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Part II
Instruction-Set Architecture
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A Few Words About Where We Are Headed
Performance = 1 / Execution time    simplified to 1 / CPU execution time 

CPU execution time = Instructions  CPI / (Clock rate)

Performance =  Clock rate   /   ( Instructions    CPI )

Define an instruction set;
make it simple enough 
to require a small number 
of cycles and allow high 
clock rate, but not so 
simple that we need many 
instructions, even for very 
simple tasks (Chap 5-8)

Design hardware 
for CPI = 1; seek 
improvements with 
CPI >1 (Chap 13-14)

Design ALU for 
arithmetic & logic 
ops (Chap 9-12)

Try to achieve CPI = 1 
with clock that is as 
high as that for CPI > 1 
designs; is CPI < 1 
feasible? (Chap 15-16)

Design memory & I/O 
structures to support 
ultrahigh-speed CPUs



Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 4

Strategies for Speeding Up Instruction Execution
Performance = 1 / Execution time    simplified to 1 / CPU execution time 

CPU execution time = Instructions  CPI / (Clock rate)

Performance =  Clock rate   /   ( Instructions    CPI )

Items that take longest to 
inspect dictate the speed 
of the assembly line

Assembly line analogy

Single-cycle 
(CPI = 1)

Multicycle 
(CPI > 1)

Parallel processing 
or pipelining

Faster

Faster
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II  Instruction Set Architecture

Topics in This Part
Chapter 5 Instructions and Addressing
Chapter 6 Procedures and Data
Chapter 7 Assembly Language Programs
Chapter 8 Instruction Set Variations

Introduce machine “words” and its “vocabulary,” learning:
• A simple, yet realistic and useful instruction set
• Machine language programs; how they are executed
• RISC vs CISC instruction-set design philosophy
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5  Instructions and Addressing

Topics in This Chapter

5.1 Abstract View of Hardware

5.2 Instruction Formats

5.3 Simple Arithmetic /Logic Instructions

5.4 Load and Store Instructions

5.5 Jump and Branch Instructions

5.6 Addressing Modes

First of two chapters on the instruction set of MiniMIPS:
• Required for hardware concepts in later chapters
• Not aiming for proficiency in assembler programming
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5.1  Abstract View of Hardware

Figure 5.1    Memory and processing subsystems for MiniMIPS. 
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Data Types

MiniMIPS registers hold 32-bit (4-byte) words. Other common 
data sizes include byte, halfword, and doubleword. 

Byte 

Halfword 

 Word 

Doubleword 

Byte = 8 bits

Word = 4 bytes

Doubleword = 8 bytes

Quadword (16 bytes) also used occasionally

Halfword = 2 bytes
Used only for floating-point data, 
so safe to ignore in this course
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Register 
Conventions

Figure 5.2    
Registers and 
data sizes in 
MiniMIPS. 
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Registers Used in This Chapter

Figure 5.2    (partial) 
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5.2  Instruction Formats

Figure 5.3    A typical instruction for MiniMIPS and steps in its execution. 
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Add, Subtract, and Specification of Constants

MiniMIPS add & subtract instructions; e.g., compute: 
g = (b + c)  (e + f)

add $t8,$s2,$s3 # put the sum b + c in $t8
add $t9,$s5,$s6 # put the sum e + f in $t9
sub $s7,$t8,$t9 # set g to ($t8)  ($t9)

Decimal and hex constants

Decimal 25, 123456, 2873
Hexadecimal 0x59, 0x12b4c6, 0xffff0000

Machine instruction typically contains

an opcode
one or more source operands
possibly a destination operand



Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 13

MiniMIPS Instruction Formats

Figure 5.4     MiniMIPS instructions come in only three formats: 
register (R), immediate (I), and jump (J). 
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5.3  Simple Arithmetic/Logic Instructions

Figure 5.5    The arithmetic instructions add and sub have a format that 
is common to all two-operand ALU instructions. For these, the fn field 
specifies the arithmetic/logic operation to be performed. 
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Add and subtract already discussed; logical instructions are similar 
add  $t0,$s0,$s1 # set $t0 to ($s0)+($s1)
sub $t0,$s0,$s1 # set $t0 to ($s0)-($s1)
and $t0,$s0,$s1 # set $t0 to ($s0)($s1)
or $t0,$s0,$s1 # set $t0 to ($s0)($s1)
xor $t0,$s0,$s1 # set $t0 to ($s0)($s1)
nor $t0,$s0,$s1 # set $t0 to (($s0)($s1))
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Arithmetic/Logic with One Immediate Operand

Figure 5.6    Instructions such as addi allow us to perform an 
arithmetic or logic operation for which one operand is a small constant. 
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An operand in the range [32 768, 32 767], or [0x0000, 0xffff], 
can be specified in the immediate field. 

addi  $t0,$s0,61 # set $t0 to ($s0)+61
andi $t0,$s0,61 # set $t0 to ($s0)61
ori $t0,$s0,61 # set $t0 to ($s0)61
xori $t0,$s0,0x00ff # set $t0 to ($s0) 0x00ff

For arithmetic instructions, the immediate operand is sign-extended

1  0 0  1Errors
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5.4  Load and Store Instructions

Figure 5.7     MiniMIPS lw and sw instructions and their memory 
addressing convention that allows for simple access to array elements 
via a base address and an offset (offset = 4i leads us to the i th word).
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lw  $t0,40($s3)
lw  $t0,A($s3)
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lw, sw, and lui Instructions

Figure 5.8    The lui instruction allows us to load an arbitrary 16-bit 
value into the upper half of a register while setting its lower half to 0s. 
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lw   $t0,40($s3) # load mem[40+($s3)] in $t0
sw $t0,A($s3) # store ($t0) in mem[A+($s3)]

# “($s3)” means “content of $s3”
lui $s0,61 # The immediate value 61 is

# loaded in upper half of $s0
# with lower 16b set to 0s
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Initializing a Register
Example 5.2

Show how each of these bit patterns can be loaded into $s0:

0010 0001 0001 0000 0000 0000 0011 1101
1111 1111 1111 1111 1111 1111 1111 1111

Solution

The first bit pattern has the hex representation: 0x2110003d

lui $s0,0x2110 # put the upper half in $s0
ori $s0,0x003d # put the lower half in $s0

