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17  Malfunction Diagnosis
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17.1  Self-Diagnosis in Subsystems
Layered approach:

A small part of a unit is tested, which then forms a trusted kernel
The trusted kernel is used to test the next layer of subsystems
Region of trust is gradually extended, until it covers the entire unit

One approach to go/no-go testing based on self-diagnosis
Tester supplies a random seed to the built-in test routine
The test routine steps through a long computation that exercises 

nearly all parts of the system, producing a final result
The tester compares the final result to the expected result

Ideally, if a properly designed self-test routine returns a 32-bit value, 
the value will match the expected result despite the presence of faults 
with probability 2–32  10–9.6  test coverage = 1 – 10–9.6

Kernel
Self-diagnosis initiation Unit A

Unit B

Unit C
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17.2  Malfunction Diagnosis Model
Diagnosis of one unit by another

The tester sends a self-diagnosis request, expecting a response
The unit under test eventually sends some results to the tester
The tester interprets the results received and issues a verdict

Testing capabilities 
among units 
is represented by 
a directed graphi

Tester

j

Testee

Test capability

I think j is okay
(passed test)

0

i

Tester

j

Testee

Test capability

I think j is bad
(failed test}

1

The verdict of unit i about unit j is denoted by Dij  {0, 1}
All the diagnosis verdicts constitute the n  n diagnosis matrix D
The diagnosis matrix D is usually quite sparse 

M0

M1M3

M2
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More on Terminology and Assumptions
Malfunction diagnosis in our terminology corresponds to 
“system-level fault diagnosis” in the literature

The qualification “system-level” implies that the diagnosable 
units are subsystems with significant computational capabilities 
(as opposed to gates or other low-level components)

We do not use the entries on the main diagonal of the 
diagnosis matrix D (a unit does not judge itself) 
and we usually do not let two units test one another

A good unit always issues a correct verdict about another unit 
(i.e., tests have perfect coverage), but the verdict of a bad unit 
is arbitrary and cannot be trusted

This is known as the PMC model (Preparata, Metze, & Chien)

We consider the PMC model only, but other models also exist
(e.g., in comparison-based models, verdicts are derived from 
comparing the outputs of unit pairs)

-- D01    -- --
-- -- D12   D13

D20   -- -- --
D30    -- D32    --
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17.3  One-Step Diagnosability
Consider this system, with the test outcomes shown

We say that the system above is 1-step 1-diagnosable 
(we can correctly diagnose up to 1 malfunctioning unit 
in a single round of tests)

M0

M1M3

M2

D01

D12

D30

D23

D20

D13

Diagnosis syndromes

Malfn D01 D12 D13 D20 D30 D32

None 0 0 0 0 0 0
M0 0/1 0 0 1 1 0
M1 1 0/1 0/1 0 0 0
M2 0 1 0 0/1 0 1
M3 0 0 1 0 0/1 0/1
M0,M1 0/1 0/1 0/1 1 1 0
M1,M2 1 0/1 0/1 0/1 0 1

Syndrome dictionary:

0  0  0  0  0  0   OK
0  0  0  1  1  0    M0
0  0  1  0  0  0    M3
0  0  1  0  0  1    M3
0  0  1  0  1  0    M3
0  0  1  0  1  1    M3
0  1  0  0  0  1    M2
0  1  0  1  0  1    M2
1  0  0  0  0  0    M1
1  0  0  1  1  0    M0
1  0  1  0  0  0    M1
1  1  0  0  0  0    M1
1  1  1  0  0  0    M1
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Requirements for One-Step t-Diagnosability

An n-unit system is 1-step t-diagnosable if the 
diagnosis syndromes for conditions involving 
up to t malfunctions are all distinct

Necessary conditions:

1. n  2t + 1; i.e., a majority of units must be good

2.  Each unit must be tested by at least t other units

M0

M1M3

M2

D01

D12

D30

D23

D20

D13

Sufficient condition:

An n-unit system in which no two units test 
one another is 1-step t-diagnosable iff 
each unit is tested by at least t other units

The system above, 
has each unit tested 
by 1 or 2 units; it is 
1-step 1-diagnosable

It cannot be made 
1-step 2-diagnosable 
via adding more test 
connections

So, each unit being tested by t other units 
is both necessary and sufficient
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Analogy: “Liars and Truth-Tellers” Puzzles

You visit an island whose inhabitants are from two tribes
Members of one tribe (“liars”) consistently lie
Members of the other tribe (“truth-tellers”) always tell the truth

You encounter a person on the island
What single yes/no question would you ask him to determine his tribe?

