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Part VII
Advanced Architectures
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About This Presentation
This presentation is intended to support the use of the textbook
Computer Architecture: From Microprocessors to Supercomputers, 
Oxford University Press, 2005, ISBN 0-19-515455-X. It is updated 
regularly by the author as part of his teaching of the upper-division 
course ECE 154, Introduction to Computer Architecture, at the 
University of California, Santa Barbara. Instructors can use these 
slides freely in classroom teaching and for other educational 
purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition Released Revised Revised Revised Revised
First July 2003 July 2004 July 2005 Mar. 2007 Feb. 2011*

* Minimal update, due to this part not being used for lectures in ECE 154 at UCSB
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VII  Advanced Architectures

Topics in This Part
Chapter 25   Road to Higher Performance
Chapter 26   Vector and Array Processing
Chapter 27   Shared-Memory Multiprocessing
Chapter 28   Distributed Multicomputing

Performance enhancement beyond what we have seen:
• What else can we do at the instruction execution level?
• Data parallelism: vector and array processing
• Control parallelism: parallel and distributed processing
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25  Road to Higher Performance
Review past, current, and future architectural trends:

• General-purpose and special-purpose acceleration
• Introduction to data and control parallelism

Topics in This Chapter
25.1   Past and Current Performance Trends

25.2   Performance-Driven ISA Extensions

25.3   Instruction-Level Parallelism

25.4   Speculation and Value Prediction

25.5   Special-Purpose Hardware Accelerators

25.6   Vector, Array, and Parallel Processing
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25.1    Past and Current Performance Trends
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Architectural Innovations for Improved Performance

Architectural method Improvement factor

1. Pipelining (and superpipelining) 3-8 √
2. Cache memory, 2-3 levels 2-5 √
3. RISC and related ideas 2-3 √
4. Multiple instruction issue (superscalar) 2-3 √
5. ISA extensions (e.g., for multimedia) 1-3 √
6. Multithreading (super-, hyper-) 2-5 ?
7. Speculation and value prediction 2-3 ?
8. Hardware acceleration 2-10 ?
9. Vector and array processing 2-10 ?

10. Parallel/distributed computing 2-1000s ?
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Computer performance grew by a factor
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100 due to faster technology 
100 due to better architecture
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Peak Performance of Supercomputers
PFLOPS

TFLOPS

GFLOPS
1980 20001990 2010
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Dongarra, J., “Trends in High Performance Computing,”
Computer J., Vol. 47, No. 4, pp. 399-403, 2004. [Dong04]
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Energy Consumption is Getting out of Hand

Figure 25.1    Trend in energy consumption for each MIPS of 
computational power in general-purpose processors and DSPs. 
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25.2    Performance-Driven ISA Extensions

Adding instructions that do more work per cycle
Shift-add: replace two instructions with one (e.g., multiply by 5)
Multiply-add: replace two instructions with one (x := c + a × b)
Multiply-accumulate: reduce round-off error (s := s + a × b)
Conditional copy: to avoid some branches (e.g., in if-then-else)

Subword parallelism (for multimedia applications)
Intel MMX: multimedia extension

64-bit registers can hold multiple integer operands

Intel SSE: Streaming SIMD extension
128-bit registers can hold several floating-point operands
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Intel 
MMX
ISA

Exten-
sion

Table
25.1

Class Instruction Vector Op type Function or results
Register copy 32 bits Integer register ↔ MMX register
Parallel pack 4, 2 Saturate Convert to narrower elements
Parallel unpack low 8, 4, 2 Merge lower halves of 2 vectors
Parallel unpack high 8, 4, 2 Merge upper halves of 2 vectors
Parallel add 8, 4, 2 Wrap/Saturate# Add; inhibit carry at boundaries
Parallel subtract 8, 4, 2 Wrap/Saturate# Subtract with carry inhibition
Parallel multiply low 4 Multiply, keep the 4 low halves
Parallel multiply high 4 Multiply, keep the 4 high halves
Parallel multiply-add 4 Multiply, add adjacent products*
Parallel compare equal 8, 4, 2     All 1s where equal, else all 0s
Parallel compare greater 8, 4, 2     All 1s where greater, else all 0s
Parallel left shift logical 4, 2, 1 Shift left, respect boundaries
Parallel right shift logical 4, 2, 1 Shift right, respect boundaries
Parallel right shift arith 4, 2 Arith shift within each (half)word
Parallel AND 1 Bitwise dest ← (src1) ∧ (src2)
Parallel ANDNOT 1 Bitwise dest ← (src1) ∧ (src2)′
Parallel OR 1 Bitwise dest ← (src1) ∨ (src2)
Parallel XOR 1 Bitwise dest ← (src1) ⊕ (src2)
Parallel load MMX reg 32 or 64 bits Address given in integer register
Parallel store MMX reg 32 or 64 bit Address given in integer register