Same can be done, with immediate values changed to 0xffff
for the second bit pattern. But, the following is simpler and faster:

nor $s0,$zero,$zero # because (0  0) = 1
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5.5  Jump and Branch Instructions
Unconditional jump and jump through register instructions

j   verify   # go to mem loc named “verify”
jr $ra # go to address that is in $ra;

# $ra may hold a return address

Figure 5.9    The jump instruction j of MiniMIPS is a J-type instruction which 
is shown along with how its effective target address is obtained. The jump 
register (jr) instruction is R-type, with its specified register often being $ra. 
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Conditional Branch Instructions

Figure 5.10 (part 1)    Conditional branch instructions of MiniMIPS. 
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Comparison Instructions for Conditional Branching

Figure 5.10 (part 2)    Comparison instructions of MiniMIPS. 
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Examples for Conditional Branching
If the branch target is too far to be reachable with a 16-bit offset 
(rare occurrence), the assembler automatically replaces the branch 
instruction   beq  $s0,$s1,L1 with:

bne $s1,$s2,L2 # skip jump if (s1)(s2)
j L1 # goto L1 if (s1)=(s2)

L2: ...

Forming if-then constructs; e.g., if (i == j) x = x + y

bne $s1,$s2,endif # branch on ij
add $t1,$t1,$t2 # execute the “then” part

endif: ...

If the condition were (i < j), we would change the first line to:

slt $t0,$s1,$s2 # set $t0 to 1 if i<j
beq $t0,$0,endif # branch if ($t0)=0;

# i.e., i not< j or ij
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Example 5.3 
Compiling if-then-else Statements

Show a sequence of MiniMIPS instructions corresponding to:

if (i<=j) x = x+1; z = 1; else y = y–1; z = 2*z

Solution

Similar to the “if-then” statement, but we need instructions for the
“else” part and a way of skipping the “else” part after the “then” part.

slt $t0,$s2,$s1 # j<i? (inverse condition)
bne $t0,$zero,else # if j<i goto else part
addi $t1,$t1,1 # begin then part: x = x+1
addi $t3,$zero,1 # z = 1
j endif # skip the else part

else: addi $t2,$t2,-1 # begin else part: y = y–1
add $t3,$t3,$t3 # z = z+z

endif:...
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5.6  Addressing Modes

Figure 5.11   Schematic representation of addressing modes in MiniMIPS.
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Example 5.5 

Finding the Maximum Value in a List of Integers

List A is stored in memory beginning at the address given in $s1. 
List length is given in $s2. 
Find the largest integer in the list and copy it into $t0.

Solution

Scan the list, holding the largest element identified thus far in $t0.
lw $t0,0($s1) # initialize maximum to A[0]
addi $t1,$zero,0 # initialize index i to 0

loop: add $t1,$t1,1 # increment index i by 1
beq $t1,$s2,done # if all elements examined, quit
add $t2,$t1,$t1 # compute 2i in $t2
add $t2,$t2,$t2 # compute 4i in $t2
add $t2,$t2,$s1 # form address of A[i] in $t2
lw $t3,0($t2) # load value of A[i] into $t3
slt $t4,$t0,$t3 # maximum < A[i]?
beq $t4,$zero,loop # if not, repeat with no change
addi $t0,$t3,0 # if so, A[i] is the new

maximum
j loop # change completed; now repeat

done: ... # continuation of the program
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The 20 MiniMIPS 
Instructions 

Covered So Far

Instruction Usage
Load upper immediate lui   rt,imm

Add add rd,rs,rt

Subtract sub rd,rs,rt

Set less than slt rd,rs,rt

Add immediate addi rt,rs,imm

Set less than immediate slti rd,rs,imm

AND and rd,rs,rt

OR or rd,rs,rt

XOR xor rd,rs,rt

NOR nor rd,rs,rt

AND immediate andi rt,rs,imm

OR immediate ori rt,rs,imm

XOR immediate xori rt,rs,imm

Load word lw rt,imm(rs)

Store word sw rt,imm(rs)

Jump j L

Jump register jr rs

Branch less than 0 bltz rs,L

Branch equal beq rs,rt,L

Branch not equal bne rs,rt,L

Copy

Control transfer

Logic

Arithmetic

Memory access

op
15

0
0
0
8

10
0
0
0
0

12
13
14
35
43

2
0
1
4
5

fn

32
34
42

36
37
38
39

8

Table 5.1

5 bits 5 bits 
31 25 20 15  0 

Opcode Source 
register 1 

Source 
register 2 

op rs rt 

R 6 bits 5 bits 

rd 

5 bits 

sh 

6 bits 
10  5 

fn 

Destination 
register 

Shift 
amount 

Opcode 
extension 

Immediate operand 
or address offset 

31 25 20 15  0 

Opcode Destination 
or data 

Source 
or base 

op rs rt operand / offset 

I 5 bits 6 bits 16 bits 5 bits 

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
31  0 

Opcode  

op jump target address 

J 
Memory word address (byte address divided by 4) 

26 bits 
25 

6 bits 
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6  Procedures and Data

Topics in This Chapter

6.1 Simple Procedure Calls

6.2 Using the Stack for Data Storage

6.3 Parameters and Results

6.4 Data Types

6.5 Arrays and Pointers

6.6 Additional Instructions

Finish our study of MiniMIPS instructions and its data types:
• Instructions for procedure call/return, misc. instructions
• Procedure parameters and results, utility of stack
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6.1  Simple Procedure Calls
Using a procedure involves the following sequence of actions: 

1. Put arguments in places known to procedure (reg’s $a0-$a3)
2. Transfer control to procedure, saving the return address (jal)
3. Acquire storage space, if required, for use by the procedure
4. Perform the desired task
5. Put results in places known to calling program (reg’s $v0-$v1)
6. Return control to calling point (jr)

MiniMIPS instructions for procedure call and return from procedure:

jal  proc # jump to loc “proc” and link;
# “link” means “save the return
# address” (PC)+4 in $ra ($31)

jr rs # go to loc addressed by rs
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Illustrating a Procedure Call

Figure 6.1    Relationship between the main program and a procedure.
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Example 6.1 
A Simple MiniMIPS Procedure

Procedure to find the absolute value of an integer.