More generally, how can you derive correct conclusions from info 
provided by members of these tribes, without knowing their tribes?

How would the problem change if the two tribes were “truth-tellers” 
and “randoms” (whose members give you random answers)

M0

M1M3

M2

0

0

x

x

0

1

In the context of malfunction diagnosis:
Truth-tellers are akin to good modules
Randoms correspond to bad modules
You do not know whether a module is good or bad
Module “opinions” about other modules must be 

used to derive correct diagnoses
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1-Step Diagnosability: Analysis & Synthesis

A degree-t directed chordal ring, in which node i tests the t nodes 
i + 1, i + 2, . . . , i + t (all mod n) has the required property

Synthesis problem:

Specify the test links (connection assignment) that makes an n-unit 
system 1-step t-diagnosable; use as few test links as possible

Analysis problems:

1. Given a directed graph defining the test links, find the largest
value of t for which the system is 1-step t-diagnosable
(easy if no two units test one another; fairly difficult, otherwise)

2. Given a directed graph and its associated test outcomes, identify
all the malfunctioning units, assuming there are no more than t

There is a vast amount of published work dealing with Problem 1

Problem 2 arises when we want to repair or reconfigure a system 
using test outcomes (solved via table lookup or analytical methods)
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An n-node, 1-Step t-Diagnosable System

A degree-t directed chordal ring, in which node i tests the t nodes 
i + 1, i + 2, . . . , i + t (all mod n) has the required property

n = 7
t = 3
1-step 3-diagnosable

Node i

Node i + 1

Node i + 2Node i + 3
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An O(n3)-Step Diagnosis Algorithm

Input: The diagnosis matrix
Output: Every unit labeled G or B
while some unit remains unlabeled repeat

choose an unlabeled unit and label it G or B
use labeled units to label other units
if the new label leads to a contradiction
then backtrack
endif

endwhile

M0

M1M3

M2

1

0

1

0

1

0

1-step 1-diagnosable system

M0 is G (arbitrary choice)
M1 is B
M2 is B (contradiction, 2 Bs)

M0 is B (change label)
M1 is G (arbitrary choice)
M2 is G
M3 is G More efficient algorithms exist

-- D01    -- --
-- -- D12   D13

D20   -- -- --
D30    -- D32    --
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An O(n2.5)-Step Diagnosis Algorithm

From the original testing graph, derive an L-graph
The L-graph has the same nodes
There is a link from node i to node j in the L-graph 

iff node i can be assumed to be malfunctioning 
when node j is known to be good

M0

M1M3

M2

1

0

1

0

1

0

Theorem: The unique minimal vertex cover of the 
L-graph is the set of t or fewer malfunctioning units

Testing graph 
and test results

Mi Mj

Mj good  Mi malfunctioning

Definition – Vertex cover of a graph: 
A subset of vertices that contains at least 
one of the two endpoints of each edge 

M0

M1M3

M2

Corresponding L-graph
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17.4  Sequential Diagnosability
An n-unit system is sequentially t-diagnosable if 
the diagnosis syndromes when there are t or fewer 
malfunctions are such that they always identify, 
unambiguously, at least one malfunctioning unit

Necessary condition:

n  2t + 1; i.e., a majority of units must be good

This is useful because some systems that are not 
1-step t-diagnosable are sequentially t-diagnosable, 
and they can be restored by removing the identified 
malfunctioning unit(s) and repeating the process

This system is 
sequentially 
2-diagnosable

In one step, 
it is only 
1-diagnosableSequential diagnosability of directed rings:

An n-node directed ring is sequentially t-diagnosable 
for any t that satisfies  (t2 – 1)/4 + t + 2  n

