
Recursive Synthesis of Digital Circuits

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California, Santa Barbara, USA

parhami@ece.ucsb.edu

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Outline

Slide 2

• Intro: HW Design and Recursion
• Iterative Refinement (SW & HW)
• Algor/SW/HW Recursion Example
• Example 1: Fast Fourier Transform
• Example 2: Recursive Multipliers
• Example 3: Counting Networks

– Parallel Counters
– Weight-Checkers
– Threshold Counters
– Variations in Counting

• Conclusion and Future Work

x0

x1

x2

x3

y0

y1

y2

y3

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Introduction: Hardware Design

Slide 3

• Time- and work-intensive; expensive; error-prone
• Choice of algorithm, technology, design methodology
• Quick proof-of-concept, followed by fine-tuning
• Fine-tuning adds complexity and thus errors
• In some cases, correctness / reliability more important
• Modularity, packageability, reusability are key attributes
• Ditto for testability, serviceability, availability
• We may opt for simpler designs, older technologies
• O(n) & O(lg n) complexities about the same for small n

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

The Concept of Recursion

1

2

1

2

2 if ,12

2 if ,

1

1

nn

n

WW

WW

n

n

To iterate is human, to recurse divine!

Textbook definition:
Recursion is a method where the
solution to a problem depends on
solutions to smaller instances of the
same problem.

Problem
Base case

Subproblem(s)

n! =
if n 1 then 1

else n (n – 1)!
fib(n) =

if n 2 then 1

else fib(n – 1) + fib(n – 2)

Slide 4

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Recursive
Dolls

Slide 5

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Recursive
Pizzas

Slide 6

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Iterative Refinement

1

2

1

2

2 if ,12

2 if ,

1

1

nn

n

WW

WW

n

n

43210
0

2

1

z

z

z x (0) = 1.5

z 1 + z/4

z 7/8 + z/4

z 17/24 + z/3
Best linear approx.

Subrange 1 Subrange 2

1 + (z – 1)/2 1 + z/4

• Compute f(z) by iteratively refining an approximation
• Example x = z: x (i+1) = 0.5(x (i) + z /x (i))

Slide 7

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Unrolling and Pipelining

1

2

1

2

2 if ,12

2 if ,

1

1

nn

n

WW

WW

n

n

• Compute f(z) by iteratively refining an approximation
• Example x = z: x (i+1) = 0.5(x (i) + z /x (i))

x (0) x (1) x (2) x (3) x (4)

z

z

• Pipelining: Five different square-rootings in progress
• No unrolling: One orange box, used four times
• Partial unrolling: Two orange boxes, used twice

Slide 8

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Winter 2020

Algorithm/SW/HW Example: Selection Sort
max

xj xn1

max
xjxn1

selectionsort(x0, x1, … xn1)
if n = 1 then exit
find xj = max(x0, x1, … xn1)
swap xj and xn1

selectionsort(x0, x1, … xn2)

x0

x0

Slide 9

(n–1)-sorter

x0

x1

x2

xn2

xn1

y0

y1

y2

yn2

yn1

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Recursion Drawbacks and Benefits

1

2

1

2

2 if ,12

2 if ,

1

1

nn

n

WW

WW

n

n

• Many procedure calls, with associated overheads
• Overhead not as bad on modern hardware
• Tail-recursion: Recursive call is in last statement
• Unroll the recursion into a loop (smart compiler?)
• Partial unrolling: n! = n (n – 1) (n – 2) (n – 3)!

• May be preferred, even if not the most efficient
• In the case of hardware, the design is recursive
• The circuit-level realization is often fully unrolled
• Recursive design provides analyzability & reliability

Slide 10

–

+

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Winter 2020

Discrete Fourier Transform: FFT Network
u: DFT of even-indexed inputs
v: DFT of odd-indexed inputs

yi = ui + wn
i vi (0 i < n/2)

yi+n/2 = ui – wn
i vi

DFT: yi = ∑
j = 0

wn
ij xj

n–1

Inverse DFT is almost exactly the
same computation:

IDFT: xi = (1/n) ∑
j=0

wn
ij yj

n–1

Naïve algorithm: T(n) = O(n2)

Seq: T(n) = 2T(n/2) + n = O(n log n)
Par: T(n) = T(n/2) + 1 = O(log n)

FFT:

Slide 11

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

Bit-reversal
permutation

Butterfly
operation

a
b j

a + bw
a bw

j
j

0

0

0

0

0

0

0

0

0

4

0

4

0
4

0

4

0

2

4

6

0

2

4

6

0

1

2
3

4

5

6

7

Winter 2020
Slide 12

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Winter 2020

Regularized Butterfly: Shuffle-Exchange

Slide 13

x0

x4

x2

x6

x1

x5

x3

x7

u0

u1

u2

u3

v0

v1

v2

v3

y0

y1

y2

y3

y4

y5

y6

y7

x0 u0

u2

u1

u3

v0

v2

v1

v3

y4

y2

y6

y1

y5

y3

y7x7

y0

x1

x2

x3

x4

x5

x6

Rearranged nodes,
same connectivity

Removal / sharing
of some links

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Winter 2020

More
Economical

FFT
Hardware

Slide 14

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Apr. 2020

Recursive Multipliers: Concept
Building wide multiplier from narrower ones

a

p

Rearranged partial products
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL

xHa H

a H xL

a L xH

a L xLxHa H

b bits

Form the 4 half-products
Add the resulting 4 (3) numbers
Add much faster than multiply

