
Feb. 2011 Computer Architecture, Advanced Architectures Slide 1

Part VII
Advanced Architectures

Feb. 2011 Computer Architecture, Advanced Architectures Slide 2

About This Presentation
This presentation is intended to support the use of the textbook
Computer Architecture: From Microprocessors to Supercomputers,
Oxford University Press, 2005, ISBN 0-19-515455-X. It is updated
regularly by the author as part of his teaching of the upper-division
course ECE 154, Introduction to Computer Architecture, at the
University of California, Santa Barbara. Instructors can use these
slides freely in classroom teaching and for other educational
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised Revised
First July 2003 July 2004 July 2005 Mar. 2007 Feb. 2011*

* Minimal update, due to this part not being used for lectures in ECE 154 at UCSB

Feb. 2011 Computer Architecture, Advanced Architectures Slide 3

VII Advanced Architectures

Topics in This Part
Chapter 25 Road to Higher Performance
Chapter 26 Vector and Array Processing
Chapter 27 Shared-Memory Multiprocessing
Chapter 28 Distributed Multicomputing

Performance enhancement beyond what we have seen:
• What else can we do at the instruction execution level?
• Data parallelism: vector and array processing
• Control parallelism: parallel and distributed processing

Feb. 2011 Computer Architecture, Advanced Architectures Slide 4

25 Road to Higher Performance
Review past, current, and future architectural trends:

• General-purpose and special-purpose acceleration
• Introduction to data and control parallelism

Topics in This Chapter
25.1 Past and Current Performance Trends

25.2 Performance-Driven ISA Extensions

25.3 Instruction-Level Parallelism

25.4 Speculation and Value Prediction

25.5 Special-Purpose Hardware Accelerators

25.6 Vector, Array, and Parallel Processing

Feb. 2011 Computer Architecture, Advanced Architectures Slide 5

25.1 Past and Current Performance Trends

0.06 MIPS (4-bit processor)

Intel 4004: The first μp (1971) Intel Pentium 4, circa 2005

10,000 MIPS (32-bit processor)

8008

8080

8084
8-bit

8086

80186

80286
16-bit

8088

80188

80386

Pentium, MMX

Pentium Pro, II32-bit

80486

Pentium III, M

Celeron

Feb. 2011 Computer Architecture, Advanced Architectures Slide 6

Architectural Innovations for Improved Performance

Architectural method Improvement factor

1. Pipelining (and superpipelining) 3-8 √
2. Cache memory, 2-3 levels 2-5 √
3. RISC and related ideas 2-3 √
4. Multiple instruction issue (superscalar) 2-3 √
5. ISA extensions (e.g., for multimedia) 1-3 √
6. Multithreading (super-, hyper-) 2-5 ?
7. Speculation and value prediction 2-3 ?
8. Hardware acceleration 2-10 ?
9. Vector and array processing 2-10 ?

10. Parallel/distributed computing 2-1000s ?

E
st

ab
lis

he
d

m
et

ho
ds

N
ew

er
m

et
ho

ds

P
re

vi
ou

sl
y

di
sc

us
se

d
C

ov
er

ed
 in

P
ar

t V
II

Available computing power ca. 2000:
GFLOPS on desktop
TFLOPS in supercomputer center
PFLOPS on drawing board

Computer performance grew by a factor
of about 10000 between 1980 and 2000

100 due to faster technology
100 due to better architecture

Feb. 2011 Computer Architecture, Advanced Architectures Slide 7

Peak Performance of Supercomputers
PFLOPS

TFLOPS

GFLOPS
1980 20001990 2010

Earth Simulator

ASCI White Pacific

ASCI Red

Cray T3DTMC CM-5

TMC CM-2Cray X-MP

Cray 2

× 10 / 5 years

Dongarra, J., “Trends in High Performance Computing,”
Computer J., Vol. 47, No. 4, pp. 399-403, 2004. [Dong04]

Feb. 2011 Computer Architecture, Advanced Architectures Slide 8

Energy Consumption is Getting out of Hand

Figure 25.1 Trend in energy consumption for each MIPS of
computational power in general-purpose processors and DSPs.

1990 1980 2000 2010
kIPS

MIPS

GIPS

TIPS

P
er

fo
rm

an
ce

Calendar year

Absolute
processor

performance

GP processor
performance

per watt

DSP performance
per watt

Feb. 2011 Computer Architecture, Advanced Architectures Slide 9

25.2 Performance-Driven ISA Extensions

Adding instructions that do more work per cycle
Shift-add: replace two instructions with one (e.g., multiply by 5)
Multiply-add: replace two instructions with one (x := c + a × b)
Multiply-accumulate: reduce round-off error (s := s + a × b)
Conditional copy: to avoid some branches (e.g., in if-then-else)

Subword parallelism (for multimedia applications)
Intel MMX: multimedia extension

