Recommender Systems: How Machines Discover Your Thoughts and Preferences
About This Presentation

This presentation originated with the lecture series entitled “Puzzling Problems in Science and Technology,” devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

<table>
<thead>
<tr>
<th>Edition</th>
<th>Released</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
</tr>
</thead>
</table>
Discovering What You Want: Your Own Past Behavior
Discovering What You Want: Other People’s Behaviors
Movies in a Collection that Likely Appeal to You
Trade-offs in Number/Type of Recommendations

Too many recommendations that you end up not choosing:
 You lose confidence in the quality of recommendations

Too few recommendations:
 Loss of business/sales opportunities

Serendipity: Random recommendation may open up a path

A good recommender system may find items for you that you might have never discovered on your own

A recommender system may suggest a movie or book the like of which you have never watched/read

Brave New World: Recommendations based on your mood
We Want Recommendations to Be Both Specific and Sensitive

Like medical diagnostic tests

Specificity: The fraction of healthy subjects correctly identified

Sensitivity: The fraction of sick subjects correctly identified

There is often a trade-off between specificity and sensitivity
Find the Next Term in an Integer Sequence

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>…</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>27</td>
</tr>
</tbody>
</table>

Online Encyclopedia of Integer Sequences: http://oeis.org/
Find Missing Term in an Arbitrary Sequence

Z O T T F F __
J F M __ M J J
31 __ 31 30 31 30 31 31 30
A E F H I __
3 3 5 4 4 3 5 __
3 4 6 9 __ 18 24
1 3/2 __ 7/8 9/16
1 11 21 1211 111221 312211 __

M ♡ 3 4 5 6 7

221 111 212 122 __
Similarity Puzzles with Words

What do the following sets of words have in common?

assess; banana; dresser; grammar; potato; revive; uneven (besides all having at least two repeating letters)

bulb; orange; angel; silver; month; revive; uneven

baobab; youngberry; hopscotch; yieldability; dachshund; dumbfounded

aquamarine; beloved; discrepancy; frangipani; freedom; gallipot; overflowing; pagoda; scrounger
Which Name Should Come Next?

Mark Susan Jeff Jenny Brad Marco Jill ___
Choose from: Donald Fereshteh Robin Bill Christy Elizabeth

John Shawn Suzy Bradley Dan Barney ___
Choose from: David Elvira Tommy Robert Camelia Betty

Candy Frank Irene Lauren Oren Rose ___
Choose from: David Cyrus Angelina Jose Uma Darin

Charles Dion Stuart Kevin Joshua Sergio ___
Choose from: Jeremy Shaun Thomas Duane Rupert Ulysses

Parrot Pigeon Robin Sparrow ___
Choose from: Cardinal Oriole Lovebird Thrush Wren

Sep. 2020
Recommender Systems
Slide 11
Which Image Should Come Next? (Part 1)

[Images of puzzle pieces and symbols]

Answer Figures:

- A
- B
- C
- D
- E

a b c d e

Sep. 2020 Recommender Systems Slide 12
Which Image Should Come Next? (Part 2)
Which Term Isn’t Like the Others?

<table>
<thead>
<tr>
<th>A</th>
<th>H</th>
<th>I</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>V</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>33</td>
<td>53</td>
<td>86</td>
<td>139</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Big Fast Green Warm

Sep. 2020 Recommender Systems Slide 14
A Solution Method for Numerical Series

Polynomial interpolation:
You can pass a line through any two points, a hyperbola through any three points, a third-degree curve through any four points, and so on.

\[f(n) = an^3 + bn^2 + cn + d \]

- \(n = 1 \): \(a + b + c + d = 1 \)
- \(n = 2 \): \(8a + 4b + 2c + d = 4 \)
- \(n = 3 \): \(27a + 9b + 3c + d = 9 \)
- \(n = 4 \): \(64a + 16b + 4c + d = 16 \)

\(b = 1; a = c = d = 0; f(n) = n^2 \)
When Several Answers Are Possible

Answer 1:

\[
\begin{align*}
2 & \quad 4 & \quad 8 & \quad 16 & \quad 32 \\
\text{Reason: } f(n) = 2^n
\end{align*}
\]

Answer 2:

\[
\begin{align*}
2 & \quad 4 & \quad 8 & \quad 16 & \quad 30 \\
\text{Reason: } f(n) = (1/3)n^3 - n^2 + (8/3)n
\end{align*}
\]

Which is the correct answer?

Challenge:
Why does \(f(n) \) always yield an integer result for an integer \(n \)?
Interpolation and Extrapolation

Interpolation: Given the values of the function $f(n)$ at points a and b, find its value at some given point between a and b.

Extrapolation: Given the values of the function $f(n)$ at some points between a and b, find its value at a given point before a or after b.