$v0  |($a0)|

Solution

The absolute value of x is –x if x < 0 and x otherwise. 

abs: sub  $v0,$zero,$a0  # put -($a0) in $v0; 
# in case ($a0) < 0

bltz $a0,done       # if ($a0)<0 then done 
add  $v0,$a0,$zero  # else put ($a0) in $v0

done: jr   $ra            # return to calling program

In practice, we seldom use such short procedures because of the 
overhead that they entail. In this example, we have 3-4 
instructions of overhead for 3 instructions of useful computation.
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Nested Procedure Calls

Figure 6.2      Example of nested procedure calls.
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6.2  Using the Stack for Data Storage

Figure 6.4      Effects of push and pop operations on a stack. 

b 
a 

sp 

b 
a 

sp 
b 
a sp 

c 

Push c Pop x 

sp = sp – 4 
mem[sp] = c 

x = mem[sp]
sp = sp + 4 

push: addi  $sp,$sp,-4
sw    $t4,0($sp)

pop: lw    $t5,0($sp)
addi  $sp,$sp,4

Analogy:
Cafeteria 
stack of 
plates/trays
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Memory 
Map in 

MiniMIPS

Figure 6.3     Overview of the memory address space in MiniMIPS.
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6.3  Parameters and Results

Figure 6.5      Use of the stack by a procedure. 

b 
a 

$sp c 
Frame for 
current 
procedure 

$fp 

. . . 

Before calling 

b 
a 

$sp 

c 
Frame for 
previous 
procedure 

$fp 

. . . 

After calling 

Frame for 
current 
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Old ($fp) 

Saved 
registers  

y 
z 

. . . 
Local 
variables 

Stack allows us to pass/return an arbitrary number of values
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Example of Using the Stack

proc: sw   $fp,-4($sp) # save the old frame pointer
addi $fp,$sp,0 # save ($sp) into $fp
addi $sp,$sp,–12 # create 3 spaces on top of stack
sw   $ra,-8($fp) # save ($ra) in 2nd stack element
sw   $s0,-12($fp) # save ($s0) in top stack element
.
.
.
lw   $s0,-12($fp) # put top stack element in $s0
lw   $ra,-8($fp) # put 2nd stack element in $ra
addi $sp,$fp, 0 # restore $sp to original state
lw   $fp,-4($sp) # restore $fp to original state
jr   $ra # return from procedure

Saving $fp, $ra, and $s0 onto the stack and restoring 
them at the end of the procedure

$fp

$sp
($fp)

$fp

$sp
($ra)
($s0)
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6.4  Data Types

Data size (number of bits), data type (meaning assigned to bits)

Signed integer: byte word
Unsigned integer: byte word
Floating-point number: word doubleword
Bit string: byte word doubleword

Converting from one size to another
Type 8-bit number Value 32-bit version of the number

Unsigned 0010 1011 43 0000 0000 0000 0000 0000 0000 0010 1011
Unsigned 1010 1011 171 0000 0000 0000 0000 0000 0000 1010 1011

Signed 0010 1011 +43 0000 0000 0000 0000 0000 0000 0010 1011
Signed 1010 1011 –85 1111 1111 1111 1111 1111 1111 1010 1011
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ASCII Characters
Table 6.1    ASCII (American standard code for information interchange) 

NUL DLE SP 0 @ P ` p
SOH DC1 ! 1 A Q a q
STX DC2 “ 2 B R b r
ETX DC3 # 3 C S c s
EOT DC4 $ 4 D T d t
ENQ NAK % 5 E U e u
ACK SYN & 6 F V f v
BEL ETB ‘ 7 G W g w
BS CAN ( 8 H X h x
HT EM ) 9 I Y i y
LF SUB * : J Z j z
VT ESC + ; K [ k {
FF FS , < L \ l |
CR GS - = M ] m }
SO RS . > N ^ n ~
SI US / ? O _ o DEL

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0             1             2             3             4              5             6             7             8-9           a-f

More
controls

More
symbols

8-bit ASCII code
(col #, row #)hex

e.g., code for + 
is (2b) hex or
(0010 1011)two
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Loading and Storing Bytes

Figure 6.6      Load and store instructions for byte-size data elements.

x x 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
31 25 20 15  0 

lb = 32 
lbu = 36 
sb = 40 

Data 
register 

Base 
register 

Address offset 

op rs rt immediate / offset 

I 1 1 0 0 0 1 1 

Bytes can be used to store ASCII characters or small integers. 
MiniMIPS addresses refer to bytes, but registers hold words.

lb $t0,8($s3) # load rt with mem[8+($s3)]
# sign-extend to fill reg

lbu $t0,8($s3) # load rt with mem[8+($s3)]
# zero-extend to fill reg

sb $t0,A($s3) # LSB of rt to mem[A+($s3)]
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Meaning of a Word in Memory

Figure 6.7      A 32-bit word has no inherent meaning and can be 
interpreted in a number of equally valid ways in the absence of 
other cues (e.g., context) for the intended meaning.

0000 0010 0001 0001 0100 0000 0010 0000

Positive integer 

Four-character string 

Add instruction 

Bit pattern 
(02114020) hex 

00000010000100010100000000100000 

00000010000100010100000000100000 

00000010000100010100000000100000 
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6.5  Arrays and Pointers
Index: Use a register that holds the index i and increment the register in 
each step to effect moving from element i of the list to element i + 1 

Pointer: Use a register that points to (holds the address of) the list element 
being examined and update it in each step to point to the next element 

Add 4 to get 
the address 
of A[i + 1] 

Pointer to A[i] Array index i 

Add 1 to i; 
Compute 4i;  
Add 4i to base 

A[i] 
A[i + 1] 

A[i] 
A[i + 1] 

Base Array A Array A 

Figure 6.8     Stepping through the elements of an array using the 
indexing method and the pointer updating method.
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Selection Sort
Example 6.4

Figure 6.9     One iteration of selection sort.

first 

last 

max 

first 

last 

first 

last 

Start of iteration Maximum identified End of iteration

x 

x y 

y 

A A A 

To sort a list of numbers, repeatedly perform the following:
Find the max element, swap it with the last item, move up the “last” pointer
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Selection Sort Using the Procedure max
Example 6.4 (continued)

sort: beq  $a0,$a1,done  # single-element list is sorted
jal  max # call the max procedure
lw   $t0,0($a1)    # load last element into $t0
sw   $t0,0($v0)    # copy the last element to max loc
sw   $v1,0($a1)    # copy max value to last element
addi $a1,$a1,-4    # decrement pointer to last element
j    sort          # repeat sort for smaller list

done: ...                # continue with rest of program

first 

last 

max 

first 

last 

first 

last 

Start of iteration Maximum identified End of iteration

x 

x y 

y 

A A A 

Inputs to
proc max

Outputs from
proc max

In $a0

In $a1

In $v0 In $v1
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6.6  Additional Instructions

Figure 6.10     The multiply (mult) and divide (div) instructions of MiniMIPS.