64-bit registers can hold multiple integer operands

Intel SSE: Streaming SIMD extension
128-bit registers can hold several floating-point operands

Feb. 2011 Computer Architecture, Advanced Architectures Slide 10

Intel
MMX
ISA

Exten-
sion

Table
25.1

Class Instruction Vector Op type Function or results
Register copy 32 bits Integer register ↔ MMX register
Parallel pack 4, 2 Saturate Convert to narrower elements
Parallel unpack low 8, 4, 2 Merge lower halves of 2 vectors
Parallel unpack high 8, 4, 2 Merge upper halves of 2 vectors
Parallel add 8, 4, 2 Wrap/Saturate# Add; inhibit carry at boundaries
Parallel subtract 8, 4, 2 Wrap/Saturate# Subtract with carry inhibition
Parallel multiply low 4 Multiply, keep the 4 low halves
Parallel multiply high 4 Multiply, keep the 4 high halves
Parallel multiply-add 4 Multiply, add adjacent products*
Parallel compare equal 8, 4, 2 All 1s where equal, else all 0s
Parallel compare greater 8, 4, 2 All 1s where greater, else all 0s
Parallel left shift logical 4, 2, 1 Shift left, respect boundaries
Parallel right shift logical 4, 2, 1 Shift right, respect boundaries
Parallel right shift arith 4, 2 Arith shift within each (half)word
Parallel AND 1 Bitwise dest ← (src1) ∧ (src2)
Parallel ANDNOT 1 Bitwise dest ← (src1) ∧ (src2)′
Parallel OR 1 Bitwise dest ← (src1) ∨ (src2)
Parallel XOR 1 Bitwise dest ← (src1) ⊕ (src2)
Parallel load MMX reg 32 or 64 bits Address given in integer register
Parallel store MMX reg 32 or 64 bit Address given in integer register

Control Empty FP tag bits Required for compatibility$

Memory
access

Logic

Shift

Arith-
metic

Copy

Feb. 2011 Computer Architecture, Advanced Architectures Slide 11

MMX Multiplication and Multiply-Add

Figure 25.2 Parallel multiplication and multiply-add in MMX.

a

(a) Parallel multiply low (b) Parallel multiply-add

b d e

e f g h

s t u v

e × h
d × g

b × f
a × e

z v

y u

x t

w s

a b d e

e f g h

s + t u + v

e × h
d × g

b × f
a × e

v

u

t

s

add add

Feb. 2011 Computer Architecture, Advanced Architectures Slide 12

MMX Parallel Comparisons

Figure 25.3 Parallel comparisons in MMX.

14

(a) Parallel compare equal (b) Parallel compare greater

3 58 66

79 1 58 65

0 0 0

5 12 3 32

12 3 22

5 12 6 9

12 5 90 17 8
65 535
(all 1s)

0 0 0 0 0

255
(all 1s)

Feb. 2011 Computer Architecture, Advanced Architectures Slide 13

25.3 Instruction-Level Parallelism

Figure 25.4 Available instruction-level parallelism and the speedup
due to multiple instruction issue in superscalar processors [John91].

1

Fr
ac

tio
n

of
 c

yc
le

s

Issuable instructions per cycle

20%

30%

10%

 0%
2 3 4 5 6 7 8 0

Sp
ee

du
p

at
ta

in
ed

Instruction issue width

3

2

1
2 4 6 8 0

(a) (b)

Feb. 2011 Computer Architecture, Advanced Architectures Slide 14

Instruction-Level Parallelism

Figure 25.5 A computation with inherent instruction-level parallelism.

Feb. 2011 Computer Architecture, Advanced Architectures Slide 15

VLIW and EPIC Architectures

Figure 25.6 Hardware organization for IA-64. General and floating-
point registers are 64-bit wide. Predicates are single-bit registers.

VLIW Very long instruction word architecture
EPIC Explicitly parallel instruction computing

Memory

General
registers (128)

Floating-point
registers (128)

Predi-
cates
(64)

Execution
unit

Execution
unit

Execution
unit

Execution
unit

Execution
unit

Execution
unit . . .

. . .

Feb. 2011 Computer Architecture, Advanced Architectures Slide 16

25.4 Speculation and Value Prediction

Figure 25.7 Examples of software speculation in IA-64.

load

spec load

check load

(a) Control speculation

store

load

spec load

store

check load

(b) Data speculation

Feb. 2011 Computer Architecture, Advanced Architectures Slide 17

Value Prediction

Figure 25.8 Value prediction for multiplication or
division via a memo table.

 Mult/
Div

Memo table

Control

Mux

Inputs

Inputs ready

Output

Output ready

0

1

Miss

Done

Feb. 2011 Computer Architecture, Advanced Architectures Slide 18

25.5 Special-Purpose Hardware Accelerators

Figure 25.9 General structure of a processor
with configurable hardware accelerators.

