
Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 1

Part II
Instruction-Set Architecture

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 2

About This Presentation
This presentation is intended to support the use of the textbook
Computer Architecture: From Microprocessors to Supercomputers,
Oxford University Press, 2005, ISBN 0-19-515455-X. It is updated
regularly by the author as part of his teaching of the upper-division
course ECE 154, Introduction to Computer Architecture, at the
University of California, Santa Barbara. Instructors can use these
slides freely in classroom teaching and for other educational
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised Revised
First June 2003 July 2004 June 2005 Mar. 2006 Jan. 2007

Jan. 2008 Jan. 2009 Jan. 2011 Oct. 2014

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 3

A Few Words About Where We Are Headed
Performance = 1 / Execution time simplified to 1 / CPU execution time

CPU execution time = Instructions  CPI / (Clock rate)

Performance = Clock rate / (Instructions  CPI)

Define an instruction set;
make it simple enough
to require a small number
of cycles and allow high
clock rate, but not so
simple that we need many
instructions, even for very
simple tasks (Chap 5-8)

Design hardware
for CPI = 1; seek
improvements with
CPI >1 (Chap 13-14)

Design ALU for
arithmetic & logic
ops (Chap 9-12)

Try to achieve CPI = 1
with clock that is as
high as that for CPI > 1
designs; is CPI < 1
feasible? (Chap 15-16)

Design memory & I/O
structures to support
ultrahigh-speed CPUs

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 4

Strategies for Speeding Up Instruction Execution
Performance = 1 / Execution time simplified to 1 / CPU execution time

CPU execution time = Instructions  CPI / (Clock rate)

Performance = Clock rate / (Instructions  CPI)

Items that take longest to
inspect dictate the speed
of the assembly line

Assembly line analogy

Single-cycle
(CPI = 1)

Multicycle
(CPI > 1)

Parallel processing
or pipelining

Faster

Faster

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 5

II Instruction Set Architecture

Topics in This Part
Chapter 5 Instructions and Addressing
Chapter 6 Procedures and Data
Chapter 7 Assembly Language Programs
Chapter 8 Instruction Set Variations

Introduce machine “words” and its “vocabulary,” learning:
• A simple, yet realistic and useful instruction set
• Machine language programs; how they are executed
• RISC vs CISC instruction-set design philosophy

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 6

5 Instructions and Addressing

Topics in This Chapter

5.1 Abstract View of Hardware

5.2 Instruction Formats

5.3 Simple Arithmetic /Logic Instructions

5.4 Load and Store Instructions

5.5 Jump and Branch Instructions

5.6 Addressing Modes

First of two chapters on the instruction set of MiniMIPS:
• Required for hardware concepts in later chapters
• Not aiming for proficiency in assembler programming

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 7

5.1 Abstract View of Hardware

Figure 5.1 Memory and processing subsystems for MiniMIPS.

Memory
up to 2 words 30

Loc 0 Loc 4 Loc 8

Loc
m 4

Loc
m 8

4 B / location

m  2 32

$0
$1
$2

$31

Hi Lo

ALU

$0
$1
$2

$31
FP

arith

EPC
Cause

BadVaddr
Status

EIU FPU

TMU

Execution
& integer
unit

Floating-
point unit

Trap &
memory
unit

. . .

. . .

(Coproc. 1)

(Coproc. 0)

(Main proc.)

Integer
mul/div

Chapter
10

Chapter
11

Chapter
12

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 8

Data Types

MiniMIPS registers hold 32-bit (4-byte) words. Other common
data sizes include byte, halfword, and doubleword.

Byte

Halfword

 Word

Doubleword

Byte = 8 bits

Word = 4 bytes

Doubleword = 8 bytes

Quadword (16 bytes) also used occasionally

Halfword = 2 bytes
Used only for floating-point data,
so safe to ignore in this course

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 9

Register
Conventions

Figure 5.2
Registers and
data sizes in
MiniMIPS.

Temporary
values

More
temporaries

Operands

Global pointer
Stack pointer
Frame pointer
Return address

Saved

Saved Procedure
arguments

Saved
across

procedure
calls

Procedure results

 Reserved for assembler use

Reserved for OS (kernel)

 $0
 $1
 $2
 $3
 $4
 $5
 $6
 $7
 $8
 $9
 $10
 $11
 $12
 $13
 $14
 $15
 $16
 $17
 $18
 $19
 $20
 $21
 $22
 $23
 $24
 $25
 $26
 $27
 $28
 $29
 $30
 $31

 0

$zero

$t0

$t2

$t4

$t6

$t1

$t3

$t5

$t7

$s0

$s2

$s4

$s6

$s1

$s3

$s5

$s7

$t8

$t9

$gp

$sp

$fp

$ra

$at

$k0

$k1

$v0

$a0

$a2

$v1

$a1

$a3

A doubleword
sits in consecutive
registers or
memory locations
according to the
big-endian order
(most significant
word comes first)

When loading
a byte into a
register, it goes
in the low end Byte

Word

Doublew ord

Byte numbering: 0 1 2 3

3
2
1
0

A 4-byte word
sits in consecutive
memory addresses
according to the
big-endian order
(most significant
byte has the
lowest address)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 10

Registers Used in This Chapter

Figure 5.2 (partial)

Temporary
values

More
temporaries

Operands

Saved
across

procedure
calls

 $8
 $9
 $10
 $11
 $12
 $13
 $14
 $15
 $16
 $17
 $18
 $19
 $20
 $21
 $22
 $23
 $24
 $25

$t0

$t2

$t4

$t6

$t1

$t3

$t5

$t7

$s0

$s2

$s4

$s6

$s1

$s3

$s5

$s7

$t8

$t9

 10 temporary registers

8 operand registers

Wallet
Keys

Change

Analogy for register
usage conventions

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 11

5.2 Instruction Formats

Figure 5.3 A typical instruction for MiniMIPS and steps in its execution.

Assembly language instruction:

Machine language instruction:

High-level language statement:

000000 10010 10001 11000 00000 100000

add $t8, $s2, $s1

a = b + c

ALU-type
instruction

Register
18

Register
17

Register
24 Unused

Addition
opcode

 ALU

Instruction
fetch

Register
readout Operation Data

read/store
Register

writeback

Register
file

Instruction

cache

Data cache
(not used)

Register
file

P
C

$17
$18

$24

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 12

Add, Subtract, and Specification of Constants

MiniMIPS add & subtract instructions; e.g., compute:
g = (b + c)  (e + f)

add $t8,$s2,$s3 # put the sum b + c in $t8
add $t9,$s5,$s6 # put the sum e + f in $t9
sub $s7,$t8,$t9 # set g to ($t8)  ($t9)

Decimal and hex constants

Decimal 25, 123456, 2873
Hexadecimal 0x59, 0x12b4c6, 0xffff0000

Machine instruction typically contains

an opcode
one or more source operands
possibly a destination operand

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 13

MiniMIPS Instruction Formats

Figure 5.4 MiniMIPS instructions come in only three formats:
register (R), immediate (I), and jump (J).