M0

M1M4

M2M3
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Sequential Diagnosability of Directed Rings

n = 7
1-step 1-diagnosable
Seq. 3-diagnosable

An n-node directed ring is sequentially t-diagnosable 
for any t that satisfies  (t2 – 1)/4 + t + 2  n

(32 – 1)/4 + 3 + 2  7 
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Syndromes for M0 bad:

0  0  0  0  1
0  0  0  1  0
0  0  0  1  1
0  0  1  0  1
0  0  1  1  1
0  1  0  0  1
0  1  1  0  1
1  0  0  0  1
1  0  0  1  0
1  0  0  1  1
1  0  1  0  1
1  0  1  1  1
1  1  0  0  1
1  1  1  0  1

Sequential 2-Diagnosability Example
Consider this system, with the test outcomes shown

The system above is sequentially 2-diagnosable 
(we can correctly diagnose up to two 
malfunctioning units, but only one at a time)

Malfunction syndromes (x means 0 or 1)

Malfn D01 D12 D23 D34 D40

M0 x 0 0 0 1
M1 1 x 0 0 0
M2 0 1 x 0 0
M3 0 0 1 x 0
M4 0 0 0 1 x
M0,M1 x x 0 0 1
M0,M2 x 1 x 0 1
M0,M3 x 0 1 x 1
M0,M4 x 0 0 1 x

M0

M1M4

M2M3

D01

D12D34

D23

D40
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Sequential Diagnosability: Analysis & Synthesis

An n-node ring, with n  2t + 1, with added test links from 2t – 2 
other nodes to node 0 (besides node n – 1 which already tests it) 
has the required property

Synthesis problem:

Specify the test links (connection assignment) that makes an n-unit 
system 1-step t-diagnosable; use as few test links as possible

Analysis problems:

1. Given a directed graph defining the test links, find the largest
value of t for which the system is sequentially t-diagnosable

2. Given a directed graph and its associated test outcomes, 
identify at least one malfunctioning unit (preferably more), 
assuming there are no more than t

These problems have been extensively studied
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17.5  Diagnostic Accuracy and Resolution
An n-unit system is 1-step t/s-diagnosable if a set of no more than t
malfunctioning units can always be identified to within a set of s units, 
where s  t

An n-unit system is sequentially t/r-diagnosable if from a set of up to t
malfunctioning units, r can be identified in one step, where r < t

The special case of 1-step t/t-diagnosability has been widely studied

Given the values of t and s, the problem of deciding whether a system 
is t/s-diagnosable is co-NP-complete

However, there exist efficient, polynomial-time, algorithms to find the 
largest integer t such that the system is t/t- or t/(t + 1)-diagnosable

Safe diagnosability: Up to t  malfunctions are correctly diagnosed 
and up to u detected (no danger of incorrect diagnosis for up to u
malfunctions; reminiscent of combo error-correcting/detecting codes)
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17.6  Other Topics in Diagnosability

(a) 2D torus (b) 4D hypercube 

(c) Chordal ring (d) Ring of rings  

Diagnosability results 
have been published 
for a variety of 
regular 
interconnection 
networks
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What Comes after Malfunction Diagnosis?

When one or more malfunctioning units have been identified, 
the system must be reconfigured to allow it to isolate those units 
and to function without the unavailable resources

In a bus-based system, we isolate malfunctioning units, remove them, 
and plug in good modules (standby spares or repaired ones)

In a system having point-to-point connectivity, we reconfigure by 
rearranging the connections in order to switch in (shared) spares, 
using methods similar to those developed for defect circumvention

Reconfiguration may involve:

1. Recovering state info from removed modules or back-up storage
2. Reassigning tasks and reallocating data
3. Restarting the computation from last checkpoint or from scratch
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18  Malfunction Tolerance
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S

D

18.1  System-Level Reconfiguration

Overcoming the effect of link malfunctions requires the availability of 
multiple paths from each source to every possible destination

A system consists of modular resources (processors, memory banks, 
disk storage, . . . ) and interconnects

Redundant resources can mitigate the effect of module malfunctions

A main challenge in reconfiguration is dealing with interconnects

Assumption: Module/interconnect malfunctions are promptly diagnosed

In graph-theoretic terms, 
we need “edge-disjoint” paths

Existence of k edge-disjoint 
paths between two nodes 
provides the means for 
tolerating k – 1 link malfunctions

This particular 
interconnection 
scheme (torus) 
is 4-connected 
and tolerates 3 
link/node losses 
without becoming 
disconnected
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Reconfiguration Switching, Revisited

Spare 
Row

Spare Column

Question: How do we know which 
cells/nodes must be bypassed?