CPU Configuration
memory

Accel. 1

Accel. 2

Accel. 3

Data and
program
memory

FPGA-like unit
on which
accelerators
can be formed
via loading of
configuration
registers

Unused
resources

Feb. 2011 Computer Architecture, Advanced Architectures Slide 19

Graphic Processors, Network Processors, etc.

Figure 25.10 Simplified block diagram of Toaster2,
Cisco Systems’ network processor.

Input
buffer

PE
0

PE
1

PE
2

PE
3

PE
4

PE
5 PE

6
PE
7

PE
8

PE
9

PE
10

PE
11

PE
12

PE
13

PE
14

PE
15

Output
buffer

 Column
memory Column

memory Column
memory Column

memory

Feedback
path

PE
5

Feb. 2011 Computer Architecture, Advanced Architectures Slide 20

25.6 Vector, Array, and Parallel Processing

Figure 25.11 The Flynn-Johnson classification of computer systems.

SISD

SIMD

MISD

MIMD

GMSV

GMMP

DMSV

DMMP

Single data
stream

Multiple data
streams

Si
ng

le
 in

st
r

st
re

am

M
ul

tip
le

 in
st

r
st

re
am

s

Flynn’s categories

Jo
hn

so
n’

s
ex

pa
ns

io
n

Shared
variables

Message
passing

G
lo

ba
l

m
em

or
y

Di
st

rib
ut

ed

m
em

or
y

Uniprocessors

Rarely used

Array or vector
processors

Mult iproc’s or
mult icomputers

Shared-memory
mult iprocessors

Rarely used

Distributed
shared memory

Distrib-memory
mult icomputers

Feb. 2011 Computer Architecture, Advanced Architectures Slide 21

SIMD Architectures

Data parallelism: executing one operation on multiple data streams

Concurrency in time – vector processing
Concurrency in space – array processing

Example to provide context

Multiplying a coefficient vector by a data vector (e.g., in filtering)
y[i] := c[i] × x[i], 0 ≤ i < n

Sources of performance improvement in vector processing
(details in the first half of Chapter 26)

One instruction is fetched and decoded for the entire operation
The multiplications are known to be independent (no checking)
Pipelining/concurrency in memory access as well as in arithmetic

Array processing is similar (details in the second half of Chapter 26)

Feb. 2011 Computer Architecture, Advanced Architectures Slide 22

MISD Architecture Example

Figure 25.12 Multiple instruction streams
operating on a single data stream (MISD).

I n s t r u c t i o n s t r e a m s 1-5

Data
in

Data
out

Feb. 2011 Computer Architecture, Advanced Architectures Slide 23

MIMD Architectures
Control parallelism: executing several instruction streams in parallel

GMSV: Shared global memory – symmetric multiprocessors
DMSV: Shared distributed memory – asymmetric multiprocessors
DMMP: Message passing – multicomputers

Figure 27.1 Centralized shared memory. Figure 28.1 Distributed memory.

0 0

1 1

 m−1

Processor-
to-

memory
network

Processor-
to-

processor
network

Processors Memory modules

Parallel I/O

. . .

.

.

.

.

.

.

p−1

0

1

Inter-
connection

network

Memories and processors

P
ar

al
le

l i
np

ut
/o

ut
pu

t
p−1

. . .

Routers

A computing node

. . .

Feb. 2011 Computer Architecture, Advanced Architectures Slide 24

Amdahl’s Law Revisited

0

10

20

40

50

0 10 20 30 40 50
Enhancement factor (p)

S
pe

ed
up

 (s
)

f = 0

f = 0.1

f = 0.05

f = 0.02
30

f = 0.01

Figure 4.4 Amdahl’s law: speedup achieved if a fraction f of a task
is unaffected and the remaining 1 – f part runs p times as fast.

s =

≤ min(p, 1/f)

1
f+ (1 – f)/p

f = sequential
fraction

with p
processors

p = speedup
of the rest

Feb. 2011 Computer Architecture, Advanced Architectures Slide 25

26 Vector and Array Processing
Single instruction stream operating on multiple data streams

• Data parallelism in time = vector processing
• Data parallelism in space = array processing

Topics in This Chapter
26.1 Operations on Vectors

26.2 Vector Processor Implementation

26.3 Vector Processor Performance

26.4 Shared-Control Systems

26.5 Array Processor Implementation

26.6 Array Processor Performance

Feb. 2011 Computer Architecture, Advanced Architectures Slide 26

26.1 Operations on Vectors

Sequential processor:

for i = 0 to 63 do
P[i] := W[i] × D[i]

endfor

Vector processor:

load W
load D
P := W × D
store P

for i = 0 to 63 do
X[i+1] := X[i] + Z[i]
Y[i+1] := X[i+1]+Y[i]

endfor

Unparallelizable

Feb. 2011 Computer Architecture, Advanced Architectures Slide 27

26.2 Vector Processor Implementation

Figure 26.1 Simplified generic structure of a vector processor.