Control Empty FP tag bits Required for compatibility$

Memory
access

Logic

Shift

Arith-
metic

Copy
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MMX Multiplication and Multiply-Add

Figure 25.2    Parallel multiplication and multiply-add in MMX.
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MMX Parallel Comparisons

Figure 25.3    Parallel comparisons in MMX.
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25.3    Instruction-Level Parallelism

Figure 25.4    Available instruction-level parallelism and the speedup 
due to multiple instruction issue in superscalar processors [John91].
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Instruction-Level Parallelism

Figure 25.5    A computation with inherent instruction-level parallelism.
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VLIW and EPIC Architectures

Figure 25.6    Hardware organization for IA-64. General and floating-
point registers are 64-bit wide. Predicates are single-bit registers.
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25.4    Speculation and Value Prediction

Figure 25.7    Examples of software speculation in IA-64.
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Value Prediction

Figure 25.8    Value prediction for multiplication or 
division via a memo table.
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25.5   Special-Purpose Hardware Accelerators

Figure 25.9    General structure of a processor 
with configurable hardware accelerators.
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Graphic Processors, Network Processors, etc.

Figure 25.10    Simplified block diagram of Toaster2, 
Cisco Systems’ network processor.
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25.6   Vector, Array, and Parallel Processing

Figure 25.11    The Flynn-Johnson classification of computer systems.
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SIMD Architectures

Data parallelism: executing one operation on multiple data streams

Concurrency in time  – vector processing
Concurrency in space – array processing

Example to provide context

Multiplying a coefficient vector by a data vector (e.g., in filtering)
y[i] := c[i] × x[i], 0 ≤ i < n

Sources of performance improvement in vector processing 
(details in the first half of Chapter 26)

One instruction is fetched and decoded for the entire operation
The multiplications are known to be independent (no checking)
Pipelining/concurrency in memory access as well as in arithmetic

Array processing is similar (details in the second half of Chapter 26)
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MISD Architecture Example

Figure 25.12    Multiple instruction streams 
operating on a single data stream (MISD).
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MIMD Architectures
Control parallelism: executing several instruction streams in parallel

GMSV: Shared global memory – symmetric multiprocessors
DMSV: Shared distributed memory – asymmetric multiprocessors
DMMP: Message passing – multicomputers

Figure 27.1   Centralized shared memory. Figure 28.1   Distributed memory.
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Amdahl’s Law Revisited
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26  Vector and Array Processing
Single instruction stream operating on multiple data streams

• Data parallelism in time = vector processing
• Data parallelism in space = array processing

Topics in This Chapter
26.1   Operations on Vectors

26.2   Vector Processor Implementation

26.3   Vector Processor Performance

26.4   Shared-Control Systems

26.5   Array Processor Implementation

26.6   Array Processor Performance
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26.1  Operations on Vectors

Sequential processor:

for i = 0 to 63 do 
P[i] := W[i] × D[i]

endfor

Vector processor:

load W
load D
P := W × D
store P

for i = 0 to 63 do 
X[i+1] := X[i] + Z[i] 
Y[i+1] := X[i+1]+Y[i] 

endfor

Unparallelizable
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26.2   Vector Processor Implementation

Figure 26.1    Simplified generic structure of a vector processor.
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Conflict-Free Memory Access

Figure 26.2    Skewed storage of the elements of a 64 × 64 matrix 
for conflict-free memory access in a 64-way interleaved memory. 
Elements of column 0 are highlighted in both diagrams .
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Overlapped Memory Access and Computation

Figure 26.3    Vector processing via segmented load/store of 
vectors in registers in a double-buffering scheme. Solid (dashed) 
lines show data flow in the current (next) segment.
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26.3   Vector Processor Performance