Must devise a scheme in which 
healthy nodes set the switches
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Reconfiguration via Programmable Connections

Interconnection 
switch with 4 ports 
(horizontal lines) 
and 3 channels
(vertical lines)

Each port can be 
connected to 2 of 
the 3 channels

1

1

2

2

If each module port were connected to every channel, the maximum 
flexibility would result (leads to complex hardware & control, though)

The challenge lies in using more limited connections effectively
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18.2  Isolating a Malfunctioning Unit
Isolation is needed to prevent malfunctioning units from interfering with 
the operation of the remaining good units

Slide to be completed with other examples

Notion of “bus guardian” from the SIFT system

From module To bus

Permission 1

Permission 2
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Bus-Based Reconfiguration

Failed units can be isolated 
from the buses

No single bus failure can 
isolate a module from 
the rest of the system

The vertical channels may be viewed as buses and the 
heavy dots as controllable bus connections, making this 
method applicable to fault-tolerant multiprocessors

Read / Write 
data

Write enable

Q
FF

Write path

Read path

Connection FF

Bus

If we have extra buses, then 
faults in the bus connection 
logic can be tolerated by 
avoiding the particular bus

For reliability analysis, lump the 
failure rate of reconfiguration logic 
with that of its associated bus
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Malfunction-Stop Modules

Malfunction tolerance would be much easier if modules simply stopped 
functioning, rather than engage in arbitrary behavior

Unpredictable (Byzantine) malfunctions are notoriously hard to handle

Assuming the availability of a reliable stable storage along with its 
controlling s-process and (approximately) synchronized clocks, 
a k-malfunction-stop module can be implemented from k + 1 units

Operation of s-process to decide whether the module has stopped:

R := bag of received requests with appropriate timestamps
if |R| = k+1  all requests identical and from different sources  stop
then if request is a write 

then perform the write operation in stable storage
else if request is a read, send value to all processes

else set variable stop in stable storage to TRUE
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18.3  Data and State Recovery
Log-based recovery is performed via undo/redo:

Undoing the effects of incomplete transactions 
Redoing transactions whose effects are not reflected in stable storage

Logs maintain redundant info (in stable storage, of course) for the sole 
purpose of recovery from malfunctions

The write-ahead log (WAL) protocol requires that a transaction:

Write an undo-log entry before it overwrites an object in stable storage 
with uncommitted updates 

Write both undo-log and redo-log entries before committing an update to 
an object in stable storage

Not safe to write logs after overwriting or committing

Research is being done at Microsoft and elsewhere to allow querying a 
database on its state at any desired time instant in the past
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18.4  Regular Arrays of Modules
Regularity refers to the interconnection pattern, not physical layout 
(the latter may be the case for on-chip systems)

Many of the methods of malfunction tolerance in regular arrays are 
similar to those used for circumventing defects to improve yield
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Row/Column Bypassing in 2D Arrays
Similar mechanisms 
needed for northward 
links in columns and 
for the eastward and 
westward links in rows

Row i

Bypass 
row i

0    1

0    1

Question: What types of mechanisms do we need at the edges 
of this array to allow the row and column edge connections to be 
directed to the appropriate (nonbypassed) rows and columns?

0    1

1    0

0

1

1

0

0    1

0    1

0    1

0    1

Bypass 
row i – 1
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Choosing the Rows/Columns to Bypass

In the adjacent diagram, can we 
choose up to 2 rows and 2 columns so 
that they contain all the bad nodes?

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

Spare 
columns

Spare 
rows

Convert to graph problem (Kuo-Fuchs):

Form bipartite 
graph, with nodes 
corresponding 
to bad rows 
and columns

Find a cover for 
the bipartite graph 
(set of nodes that 
touch every edge)

Question: In a large array, with r spare rows and c spare 
columns, what is the smallest number of bad nodes that 
cannot be reconfigured around with row/column bypassing?