Function unit 1 pipeline

To
 a

nd
 fr

om
 m

em
or

y
un

it

From scalar registers

Vector
register

file

Function unit 2 pipeline

Function unit 3 pipeline

Forwarding muxes

Load
unit A

Load
unit B

Store
unit

Feb. 2011 Computer Architecture, Advanced Architectures Slide 28

Conflict-Free Memory Access

Figure 26.2 Skewed storage of the elements of a 64 × 64 matrix
for conflict-free memory access in a 64-way interleaved memory.
Elements of column 0 are highlighted in both diagrams .

0,0

2,0
.
.
.

62,0

63,0

0,1

2,1
.
.
.

62,1

63,1

0,2

2,2
.
.
.

62,2

63,2

0,62

2,62
.
.
.

62,62

63,62

0,63

2,63
.
.
.

62,63

63,63

...

...
.
 .
 .
...

...

0,0

2,62
.
.
.

62,2

63,1

0,1

2,63
.
.
.

62,3

63,2

0,2

2,0
.
.
.

62,4

63,3

0,62

2,60
.
.
.

62,0

63,63

0,63

2,61
.
.
.

62,1

63,0

...

...
.
 .
 .
...

...

(a) Conventional row-major order (b) Skewed row-major order

Bank
number 0 1 62 63 2 . . . 0 1 62 63 2 . . .

1,0 1,1 1,2 1,62 1,63 ... 1,63 1,0 1,0 1,61 1,62 ...

Feb. 2011 Computer Architecture, Advanced Architectures Slide 29

Overlapped Memory Access and Computation

Figure 26.3 Vector processing via segmented load/store of
vectors in registers in a double-buffering scheme. Solid (dashed)
lines show data flow in the current (next) segment.

Vector reg 0

Vector reg 1

Vector reg 5

Vector reg 2

Vector reg 3

Vector reg 4

Load X

Load Y

Store Z

To
 a

nd
 fr

om
 m

em
or

y
un

it

Pipelined adder

Feb. 2011 Computer Architecture, Advanced Architectures Slide 30

26.3 Vector Processor Performance

Figure 26.4 Total latency of the vector computation
S := X × Y + Z, without and with pipeline chaining.

Multiplication
start-up

Addition
start-up

+ ×

+

×

Without
chaining

With pipeline
chaining

Time

Feb. 2011 Computer Architecture, Advanced Architectures Slide 31

Performance as a Function of Vector Length

Figure 26.5 The per-element execution time in a vector processor
as a function of the vector length.

Vector length
100 200 300 400 0

C
lo

ck
 c

yc
le

s
pe

r
ve

ct
or

 e
le

m
en

t

5

4

3

2

1

0

Feb. 2011 Computer Architecture, Advanced Architectures Slide 32

26.4 Shared-Control Systems

Figure 26.6 From completely shared control
to totally separate controls.

(a) Shared-control array
processor, SIMD

(b) Multiple shared controls,
MSIMD

(c) Separate controls,
MIMD

Processing Control

. .
 .

Processing Control

. .
 .

Processing Control

. .
 .

. .
 .

Feb. 2011 Computer Architecture, Advanced Architectures Slide 33

Example Array Processor

Figure 26.7 Array processor with 2D torus
interprocessor communication network.

Control
broadcast Parallel

I/O

Processor array Control

Switches

Feb. 2011 Computer Architecture, Advanced Architectures Slide 34

26.5 Array Processor Implementation

Figure 26.8 Handling of interprocessor communication
via a mechanism similar to data forwarding.

ALU Reg
file

CommunDir
CommunEn

PE state FF

Data
memory

To array
state reg

To reg f ile and
data memory

Commun
buffer

N
E

W
S To NEWS

neighbors

0

1

Feb. 2011 Computer Architecture, Advanced Architectures Slide 35

Configuration Switches

Figure 26.9 I/O switch states in the array processor of Figure 26.7.

Control
broadcast Parallel

I/O

Processor array Control

Switches

Figure 26.7

(a) Torus operation

In

(b) Clockwise I/O (c) Counterclockwise I/O

Out

In

Out

Feb. 2011 Computer Architecture, Advanced Architectures Slide 36

26.6 Array Processor Performance

Array processors perform well for the same class of problems that
are suitable for vector processors

For embarrassingly (pleasantly) parallel problems, array processors

A criticism of array processing:
For conditional computations, a significant part of the array remains
idle while the “then” part is performed; subsequently, idle and busy
processors reverse roles during the “else” part

However:
Considering array processors inefficient due to idle processors
is like criticizing mass transportation because many seats are
unoccupied most of the time

It’s the total cost of computation that counts, not hardware utilization!

can be faster and more energy-efficient than vector processors

Feb. 2011 Computer Architecture, Advanced Architectures Slide 37

27 Shared-Memory Multiprocessing
Multiple processors sharing a memory unit seems naïve

• Didn’t we conclude that memory is the bottleneck?
• How then does it make sense to share the memory?