D(n) = D(n/2) + O(log n) = O(log2 n)

C(n) = 4C(n/2) + O(n) = O(n2)

Slide 15

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Recursive Multipliers: Example

Slide 16

An 8 8 multiplier built from 4 4 component multipliers

Multipliers can be built recursively from square or non-square
component multipliers

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Recursive Multipliers: Circuit

Slide 17

A 32-bit array multiplier built
of four 16-bit array multipliers

The same design is valid
for non-array multipliers
of the additive type
(square or rectangular)

2 x 4 additive multiplier

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Apr. 2020

Karatsuba Multiplication
2b 2b multiplication requires four b b multiplications:

(2baH + aL) (2bxH + xL) = 22baHxH + 2b (aHxL + aLxH) + aLxL

aH aL

xH xL

Karatsuba noted that one of the four multiplications can be removed at

the expense of a few extra additions:

(2baH + aL) (2bxH + xL) =

22baHxH + 2b [(aH + aL) (xH + xL) – aHxH – aLxL] + aLxL

Mult 1 Mult 2Mult 3

Benefit is quite significant for extremely wide operands

(4/3)5 = 4.2 (4/3)10 = 17.8 (4/3)15 = 74.8 (4/3)20 = 315.3

b bits

C(n) = 3C(n/2) + O(n) = O(n1.58)Form the 3 half-products; do additions:

Slide 18

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Special Case of Squaring

Non-square building blocks not beneficial for squarers
because we won’t be able to use squarers

Two
squarers

A single
multiplier

An 8 8 squarer built from 4 4 component multipliers/squarers

Slide 19

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Counting Networks
• Circuits that compute (symmetric) logic functions based on

the number of 1s among the inputs
• ?/n How many 1s are there? (Parallel counters)
• =k/n Are there exactly k 1s?
• l/n Are there at least l 1s?
• <m/n Are there fewer than m 1s? (or (m–1)/n)
• [l,m)/n Are there at least l and fewer than m 1s?
• [l,m–1]/n Are there at least l and at most m – 1 1s?
• {j1, j2,…, jk}/n Is the number of 1s in the set {j1, j2,…, jk}?
• Also, Hamming-weight-comparators, not discussed here

Slide 20

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Recursive Design of Parallel Counters
D(LSB ?/n) = 1 + D(LSB ?/n/2) = log2 n

D(?/n) = D(LSB ?/n) + log2 n – 1
= 2 log2 n – 1

C(?/n) = 2C(?/ n/2) + log2 n 2n

Slide 21

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Mux-Based Hardware Realizations
Shannon expansion or decomposition
f(x1, x2, . . . , xn–1, xn) = xn f(x1, x2, . . . , xn–1, 0) xn f(x1, x2, . . . , xn–1, 1)

f(x1, x2, . . . , xn–1, xn)
f(x1, x2, . . . , xn–1, 0)

f(x1, x2, . . . , xn–1, 1)

x1.
.
.
xn–1
xn

n – 1

Multiplexer

Example: Majority voter
f(x1, x2, x3) = x1x2 x2x3 x3x1

= x3(x1x2) x3(x1 x2)

2/2

2
x1

x2

x3

2/3

1/2

Slide 22

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Recursive Design of Weight-Checkers
B(=k/n) = 1 + B(=k/(n – 1)) + B(=(k – 1)/(n – 1))
B(=k/n) = 1 + B(=k/(n–1)) + B(=(k–1)/(n–1)) – B(=(k–1)/(n–2))

= k(n – k) – 1
C(=k/n) = B(=k/n) + peripheral gates
D(=k/n) = n – 2 + max(DAND(2), DNOR(2), DXOR)

B(=3/6) = 1 + B(=3/5) + B(=2/5) – B(=2/4)
= 1 + 5 + 5 – 3 = 8

Shared parts

Slide 23

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Recursive Design of Threshold Counters
B(l/n) = 1 + B(l/(n–1)) + B((l–1)/(n–1)) – B((k–1)/(n–1)) = (n – l)(l – 1) – 1
C(k/n) = B(k/n) + peripheral gates
D(l/n) = 1 + max[D(l/(n – 1)), D((l – 1)/(n – 1))] = n – 3 + small constant

Slide 24

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Example (Inverse) Threshold Counters
B(l/n) = 1 + B(l/(n–1)) + B((l–1)/(n–1)) – B((k–1)/(n–1)) = (n – l)(l – 1) – 1
C(k/n) = B(k/n) + peripheral gates
D(l/n) = 1 + max[D(l/(n – 1)), D((l – 1)/(n – 1))] = n – 3 + small constant