0

2

3

6

Rows 
with 

faults

0

1

3

5

Columns 
with

faults

7

0

3

1

7

Rows
with bad
nodes

Columns
with bad
nodes
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Switch Modules in FPGAs

Interconnection switch 
with 8 ports and four 
connection choices for 
each port:

0 – No connection
1 – Straight through
2 – Right turn
3 – Left turn

8 control bits (why?)

1

2

1

2

3

3
4

4

5

58

8

7

6

6
7
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An Array Reconfiguration Scheme

Three-state switch
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One-Track and Two-Track Switching Schemes

One-track switching model Two-track switching model

Source: S.-Y. Kung, S.-N. Jean, C.-W. Chang, IEEE TC, Vol. 38, pp. 501-514, April 1989
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18.5  Low-Redundancy Sparing

Shared
spare

Sharing of spares among 
clusters of modules reduces 
the hardware overhead, 
but has two drawbacks:

a. More complex switching

b. Nonuniformity, as spares 
will need more ports than 
the primary modules

In this example, a spare 
module needs 8 ports, 
given that the 4 modules 
it can replace collectively 
have 8 neighbors
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Mesh with a Single Spare

Reconfigurable 4  4 mesh with one spare 

The following example scheme uses only one spare processor 
for a 2D mesh (no increase in node degree), yet it allows system 
reconfiguration to circumvent any malfunctioning processor, 
replacing it with the spare via relabeling of the nodes

0     1     2     3

4     5     6     7

8     9    10    11

12    13    14    15

11    12    13    14

15           0     1

 2     3     4     5

 6     7     8     9

10Spare

Malfn.
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18.6  Malfunction-Tolerant Scheduling
Scheduling problems are hard even when resource requirements and 
availability are both fixed and known a priori

When resource availability is fixed, the quality of a schedule is judged by:
(1) Completion times (2) Meeting of deadlines

Resource availability
Fixed Probabilistic

Resource 
requirements

Fixed

Probabilistic

When resources fluctuate, deadlines may be met probabilistically or
accuracy/completeness may be traded off for timeliness
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19  Standby Redundancy
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“We back up our data on sticky notes
because sticky notes never crash.”
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19.1  Malfunction Detection
No amount of spare resources is useful if the malfunctioning of the active 
module is not detected quickly

Detection options

Periodic testing: Scheduled and idle-time testing of units

Self-checking design: Duplication is a simple, but costly, example

Malfunction-stop/silent design: Eventually detectable by a watchdog

Coding: Particularly suitable for memory and storage modules

Monitoring: Ad hoc, application- and system-dependent methods
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Coding of Control Signals

Encode the control signals using a separable code (e.g., Berger code)
Either check in every cycle, or form a signature over multiple cycles

Microprogram 
memory or PLA 

op (from 
instruction  
register) Control signals to data path 

Address 
 1 

Incr 

MicroPC 

Data 

 0 

Sequence 
control 

 0 

 1 

 2 

 3 

Dispatch 
table 1 

Dispatch 
table 2 

Microinstruction register 

In a microprogrammed control unit, store the microinstruction address 
and compare against MicroPC contents to detect sequencing errors

Check 
bits

Address
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Monitoring via Watchdog Timers

Monitor or watchdog is a hardware unit that 
checks on the activities of a function unit

Watchdog is usually much simpler, and 
thus more reliable, than the unit it monitors

Function
unit

Monitor or 
watchdog

Watchdog timer counts down, beginning from a preset number
It expects to be preset periodically by the unit that it monitors
If the count reaches 0, the watchdog timer raises an exception flag

Watchdog timer can also help in monitoring unit interactions
When one unit sends a request or message, it sets a watchdog timer
If no response arrives within the allotted time, malfunction is assumed

Watchdog timer obviously does not detect all problems
Verifies monitored unit’s “liveness” (good with malfunction-silent units)
Often used in conjunction with other tolerance/recovery methods
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Activity Monitor