5 bits 5 bits
31 25 20 15 0

Opcode Source
register 1

Source
register 2

op rs rt

R 6 bits 5 bits

rd

5 bits

sh

6 bits
10 5

fn

Destination
register

Shift
amount

Opcode
extension

Imm ediate operand
or address offset

31 25 20 15 0

Opcode Destination
or data

Source
or base

op rs rt operand / offset

I 5 bits 6 bits 16 bits 5 bits

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
31 0

Opcode

op jump target address

J
Memory word address (byte address divided by 4)

26 bits
25

6 bits

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 14

5.3 Simple Arithmetic/Logic Instructions

Figure 5.5 The arithmetic instructions add and sub have a format that
is common to all two-operand ALU instructions. For these, the fn field
specifies the arithmetic/logic operation to be performed.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
31 25 20 15 0

ALU
instruction

Source
register 1

Source
register 2

op rs rt

R
rd sh

10 5
fn

Destination
register

Unused add = 32
sub = 34

Add and subtract already discussed; logical instructions are similar
add $t0,$s0,$s1 # set $t0 to ($s0)+($s1)
sub $t0,$s0,$s1 # set $t0 to ($s0)-($s1)
and $t0,$s0,$s1 # set $t0 to ($s0)($s1)
or $t0,$s0,$s1 # set $t0 to ($s0)($s1)
xor $t0,$s0,$s1 # set $t0 to ($s0)($s1)
nor $t0,$s0,$s1 # set $t0 to (($s0)($s1))

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 15

Arithmetic/Logic with One Immediate Operand

Figure 5.6 Instructions such as addi allow us to perform an
arithmetic or logic operation for which one operand is a small constant.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0
31 25 20 15 0

addi = 8 Destination Source Immediate operand

op rs rt operand / offset

I 1

An operand in the range [32 768, 32 767], or [0x0000, 0xffff],
can be specified in the immediate field.

addi $t0,$s0,61 # set $t0 to ($s0)+61
andi $t0,$s0,61 # set $t0 to ($s0)61
ori $t0,$s0,61 # set $t0 to ($s0)61
xori $t0,$s0,0x00ff # set $t0 to ($s0) 0x00ff

For arithmetic instructions, the immediate operand is sign-extended

1 0 0 1Errors

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 16

5.4 Load and Store Instructions

Figure 5.7 MiniMIPS lw and sw instructions and their memory
addressing convention that allows for simple access to array elements
via a base address and an offset (offset = 4i leads us to the i th word).

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 x 1 0 0 0 0 0 0
31 25 20 15 0

lw = 35
sw = 43

Base
register

Data
register

Offset relative to base

op rs rt operand / offset

I 1 1 0 0 1 1 1 1 1

A[0]
A[1]
A[2]

A[i]

Address in
base register

 Offset = 4i

.

.

.

Memory

Element i
of array A

Note on base and offset:
The memory address is the sum
of (rs) and an immediate value.
Calling one of these the base
and the other the offset is quite
arbitrary. It would make perfect
sense to interpret the address
A($s3) as having the base A
and the offset ($s3). However,
a 16-bit base confines us to a
small portion of memory space.

lw $t0,40($s3)
lw $t0,A($s3)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 17

lw, sw, and lui Instructions

Figure 5.8 The lui instruction allows us to load an arbitrary 16-bit
value into the upper half of a register while setting its lower half to 0s.

0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0
31 25 20 15 0

lui = 15 Destination Unused Immediate operand

op rs rt operand / offset

I

Content of $s0 after the instruction is executed

lw $t0,40($s3) # load mem[40+($s3)] in $t0
sw $t0,A($s3) # store ($t0) in mem[A+($s3)]

“($s3)” means “content of $s3”
lui $s0,61 # The immediate value 61 is

loaded in upper half of $s0
with lower 16b set to 0s

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 18

Initializing a Register
Example 5.2

Show how each of these bit patterns can be loaded into $s0:

0010 0001 0001 0000 0000 0000 0011 1101
1111 1111 1111 1111 1111 1111 1111 1111

Solution

The first bit pattern has the hex representation: 0x2110003d

lui $s0,0x2110 # put the upper half in $s0
ori $s0,0x003d # put the lower half in $s0

Same can be done, with immediate values changed to 0xffff
for the second bit pattern. But, the following is simpler and faster:

nor $s0,$zero,$zero # because (0  0) = 1

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 19

5.5 Jump and Branch Instructions
Unconditional jump and jump through register instructions

j verify # go to mem loc named “verify”
jr $ra # go to address that is in $ra;

$ra may hold a return address

Figure 5.9 The jump instruction j of MiniMIPS is a J-type instruction which
is shown along with how its effective target address is obtained. The jump
register (jr) instruction is R-type, with its specified register often being $ra.

0

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
31 0

j = 2

op jump target address

J

Effective target address (32 bits)

25

 From PC

0 0

x x x x

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
31 25 20 15 0

ALU
instruction

Source
register

Unused

op rs rt

R
rd sh

10 5
fn

Unused Unused jr = 8

$ra is the
symbolic
name for
reg. $31
(return
address)

(incremented)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 20

Conditional Branch Instructions

Figure 5.10 (part 1) Conditional branch instructions of MiniMIPS.

Conditional branches use PC-relative addressing
bltz $s1,L # branch on ($s1)< 0
beq $s1,$s2,L # branch on ($s1)=($s2)
bne $s1,$s2,L # branch on ($s1)($s2)

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0
31 25 20 15 0

bltz = 1 Zero Source Relative branch distance in words

op rs rt operand / offset

I 0

1 1 0 0 x 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0
31 25 20 15 0

beq = 4
bne = 5

Source 2 Source 1 Relative branch distance in words

op rs rt operand / offset

I 1

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 21

Comparison Instructions for Conditional Branching

Figure 5.10 (part 2) Comparison instructions of MiniMIPS.

slt $s1,$s2,$s3 # if ($s2)<($s3), set $s1 to 1
else set $s1 to 0;
often followed by beq/bne

slti $s1,$s2,61 # if ($s2)<61, set $s1 to 1
else set $s1 to 0

1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
31 25 20 15 0

ALU
instruction

Source 1
register

Source 2
register

op rs rt

R
rd sh

10 5
fn

Destination Unused slt = 42

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0
31 25 20 15 0

slti = 10 Destination Source Immediate operand

op rs rt operand / offset

I 1

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 22

Examples for Conditional Branching
If the branch target is too far to be reachable with a 16-bit offset
(rare occurrence), the assembler automatically replaces the branch
instruction beq $s0,$s1,L1 with:

bne $s1,$s2,L2 # skip jump if (s1)(s2)
j L1 # goto L1 if (s1)=(s2)

L2: ...

Forming if-then constructs; e.g., if (i == j) x = x + y

bne $s1,$s2,endif # branch on ij
add $t1,$t1,$t2 # execute the “then” part

endif: ...

If the condition were (i < j), we would change the first line to:

slt $t0,$s1,$s2 # set $t0 to 1 if i<j
beq $t0,$0,endif # branch if ($t0)=0;

i.e., i not< j or ij

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 23

Example 5.3
Compiling if-then-else Statements

Show a sequence of MiniMIPS instructions corresponding to:

if (i<=j) x = x+1; z = 1; else y = y–1; z = 2*z

Solution

Similar to the “if-then” statement, but we need instructions for the
“else” part and a way of skipping the “else” part after the “then” part.

slt $t0,$s2,$s1 # j<i? (inverse condition)
bne $t0,$zero,else # if j<i goto else part
addi $t1,$t1,1 # begin then part: x = x+1
addi $t3,$zero,1 # z = 1
j endif # skip the else part

else: addi $t2,$t2,-1 # begin else part: y = y–1
add $t3,$t3,$t3 # z = z+z

endif:...

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 24

5.6 Addressing Modes

Figure 5.11 Schematic representation of addressing modes in MiniMIPS.