Khan-Academy/Pixar video illustrating the use of interpolation for animation:

https://www.khanacademy.org/partner-content/pixar/animate/ball/v/a2-quick
This exponential series, when solved via polynomial extrapolation, yields a different answer!

\[f(n) = an^3 + bn^2 + cn + d \]

\(n = 1: a + b + c + d = 2 \)
\(n = 2: 8a + 4b + 2c + d = 4 \)
\(n = 3: 27a + 9b + 3c + d = 8 \)
\(n = 4: 64a + 16b + 4c + d = 16 \)

\(a = 1/3; b = -1; c = 8/3; d = 0; \)
\[f(n) = (1/3)n^3 - n^2 + (8/3)n \]
\[f(5) = (1/3)125 - 25 + (8/3)5 = 30 \]
\[f(6) = (1/3)216 - 36 + (8/3)6 = 52 \]
\[f(30) = 8,180 \]
\[2^{30} = 1,073,741,824 \]
Polynomial Curve-Fitting Example

\[f(x) = ax + b \]

\[x = 1: \quad a + b \text{ vs. 2} \]
\[x = 2: \quad 2a + b \text{ vs. 4} \]
\[x = 3: \quad 3a + b \text{ vs. 8} \]
\[x = 4: \quad 4a + b \text{ vs. 16} \]

\[D(a, b) = (a + b - 2)^2 + (2a + b - 4)^2 + (3a + b - 8)^2 + (4a + b - 16)^2 = 30a^2 + 4b^2 + 20ab - 196a - 60b + 340 \]

d\(D/da = 0\) and \(dD/db = 0\) yield

\[a = 23/5 \text{ and } b = -4 \]

\[f(x) = 4.6x - 4 \]
Log-Scale Linearizes Exponential Trends

In log-scale, one unit of distance represents not a fixed increase but multiplication by a factor.

It also allows us to focus on relative, rather than absolute, variations.

Question 1: Where is the place of zero on the vertical axis?

Question 2: Is 50% decrease represented by the same vertical distance as 50% increase?
Example: Two-Dimensional Feature Space

A, B, C, D, E

Example features:

x: Number of curved segments
y: Number of straight segments

Where would “F” fall?

Suggest an additional feature
Higher-Dimensional Feature Spaces

The points in this diagram have six features: X, Y, Z, R, B, G

Position Color

6D feature space: \(f_i = (C_i, P_i)^T \)

3D position space: \(P_i = (X_i, Y_i, Z_i)^T \)

3D color space: \(C_i = (R_i, G_i, B_i)^T \)
Classifying by Color, Shape, or Other Features

Very young kids are taught about classification by features
(2-minute video: http://www.youtube.com/watch?v=5bip0bcFlgo)

Possible features in the shapes shown in the video:
Color: Blue, Green, Orange, Yellow
Geometric shape: Square, Rectangle, Triangle, Circle, …
Curvature: Straight sides only, at least one curved side
Size: Large, Small (area)
Number of sides: 2, 3, 4
Triangleness: Yes, No
Thickness?
Material?
Weight?
Floats on water?
Pattern Classification

Extracting features from given inputs allows us to separate and classify the inputs according to desired categories.
Which Book/Movie/Song Should Come Next?
Example: Book Recommendation

A -> 1, 2, 3
B -> 4
C -> 5, 6
D -> 7, 8
E -> 9
Fingerprint Classification and Matching

Needed for criminal investigations and biometric identification

Does a fingerprint match any of the prints in a criminal database?
Does the fingerprint match one recorded for an authorized user?

Human fingerprints tend to be unique

Even identical twins have different prints
The Basics of Comparing Fingerprints

(6-minute video: http://www.youtube.com/watch?v=IrpTqKkgygA)
Image Search

- By keywords (when stored images have been indexed previously)
- By photographer, location, etc. (image metadata)
- By providing an image as key (Google image search)

https://images.google.com/

Example searches:
- Sunset
- UCSB
- Soccer
- INT 94TN
Searching the Worldwide Web

Google has indexed the entire contents of the Web

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>a a b a b b</td>
<td>0, 6, 15, 19, 23</td>
</tr>
<tr>
<td>a b b</td>
<td>5, 9, 18, 22</td>
</tr>
<tr>
<td>a b c</td>
<td>1, 7, 16, 20, 24</td>
</tr>
<tr>
<td>b a b</td>
<td>8, 17, 21</td>
</tr>
<tr>
<td>b b b</td>
<td>2, 25</td>
</tr>
</tbody>
</table>

Find all occurrences of the pattern “abcbab”

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c</td>
<td>0, 6, 15, 19, 23</td>
</tr>
<tr>
<td>b c b</td>
<td>1, 7, 16, 20, 24</td>
</tr>
<tr>
<td>c b a</td>
<td>8, 17, 21</td>
</tr>
<tr>
<td>b a b</td>
<td>5, 9, 18, 22</td>
</tr>
</tbody>
</table>
Google’s “Pagerank” Algorithm

Algorithm to rank the hits so that the most useful ones come first

Google also takes your profile, interests, and previous searches into account.
Neural-Network Pattern Recognition

Train the system using known patterns, then use it on others
(4-minute video: http://www.youtube.com/watch?v=kGv-1it8Sac)
Facial Recognition Technology

Train the system using known patterns, then use it on others
(1-minute video: http://www.youtube.com/watch?v=tZzI4Qf5Y8)
Gender Classification by Neural Networks

Train the system using known faces, then use it on others
(2-minute video: http://www.youtube.com/watch?v=3jAqlu7HtnI)
Overview of Recommender Systems

Track activity, interactions, and ratings, combine with other data
(17-minute video: http://www.youtube.com/watch?v=1JRrCEgiyHM)

Formal Model

- $C = \text{set of Customers}$
- $S = \text{set of Items}$

- Utility function $u: C \times S \rightarrow R$
 - $R = \text{set of ratings}$
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in $[0, 1]$
Questions?

To dig deeper, see:
J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez.
“Recommender Systems Survey,”
Knowledge-Based Systems,

parhami@ece.ucsb.edu
www.ece.ucsb.edu/~parhami/