Watchdog unit monitors events occurring in, 
and activities performed by, the function unit 
(e.g., event frequency and relative timing)

Function
unit

Activity 
monitor

Observed behavior is compared against expected behavior
(similar methods used by law enforcement in tracking suspects)

The type of monitoring is highly application-dependent

Example: Monitoring of program or microprogram sequencing
Activity monitor receives contents of (micro)program counter
If new value is not incremented version of old value, then it deduces 
that the instruction just executed was a branch or jump

Example: Matching assertions/firings of control signals or units 
against expectations for the instructions executed
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Control-Flow Watchdog

Watchdog unit monitors the instructions 
executed and their addresses 
(for example, by snooping on the bus)

Instruction
sequencer

Control-flow 
Watchdog

The watchdog unit may have certain info about program behavior
Control flow graph (valid branches and procedure calls)
Signatures of branch-free intervals (consecutive instructions)
Valid memory addresses and required access privileges

In an application-specific system, watchdog info is preloaded in it
For a GP system, compiler can insert special watchdog directives

Overheads of control-flow checking
Wider memory due to the need for tag bits to distinguish word types
Additional memory to store signatures and other watchdog info
Stolen processor/bus cycles by the watchdog unit
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19.2  Cold and Hot Spare Units
Cold spare: Inactive, perhaps even powered down

Hot spare: Active, ready to take over in short order

Warm spare: Intermediate between hot and cold (perhaps powered up, 
but not up to date with respect to the state of the active module)
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19.3  Conditioning of Spares
Conditioning refers to preparing a spare module to take the place of an 
active module
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19.4  Switching over to Spares
Switching mechanisms for standby sparing have a lot in common with 
those used for defect circumvention, particularly when spares are shared 
among multiple identical units
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19.5  Self-Repairing Systems
Self-repair is the ability of a system to go from one working configuration 
to another (after a detected malfunction), without human intervention

Autonomic systems, autonomic computing: Self-management in the face 
of changes in resources and application requirements
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19.6  Modeling of Self-Repair
Both combinational and state-space models to be discussed
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20  Robust Parallel Processing
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Performance tuning technique 
number 39: Reading in parallel
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Robust Parallel Processing

Resilient Algorithms
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20.1  A Graph-Theoretic Framework
In robust parallel processing, we don’t make a distinction between 
ordinary resources and spare resources
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Parallel processors have redundancy built in, because they possess:

— Multiple processing resources

— Multiple alternate paths for message transmission between nodes

* Many of the ideas and figures in this chapter are from the author’s textbook on parallel processing
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Interprocessor Communication Architectures
Consider systems built from (homo/heterogeneous) processing nodes
Such a parallel processing system can be modeled by a (di)graph

Communication architecture is 
Characterized by:

— Type of routing 
(packet switching vs.
wormhole or cut-through)

— Protocols supported  
(e.g., whether nodes have 
buffer storage for messages)

6D (64-node)
hypercube

These details don’t matter at the 
level of graph representation, 
which models only connectivity issues
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Attributes of Interconnection Networks

Key attributes of an interconnection network include:

Network size, p: number of processors or nodes 

Node degree, d: (maximum) number of links at a node 

Diameter, D: maximal shortest distance between two nodes 

Average internode distance, D: indicator of average message latency 

Bisection (band)width, B: indicator of random communication bandwidth

Composite attributes, such as d  D: measure of cost-effectiveness

Node symmetry: all nodes have the same view of the network 

Edge symmetry: edges are interchangeable via relabeling

Hamiltonicity: the p-node ring (cycle) can be embedded in the graph

Given that processing nodes are rather standard, a parallel processing 
system is often characterized by its interconnection architecture
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The Sea of Direct Interconnection Networks

A wide variety of direct 
interconnection networks 
have been proposed for, or 
used in, parallel computers

They differ in topological, 
performance, robustness, 
and realizability attributes.
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Robustness Attributes of Networks

Connectivity k: Minimum number of disjoint 
(parallel) paths between pairs of nodes

Malfunction diameter: Increased diameter 
due to node malfunctions

Wide diameter: Length of the longest of the 
disjoint (parallel) paths

Malfunction Hamiltonicity: Embedding of 
Hamiltonian cycle after malfunctions

S

D

In this discussion, we are effectively merging ordinary system resources 
with spares (no node or link is specifically designated as spare)