1 0 0 1 1 0 0 

fn 

0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 1 1 0 0 0 0 0 0 0 0 
31 25 20 15  0 

ALU 
instruction 

Source 
register 1 

Source 
register 2 

op rs rt 

R 
rd sh 

10  5 

Unused Unused mult = 24 
div = 26 

1 0 0 0 0 0 0 1 0 0 

fn 

0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 
31 25 20 15  0 

ALU 
instruction 

Unused Unused 

op rs rt 

R 
rd sh 

10  5 

Destination 
register 

Unused mfhi = 16 
mflo = 18 

Figure 6.11     MiniMIPS instructions for copying the contents of Hi and Lo
registers into general registers .

MiniMIPS instructions for multiplication and division:

mult $s0, $s1 # set Hi,Lo to ($s0)($s1)
div $s0, $s1 # set Hi to ($s0)mod($s1)

# and Lo to ($s0)/($s1)
mfhi $t0 # set $t0 to (Hi)
mflo $t0 # set $t0 to (Lo)

Reg
file

Mul/Div
unit

Hi Lo
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Logical Shifts

Figure 6.12     The four logical shift instructions of MiniMIPS.

MiniMIPS instructions for left and right shifting:

sll $t0,$s1,2 # $t0=($s1) left-shifted by 2
srl $t0,$s1,2 # $t0=($s1) right-shifted by 2
sllv $t0,$s1,$s0 # $t0=($s1) left-shifted by ($s0)
srlv $t0,$s1,$s0 # $t0=($s1) right-shifted by ($s0)

0 

x 

0 0 

fn 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 x 0 0 1 1 1 0 0 0 0 0 0 0 0 0 
31 25 20 15  0 

ALU 
instruction 

Unused Source 
register 

op rs rt 

R 
rd sh 

10  5 

Destination 
register 

Shift  
amount 

sll = 0 
srl = 2 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 
31 25 20 15  0 

ALU 
instruction 

Amount  
register 

Source 
register 

op rs rt 

R 
rd sh 

10  5 
fn 

Destination 
register 

Unused sllv = 4 
srlv = 6 
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Unsigned Arithmetic and Miscellaneous Instructions

MiniMIPS instructions for unsigned arithmetic (no overflow exception):

addu $t0,$s0,$s1 # set $t0 to ($s0)+($s1)
subu $t0,$s0,$s1 # set $t0 to ($s0)–($s1)
multu $s0,$s1 # set Hi,Lo to ($s0)($s1)
divu $s0,$s1 # set Hi to ($s0)mod($s1)

# and Lo to ($s0)/($s1)
addiu $t0,$s0,61 # set $t0 to ($s0)+61;

# the immediate operand is
# sign extended

To make MiniMIPS more powerful and complete, we introduce later:

sra $t0,$s1,2 # sh. right arith (Sec. 10.5)
srav $t0,$s1,$s0 # shift right arith variable
syscall # system call (Sec. 7.6)



Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 47

The 20 MiniMIPS 
Instructions 

from Chapter 6
(40 in all so far)

Instruction Usage
Move from Hi mfhi  rd

Move from Lo mflo rd

Add unsigned addu rd,rs,rt

Subtract unsigned subu rd,rs,rt

Multiply mult rs,rt

Multiply unsigned multu rs,rt

Divide div rs,rt

Divide unsigned divu rs,rt

Add immediate unsigned addiu rs,rt,imm

Shift left logical sll rd,rt,sh

Shift right logical srl rd,rt,sh

Shift right arithmetic sra rd,rt,sh

Shift left logical variable sllv rd,rt,rs

Shift right logical variable srlv rt,rd,rs

Shift right arith variable srav rd,rt,rd

Load byte lb rt,imm(rs)

Load byte unsigned lbu rt,imm(rs)

Store byte sb rt,imm(rs)

Jump and link jal L

System call syscall

Copy

Control transfer

Shift

Arithmetic

Memory access

op
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0

32
36
40

3
0

fn
16
18
33
35
24
25
26
27

0
2
3
4
6
7

12

Table 6.2 (partial)

5 bits 5 bits 
31 25 20 15  0 

Opcode Source 
register 1 

Source 
register 2 

op rs rt 

R 6 bits 5 bits 

rd 

5 bits 

sh 

6 bits 
10  5 

fn 

Destination 
register 

Shift 
amount 

Opcode 
extension 

Immediate operand 
or address offset 

31 25 20 15  0 

Opcode Destination 
or data 

Source 
or base 

op rs rt operand / offset 

I 5 bits 6 bits 16 bits 5 bits 

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
31  0 

Opcode  

op jump target address 

J 
Memory word address (byte address divided by 4) 

26 bits 
25 

6 bits 
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Table 6.2   The 37 + 3 MiniMIPS Instructions Covered So Far
Instruction Usage
Move from Hi mfhi  rd

Move from Lo mflo rd

Add unsigned addu rd,rs,rt

Subtract unsigned subu rd,rs,rt

Multiply mult rs,rt

Multiply unsigned multu rs,rt

Divide div rs,rt

Divide unsigned divu rs,rt

Add immediate unsigned addiu rs,rt,imm

Shift left logical sll rd,rt,sh

Shift right logical srl rd,rt,sh

Shift right arithmetic sra rd,rt,sh

Shift left logical variable sllv rd,rt,rs

Shift right logical variable srlv rd,rt,rs

Shift right arith variable srav rd,rt,rs

Load byte lb rt,imm(rs)

Load byte unsigned lbu rt,imm(rs)

Store byte sb rt,imm(rs)