Topics in This Chapter
27.1 Centralized Shared Memory

27.2 Multiple Caches and Cache Coherence

27.3 Implementing Symmetric Multiprocessors

27.4 Distributed Shared Memory

27.5 Directories to Guide Data Access

27.6 Implementing Asymmetric Multiprocessors

Feb. 2011 Computer Architecture, Advanced Architectures Slide 38

Parallel Processing
as a Topic of Study

Graduate course ECE 254B:
Adv. Computer Architecture –
Parallel Processing

An important area of study
that allows us to overcome
fundamental speed limits

Our treatment of the topic is
quite brief (Chapters 26-27)

Feb. 2011 Computer Architecture, Advanced Architectures Slide 39

27.1 Centralized Shared Memory

Figure 27.1 Structure of a multiprocessor with
centralized shared-memory.

0 0

1 1

 m−1

Processor-
to-

memory
network

Processor-
to-

processor
network

Processors Memory modules

Parallel I/O

. . .

.

.

.

.

.

.

p−1

Feb. 2011 Computer Architecture, Advanced Architectures Slide 40

Processor-to-Memory Interconnection Network

Figure 27.2 Butterfly and the related Beneš network as examples
of processor-to-memory interconnection network in a multiprocessor.

(a) Butterfly network (b) Beneš network

0

2

4

6

8

10

12

14

Processors Memories

P
r
o
c
e
s
s
o
r
s

M
e
m
o
r
i
e
s

1

3

5

7

9

11

13

15

0

2

4

6

8

10

12

14

1

3

5

7

9

11

13

15

0

2

4

6

0

2

4

6

1

3

5

7

1

3

5

7

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Feb. 2011 Computer Architecture, Advanced Architectures Slide 41

Processor-to-Memory Interconnection Network

Figure 27.3 Interconnection of eight processors to 256 memory banks
in Cray Y-MP, a supercomputer with multiple vector processors.

0

1

2

3

4

5

6

7

8 × 8

8 × 8

8 × 8

8 × 8

4 × 4

4 × 4

4 × 4

4 × 4

4 × 4

4 × 4

4 × 4

4 × 4

Sections Subsections Memory banks

0, 4, 8, 12, 16, 20, 24, 28
32, 36, 40, 44, 48, 52, 56, 60

1, 5, 9, 13, 17, 21, 25, 29

2, 6, 10, 14, 18, 22, 26, 30

3, 7, 11, 15, 19, 23, 27, 31

Processors

1 × 8 switches
224, 228, 232, 236, . . . , 252

225, 229, 233, 237, . . . , 253

226, 230, 234, 238, . . . , 254

227, 231, 235, 239, . . . , 255

8
/

8
/

8
/

8
/

Feb. 2011 Computer Architecture, Advanced Architectures Slide 42

Shared-Memory Programming: Broadcasting

Copy B[0] into all B[i] so that multiple processors
can read its value without memory access conflicts

for k = 0 to ⎡log2 p⎤ – 1 processor j, 0 ≤ j < p, do
B[j + 2k] := B[j]

endfor

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

B

Recursive
doubling

Feb. 2011 Computer Architecture, Advanced Architectures Slide 43

Shared-Memory Programming: Summation
Sum reduction of vector X

processor j, 0 ≤ j < p, do Z[j] := X[j]
s := 1
while s < p processor j, 0 ≤ j < p – s, do

Z[j + s] := X[j] + X[j + s]
s := 2 × s

endfor

0
1
2
3
4
5
6
7
8
9

S
 0:0
 1:1
 2:2
 3:3
 4:4
 5:5
 6:6
 7:7
 8:8
 9:9

 0:0
 0:1
 1:2
 2:3
 3:4
 4:5
 5:6
 6:7
 7:8
 8:9

 0:0
 0:1
 0:2
 0:3
 1:4
 2:5
 3:6
 4:7
 5:8
 6:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 1:8
 2:9

 0:0
 0:1
 0:2
 0:3
 0:4
 0:5
 0:6
 0:7
 0:8
 0:9

Recursive
doubling

Feb. 2011 Computer Architecture, Advanced Architectures Slide 44

27.2 Multiple Caches and Cache Coherence

Private processor caches reduce memory access traffic through the
interconnection network but lead to challenging consistency problems.

0 0

1 1

 m−1

Processor-
to-

memory
network

p−1

Processor-
to-

processor
network

Processors Caches Memory modules

Parallel I/O

. . .

.

.

.

.

.

.

Feb. 2011 Computer Architecture, Advanced Architectures Slide 45

Status of Data Copies

Figure 27.4 Various types of cached data blocks in a parallel processor
with centralized main memory and private processor caches.