Figure 26.4    Total latency of the vector computation 
S := X × Y + Z, without and with pipeline chaining.
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Performance as a Function of Vector Length

Figure 26.5    The per-element execution time in a vector processor 
as a function of the vector length.
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26.4   Shared-Control Systems

Figure 26.6    From completely shared control 
to totally separate controls.
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Example Array Processor

Figure 26.7    Array processor with 2D torus 
interprocessor communication network.
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26.5   Array Processor Implementation

Figure 26.8     Handling of interprocessor communication 
via a mechanism similar to data forwarding.
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Configuration Switches

Figure 26.9    I/O switch states in the array processor of Figure 26.7.
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26.6   Array Processor Performance

Array processors perform well for the same class of problems that
are suitable for vector processors

For embarrassingly (pleasantly) parallel problems, array processors

A criticism of array processing:
For conditional computations, a significant part of the array remains
idle while the “then” part is performed; subsequently, idle and busy
processors reverse roles during the “else” part

However:
Considering array processors inefficient due to idle processors
is like criticizing mass transportation because many seats are 
unoccupied most of the time

It’s the total cost of computation that counts, not hardware utilization! 

can be faster and more energy-efficient than vector processors
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27  Shared-Memory Multiprocessing
Multiple processors sharing a memory unit seems naïve

• Didn’t we conclude that memory is the bottleneck?
• How then does it make sense to share the memory?

Topics in This Chapter
27.1   Centralized Shared Memory

27.2   Multiple Caches and Cache Coherence

27.3   Implementing Symmetric Multiprocessors

27.4   Distributed Shared Memory

27.5   Directories to Guide Data Access

27.6   Implementing Asymmetric Multiprocessors
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Parallel Processing 
as a Topic of Study

Graduate course ECE 254B:
Adv. Computer Architecture –
Parallel Processing

An important area of study
that allows us to overcome
fundamental speed limits

Our treatment of the topic is
quite brief (Chapters 26-27)
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27.1  Centralized Shared Memory

Figure 27.1    Structure of a multiprocessor with 
centralized shared-memory.
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Processor-to-Memory Interconnection Network

Figure 27.2   Butterfly and the related Beneš network as examples 
of processor-to-memory interconnection network in a multiprocessor.
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Processor-to-Memory Interconnection Network

Figure 27.3   Interconnection of eight processors to 256 memory banks 
in Cray Y-MP, a supercomputer with multiple vector processors.
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Shared-Memory Programming: Broadcasting

Copy B[0] into all B[i] so that multiple processors
can read its value without memory access conflicts

for k = 0 to ⎡log2 p⎤ – 1 processor j, 0 ≤ j < p, do
B[j + 2k] := B[j]

endfor
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Shared-Memory Programming: Summation
Sum reduction of vector X

processor j, 0 ≤ j < p, do Z[j] := X[j]
s := 1
while s < p processor j, 0 ≤ j < p – s, do

Z[j + s] := X[j] + X[j + s]
s := 2 × s

endfor
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27.2  Multiple Caches and Cache Coherence

Private processor caches reduce memory access traffic through the 
interconnection network but lead to challenging consistency problems.
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Status of Data Copies

Figure 27.4   Various types of cached data blocks in a parallel processor 
with centralized main memory and private processor caches.
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A Snoopy 
Cache Coherence 

Protocol

Figure 27.5   Finite-state control mechanism for a bus-based 
snoopy cache coherence protocol with write-back caches.
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27.3   Implementing Symmetric Multiprocessors

Figure 27.6   Structure of a generic bus-based symmetric multiprocessor.
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Bus Bandwidth Limits Performance
Example 27.1

Consider a shared-memory multiprocessor built around a single bus with 
a data bandwidth of x GB/s. Instructions and data words are 4 B wide, 
each instruction requires access to an average of  1.4 memory words 
(including the instruction itself). The combined hit rate for caches is 98%. 
Compute an upper bound on the multiprocessor performance in GIPS. 
Address lines are separate and do not affect the bus data bandwidth.