Addressing Instruction Other elements involved Operand

Implied

Immediate

Register

Base

PC-relative

Pseudodirect

Some place
in the machine

Extend,
if required

Reg f ile Reg spec Reg data

Memory
Add

Reg file

Mem
addr

Constant offset

Reg base Reg
data

Mem
data

Add

PC

Constant offset

Memory

Mem
addr Mem

data

Memory
Mem
data

PC Mem
addr

Incremented

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 25

Example 5.5

Finding the Maximum Value in a List of Integers

List A is stored in memory beginning at the address given in $s1.
List length is given in $s2.
Find the largest integer in the list and copy it into $t0.

Solution

Scan the list, holding the largest element identified thus far in $t0.
lw $t0,0($s1) # initialize maximum to A[0]
addi $t1,$zero,0 # initialize index i to 0

loop: add $t1,$t1,1 # increment index i by 1
beq $t1,$s2,done # if all elements examined, quit
add $t2,$t1,$t1 # compute 2i in $t2
add $t2,$t2,$t2 # compute 4i in $t2
add $t2,$t2,$s1 # form address of A[i] in $t2
lw $t3,0($t2) # load value of A[i] into $t3
slt $t4,$t0,$t3 # maximum < A[i]?
beq $t4,$zero,loop # if not, repeat with no change
addi $t0,$t3,0 # if so, A[i] is the new

maximum
j loop # change completed; now repeat

done: ... # continuation of the program

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 26

The 20 MiniMIPS
Instructions

Covered So Far

Instruction Usage
Load upper immediate lui rt,imm

Add add rd,rs,rt

Subtract sub rd,rs,rt

Set less than slt rd,rs,rt

Add immediate addi rt,rs,imm

Set less than immediate slti rd,rs,imm

AND and rd,rs,rt

OR or rd,rs,rt

XOR xor rd,rs,rt

NOR nor rd,rs,rt

AND immediate andi rt,rs,imm

OR immediate ori rt,rs,imm

XOR immediate xori rt,rs,imm

Load word lw rt,imm(rs)

Store word sw rt,imm(rs)

Jump j L

Jump register jr rs

Branch less than 0 bltz rs,L

Branch equal beq rs,rt,L

Branch not equal bne rs,rt,L

Copy

Control transfer

Logic

Arithmetic

Memory access

op
15

0
0
0
8

10
0
0
0
0

12
13
14
35
43

2
0
1
4
5

fn

32
34
42

36
37
38
39

8

Table 5.1

5 bits 5 bits
31 25 20 15 0

Opcode Source
register 1

Source
register 2

op rs rt

R 6 bits 5 bits

rd

5 bits

sh

6 bits
10 5

fn

Destination
register

Shift
amount

Opcode
extension

Immediate operand
or address offset

31 25 20 15 0

Opcode Destination
or data

Source
or base

op rs rt operand / offset

I 5 bits 6 bits 16 bits 5 bits

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
31 0

Opcode

op jump target address

J
Memory word address (byte address divided by 4)

26 bits
25

6 bits

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 27

6 Procedures and Data

Topics in This Chapter

6.1 Simple Procedure Calls

6.2 Using the Stack for Data Storage

6.3 Parameters and Results

6.4 Data Types

6.5 Arrays and Pointers

6.6 Additional Instructions

Finish our study of MiniMIPS instructions and its data types:
• Instructions for procedure call/return, misc. instructions
• Procedure parameters and results, utility of stack

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 28

6.1 Simple Procedure Calls
Using a procedure involves the following sequence of actions:

1. Put arguments in places known to procedure (reg’s $a0-$a3)
2. Transfer control to procedure, saving the return address (jal)
3. Acquire storage space, if required, for use by the procedure
4. Perform the desired task
5. Put results in places known to calling program (reg’s $v0-$v1)
6. Return control to calling point (jr)

MiniMIPS instructions for procedure call and return from procedure:

jal proc # jump to loc “proc” and link;
“link” means “save the return
address” (PC)+4 in $ra ($31)

jr rs # go to loc addressed by rs

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 29

Illustrating a Procedure Call

Figure 6.1 Relationship between the main program and a procedure.

jal proc

jr $ra

proc
Save, etc.

Restore

PC
Prepare

to continue

Prepare
to call

main

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 30

Recalling
Register

Conventions

Figure 5.2
Registers and
data sizes in
MiniMIPS.

Temporary
values

More
temporaries

Operands

Global pointer
Stack pointer
Frame pointer
Return address

Saved

Saved Procedure
arguments

Saved
across

procedure
calls

Procedure results

 Reserved for assembler use

Reserved for OS (kernel)

 $0
 $1
 $2
 $3
 $4
 $5
 $6
 $7
 $8
 $9
 $10
 $11
 $12
 $13
 $14
 $15
 $16
 $17
 $18
 $19
 $20
 $21
 $22
 $23
 $24
 $25
 $26
 $27
 $28
 $29
 $30
 $31

 0

$zero

$t0

$t2

$t4

$t6

$t1

$t3

$t5

$t7

$s0

$s2

$s4

$s6

$s1

$s3

$s5

$s7

$t8

$t9

$gp

$sp

$fp

$ra

$at

$k0

$k1

$v0

$a0

$a2

$v1

$a1

$a3

A doubleword
sits in consecutive
registers or
memory locations
according to the
big-endian order
(most significant
word comes first)

When loading
a byte into a
register, it goes
in the low end Byte

Word

Doublew ord

Byte numbering: 0 1 2 3

3
2
1
0

A 4-byte word
sits in consecutive
memory addresses
according to the
big-endian order
(most significant
byte has the
lowest address)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 31

Example 6.1
A Simple MiniMIPS Procedure

Procedure to find the absolute value of an integer.

$v0  |($a0)|

Solution

The absolute value of x is –x if x < 0 and x otherwise.

abs: sub $v0,$zero,$a0 # put -($a0) in $v0;
in case ($a0) < 0

bltz $a0,done # if ($a0)<0 then done
add $v0,$a0,$zero # else put ($a0) in $v0

done: jr $ra # return to calling program

In practice, we seldom use such short procedures because of the
overhead that they entail. In this example, we have 3-4
instructions of overhead for 3 instructions of useful computation.

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 32

Nested Procedure Calls

Figure 6.2 Example of nested procedure calls.

jal abc

jr $ra

abc
Save

Restore

PC
Prepare
to continue

Prepare
to call

main

jal xyz

jr $ra

xyz

Procedure
abc

Procedure
xyz

Text version
is incorrect

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 33

6.2 Using the Stack for Data Storage

Figure 6.4 Effects of push and pop operations on a stack.

b
a

sp

b
a

sp
b
a sp

c

Push c Pop x

sp = sp – 4
mem[sp] = c

x = mem[sp]
sp = sp + 4

push: addi $sp,$sp,-4
sw $t4,0($sp)

pop: lw $t5,0($sp)
addi $sp,$sp,4

Analogy:
Cafeteria
stack of
plates/trays

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 34

Memory
Map in

MiniMIPS

Figure 6.3 Overview of the memory address space in MiniMIPS.

Reserved

Program

Stack

1 M words

Hex address

10008000

1000ffff

10000000

00000000

00400000

7ffffffc

Text segment
63 M words

Data segment

Stack segment

Static data

Dynamic data

$gp

$sp

$fp

448 M words

Second half of address
space reserved for
memory-mapped I/O

$28
 $29
 $30

Addressable
with 16-bit
signed offset

80000000

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 35

6.3 Parameters and Results

Figure 6.5 Use of the stack by a procedure.

b
a

$sp c
Frame for
current
procedure

$fp

. . .