Jump and link jal L

System call syscall

Instruction Usage
Load upper immediate lui   rt,imm

Add add rd,rs,rt

Subtract sub rd,rs,rt

Set less than slt rd,rs,rt

Add immediate addi rt,rs,imm

Set less than immediate slti rd,rs,imm

AND and rd,rs,rt

OR or rd,rs,rt

XOR xor rd,rs,rt

NOR nor rd,rs,rt

AND immediate andi rt,rs,imm

OR immediate ori rt,rs,imm

XOR immediate xori rt,rs,imm

Load word lw rt,imm(rs)

Store word sw rt,imm(rs)

Jump j L

Jump register jr rs

Branch less than 0 bltz rs,L

Branch equal beq rs,rt,L

Branch not equal bne rs,rt,L
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7  Assembly Language Programs

Topics in This Chapter

7.1 Machine and Assembly Languages

7.2 Assembler Directives

7.3 Pseudoinstructions

7.4 Macroinstructions

7.5 Linking and Loading

7.6 Running Assembler Programs

Everything else needed to build and run assembly programs:
• Supply info to assembler about program and its data
• Non-hardware-supported instructions for convenience
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7.1  Machine and Assembly Languages

Figure 7.1     Steps in transforming an assembly language program to 
an executable program residing in memory.
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Symbol Table

Figure 7.2     An assembly-language program, its machine-language 
version, and the symbol table created during the assembly process.

 0   00100000000100000000000000001001
  

      addi $s0,$zero,9 

test 

done 
result 

12 

28 
248 

 4   00000010000100000100000000100010
   8   00000001001000000000000000100000
  12   00010101000100000000000000001100
  16   00100001000010000000000000000001
  20   00000010000000000100100000100000
  24   00001000000000000000000000000011
  28   10101111100010010000000011111000
  

Determined from assembler 
directives not shown here 

Symbol 
table 

done: sw   $t1,result($gp) 

      sub  $t0,$s0,$s0 
       add  $t1,$zero,$zero 

test: bne  $t0,$s0,done 

      addi $t0,$t0,1 
       add  $t1,$s0,$zero 

      j    test 

Assembly language program Machine language program Location 

       op   rs   rt   rd   sh   fn 
   Field boundaries shown to facilitate understanding
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7.2  Assembler Directives
Assembler directives provide the assembler with info on how to translate
the program but do not lead to the generation of machine instructions

.macro # start macro (see Section 7.4)

.end_macro # end macro (see Section 7.4)

.text # start program’s text segment

... # program text goes here

.data # start program’s data segment
tiny: .byte    156,0x7a # name & initialize data byte(s)
max: .word    35000 # name & initialize data word(s)

small: .float   2E-3 # name short float (see Chapter 12)
big: .double  2E-3 # name long float (see Chapter 12)

.align   2 # align next item on word boundary
array: .space   600 # reserve 600 bytes = 150 words
str1: .ascii   “a*b” # name & initialize ASCII string 
str2: .asciiz  “xyz” # null-terminated ASCII string

.global  main # consider “main” a global name
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Composing Simple Assembler Directives

Write assembler directive to achieve each of the following objectives:

a. Put the error message “Warning: The printer is out of paper!” in memory.
b. Set up a constant called “size” with the value 4.
c. Set up an integer variable called “width” and initialize it to 4.
d. Set up a constant called “mill” with the value 1,000,000 (one million).
e. Reserve space for an integer vector “vect” of length 250.

Solution:

a.  noppr: .asciiz “Warning: The printer is out of paper!”
b.  size: .byte  4 # small constant fits in one byte
c.  width: .word  4 # byte could be enough, but ...
d.  mill: .word  1000000 # constant too large for byte
e.  vect: .space 1000 # 250 words = 1000 bytes

Example 7.1
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7.3  Pseudoinstructions

Example of one-to-one pseudoinstruction: The following
not  $s0 # complement ($s0)

is converted to the real instruction:
nor  $s0,$s0,$zero   # complement ($s0)

Example of one-to-several pseudoinstruction: The following
abs  $t0,$s0 # put |($s0)| into $t0

is converted to the sequence of real instructions:
add  $t0,$s0,$zero   # copy x into $t0
slt  $at,$t0,$zero   # is x negative?
beq  $at,$zero,+4    # if not, skip next instr
sub  $t0,$zero,$s0   # the result is 0 – x 
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MiniMIPS 
Pseudo-

instructions 

Pseudoinstruction Usage
Move move  regd,regs

Load address la regd,address

Load immediate li regd,anyimm

Absolute value abs regd,regs

Negate neg regd,regs

Multiply (into register) mul regd,reg1,reg2

Divide (into register) div regd,reg1,reg2

Remainder rem regd,reg1,reg2

Set greater than sgt regd,reg1,reg2

Set less or equal sle regd,reg1,reg2

Set greater or equal sge regd,reg1,reg2

Rotate left rol regd,reg1,reg2

Rotate right ror regd,reg1,reg2

NOT not reg

Load doubleword ld regd,address

Store doubleword sd regd,address

Branch less than blt reg1,reg2,L

Branch greater than bgt reg1,reg2,L

Branch less or equal ble reg1,reg2,L

Branch greater or equal bge reg1,reg2,L

Copy

Control transfer

Shift

Arithmetic

Memory access

Table 7.1

Logic
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7.4  Macroinstructions
A macro is a mechanism to give a name to an often-used 
sequence of instructions (shorthand notation)

.macro  name(args) # macro and arguments named

... # instr’s defining the macro

.end_macro # macro terminator

How is a macro different from a pseudoinstruction?
Pseudos are predefined, fixed, and look like machine instructions
Macros are user-defined and resemble procedures (have arguments)

How is a macro different from a procedure?
Control is transferred to and returns from a procedure
After a macro has been replaced, no trace of it remains
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Macro to Find the Largest of Three Values

Write a macro to determine the largest of three values in registers and to 
put the result in a fourth register.

Solution:

.macro mx3r(m,a1,a2,a3)  # macro and arguments named
move   m,a1              # assume (a1) is largest; m = (a1)
bge    m,a2,+4           # if (a2) is not larger, ignore it
move   m,a2              # else set m = (a2)
bge    m,a3,+4           # if (a3) is not larger, ignore it
move   m,a3              # else set m = (a3)
.endmacro                # macro terminator

If the macro is used as mx3r($t0,$s0,$s4,$s3), the assembler replaces 
the arguments m, a1, a2, a3 with $t0, $s0, $s4, $s3, respectively.