Solution

Executing an instruction implies a bus transfer of 1.4 × 0.02 × 4 = 0.112B. 
Thus, an absolute upper bound on performance is x/0.112 = 8.93x GIPS. 
Assuming a bus width of 32 B, no bus cycle or data going to waste, and 
a bus clock rate of y GHz, the performance bound becomes 286y GIPS. 
This bound is highly optimistic. Buses operate in the range 0.1 to 1 GHz. 
Thus, a performance level approaching 1 TIPS (perhaps even ¼ TIPS) is 
beyond reach with this type of architecture.
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Implementing Snoopy Caches

Figure 27.7   Main structure for a snoop-based cache coherence algorithm.
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27.4   Distributed Shared Memory

Figure 27.8   Structure of a distributed shared-memory multiprocessor.
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27.5   Directories to Guide Data Access

Figure 27.9   Distributed shared-memory multiprocessor with a cache, 
directory, and memory module associated with each processor.
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Directory-Based Cache Coherence

Figure 27.10   States and transitions for a directory entry in a directory-
based cache coherence protocol (c is the requesting cache).
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27.6   Implementing Asymmetric Multiprocessors

Figure 27.11   Structure of a ring-based distributed-memory multiprocessor.
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Scalable 
Coherent 
Interface 

(SCI)

Figure 27.11   Structure of a ring-based 
distributed-memory multiprocessor.
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28  Distributed Multicomputing
Computer architects’ dream: connect computers like toy blocks

• Building multicomputers from loosely connected nodes
• Internode communication is done via message passing

Topics in This Chapter
28.1   Communication by Message Passing

28.2   Interconnection Networks

28.3   Message Composition and Routing

28.4   Building and Using Multicomputers

28.5   Network-Based Distributed Computing

28.6   Grid Computing and Beyond
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28.1  Communication by Message Passing

Figure 28.1    Structure of a distributed multicomputer.
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Router Design

Figure 28.2   The structure of a generic router.
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Building Networks from Switches

Straight through Crossed connection Lower broadcast Upper broadcast 

Figure 28.3   Example 2 × 2 switch with point-to-point 
and broadcast connection capabilities.
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Interprocess Communication via Messages

Figure 28.4   Use of send and receive message-passing 
primitives to synchronize two processes.
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28.2  Interconnection Networks

Figure 28.5    Examples of direct and indirect interconnection networks.

(a) Direct network  (b) Indirect network  
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Direct 
Interconnection 

Networks

Figure 28.6   A sampling of common direct interconnection networks. 
Only routers are shown; a computing node is implicit for each router.

(a) 2D torus (b) 4D hypercube 

(c) Chordal ring (d) Ring of rings 
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Indirect Interconnection Networks

Figure 28.7   Two commonly used indirect interconnection networks.
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28.3  Message Composition and Routing

Figure 28.8    Messages and their parts for message passing.
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Wormhole Switching

Figure 28.9   Concepts of wormhole switching.
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28.4  Building and Using Multicomputers

Figure 28.10    A task system and schedules on 1, 2, and 3 computers.

(a) Static task graph (b) Schedules on 1-3 computers 
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Building Multicomputers from Commodity Nodes

Figure 28.11   Growing clusters using modular nodes.
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28.5  Network-Based Distributed Computing

Figure 28.12    Network of workstations.
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28.6  Grid Computing and Beyond

Computational grid is analogous to the power grid

Decouples the “production” and “consumption” of computational power

Homes don’t have an electricity generator; why should they have a computer?

Advantages of computational grid:

Near continuous availability of computational and related resources
Resource requirements based on sum of averages, rather than sum of peaks
Paying for services based on actual usage rather than peak demand
Distributed data storage for higher reliability, availability, and security
Universal access to specialized and one-of-a-kind computing resources

Still to be worked out as of late 2000s: How to charge for compute usage
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Computing in the Cloud

Image from Wikipedia

Computational resources,
both hardware and software,
are provided by, and 
managed within, the cloud

Users pay a fee for access

Managing / upgrading is 
much more efficient in large, 
centralized facilities 
(warehouse-sized data 
centers or server farms)

This is a natural continuation of the outsourcing trend for special services, 
so that companies can focus their energies on their main business

http://en.wikipedia.org/wiki/File:Cloud_computing.svg
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The Shrinking Supercomputer
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Warehouse-Sized Data Centers

Image from 
IEEE Spectrum, 
June 2009
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