Before calling

b
a

$sp

c
Frame for
previous
procedure

$fp

. . .

After calling

Frame for
current
procedure

Old ($fp)

Saved
registers

y
z

. . .
Local
variables

Stack allows us to pass/return an arbitrary number of values

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 36

Example of Using the Stack

proc: sw $fp,-4($sp) # save the old frame pointer
addi $fp,$sp,0 # save ($sp) into $fp
addi $sp,$sp,–12 # create 3 spaces on top of stack
sw $ra,-8($fp) # save ($ra) in 2nd stack element
sw $s0,-12($fp) # save ($s0) in top stack element
.
.
.
lw $s0,-12($fp) # put top stack element in $s0
lw $ra,-8($fp) # put 2nd stack element in $ra
addi $sp,$fp, 0 # restore $sp to original state
lw $fp,-4($sp) # restore $fp to original state
jr $ra # return from procedure

Saving $fp, $ra, and $s0 onto the stack and restoring
them at the end of the procedure

$fp

$sp
($fp)

$fp

$sp
($ra)
($s0)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 37

6.4 Data Types

Data size (number of bits), data type (meaning assigned to bits)

Signed integer: byte word
Unsigned integer: byte word
Floating-point number: word doubleword
Bit string: byte word doubleword

Converting from one size to another
Type 8-bit number Value 32-bit version of the number

Unsigned 0010 1011 43 0000 0000 0000 0000 0000 0000 0010 1011
Unsigned 1010 1011 171 0000 0000 0000 0000 0000 0000 1010 1011

Signed 0010 1011 +43 0000 0000 0000 0000 0000 0000 0010 1011
Signed 1010 1011 –85 1111 1111 1111 1111 1111 1111 1010 1011

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 38

ASCII Characters
Table 6.1 ASCII (American standard code for information interchange)

NUL DLE SP 0 @ P ` p
SOH DC1 ! 1 A Q a q
STX DC2 “ 2 B R b r
ETX DC3 # 3 C S c s
EOT DC4 $ 4 D T d t
ENQ NAK % 5 E U e u
ACK SYN & 6 F V f v
BEL ETB ‘ 7 G W g w
BS CAN (8 H X h x
HT EM) 9 I Y i y
LF SUB * : J Z j z
VT ESC + ; K [k {
FF FS , < L \ l |
CR GS - = M] m }
SO RS . > N ^ n ~
SI US / ? O _ o DEL

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8-9 a-f

More
controls

More
symbols

8-bit ASCII code
(col #, row #)hex

e.g., code for +
is (2b) hex or
(0010 1011)two

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 39

Loading and Storing Bytes

Figure 6.6 Load and store instructions for byte-size data elements.

x x 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
31 25 20 15 0

lb = 32
lbu = 36
sb = 40

Data
register

Base
register

Address offset

op rs rt immediate / offset

I 1 1 0 0 0 1 1

Bytes can be used to store ASCII characters or small integers.
MiniMIPS addresses refer to bytes, but registers hold words.

lb $t0,8($s3) # load rt with mem[8+($s3)]
sign-extend to fill reg

lbu $t0,8($s3) # load rt with mem[8+($s3)]
zero-extend to fill reg

sb $t0,A($s3) # LSB of rt to mem[A+($s3)]

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 40

Meaning of a Word in Memory

Figure 6.7 A 32-bit word has no inherent meaning and can be
interpreted in a number of equally valid ways in the absence of
other cues (e.g., context) for the intended meaning.

0000 0010 0001 0001 0100 0000 0010 0000

Positive integer

Four-character string

Add instruction

Bit pattern
(02114020) hex

00000010000100010100000000100000

00000010000100010100000000100000

00000010000100010100000000100000

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 41

6.5 Arrays and Pointers
Index: Use a register that holds the index i and increment the register in
each step to effect moving from element i of the list to element i + 1

Pointer: Use a register that points to (holds the address of) the list element
being examined and update it in each step to point to the next element

Add 4 to get
the address
of A[i + 1]

Pointer to A[i] Array index i

Add 1 to i;
Compute 4i;
Add 4i to base

A[i]
A[i + 1]

A[i]
A[i + 1]

Base Array A Array A

Figure 6.8 Stepping through the elements of an array using the
indexing method and the pointer updating method.

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 42

Selection Sort
Example 6.4

Figure 6.9 One iteration of selection sort.

first

last

max

first

last

first

last

Start of iteration Maximum identified End of iteration

x

x y

y

A A A

To sort a list of numbers, repeatedly perform the following:
Find the max element, swap it with the last item, move up the “last” pointer

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 43

Selection Sort Using the Procedure max
Example 6.4 (continued)

sort: beq $a0,$a1,done # single-element list is sorted
jal max # call the max procedure
lw $t0,0($a1) # load last element into $t0
sw $t0,0($v0) # copy the last element to max loc
sw $v1,0($a1) # copy max value to last element
addi $a1,$a1,-4 # decrement pointer to last element
j sort # repeat sort for smaller list

done: ... # continue with rest of program

first

last

max

first

last

first

last

Start of iteration Maximum identified End of iteration

x

x y

y

A A A

Inputs to
proc max

Outputs from
proc max

In $a0

In $a1

In $v0 In $v1

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 44

6.6 Additional Instructions

Figure 6.10 The multiply (mult) and divide (div) instructions of MiniMIPS.

1 0 0 1 1 0 0

fn

0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 1 1 0 0 0 0 0 0 0 0
31 25 20 15 0

ALU
instruction

Source
register 1

Source
register 2

op rs rt

R
rd sh

10 5

Unused Unused mult = 24
div = 26

1 0 0 0 0 0 0 1 0 0

fn

0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0
31 25 20 15 0

ALU
instruction

Unused Unused

op rs rt

R
rd sh

10 5

Destination
register

Unused mfhi = 16
mflo = 18

Figure 6.11 MiniMIPS instructions for copying the contents of Hi and Lo
registers into general registers .

MiniMIPS instructions for multiplication and division:

mult $s0, $s1 # set Hi,Lo to ($s0)($s1)
div $s0, $s1 # set Hi to ($s0)mod($s1)

and Lo to ($s0)/($s1)
mfhi $t0 # set $t0 to (Hi)
mflo $t0 # set $t0 to (Lo)

Reg
file

Mul/Div
unit

Hi Lo

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 45

Logical Shifts

Figure 6.12 The four logical shift instructions of MiniMIPS.