All units are simultaneously active and contribute to system performance, 
which, under no malfunction, is greater than the needed amount
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20.2  Connectivity and Parallel Paths
Connectivity k  minimum node degree dmin

If equality holds, the network is optimally/maximally malfunction-tolerant
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Symmetric networks tend to be maximally malfunction-tolerant

Finding the connectivity of a network not always an easy task

Many papers in the literature on connectivity of various networks
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20.3  Dilated Internode Distances
Some internode distances increase when nodes malfunction
Network diameter may also increase
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Malfunction diameter: Worst case diameter for k – 1 malfunctions

Wide diameter: Maximum, over all node pairs, of the longest path in the 
best set of k parallel paths (quite difficult to compute)
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Malfunction diameter of the q-cube is q + 1

Malfunction Diameter of the Hypercube
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Rich connectivity 
provides many 
alternate paths for 
message routing



Nov. 2020 Part V – Malfunctions: Architectural Anomalies Slide 66

20.4  Malfunction-Tolerant Routing
1. Malfunctioning units known globally (easier case; precompute path)
2. Only local malfunction info available (distributed routing decisions)
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Distributed routing decisions are usually preferable, but they may lead to:

Suboptimal paths: Messages not going through shortest paths possible

Deadlocks: Messages interfering with and circularly waiting for each other 

Livelocks: Wandering messages that never reach their destinations
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Adaptive Routing in a Hypercube

There are up to q node-disjoint and edge-disjoint shortest paths between 
any node pairs in a q-cube

Thus, one can route messages around congested or bad nodes/links 

A useful notion for designing adaptive wormhole routing algorithms is 
that of virtual communication networks

Each of the two subnetworks 
in Fig. 14.11 is acyclic

Hence, any routing scheme 
that begins by using links in 
subnet 0, at some point 
switches the path to subnet 1, 
and from then on remains in 
subnet 1, is deadlock-free
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[Fig. 14.11]  Partitioning a 3-cube into 
subnetworks for deadlock-free routing 
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Adaptive Routing in a Mesh Network
With no malfunction, row-first or column-first routing is simple & efficient

Hundreds of papers on adaptive routing in mesh (and torus) networks

The approaches differ in:
Assumptions about malfunction types and clustering
Type of routing scheme (point-to-point or wormhole)
Optimality of routing (shortest path)
Details of routing algorithm
Global/local/hybrid info on malfunctions

Source

Dest’n
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Routing with Nonconvex Malfunction Regions

Nonconvex regions of 
malfunctioning units 
make it more difficult to 
avoid deadlocks

In the figure, 0/1 within nodes 
represent a flag that is set to 
help with routing decisions

Figure from [Chen01]

Number of malfunctioning 
units has been grossly 
exaggerated to demonstrate 
generality and power of the 
proposed routing method
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20.5  Embeddings and Emulations
Embedding is a mapping of one network onto another 
Emulation is one network behaving as another
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A good embedding can be used to achieve an efficient emulation

Dilation: Longest path onto which an edge is mapped (routing slowdown)
Congestion: Max number of edges mapped onto one edge (contention slowdown)
Load factor: Max number of nodes mapped onto one node (processing slowdown)
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Mesh/Torus Embedding in a Hypercube 

A mesh or torus is a subgraph of the hypercube of the same size
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[Fig. 13.5]  The 4  4 mesh/torus is a subgraph of the 4-cube

Thus, a hypercube may be viewed as a robust mesh/torus
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20.6  Robust Multistage Networks
Multistage networks use switches to interconnect nodes instead of 
providing direct links between them

Examples of butterfly network and Benes network (back-to-back 
butterflies) shown above
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The Sea of Indirect Interconnection Networks

Numerous indirect  or 
multistage interconnection 
networks (MINs) have been 
proposed for, or used in, 
parallel computers

They differ in topological, 
performance, robustness, 
and realizability attributes
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Bypassing of Malfunctioning Switches

[Fig. 19.9] Regular butterfly and extra-stage butterfly networks 
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