2 4

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 95

8.3 Wallace and Dadda Trees

h(n) = 1 + h(2n/3)

n(h) = 3n(h – 1)/2

21.5h–1< n(h)  21.5h

. . .
inputsn

2 outputs

levelshh levels

Table 8.1 The maximum number n(h)
of inputs for an h-level CSA tree

––––––––––––––––––––––––––––––––––––
h n(h) h n(h) h n(h)
––––––––––––––––––––––––––––––––––––
0 2 7 28 14 474

1 3 8 42 15 711

2 4 9 63 16 1066

3 6 10 94 17 1599

4 9 11 141 18 2398

5 13 12 211 19 3597

6 19 13 316 20 5395
––––––––––––––––––––––––––––––––––––
n(h): Maximum number of inputs for h levels

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 96

Example Wallace and Dadda Reduction Trees

6 FAs

 11 FAs

7 FAs

4 FAs + 1 HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.14 Adding seven 6-bit
numbers using Dadda’s strategy.

12 FAs

6 FAs

6 FAs

4 FAs + 1 HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.10 Addition of seven
6-bit numbers in dot notation.

Wallace tree:
Reduce the number
of operands at the
earliest possible
opportunity

Dadda tree:
Postpone the
reduction to the
extent possible
without causing
added delay

h n(h)
2 4
3 6
4 9
5 13
6 19

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 97

A Small Optimization in Reduction Trees

6 FAs

 11 FAs

7 FAs

4 FAs + 1 HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.14 Adding seven 6-bit
numbers using Dadda’s strategy.

Fig. 8.15
Adding seven
6-bit numbers
by taking
advantage of
the final
adder’s carry-
in.

6 FAs

 11 FAs

6 FAs + 1 HA

3 FAs + 2 HA

7-bit adder

Total cost = 7-bit adder + 26 FAs + 3 HA

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 98

8.4 Parallel Counters and Compressors

Fig. 8.16 A 10-input parallel counter
also known as a (10; 4)-counter.

0

1 0 1 0 1 0

2 1 1 0

1

0

2

13 2

3-bit
ripple-carry
adder

FA FA

HA

HA

FA

FAFAFA1-bit full-adder = (3; 2)-counter

Circuit reducing 7 bits to their
3-bit sum = (7; 3)-counter

Circuit reducing n bits to their
log2(n + 1)-bit sum

= (n; log2(n+1))-counter

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 99

Recursive Construction of Parallel Counters

An n-input parallel counting
network (PCN) can be built from
two n/2-bit parallel counting
networks and a log2 n-bit adder

PCN(15) PCN(10)

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 100

Accumulative Parallel Counters

Possible application:
Compare Hamming weight
of a vector to a constant

True generalization of
sequential counters

FA FA FA FA

FA FA FA

FA FA

FAFA

FA FA

FAFA

q-bit
initial

count x

n increment signals vi, 2q–1 < n  2q

q-bit tally of up to 2q – 1
of the increment signals

Ignore, or use
for decision

q-bit final count y

cq

n
increment
signals vi

q-bit final count y = x + Svi

Parallel
incrementer

q-bit initial
count x

Count
register

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 101

Up/Down Parallel Counters

Generalization of
up/down counters

Possible application:
Compare Hamming weights
of two input vectors

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 102

8.5 Generalized Parallel Counters

(5, 5; 4)-counter Fig. 8.17 Dot notation for a (5, 5; 4)-counter
and the use of such counters for reducing five
numbers to two numbers.

. . .

Multicolumn
reduction

(2, 3; 3)-counter

Unequal
columns

Gen. parallel counter = Parallel compressor

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 103

Column Compression: A Simple Example

Adding eight 6-digit decimal numbers:

Add digits in each column separately and write
down the 2-digit column sum under the column,
with its 10s digit shifted left by one position

Question:
What is the maximum number of decimal
values that can be added in this way
(that is, with column compression
leading to two decimal numbers)?

9 5 2 4 9 8
7 8 4 0 6 7
4 5 1 6 7 4
9 0 5 7 2 4
6 9 5 1 0 5
5 9 6 2 3 0
0 2 9 1 3 6
8 2 7 2 1 1

5
3
1

3
3

2
9

3
0

4

5 2 4 1 6 4 5

8
4

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 104

A General Strategy for Column Compression

n + y1 + y2 + y3 + . . .  3 + 2y1 + 4y2 + 8y3 + . . .

n – 3  y1 + 3y2 + 7y3 + . . .

. . . i – 3 i – 2 i – 1 i

n inputs

To i + 1

To i + 2

To i + 3

One circuit slice

y 1

y 2

y 3

y 1

y 2

y 3

(n; 2)-counters

Example: Design a bit-slice of an (11; 2)-counter
Solution: Let’s limit transfers to two stages. Then, 8  y1 + 3y2

Possible choices include y1 = 5, y2 = 1 or y1 = y2 = 2

Fig. 8.18 Schematic
diagram of an
(n; 2)-counter built of
identical circuit slices

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 105

(4; 2)-Counters

We will discuss (4; 2)-counters in greater detail in Section 11.2
(see, e.g., Fig. 11.5 for an efficient realization)

W

Multicolumn
4-to-2
reduction

[0, 5] = {0, 1} + {0, 2} + {0, 2}

4 dots
and the
incoming
transfer

Outgoing
transfer

Sum and
carry
outputs

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 106

8.5 Adding Multiple Signed Numbers

---------- Extended positions ---------- Sign Magnitude positions ---------

xk–1 xk–1 xk–1 xk–1 xk–1 xk–1 xk–2 xk–3 xk–4 . . .
yk–1 yk–1 yk–1 yk–1 yk–1 yk–1 yk–2 yk–3 yk–4 . . .
zk–1 zk–1 zk–1 zk–1 zk–1 zk–1 zk–2 zk–3 zk–4 . . .

(a) Using sign extension

---------- Extended positions ---------- Sign Magnitude positions ---------

1 1 1 1 0 xk–1' xk–2 xk–3 xk–4 . . .
yk–1' yk–2 yk–3 yk–4 . . .
zk–1' zk–2 zk–3 zk–4 . . .
1

(b) Using negatively weighted bits

Fig. 8.19 Adding three 2's-complement numbers.

–b = (1 – b) + 1 – 2

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 107

8.6 Modular Multioperand Adders

Fig. 8.20 Modular carry-save addition with special moduli.

(a) m = 2k

Drop

(b) m = 2k – 1 (c) m = 2k + 1

Invert

Apr. 2020 Computer Arithmetic, Addition/Subtraction Slide 108

Modular Reduction with Pseudoresidues

Fig. 8.21 Modulo-21
reduction of 6 numbers
taking advantage of the
fact that 64 = 1 mod 21
and using 6-bit
pseudoresidues.

Final pseudoresidue (to be reduced)

Six inputs
in the range

[0, 20]

Pseudoresidues
in the range

[0, 63]

Add with
end-around carry