MiniMIPS instructions for left and right shifting:

sll $t0,$s1,2 # $t0=($s1) left-shifted by 2
srl $t0,$s1,2 # $t0=($s1) right-shifted by 2
sllv $t0,$s1,$s0 # $t0=($s1) left-shifted by ($s0)
srlv $t0,$s1,$s0 # $t0=($s1) right-shifted by ($s0)

0

x

0 0

fn

0 0 0 0 0 0 0 0 0 0 0 1 0 0 x 0 0 1 1 1 0 0 0 0 0 0 0 0 0
31 25 20 15 0

ALU
instruction

Unused Source
register

op rs rt

R
rd sh

10 5

Destination
register

Shift
amount

sll = 0
srl = 2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
31 25 20 15 0

ALU
instruction

Amount
register

Source
register

op rs rt

R
rd sh

10 5
fn

Destination
register

Unused sllv = 4
srlv = 6

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 46

Unsigned Arithmetic and Miscellaneous Instructions

MiniMIPS instructions for unsigned arithmetic (no overflow exception):

addu $t0,$s0,$s1 # set $t0 to ($s0)+($s1)
subu $t0,$s0,$s1 # set $t0 to ($s0)–($s1)
multu $s0,$s1 # set Hi,Lo to ($s0)($s1)
divu $s0,$s1 # set Hi to ($s0)mod($s1)

and Lo to ($s0)/($s1)
addiu $t0,$s0,61 # set $t0 to ($s0)+61;

the immediate operand is
sign extended

To make MiniMIPS more powerful and complete, we introduce later:

sra $t0,$s1,2 # sh. right arith (Sec. 10.5)
srav $t0,$s1,$s0 # shift right arith variable
syscall # system call (Sec. 7.6)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 47

The 20 MiniMIPS
Instructions

from Chapter 6
(40 in all so far)

Instruction Usage
Move from Hi mfhi rd

Move from Lo mflo rd

Add unsigned addu rd,rs,rt

Subtract unsigned subu rd,rs,rt

Multiply mult rs,rt

Multiply unsigned multu rs,rt

Divide div rs,rt

Divide unsigned divu rs,rt

Add immediate unsigned addiu rs,rt,imm

Shift left logical sll rd,rt,sh

Shift right logical srl rd,rt,sh

Shift right arithmetic sra rd,rt,sh

Shift left logical variable sllv rd,rt,rs

Shift right logical variable srlv rt,rd,rs

Shift right arith variable srav rd,rt,rd

Load byte lb rt,imm(rs)

Load byte unsigned lbu rt,imm(rs)

Store byte sb rt,imm(rs)

Jump and link jal L

System call syscall

Copy

Control transfer

Shift

Arithmetic

Memory access

op
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0

32
36
40

3
0

fn
16
18
33
35
24
25
26
27

0
2
3
4
6
7

12

Table 6.2 (partial)

5 bits 5 bits
31 25 20 15 0

Opcode Source
register 1

Source
register 2

op rs rt

R 6 bits 5 bits

rd

5 bits

sh

6 bits
10 5

fn

Destination
register

Shift
amount

Opcode
extension

Immediate operand
or address offset

31 25 20 15 0

Opcode Destination
or data

Source
or base

op rs rt operand / offset

I 5 bits 6 bits 16 bits 5 bits

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
31 0

Opcode

op jump target address

J
Memory word address (byte address divided by 4)

26 bits
25

6 bits

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 48

Table 6.2 The 37 + 3 MiniMIPS Instructions Covered So Far
Instruction Usage
Move from Hi mfhi rd

Move from Lo mflo rd

Add unsigned addu rd,rs,rt

Subtract unsigned subu rd,rs,rt

Multiply mult rs,rt

Multiply unsigned multu rs,rt

Divide div rs,rt

Divide unsigned divu rs,rt

Add immediate unsigned addiu rs,rt,imm

Shift left logical sll rd,rt,sh

Shift right logical srl rd,rt,sh

Shift right arithmetic sra rd,rt,sh

Shift left logical variable sllv rd,rt,rs

Shift right logical variable srlv rd,rt,rs

Shift right arith variable srav rd,rt,rs

Load byte lb rt,imm(rs)

Load byte unsigned lbu rt,imm(rs)

Store byte sb rt,imm(rs)

Jump and link jal L

System call syscall

Instruction Usage
Load upper immediate lui rt,imm

Add add rd,rs,rt

Subtract sub rd,rs,rt

Set less than slt rd,rs,rt

Add immediate addi rt,rs,imm

Set less than immediate slti rd,rs,imm

AND and rd,rs,rt

OR or rd,rs,rt

XOR xor rd,rs,rt

NOR nor rd,rs,rt

AND immediate andi rt,rs,imm

OR immediate ori rt,rs,imm

XOR immediate xori rt,rs,imm

Load word lw rt,imm(rs)

Store word sw rt,imm(rs)

Jump j L

Jump register jr rs

Branch less than 0 bltz rs,L

Branch equal beq rs,rt,L

Branch not equal bne rs,rt,L

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 49

7 Assembly Language Programs

Topics in This Chapter

7.1 Machine and Assembly Languages

7.2 Assembler Directives

7.3 Pseudoinstructions

7.4 Macroinstructions

7.5 Linking and Loading

7.6 Running Assembler Programs

Everything else needed to build and run assembly programs:
• Supply info to assembler about program and its data
• Non-hardware-supported instructions for convenience

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 50

7.1 Machine and Assembly Languages

Figure 7.1 Steps in transforming an assembly language program to
an executable program residing in memory.

Li
nk

er

Lo
ad

er

A
ss

em
bl

er

add $2,$5,$5
add $2,$2,$2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)
jr $31

00a51020
00421020
00821020
8c620000
8cf20004
acf20000
ac620004
03e00008

Assembly
language
program

Machine
language
program

Executable
machine
language
program

Memory
content

Library routines
(machine language) MIPS, 80x86,

PowerPC, etc.

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 51

Symbol Table

Figure 7.2 An assembly-language program, its machine-language
version, and the symbol table created during the assembly process.

 0 00100000000100000000000000001001

 addi $s0,$zero,9

test

done
result

12

28
248

 4 00000010000100000100000000100010
 8 00000001001000000000000000100000
 12 00010101000100000000000000001100
 16 00100001000010000000000000000001
 20 00000010000000000100100000100000
 24 00001000000000000000000000000011
 28 10101111100010010000000011111000

Determined from assembler
directives not shown here

Symbol
table

done: sw $t1,result($gp)

 sub $t0,$s0,$s0
 add $t1,$zero,$zero

test: bne $t0,$s0,done

 addi $t0,$t0,1
 add $t1,$s0,$zero

 j test

Assembly language program Machine language program Location

 op rs rt rd sh fn
 Field boundaries shown to facilitate understanding

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 52

7.2 Assembler Directives
Assembler directives provide the assembler with info on how to translate
the program but do not lead to the generation of machine instructions

.macro # start macro (see Section 7.4)

.end_macro # end macro (see Section 7.4)

.text # start program’s text segment

... # program text goes here

.data # start program’s data segment
tiny: .byte 156,0x7a # name & initialize data byte(s)
max: .word 35000 # name & initialize data word(s)

small: .float 2E-3 # name short float (see Chapter 12)
big: .double 2E-3 # name long float (see Chapter 12)

.align 2 # align next item on word boundary
array: .space 600 # reserve 600 bytes = 150 words
str1: .ascii “a*b” # name & initialize ASCII string
str2: .asciiz “xyz” # null-terminated ASCII string

.global main # consider “main” a global name

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 53

Composing Simple Assembler Directives

Write assembler directive to achieve each of the following objectives:

a. Put the error message “Warning: The printer is out of paper!” in memory.
b. Set up a constant called “size” with the value 4.
c. Set up an integer variable called “width” and initialize it to 4.
d. Set up a constant called “mill” with the value 1,000,000 (one million).
e. Reserve space for an integer vector “vect” of length 250.