Example 7.4
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7.5  Linking and Loading

The linker has the following responsibilities:
Ensuring correct interpretation (resolution) of labels in all modules
Determining the placement of text and data segments in memory
Evaluating all data addresses and instruction labels
Forming an executable program with no unresolved references

The loader is in charge of the following:
Determining the memory needs of the program from its header
Copying text and data from the executable program file into memory
Modifying (shifting) addresses, where needed, during copying
Placing program parameters onto the stack (as in a procedure call)
Initializing all machine registers, including the stack pointer
Jumping to a start-up routine that calls the program’s main routine
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7.6  Running Assembler Programs

Spim is a simulator that can run MiniMIPS programs

The name Spim comes from reversing MIPS

Three versions of Spim are available for free downloading:

PCSpim for Windows machines   QtSPIM for many OSs
xspim for X-windows
spim for Unix systems

You can download SPIM from:

SPIM
A MIPS32 Simulator

James Larus
spim@larusstone.org

Microsoft Research
Formerly: Professor, CS Dept., Univ. Wisconsin-Madison

spim is a self-contained simulator that will 
run MIPS32 assembly language programs. 
It reads and executes assembly . . .

http://spimsimulator.sourceforge.net

http://www.cs.wisc.edu/~larus/spim.html
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Input/Output Conventions for MiniMIPS
Table 7.2     Input/output and control functions of syscall in PCSpim.

($v0) Function Arguments Result
1 Print integer Integer in $a0 Integer displayed
2 Print floating-point Float in $f12 Float displayed
3 Print double-float Double-float in $f12,$f13 Double-float displayed
4 Print string Pointer in $a0 Null-terminated string displayed
5 Read integer Integer returned in $v0

6 Read floating-point Float returned in $f0

7 Read double-float Double-float returned in $f0,$f1

8 Read string Pointer in $a0, length in $a1 String returned in buffer at pointer
9 Allocate memory Number of bytes in $a0 Pointer to memory block in $v0

10 Exit from program Program execution terminated

O
ut

pu
t

In
pu

t
C

nt
l
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Figure 7.3
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8  Instruction Set Variations

Topics in This Chapter

8.1 Complex Instructions

8.2 Alternative Addressing Modes

8.3 Variations in Instruction Formats

8.4 Instruction Set Design and Evolution

8.5 The RISC/CISC Dichotomy

8.6 Where to Draw the Line

The MiniMIPS instruction set is only one example
• How instruction sets may differ from that of MiniMIPS
• RISC and CISC instruction set design philosophies
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Review of Some Key Concepts

Different from procedure, 
in that the macro is replaced 
with equivalent instructions

All of the same length
Fields used consistently 
(simple decoding)
Can initiate reading of 
registers even before 
decoding the instruction
Short, uniform execution

Macroinstruction
Instruction
Instruction
Instruction

Instruction format for a simple RISC design

5 bits 5 bits 
31 25 20 15  0 

Opcode Source 
register 1 

Source 
register 2 

op rs rt 

R 6 bits 5 bits 

rd 

5 bits 

sh 

6 bits 
10  5 

fn 

Destination 
register 

Shift 
amount 

Opcode 
extension 

Immediate operand 
or address offset 

31 25 20 15  0 

Opcode Destination 
or data 

Source 
or base 

op rs rt operand / offset 

I 5 bits 6 bits 16 bits 5 bits 

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
31  0 

Opcode  

op jump target address 

J 
Memory word address (byte address divided by 4) 

26 bits 
25 

6 bits 

Microinstruction
Microinstruction
Microinstruction
Microinstruction
Microinstruction

Instruction
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8.1  Complex Instructions
Table 8.1 (partial)     Examples of complex instructions in two popular modern 
microprocessors and two computer families of historical significance  

Machine Instruction Effect
Pentium MOVS Move one element in a string of bytes, words, or 

doublewords using addresses specified in two pointer 
registers; after the operation, increment or decrement 
the registers to point to the next element of the string

PowerPC cntlzd Count the number of consecutive 0s in a specified 
source register beginning with bit position 0 and place 
the count in a destination register

IBM 360-370 CS Compare and swap: Compare the content of a register 
to that of a memory location; if unequal, load the 
memory word into the register, else store the content 
of a different register into the same memory location

Digital VAX POLYD Polynomial evaluation with double flp arithmetic: 
Evaluate a polynomial in x, with very high precision in 
intermediate results, using a coefficient table whose 
location in memory is given within the instruction
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Some Details of Sample Complex Instructions

MOVS
(Move string)

Source
string

Destination
string

cntlzd
(Count leading 0s)

0000 0010 1100 0111

0000 0000 0000 0110

6 leading 0s

POLYD
(Polynomial evaluation in 

double floating-point)

cn–1xn–1 + . . . + c2x2 + c1x + c0

Coefficients

x
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Benefits and Drawbacks of Complex Instructions

Fewer instructions in program
(less memory)

Potentially faster execution 
(complex steps are still done 
sequentially in multiple cycles, 
but hardware control can be 
faster than software loops)

Fewer memory accesses for 
instructions

Programs may become easier 
to write/read/understand

More complex format
(slower decoding)

Less flexible 
(one algorithm for polynomial 
evaluation or sorting may not 
be the best in all cases)

If interrupts are processed at 
the end of instruction cycle, 
machine may become less 
responsive to time-critical 
events (interrupt handling)
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8.2 Alternative Addressing Modes

Figure 5.11   Schematic representation of addressing modes in MiniMIPS.