0

1

Processor-
to-

memory
network

p–1

Processor-
to-

processor
network

Processors Caches Memory modules

Parallel I/O

. . .

.

.

.

.

.

.

w
x

y

z ′

w
z ′

w
y ′

x
z

Multiple consistent

Single consistent

Single inconsistent

Invalid

m–1

0

1

Feb. 2011 Computer Architecture, Advanced Architectures Slide 46

A Snoopy
Cache Coherence

Protocol

Figure 27.5 Finite-state control mechanism for a bus-based
snoopy cache coherence protocol with write-back caches.

CPU read
or write hit

 Invalid

Shared
(read-only)

Exclusive
(writable)

CPU read hit

CPU read miss:
signal read miss

on bus

CPU w rite miss:
signal write miss

on bus

CPU w rite hit: signal write miss on bus

Bus write miss:
write back cache line

Bus write miss

Bus read miss: write back cache line

P
C

P
C

P
C

P
C

Bus
Memory

Feb. 2011 Computer Architecture, Advanced Architectures Slide 47

27.3 Implementing Symmetric Multiprocessors

Figure 27.6 Structure of a generic bus-based symmetric multiprocessor.

Computing nodes
(typically, 1-4 CPUs

and caches per node)

Interleaved memory

Bus adapter

I/O modules

Standard interfaces

Bus adapter

Very wide, high-bandwidth bus

Feb. 2011 Computer Architecture, Advanced Architectures Slide 48

Bus Bandwidth Limits Performance
Example 27.1

Consider a shared-memory multiprocessor built around a single bus with
a data bandwidth of x GB/s. Instructions and data words are 4 B wide,
each instruction requires access to an average of 1.4 memory words
(including the instruction itself). The combined hit rate for caches is 98%.
Compute an upper bound on the multiprocessor performance in GIPS.
Address lines are separate and do not affect the bus data bandwidth.

Solution

Executing an instruction implies a bus transfer of 1.4 × 0.02 × 4 = 0.112B.
Thus, an absolute upper bound on performance is x/0.112 = 8.93x GIPS.
Assuming a bus width of 32 B, no bus cycle or data going to waste, and
a bus clock rate of y GHz, the performance bound becomes 286y GIPS.
This bound is highly optimistic. Buses operate in the range 0.1 to 1 GHz.
Thus, a performance level approaching 1 TIPS (perhaps even ¼ TIPS) is
beyond reach with this type of architecture.

Feb. 2011 Computer Architecture, Advanced Architectures Slide 49

Implementing Snoopy Caches

Figure 27.7 Main structure for a snoop-based cache coherence algorithm.

Tags

Cache
data
array

Duplicate tags
and state store
for snoop side

CPU

Main tags and
state store for
processor side

=?

=?

Processor side
cache control

Snoop side
cache control

Addr Addr Cmd Cmd Buffer Buffer
Snoop
state

System
bus

Tag

Addr Cmd

State

Feb. 2011 Computer Architecture, Advanced Architectures Slide 50

27.4 Distributed Shared Memory

Figure 27.8 Structure of a distributed shared-memory multiprocessor.

0

1 z : 0

 x : 0
y : 1

Inter-
connection

network

Processors with memory

P
ar

al
le

l i
np

ut
/o

ut
pu

t

. . .

p−1

y := -1
z := 1

while z=0 do
 x := x + y
endwhile

Routers

Feb. 2011 Computer Architecture, Advanced Architectures Slide 51

27.5 Directories to Guide Data Access

Figure 27.9 Distributed shared-memory multiprocessor with a cache,
directory, and memory module associated with each processor.

0

1

Inter-
connection

network

Processors & caches

P
ar

al
le

l i
np

ut
/o

ut
pu

t

. . .

p−1

Memories

Directories Communication &
memory interfaces

Feb. 2011 Computer Architecture, Advanced Architectures Slide 52

Directory-Based Cache Coherence

Figure 27.10 States and transitions for a directory entry in a directory-
based cache coherence protocol (c is the requesting cache).

Write miss: return value,
set sharing set to {c}

 Uncached

Shared
(read-only)

Exclusive
(writable)

Read miss:
return value,
include c in
sharing set

Read miss: return value,
set sharing set to {c}

Write miss: invalidate all cached copies,
set sharing set to {c}, return value

Data w rite-back:
set sharing set to { }

Read miss: fetch data from owner,
return value, include c in sharing set

Write miss:
fetch data from owner,
request invalidation,

return value,
set sharing set to {c}

Feb. 2011 Computer Architecture, Advanced Architectures Slide 53

27.6 Implementing Asymmetric Multiprocessors

Figure 27.11 Structure of a ring-based distributed-memory multiprocessor.