Solution:

a. noppr: .asciiz “Warning: The printer is out of paper!”
b. size: .byte 4 # small constant fits in one byte
c. width: .word 4 # byte could be enough, but ...
d. mill: .word 1000000 # constant too large for byte
e. vect: .space 1000 # 250 words = 1000 bytes

Example 7.1

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 54

7.3 Pseudoinstructions

Example of one-to-one pseudoinstruction: The following
not $s0 # complement ($s0)

is converted to the real instruction:
nor $s0,$s0,$zero # complement ($s0)

Example of one-to-several pseudoinstruction: The following
abs $t0,$s0 # put |($s0)| into $t0

is converted to the sequence of real instructions:
add $t0,$s0,$zero # copy x into $t0
slt $at,$t0,$zero # is x negative?
beq $at,$zero,+4 # if not, skip next instr
sub $t0,$zero,$s0 # the result is 0 – x

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 55

MiniMIPS
Pseudo-

instructions

Pseudoinstruction Usage
Move move regd,regs

Load address la regd,address

Load immediate li regd,anyimm

Absolute value abs regd,regs

Negate neg regd,regs

Multiply (into register) mul regd,reg1,reg2

Divide (into register) div regd,reg1,reg2

Remainder rem regd,reg1,reg2

Set greater than sgt regd,reg1,reg2

Set less or equal sle regd,reg1,reg2

Set greater or equal sge regd,reg1,reg2

Rotate left rol regd,reg1,reg2

Rotate right ror regd,reg1,reg2

NOT not reg

Load doubleword ld regd,address

Store doubleword sd regd,address

Branch less than blt reg1,reg2,L

Branch greater than bgt reg1,reg2,L

Branch less or equal ble reg1,reg2,L

Branch greater or equal bge reg1,reg2,L

Copy

Control transfer

Shift

Arithmetic

Memory access

Table 7.1

Logic

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 56

7.4 Macroinstructions
A macro is a mechanism to give a name to an often-used
sequence of instructions (shorthand notation)

.macro name(args) # macro and arguments named

... # instr’s defining the macro

.end_macro # macro terminator

How is a macro different from a pseudoinstruction?
Pseudos are predefined, fixed, and look like machine instructions
Macros are user-defined and resemble procedures (have arguments)

How is a macro different from a procedure?
Control is transferred to and returns from a procedure
After a macro has been replaced, no trace of it remains

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 57

Macro to Find the Largest of Three Values

Write a macro to determine the largest of three values in registers and to
put the result in a fourth register.

Solution:

.macro mx3r(m,a1,a2,a3) # macro and arguments named
move m,a1 # assume (a1) is largest; m = (a1)
bge m,a2,+4 # if (a2) is not larger, ignore it
move m,a2 # else set m = (a2)
bge m,a3,+4 # if (a3) is not larger, ignore it
move m,a3 # else set m = (a3)
.endmacro # macro terminator

If the macro is used as mx3r($t0,$s0,$s4,$s3), the assembler replaces
the arguments m, a1, a2, a3 with $t0, $s0, $s4, $s3, respectively.

Example 7.4

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 58

7.5 Linking and Loading

The linker has the following responsibilities:
Ensuring correct interpretation (resolution) of labels in all modules
Determining the placement of text and data segments in memory
Evaluating all data addresses and instruction labels
Forming an executable program with no unresolved references

The loader is in charge of the following:
Determining the memory needs of the program from its header
Copying text and data from the executable program file into memory
Modifying (shifting) addresses, where needed, during copying
Placing program parameters onto the stack (as in a procedure call)
Initializing all machine registers, including the stack pointer
Jumping to a start-up routine that calls the program’s main routine

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 59

7.6 Running Assembler Programs

Spim is a simulator that can run MiniMIPS programs

The name Spim comes from reversing MIPS

Three versions of Spim are available for free downloading:

PCSpim for Windows machines QtSPIM for many OSs
xspim for X-windows
spim for Unix systems

You can download SPIM from:

SPIM
A MIPS32 Simulator

James Larus
spim@larusstone.org

Microsoft Research
Formerly: Professor, CS Dept., Univ. Wisconsin-Madison

spim is a self-contained simulator that will
run MIPS32 assembly language programs.
It reads and executes assembly . . .

http://spimsimulator.sourceforge.net

http://www.cs.wisc.edu/~larus/spim.html

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 60

Input/Output Conventions for MiniMIPS
Table 7.2 Input/output and control functions of syscall in PCSpim.

($v0) Function Arguments Result
1 Print integer Integer in $a0 Integer displayed
2 Print floating-point Float in $f12 Float displayed
3 Print double-float Double-float in $f12,$f13 Double-float displayed
4 Print string Pointer in $a0 Null-terminated string displayed
5 Read integer Integer returned in $v0

6 Read floating-point Float returned in $f0

7 Read double-float Double-float returned in $f0,$f1

8 Read string Pointer in $a0, length in $a1 String returned in buffer at pointer
9 Allocate memory Number of bytes in $a0 Pointer to memory block in $v0

10 Exit from program Program execution terminated

O
ut

pu
t

In
pu

t
C

nt
l

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 61

Figure 7.3

PCSpim
User

Interface

Status bar

Menu bar

Tools bar

File

Simulator

Window

 Open
 Sav e Log File
 Ex it

 Tile
 1 Messages
 2 Tex t Segment
 3 Data Segment
 4 Registers
 5 Console
 Clear Console
 Toolbar
 Status bar

 Clear Registers
 Reinitialize
 Reload
 Go
 Break
 Continue
 Single Step
 Multiple Step ...
 Breakpoints ...
 Set Value ...
 Disp Symbol Table
 Settings ...

For Help, press F1

PCSpim

Registers

File Simulator Window Help

PC = 00400000 EPC = 00000000 Cause = 00000000
Status = 00000000 HI = 00000000 LO = 00000000
 General Registers
R0 (r0) = 0 R8 (t0) = 0 R16 (s0) = 0 R24
R1 (at) = 0 R9 (t1) = 0 R17 (s1) = 0 R25

[0x00400000] 0x0c100008 jal 0x00400020 [main] ; 43
[0x00400004] 0x00000021 addu $0, $0, $0 ; 44
[0x00400008] 0x2402000a addiu $2, $0, 10 ; 45
[0x0040000c] 0x0000000c syscall ; 46
[0x00400010] 0x00000021 addu $0, $0, $0 ; 47

 DATA
[0x10000000] 0x00000000 0x6c696146 0x20206465
[0x10000010] 0x676e6974 0x44444120 0x6554000a
[0x10000020] 0x44412067 0x000a4944 0x74736554

Text Segment

Data Segment

Messages

Base=1; Pseudo=1, Mapped=1; LoadTrap=0

 ?

?