< 2/8

Direct realization of a <m/n TPCN
is beneficial for 2 m n/2

Slide 25

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Example CMOS Implementation

Slide 26

Design High-level
implementation

Three possible mux designs:
Ordinary CMOS; bypass transistor; transmission gate

Average improvements:
~10% delay
~65% power
~55% transistor count
More results forthcoming

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Example application:

Codewords of length 9 bits and
weights 4 or 5
C(4, 9) + C(5, 9) = 126 + 126 = 252

Between-Limits Threshold Counters
C([l, m)/n) = Open problem
D([l, m)/n) = n – 2 + a small constant

 2/8

< 7/8

[2,6]/8TPCN

TPCN

Slide 27

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Membership Checkers

Slide 28

{3,4,6}/8 membership checker
Negative terms and terms larger than n are dropped

{3,4,6}/8

{3,4,6}/7

{2,3,5}/7

{3,4,6}/6

{2,3,5}/6

{1,2,4}/6

{3,4}/5

{2,3,5}/5

{1,2,4}/5

{0,1,3}/5

{2,3}/4

{3,4}/4

{1,2,4}/4

{0,1,3}/4

{0,2}/4

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Even- or Odd-Parity Checker

Slide 29

o/n (odd-parity check)

XOR

o/n (odd-parity check)

o/n (odd-parity check)

x1...
xm

xm+1...
xn

Parity checking: XOR-tree networks
First attempt at recursive formulation

odd-parity(x1, x2, . . . , xn–1, xn)
= odd-parity(x1, . . . , xm)
 odd-parity(xm+1, . . . , xn)

{1,3,5,7}/8

{1,3,5,7}/7

{0,2,4,6}/7

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Advantages and Drawbacks
• Recursion not applicable to all of our needs
• May not lead to theoretically-optimal design
• But … Optimal designs tend to be complex
 Long design times and many design errors

• Recursive designs: Analyzable and verifiable
• Stop recursion upon hitting a known design
• Commonly-used parts can be fully optimized
• Good for prototyping, if not for final circuit

Slide 30

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Speed vs. Regularity

Slide 31

p p p p
p

4 3 2 1 0 a a a a a

4

3

2

1

0

x

x

x

x

x

4

3

2

1

0

p

p

p

p

p

9 8 7 6
5

• Tree: Fast, but irregular
• Array: Slow, but regular

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Conclusion and Future Work
• Recursive hardware design is feasible and beneficial
• I covered three examples: FFT; Multiplier; Counter
• Counting-network designs are new
• There are other examples: e.g., sorting networks
• Benefits: Ease of analysis and correctness proof
• May be preferred, even if not the most efficient
• All designs can be pipelined for higher throughput
• Latency, cost, power for implemented networks

Slide 32

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

parhami@ece.ucsb.edu
PDF files of B. Parhami’s publications are available at:

www.ece.ucsb.edu/~parhami/publications.htm

Slide 33

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

parhami@ece.ucsb.edu
www.ece.ucsb.edu/~parhami

Slide 34

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Winter 2020

Insertion Sort and Selection Sort
x

x

x

x

.

.

.

(n–1)-sorter

0

1

2

n–2

y

y

y

y

0

1

2

n–2

xn–1

.

.

.

yn–1

x

x

x

x

.

.

.

(n–1)-sorter

0

1

2

n–2

y

y

y

y

0

1

2

n–2

xn–1

.

.

.

yn–1

.

.

.

Insertion sort Selection sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

C(n) = n(n – 1)/2
D(n) = 2n – 3
Cost Delay

= Q(n3)

Slide 35

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Winter 2020

Batcher’s Even-Odd Merge Sorting
Batcher’s (m, m) even-odd merger,
for m a power of 2:

C(m) = 2C(m/2) + m – 1
= (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + . . .
= m log2m + 1

D(m) = D(m/2) + 1 = log2 m + 1

Cost Delay = Q(m log2 m)

Batcher sorting networks based on the
even-odd merge technique:

C(n) = 2C(n/2) + (n/2)(log2(n/2)) + 1
 n(log2n)2/ 2

D(n) = D(n/2) + log2(n/2) + 1
= D(n/2) + log2n
= log2n (log2n + 1)/2

Cost Delay = Q(n log4n)

n/2-sorter

n/2-sorter

(n/2, n/2)-
merger

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The recursive structure
of Batcher’s even–odd
merge sorting network.

Slide 36

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)
Winter 2020

Example Batcher’s Even-Odd 8-Sorter

n/2-sorter

n/2-sorter

(n/2, n/2)-
merger

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4-sorters Even
(2,2)-merger

Odd
(2,2)-merger

Batcher’s even-odd merge
sorting network for eight inputs

Slide 37

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

(Non-)Square Recursive Multipliers
4b 4b

3b 3b

2b 2b

b b

Square components

Non-square components

Slide 38

Non-square components
may lead to matrix
height reduction

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Example with No Height Reduction

Slide 39

12 8 multiplication
3 4 components

Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Examples of Matrix Height Reduction
• Efstathiou, et al., 2004

Slide 40

12 6 multiplication
2 3 components

14 4 multiplication
2 2 components