Computing nodes (typically, 1-4 CPUs and associated memory)

Link

To I/O controllers

Memory

Ring
network

Link Link Link

Node 0 Node 1 Node 2 Node 3

Feb. 2011 Computer Architecture, Advanced Architectures Slide 54

Scalable
Coherent
Interface

(SCI)

Figure 27.11 Structure of a ring-based
distributed-memory multiprocessor.

0

1

Processors
and caches

To
 in

te
rc

on
ne

ct
io

n
ne

tw
or

k

3

Memories

2

Feb. 2011 Computer Architecture, Advanced Architectures Slide 55

28 Distributed Multicomputing
Computer architects’ dream: connect computers like toy blocks

• Building multicomputers from loosely connected nodes
• Internode communication is done via message passing

Topics in This Chapter
28.1 Communication by Message Passing

28.2 Interconnection Networks

28.3 Message Composition and Routing

28.4 Building and Using Multicomputers

28.5 Network-Based Distributed Computing

28.6 Grid Computing and Beyond

Feb. 2011 Computer Architecture, Advanced Architectures Slide 56

28.1 Communication by Message Passing

Figure 28.1 Structure of a distributed multicomputer.

0

1

Inter-
connection

network

Memories and processors

P
ar

al
le

l i
np

ut
/o

ut
pu

t

p−1

. . .

Routers

A computing node

Feb. 2011 Computer Architecture, Advanced Architectures Slide 57

Router Design

Figure 28.2 The structure of a generic router.

Switch

In
pu

t c
ha

nn
el

s

 Routing and
arbitration

Input queues

Q

Q

Q

Q

Q

Q

Q

Q

LC

LC

LC

LC

LC

LC

LC

LC O
ut

pu
t c

ha
nn

el
s

Output queues

 Q Q

 LC LC Link controller

Message queue

Injection channel Ejection channel

Feb. 2011 Computer Architecture, Advanced Architectures Slide 58

Building Networks from Switches

Straight through Crossed connection Lower broadcast Upper broadcast

Figure 28.3 Example 2 × 2 switch with point-to-point
and broadcast connection capabilities.

(a) Butterfly network (b) Beneš network

0

2

4

6

8

10

12

14

Processors Memories

P
r
o
c
e
s
s
o
r
s

M
e
m
o
r
i
e
s

1

3

5

7

9

11

13

15

0

2

4

6

8

10

12

14

1

3

5

7

9

11

13

15

0

2

4

6

0

2

4

6

1

3

5

7

1

3

5

7

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Figure 27.2
Butterfly and
Beneš networks

Feb. 2011 Computer Architecture, Advanced Architectures Slide 59

Interprocess Communication via Messages

Figure 28.4 Use of send and receive message-passing
primitives to synchronize two processes.

Process A Process B

...

...

...

...

...

...
send x
...
...
...
...
...
...
...

...

...

receive x
...
...
... Time

Communication
latency

Process B is suspended

Process B is awakened

Feb. 2011 Computer Architecture, Advanced Architectures Slide 60

28.2 Interconnection Networks

Figure 28.5 Examples of direct and indirect interconnection networks.

(a) Direct network (b) Indirect network

Routers Nodes Nodes

Feb. 2011 Computer Architecture, Advanced Architectures Slide 61

Direct
Interconnection

Networks

Figure 28.6 A sampling of common direct interconnection networks.
Only routers are shown; a computing node is implicit for each router.

(a) 2D torus (b) 4D hypercube

(c) Chordal ring (d) Ring of rings

Feb. 2011 Computer Architecture, Advanced Architectures Slide 62

Indirect Interconnection Networks

Figure 28.7 Two commonly used indirect interconnection networks.

(a) Hierarchical buses (b) Omega network

Level-1 bus

Level-2 bus

Level-3 bus

Feb. 2011 Computer Architecture, Advanced Architectures Slide 63

28.3 Message Composition and Routing

Figure 28.8 Messages and their parts for message passing.

Message Padding

Packet
data

Last packet
Header Trailer

A transmitted
packet

Flow control
digits (flits)

Data or payload
First packet

Feb. 2011 Computer Architecture, Advanced Architectures Slide 64

Wormhole Switching

Figure 28.9 Concepts of wormhole switching.

Worm 1:
moving

(a) Two worms en route to their
respective destinations

Source 2

Source 1

Destination 1

Destination 2

Worm 2:
blocked

(b) Deadlock due to circular waiting
of four blocked worms

Each worm is blocked at the
point of attempted right turn

Feb. 2011 Computer Architecture, Advanced Architectures Slide 65

28.4 Building and Using Multicomputers

Figure 28.10 A task system and schedules on 1, 2, and 3 computers.