Addressing Instruction Other elements involved Operand 

Implied 

Immediate 

Register 

Base 

PC-relative 

Pseudodirect 

Some place 
in the machine 

Extend,  
if  required 

Reg f ile Reg spec Reg data 

Memory 
Add 

Reg file 

Mem 
addr 

Constant offset 

Reg base Reg 
data 

Mem 
data 

Add 

PC 

Constant offset 

Memory 

Mem 
addr Mem 

data 

Memory 
Mem 
data 

PC Mem 
addr 

Let’s 
refresh 
our 
memory 
(from 
Chap. 5)
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Table 6.2
Instruction Usage
Move from Hi mfhi  rd

Move from Lo mflo rd

Add unsigned addu rd,rs,rt

Subtract unsigned subu rd,rs,rt

Multiply mult rs,rt

Multiply unsigned multu rs,rt

Divide div rs,rt

Divide unsigned divu rs,rt

Add immediate unsigned addiu rs,rt,imm

Shift left logical sll rd,rt,sh

Shift right logical srl rd,rt,sh

Shift right arithmetic sra rd,rt,sh

Shift left logical variable sllv rd,rt,rs

Shift right logical variable srlv rd,rt,rs

Shift right arith variable srav rd,rt,rs

Load byte lb rt,imm(rs)

Load byte unsigned lbu rt,imm(rs)

Store byte sb rt,imm(rs)

Jump and link jal L

System call syscall

Instruction Usage
Load upper immediate lui   rt,imm

Add add rd,rs,rt

Subtract sub rd,rs,rt

Set less than slt rd,rs,rt

Add immediate addi rt,rs,imm

Set less than immediate slti rd,rs,imm

AND and rd,rs,rt

OR or rd,rs,rt

XOR xor rd,rs,rt

NOR nor rd,rs,rt

AND immediate andi rt,rs,imm

OR immediate ori rt,rs,imm

XOR immediate xori rt,rs,imm

Load word lw rt,imm(rs)

Store word sw rt,imm(rs)

Jump j L

Jump register jr rs

Branch less than 0 bltz rs,L

Branch equal beq rs,rt,L

Branch not equal bne rs,rt,L

Addressing Mode Examples in the MiniMIPS ISA
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More Elaborate Addressing Modes

Figure 8.1     Schematic representation of more elaborate 
addressing modes not supported in MiniMIPS.

Addressing Instruction Other elements involved Operand 

Mem data PC 

Mem addr 
Memory 

Memory Add 

Reg f ile Mem 
addr Mem 

data Index reg 
Base reg 

Memory Reg f ile 

Mem 
addr Mem 

data 

Increment amount 

Base reg 

Indirect  

Indexed 

Update 
(with base) 

Update 
(with indexed) Memory Add 

Reg f ile Mem 
addr Mem 

data 
Index reg 
Base reg 

Increment 
amount 

Memory 

Mem addr, 
2nd access 

Mem data, 
2nd access 

This part maybe replaced with any 
other form of address specif ication 

Incre-
ment 

 Increment 

x := B[i]

x := Mem[p]
p := p + 1

x := B[i]
i := i + 1

t := Mem[p]
x := Mem[t]

x := Mem[Mem[p]]
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Usefulness of Some Elaborate Addressing Modes

Update mode: XORing a string of bytes

loop: lb   $t0,A($s0)
xor  $s1,$s1,$t0
addi $s0,$s0,-1
bne  $s0,$zero,loop 

One instruction with 
update addressing

Indirect mode: Case statement

case: lw   $t0,0($s0)  # get s
add  $t0,$t0,$t0 # form 2s
add  $t0,$t0,$t0 # form 4s
la   $t1,T       # base T
add  $t1,$t0,$t1
lw   $t2,0($t1)  # entry
jr   $t2 

L0
L1
L2
L3
L4
L5

T
T+4

T+20
T+16
T+12

T+8

Branch to location Li 
if s = i (switch var.)
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8.3  Variations in Instruction Formats

Figure 8.2     Examples of MiniMIPS instructions with 0 to 3 
addresses; shaded fields are unused.

3-address 

0-address 

1-address 

2-address 

syscall 

j 

mult 

add 

One implied operand in register $v0 

Destination and two source registers addressed 

Two source registers addressed, destination implied 

Jump target addressed (in pseudodirect form) 

 

Category Format Opcode Description of operand(s) 

Address 2 

12 

rt rs 0 24 

rt rs 0 rd 32 

0 

0-, 1-, 2-, and 3-address instructions in MiniMIPS
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Zero-Address Architecture: Stack Machine

Stack holds all the operands (replaces our register file)

Load/Store operations become push/pop

Arithmetic/logic operations need only an opcode: they pop operand(s) 
from the top of the stack and push the result onto the stack

Example: Evaluating the expression  (a + b)  (c – d)

a

Push a

a
b

Push b

a + b

Add

d

Push d

a + b d

Push c

a + b

c c – d 

Subtract

a + b
Result

Multiply

If a variable is used again, you may have to push it multiple times

Special instructions such as “Duplicate” and “Swap” are helpful

Polish string:  a b + d c – 



Oct. 2014 Computer Architecture, Instruction-Set Architecture Slide 73

One-Address Architecture: Accumulator Machine

The accumulator, a special register attached to the ALU, always holds 
operand 1 and the operation result

Only one operand needs to be specified by the instruction

Example: Evaluating the expression  (a + b)  (c – d)

May have to store accumulator contents in memory (example above)

No store needed for  a + b + c + d +  . . . (“accumulator”)

Load     a
add      b
Store    t
load     c
subtract d
multiply t

Within branch instructions, the condition or 
target address must be implied

Branch to L if acc negative

If register x is negative skip the next instruction
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Two-Address Architectures

Two addresses may be used in different ways:

Operand1/result and operand 2

Condition to be checked and branch target address

Example: Evaluating the expression  (a + b)  (c – d)

A variation is to use one of the addresses as in a one-address 
machine and the second one to specify a branch in every instruction

load     $1,a
add      $1,b
load     $2,c
subtract $2,d
multiply $1,$2

Instructions of a hypothetical 
two-address machine
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Components that form a variable-length IA-32 (80x86) instruction.

Example of a Complex Instruction Format

Offset or displacement (0, 1, 2, or 4 B)

Immediate (0, 1, 2, or 4 B)

Opcode (1-2 B)

Instruction prefixes (zero to four, 1 B each)

Mod   Reg/Op   R/M Scale  Index   Base

ModR/M SIB

Operand/address
size overwrites and 
other modifiers

Most memory
operands need
these 2 bytes

Instructions 
can contain 
up to 15 bytes
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Figure 8.3    Example 80x86 instructions ranging in width from 1 to 6 
bytes; much wider instructions (up to 15 bytes) also exist 

Some of IA-32’s Variable-Width Instructions

4-byte 

1-byte 

2-byte 

3-byte 

6-byte 

5-byte 

Type Format (field widths shown) Opcode Description of operand(s) 

8 8 6 

PUSH 

JE 

MOV 

XOR 

3-bit register specification  

8-bit register/mode, 8-bit base/index,  
8-bit offset  

8-bit register/mode, 8-bit offset  

4-bit condition, 8-bit jump offset  

ADD 

TEST 8-bit register/mode, 32-bit immediate  

3-bit register spec, 32-bit immediate  

5 3 

4 4 8 

3 32 4 

7 8 32 

8 8 8 8 
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8.4  Instruction Set Design and Evolution

Figure 8.4     Processor design and implementation process.