   

See the file README for a full copyright notice.
Memory and registers have been cleared, and the simulator rei

D:\temp\dos\TESTS\Alubare.s has been successfully loaded

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 62

8 Instruction Set Variations

Topics in This Chapter

8.1 Complex Instructions

8.2 Alternative Addressing Modes

8.3 Variations in Instruction Formats

8.4 Instruction Set Design and Evolution

8.5 The RISC/CISC Dichotomy

8.6 Where to Draw the Line

The MiniMIPS instruction set is only one example
• How instruction sets may differ from that of MiniMIPS
• RISC and CISC instruction set design philosophies

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 63

Review of Some Key Concepts

Different from procedure,
in that the macro is replaced
with equivalent instructions

All of the same length
Fields used consistently
(simple decoding)
Can initiate reading of
registers even before
decoding the instruction
Short, uniform execution

Macroinstruction
Instruction
Instruction
Instruction

Instruction format for a simple RISC design

5 bits 5 bits
31 25 20 15 0

Opcode Source
register 1

Source
register 2

op rs rt

R 6 bits 5 bits

rd

5 bits

sh

6 bits
10 5

fn

Destination
register

Shift
amount

Opcode
extension

Immediate operand
or address offset

31 25 20 15 0

Opcode Destination
or data

Source
or base

op rs rt operand / offset

I 5 bits 6 bits 16 bits 5 bits

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
31 0

Opcode

op jump target address

J
Memory word address (byte address divided by 4)

26 bits
25

6 bits

Microinstruction
Microinstruction
Microinstruction
Microinstruction
Microinstruction

Instruction

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 64

8.1 Complex Instructions
Table 8.1 (partial) Examples of complex instructions in two popular modern
microprocessors and two computer families of historical significance

Machine Instruction Effect
Pentium MOVS Move one element in a string of bytes, words, or

doublewords using addresses specified in two pointer
registers; after the operation, increment or decrement
the registers to point to the next element of the string

PowerPC cntlzd Count the number of consecutive 0s in a specified
source register beginning with bit position 0 and place
the count in a destination register

IBM 360-370 CS Compare and swap: Compare the content of a register
to that of a memory location; if unequal, load the
memory word into the register, else store the content
of a different register into the same memory location

Digital VAX POLYD Polynomial evaluation with double flp arithmetic:
Evaluate a polynomial in x, with very high precision in
intermediate results, using a coefficient table whose
location in memory is given within the instruction

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 65

Some Details of Sample Complex Instructions

MOVS
(Move string)

Source
string

Destination
string

cntlzd
(Count leading 0s)

0000 0010 1100 0111

0000 0000 0000 0110

6 leading 0s

POLYD
(Polynomial evaluation in

double floating-point)

cn–1xn–1 + . . . + c2x2 + c1x + c0

Coefficients

x

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 66

Benefits and Drawbacks of Complex Instructions

Fewer instructions in program
(less memory)

Potentially faster execution
(complex steps are still done
sequentially in multiple cycles,
but hardware control can be
faster than software loops)

Fewer memory accesses for
instructions

Programs may become easier
to write/read/understand

More complex format
(slower decoding)

Less flexible
(one algorithm for polynomial
evaluation or sorting may not
be the best in all cases)

If interrupts are processed at
the end of instruction cycle,
machine may become less
responsive to time-critical
events (interrupt handling)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 67

8.2 Alternative Addressing Modes

Figure 5.11 Schematic representation of addressing modes in MiniMIPS.

Addressing Instruction Other elements involved Operand

Implied

Immediate

Register

Base

PC-relative

Pseudodirect

Some place
in the machine

Extend,
if required

Reg f ile Reg spec Reg data

Memory
Add

Reg file

Mem
addr

Constant offset

Reg base Reg
data

Mem
data

Add

PC

Constant offset

Memory

Mem
addr Mem

data

Memory
Mem
data

PC Mem
addr

Let’s
refresh
our
memory
(from
Chap. 5)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 68

Table 6.2
Instruction Usage
Move from Hi mfhi rd

Move from Lo mflo rd

Add unsigned addu rd,rs,rt

Subtract unsigned subu rd,rs,rt

Multiply mult rs,rt

Multiply unsigned multu rs,rt

Divide div rs,rt

Divide unsigned divu rs,rt

Add immediate unsigned addiu rs,rt,imm

Shift left logical sll rd,rt,sh

Shift right logical srl rd,rt,sh

Shift right arithmetic sra rd,rt,sh

Shift left logical variable sllv rd,rt,rs

Shift right logical variable srlv rd,rt,rs

Shift right arith variable srav rd,rt,rs

Load byte lb rt,imm(rs)

Load byte unsigned lbu rt,imm(rs)

Store byte sb rt,imm(rs)

Jump and link jal L

System call syscall

Instruction Usage
Load upper immediate lui rt,imm

Add add rd,rs,rt

Subtract sub rd,rs,rt

Set less than slt rd,rs,rt

Add immediate addi rt,rs,imm

Set less than immediate slti rd,rs,imm

AND and rd,rs,rt

OR or rd,rs,rt

XOR xor rd,rs,rt

NOR nor rd,rs,rt

AND immediate andi rt,rs,imm

OR immediate ori rt,rs,imm

XOR immediate xori rt,rs,imm

Load word lw rt,imm(rs)

Store word sw rt,imm(rs)

Jump j L

Jump register jr rs

Branch less than 0 bltz rs,L

Branch equal beq rs,rt,L

Branch not equal bne rs,rt,L

Addressing Mode Examples in the MiniMIPS ISA

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 69

More Elaborate Addressing Modes

Figure 8.1 Schematic representation of more elaborate
addressing modes not supported in MiniMIPS.

Addressing Instruction Other elements involved Operand

Mem data PC

Mem addr
Memory

Memory Add

Reg f ile Mem
addr Mem

data Index reg
Base reg

Memory Reg f ile

Mem
addr Mem

data

Increment amount

Base reg

Indirect

Indexed

Update
(with base)

Update
(with indexed) Memory Add

Reg f ile Mem
addr Mem

data
Index reg
Base reg

Increment
amount

Memory

Mem addr,
2nd access

Mem data,
2nd access

This part maybe replaced with any
other form of address specif ication

Incre-
ment

 Increment

x := B[i]

x := Mem[p]
p := p + 1

x := B[i]
i := i + 1

t := Mem[p]
x := Mem[t]

x := Mem[Mem[p]]

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 70

Usefulness of Some Elaborate Addressing Modes

Update mode: XORing a string of bytes

loop: lb $t0,A($s0)
xor $s1,$s1,$t0
addi $s0,$s0,-1
bne $s0,$zero,loop

One instruction with
update addressing

Indirect mode: Case statement

case: lw $t0,0($s0) # get s
add $t0,$t0,$t0 # form 2s
add $t0,$t0,$t0 # form 4s
la $t1,T # base T
add $t1,$t0,$t1
lw $t2,0($t1) # entry
jr $t2

L0
L1
L2
L3
L4
L5

T
T+4

T+20
T+16
T+12

T+8

Branch to location Li
if s = i (switch var.)

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 71

8.3 Variations in Instruction Formats

Figure 8.2 Examples of MiniMIPS instructions with 0 to 3
addresses; shaded fields are unused.

3-address

0-address

1-address

2-address

syscall

j

mult

add

One implied operand in register $v0

Destination and two source registers addressed

Two source registers addressed, destination implied

Jump target addressed (in pseudodirect form)

Category Format Opcode Description of operand(s)

Address 2

12

rt rs 0 24

rt rs 0 rd 32

0

0-, 1-, 2-, and 3-address instructions in MiniMIPS

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 72

Zero-Address Architecture: Stack Machine

Stack holds all the operands (replaces our register file)

Load/Store operations become push/pop

Arithmetic/logic operations need only an opcode: they pop operand(s)
from the top of the stack and push the result onto the stack

Example: Evaluating the expression (a + b)  (c – d)

a

Push a

a
b

Push b

a + b

Add

d

Push d

a + b d

Push c

a + b

c c – d

Subtract

a + b
Result

Multiply

If a variable is used again, you may have to push it multiple times

Special instructions such as “Duplicate” and “Swap” are helpful

Polish string: a b + d c – 

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 73

One-Address Architecture: Accumulator Machine

The accumulator, a special register attached to the ALU, always holds
operand 1 and the operation result

Only one operand needs to be specified by the instruction

Example: Evaluating the expression (a + b)  (c – d)

May have to store accumulator contents in memory (example above)

No store needed for a + b + c + d + . . . (“accumulator”)

Load a
add b
Store t
load c
subtract d
multiply t

Within branch instructions, the condition or
target address must be implied

Branch to L if acc negative

If register x is negative skip the next instruction

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 74

Two-Address Architectures

Two addresses may be used in different ways:

Operand1/result and operand 2

Condition to be checked and branch target address

Example: Evaluating the expression (a + b)  (c – d)

A variation is to use one of the addresses as in a one-address
machine and the second one to specify a branch in every instruction

load $1,a
add $1,b
load $2,c
subtract $2,d
multiply $1,$2

Instructions of a hypothetical
two-address machine

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 75

Components that form a variable-length IA-32 (80x86) instruction.