(a) Static task graph (b) Schedules on 1-3 computers

Inputs

Outputs

t = 1

t = 1

t = 2

t = 2 t = 2

t = 3

B

A C

D

E

F

G

H

t = 1

t = 2

B A C D E F G H

B A
C

D
E

H F
G

B A
C

D

E
F
G H

0 5 10 15

Time

Feb. 2011 Computer Architecture, Advanced Architectures Slide 66

Building Multicomputers from Commodity Nodes

Figure 28.11 Growing clusters using modular nodes.

(a) Current racks of modules (b) Futuristic toy-block construction

Expansion
slots

One module:
CPU,

memory,
disks

One module:
CPU(s),
memory,

disks

Wireless
connection
surfaces

Feb. 2011 Computer Architecture, Advanced Architectures Slide 67

28.5 Network-Based Distributed Computing

Figure 28.12 Network of workstations.

System or
I/O bus PC

Fast network
interface with
large memory

NIC

Network built of
high-speed

wormhole switches

Feb. 2011 Computer Architecture, Advanced Architectures Slide 68

28.6 Grid Computing and Beyond

Computational grid is analogous to the power grid

Decouples the “production” and “consumption” of computational power

Homes don’t have an electricity generator; why should they have a computer?

Advantages of computational grid:

Near continuous availability of computational and related resources
Resource requirements based on sum of averages, rather than sum of peaks
Paying for services based on actual usage rather than peak demand
Distributed data storage for higher reliability, availability, and security
Universal access to specialized and one-of-a-kind computing resources

Still to be worked out as of late 2000s: How to charge for compute usage

Feb. 2011 Computer Architecture, Advanced Architectures Slide 69

Computing in the Cloud

Image from Wikipedia

Computational resources,
both hardware and software,
are provided by, and
managed within, the cloud

Users pay a fee for access

Managing / upgrading is
much more efficient in large,
centralized facilities
(warehouse-sized data
centers or server farms)

This is a natural continuation of the outsourcing trend for special services,
so that companies can focus their energies on their main business

http://en.wikipedia.org/wiki/File:Cloud_computing.svg

Feb. 2011 Computer Architecture, Advanced Architectures Slide 70

The Shrinking Supercomputer

Feb. 2011 Computer Architecture, Advanced Architectures Slide 71

Warehouse-Sized Data Centers

Image from
IEEE Spectrum,
June 2009

	About This Presentation
	VII Advanced Architectures
	25 Road to Higher Performance
	25.1 Past and Current Performance Trends
	Architectural Innovations for Improved Performance
	Peak Performance of Supercomputers
	Energy Consumption is Getting out of Hand
	25.2 Performance-Driven ISA Extensions
	Intel MMX�ISA�Exten-�sion
	MMX Multiplication and Multiply-Add
	MMX Parallel Comparisons
	25.3 Instruction-Level Parallelism
	Instruction-Level Parallelism
	VLIW and EPIC Architectures
	25.4 Speculation and Value Prediction
	Value Prediction
	25.5 Special-Purpose Hardware Accelerators
	Graphic Processors, Network Processors, etc.
	25.6 Vector, Array, and Parallel Processing
	SIMD Architectures
	MISD Architecture Example
	MIMD Architectures
	Amdahl’s Law Revisited
	26 Vector and Array Processing
	26.1 Operations on Vectors
	26.2 Vector Processor Implementation
	Conflict-Free Memory Access
	Overlapped Memory Access and Computation
	26.3 Vector Processor Performance
	Performance as a Function of Vector Length
	26.4 Shared-Control Systems
	Example Array Processor
	26.5 Array Processor Implementation
	Configuration Switches
	26.6 Array Processor Performance
	27 Shared-Memory Multiprocessing
	Parallel Processing �as a Topic of Study
	27.1 Centralized Shared Memory
	Processor-to-Memory Interconnection Network
	Processor-to-Memory Interconnection Network
	Shared-Memory Programming: Broadcasting
	Shared-Memory Programming: Summation
	27.2 Multiple Caches and Cache Coherence
	Status of Data Copies
	A Snoopy �Cache Coherence �Protocol
	27.3 Implementing Symmetric Multiprocessors
	Bus Bandwidth Limits Performance
	Implementing Snoopy Caches
	27.4 Distributed Shared Memory
	27.5 Directories to Guide Data Access
	Directory-Based Cache Coherence
	27.6 Implementing Asymmetric Multiprocessors
	Scalable Coherent Interface (SCI)
	28 Distributed Multicomputing
	28.1 Communication by Message Passing
	Router Design
	Building Networks from Switches
	Interprocess Communication via Messages
	28.2 Interconnection Networks
	Direct Interconnection Networks
	Indirect Interconnection Networks
	28.3 Message Composition and Routing
	Wormhole Switching
	28.4 Building and Using Multicomputers
	Building Multicomputers from Commodity Nodes
	28.5 Network-Based Distributed Computing
	28.6 Grid Computing and Beyond
	Computing in the Cloud
	The Shrinking Supercomputer
	Warehouse-Sized Data Centers