Pro- 
cessor 
design 
team 

New 
machine 
project 

Tuning & 
bug fixes 

Performance 
objectives 

Instruction-set 
definition 

Imple- 
men- 
tation Fabrica- 

tion & 
testing 

Sales 
& 

use 

 ? 

Feedback 

Desirable attributes of an instruction set:

Consistent, with uniform and generally applicable rules
Orthogonal, with independent features noninterfering
Transparent, with no visible side effect due to implementation details
Easy to learn/use (often a byproduct of the three attributes above)
Extensible, so as to allow the addition of future capabilities
Efficient, in terms of both memory needs and hardware realization
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8.5  The RISC/CISC Dichotomy
The RISC (reduced instruction set computer) philosophy:
Complex instruction sets are undesirable because inclusion of 
mechanisms to interpret all the possible combinations of opcodes 
and operands might slow down even very simple operations. 

Features of  RISC architecture

1. Small set of inst’s, each executable in roughly the same time
2. Load/store architecture (leading to more registers)
3. Limited addressing mode to simplify address calculations
4. Simple, uniform instruction formats (ease of decoding)

Ad hoc extension of instruction sets, while maintaining backward 
compatibility, leads to CISC; imagine modern English containing
every English word that has been used through the ages
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RISC/CISC Comparison via Generalized Amdahl’s Law
Example 8.1

An ISA has two classes of simple (S) and complex (C) instructions. 
On a reference implementation of the ISA, class-S instructions 
account for 95% of the running time for programs of interest. A RISC 
version of the machine is being considered that executes only class-S 
instructions directly in hardware, with class-C instructions treated as 
pseudoinstructions. It is estimated that in the RISC version, class-S 
instructions will run 20% faster while class-C instructions will be 
slowed down by a factor of 3. Does the RISC approach offer better or 
worse performance compared to the reference implementation?

Solution
Per assumptions, 0.95 of the work is speeded up by a factor of  1.0 / 
0.8 = 1.25, while the remaining 5% is slowed down by a factor of 3. 
The RISC speedup is 1 / [0.95 / 1.25 + 0.05  3] = 1.1. Thus, a 10% 
improvement in performance can be expected in the RISC version.
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Some Hidden Benefits of RISC

In Example 8.1, we established that a speedup factor of 1.1 can be 
expected from the RISC version of a hypothetical machine

This is not the entire story, however!

If the speedup of 1.1 came with some additional cost, then one might 
legitimately wonder whether it is worth the expense and design effort

The RISC version of the architecture also:

Reduces the effort and team size for design

Shortens the testing and debugging phase

Simplifies documentation and maintenance

Cheaper product and 
shorter time-to-market
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MIPS Performance Rating Revisited
An m-MIPS processor can execute m million instructions per second

Comparing an m-MIPS processor with a 10m-MIPS processor
Like comparing two people who read m pages and 10m pages per hour

Reading 100 pages per hour, as opposed to 10 pages per hour, may 
not allow you to finish the same reading assignment in 1/10 the time

10 pages / hr 100 pages / hr
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RISC / CISC Convergence

In the early 1980s, two projects brought RISC to the forefront:
UC Berkeley’s RISC 1 and 2, forerunners of the Sun SPARC
Stanford’s MIPS, later marketed by a company of the same name

Since the 1990s, the debate has cooled down!

We can now enjoy both sets of benefits by having complex instructions 
automatically translated to sequences of very simple instructions that 
are then executed on RISC-based underlying hardware

The earliest RISC designs:
CDC 6600, highly innovative supercomputer of the mid 1960s 
IBM 801, influential single-chip processor project of the late 1970s

Throughout the 1980s, there were heated debates about the relative 
merits of RISC and CISC architectures
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8.6  Where to Draw the Line
The ultimate reduced instruction set computer (URISC):
How many instructions are absolutely needed for useful computation?

Only one!
subtract source1 from source2, replace source2 with the 
result, and jump to target address if result is negative

Assembly language form:

label: urisc  dest,src1,target

Pseudoinstructions can be synthesized using the single instruction:

stop: .word 0
start: urisc dest,dest,+1 # dest = 0

urisc temp,temp,+1 # temp = 0
urisc temp,src,+1 # temp = -(src)
urisc dest,temp,+1 # dest = -(temp); i.e. (src)
... # rest of program

This is the move
pseudoinstruction

Corrected
version
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Some Useful Pseudo Instructions for URISC
Example 8.2 (2 parts of 5)

Write the sequence of instructions that are produced by the URISC 
assembler for each of the following pseudoinstructions.
parta: uadd  dest,src1,src2  # dest=(src1)+(src2)
partc: uj    label           # goto label

Solution
at1 and at2 are temporary memory locations for assembler’s use
parta: urisc  at1,at1,+1     # at1 = 0

urisc  at1,src1,+1    # at1 = -(src1)
urisc  at1,src2,+1    # at1 = -(src1)–(src2)
urisc  dest,dest,+1   # dest = 0
urisc  dest,at1,+1    # dest = -(at1)

partc: urisc  at1,at1,+1     # at1 = 0
urisc  at1,one,label  # at1 = -1 to force jump
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Figure 8.5     Instruction format and hardware structure for URISC. 

URISC Hardware

MAR 
 
 
 

in 
 
 
 

 
 

Memory 
unit 

    Adder 
 
 
 

P 
C 
 

Write 

Read 

Word 1 

Source 1 Source 2 / Dest Jump target 

Word 2 Word 3 

URISC instruction:  

R 
M 
A 
R 
 

M 
D 
R 

N Z 

PC 
 
 
 

in 
 
 
 

PC 
 

 out 

MDR 
 
 
 

in 
 
 
 

R 
 

in 
 

N in 
 
 
 

Z in 
 
 
 

C in 
 
 
 

Comp 
 
 
 

0 1 Mux 

0 

1 

0 

 

R’ 
 
 
 