Example of a Complex Instruction Format

Offset or displacement (0, 1, 2, or 4 B)

Immediate (0, 1, 2, or 4 B)

Opcode (1-2 B)

Instruction prefixes (zero to four, 1 B each)

Mod Reg/Op R/M Scale Index Base

ModR/M SIB

Operand/address
size overwrites and
other modifiers

Most memory
operands need
these 2 bytes

Instructions
can contain
up to 15 bytes

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 76

Figure 8.3 Example 80x86 instructions ranging in width from 1 to 6
bytes; much wider instructions (up to 15 bytes) also exist

Some of IA-32’s Variable-Width Instructions

4-byte

1-byte

2-byte

3-byte

6-byte

5-byte

Type Format (field widths shown) Opcode Description of operand(s)

8 8 6

PUSH

JE

MOV

XOR

3-bit register specification

8-bit register/mode, 8-bit base/index,
8-bit offset

8-bit register/mode, 8-bit offset

4-bit condition, 8-bit jump offset

ADD

TEST 8-bit register/mode, 32-bit immediate

3-bit register spec, 32-bit immediate

5 3

4 4 8

3 32 4

7 8 32

8 8 8 8

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 77

8.4 Instruction Set Design and Evolution

Figure 8.4 Processor design and implementation process.

Pro-
cessor
design
team

New
machine
project

Tuning &
bug fixes

Performance
objectives

Instruction-set
definition

Imple-
men-
tation Fabrica-

tion &
testing

Sales
&

use

 ?

Feedback

Desirable attributes of an instruction set:

Consistent, with uniform and generally applicable rules
Orthogonal, with independent features noninterfering
Transparent, with no visible side effect due to implementation details
Easy to learn/use (often a byproduct of the three attributes above)
Extensible, so as to allow the addition of future capabilities
Efficient, in terms of both memory needs and hardware realization

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 78

8.5 The RISC/CISC Dichotomy
The RISC (reduced instruction set computer) philosophy:
Complex instruction sets are undesirable because inclusion of
mechanisms to interpret all the possible combinations of opcodes
and operands might slow down even very simple operations.

Features of RISC architecture

1. Small set of inst’s, each executable in roughly the same time
2. Load/store architecture (leading to more registers)
3. Limited addressing mode to simplify address calculations
4. Simple, uniform instruction formats (ease of decoding)

Ad hoc extension of instruction sets, while maintaining backward
compatibility, leads to CISC; imagine modern English containing
every English word that has been used through the ages

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 79

RISC/CISC Comparison via Generalized Amdahl’s Law
Example 8.1

An ISA has two classes of simple (S) and complex (C) instructions.
On a reference implementation of the ISA, class-S instructions
account for 95% of the running time for programs of interest. A RISC
version of the machine is being considered that executes only class-S
instructions directly in hardware, with class-C instructions treated as
pseudoinstructions. It is estimated that in the RISC version, class-S
instructions will run 20% faster while class-C instructions will be
slowed down by a factor of 3. Does the RISC approach offer better or
worse performance compared to the reference implementation?

Solution
Per assumptions, 0.95 of the work is speeded up by a factor of 1.0 /
0.8 = 1.25, while the remaining 5% is slowed down by a factor of 3.
The RISC speedup is 1 / [0.95 / 1.25 + 0.05  3] = 1.1. Thus, a 10%
improvement in performance can be expected in the RISC version.

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 80

Some Hidden Benefits of RISC

In Example 8.1, we established that a speedup factor of 1.1 can be
expected from the RISC version of a hypothetical machine

This is not the entire story, however!

If the speedup of 1.1 came with some additional cost, then one might
legitimately wonder whether it is worth the expense and design effort

The RISC version of the architecture also:

Reduces the effort and team size for design

Shortens the testing and debugging phase

Simplifies documentation and maintenance

Cheaper product and
shorter time-to-market

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 81

MIPS Performance Rating Revisited
An m-MIPS processor can execute m million instructions per second

Comparing an m-MIPS processor with a 10m-MIPS processor
Like comparing two people who read m pages and 10m pages per hour

Reading 100 pages per hour, as opposed to 10 pages per hour, may
not allow you to finish the same reading assignment in 1/10 the time

10 pages / hr 100 pages / hr

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 82

RISC / CISC Convergence

In the early 1980s, two projects brought RISC to the forefront:
UC Berkeley’s RISC 1 and 2, forerunners of the Sun SPARC
Stanford’s MIPS, later marketed by a company of the same name

Since the 1990s, the debate has cooled down!

We can now enjoy both sets of benefits by having complex instructions
automatically translated to sequences of very simple instructions that
are then executed on RISC-based underlying hardware

The earliest RISC designs:
CDC 6600, highly innovative supercomputer of the mid 1960s
IBM 801, influential single-chip processor project of the late 1970s

Throughout the 1980s, there were heated debates about the relative
merits of RISC and CISC architectures

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 83

8.6 Where to Draw the Line
The ultimate reduced instruction set computer (URISC):
How many instructions are absolutely needed for useful computation?

Only one!
subtract source1 from source2, replace source2 with the
result, and jump to target address if result is negative

Assembly language form:

label: urisc dest,src1,target

Pseudoinstructions can be synthesized using the single instruction:

stop: .word 0
start: urisc dest,dest,+1 # dest = 0

urisc temp,temp,+1 # temp = 0
urisc temp,src,+1 # temp = -(src)
urisc dest,temp,+1 # dest = -(temp); i.e. (src)
... # rest of program

This is the move
pseudoinstruction

Corrected
version

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 84

Some Useful Pseudo Instructions for URISC
Example 8.2 (2 parts of 5)

Write the sequence of instructions that are produced by the URISC
assembler for each of the following pseudoinstructions.
parta: uadd dest,src1,src2 # dest=(src1)+(src2)
partc: uj label # goto label

Solution
at1 and at2 are temporary memory locations for assembler’s use
parta: urisc at1,at1,+1 # at1 = 0

urisc at1,src1,+1 # at1 = -(src1)
urisc at1,src2,+1 # at1 = -(src1)–(src2)
urisc dest,dest,+1 # dest = 0
urisc dest,at1,+1 # dest = -(at1)

partc: urisc at1,at1,+1 # at1 = 0
urisc at1,one,label # at1 = -1 to force jump

Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 85

Figure 8.5 Instruction format and hardware structure for URISC.

URISC Hardware

MAR

in

Memory
unit

 Adder

P
C

Write

Read

Word 1

Source 1 Source 2 / Dest Jump target

Word 2 Word 3

URISC instruction:

R
M
A
R

M
D
R

N Z

PC

in

PC

 out

MDR

in

R

in

N in

Z in

C in

Comp

0 1 Mux

0

1

0

R’

