

## Recursive Synthesis of Digital Circuits

Behrooz Parhami<br>Department of Electrical and Computer Engineering<br>University of California, Santa Barbara, USA<br>parhami@ece.ucsb.edu

Presentation on Behalf of IEEE Computer Society's Distinguished Visitors Program


## Outline

- Intro: HW Design and Recursion
- Iterative Refinement (SW \& HW)
- Algor/SW/HW Recursion Example
- Example 1: Fast Fourier Transform
- Example 2: Recursive Multipliers
- Example 3: Counting Networks
- Parallel Counters
- Weight-Checkers
- Threshold Counters
- Variations in Counting
- Conclusion and Future Work



## Introduction: Hardware Design

- Time- and work-intensive; expensive; error-prone
- Choice of algorithm, technology, design methodology
- Quick proof-of-concept, followed by fine-tuning
- Fine-tuning adds complexity and thus errors
- In some cases, correctness / reliability more important
- Modularity, packageability, reusability are key attributes
- Ditto for testability, serviceability, availability
- We may opt for simpler designs, older technologies
- $\mathrm{O}(\sqrt{n}) \& O(\lg n)$ complexities about the same for small $n$


## The Concept of Recursion

To iterate is human, to recurse divine!

## Textbook definition:

Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem.

$$
n!=\left\{\begin{array}{l}
\text { if } n \leq 1 \text { then } 1 \\
\text { else } n \times(n-1)!
\end{array}\right.
$$



$$
f i b(n)=\left\{\begin{array}{l}
\text { if } n \leq 2 \text { then } 1 \\
\text { else } \operatorname{fib}(n-1)+\operatorname{fib}(n-2)
\end{array}\right.
$$

## Recursive Synthesis of Digital Circuits



## Recursive Synthesis of Digital Circuits

## Recursive Pizzas



## Recursive Synthesis of Digital Circuits

## Iterative Refinement

- Compute $f(z)$ by iteratively refining an approximation
- Example $x=\sqrt{z}: \quad x^{(i+1)}=0.5\left(x^{(1)}+z / x^{(i)}\right)$
$V z \approx x^{(0)}=1.5$
$\sqrt{ } z \approx 1+z / 4$
$\sqrt{ } z \approx 7 / 8+z / 4$
$\sqrt{ } z \approx 17 / 24+z / 3$ Best linear approx.



## Unrolling and Pipelining

- Compute $f(z)$ by iteratively refining an approximation
- Example $x=\sqrt{z}: x^{(i+1)}=0.5\left(x^{(i)}+z / x^{(i)}\right)$

- Pipelining: Five different square-rootings in progress
- No unrolling: One orange box, used four times
- Partial unrolling: Two orange boxes, used twice


## Algorithm/SW/HW Example: Selection Sort


selectionsort( $\left.x_{0}, x_{1}, \ldots x_{n-1}\right)$
if $n=1$ then exit
find $x_{j}=\max \left(x_{0}, x_{1}, \ldots x_{n-1}\right)$
swap $x_{j}$ and $x_{n-1}$
selectionsort( $\left.x_{0}, x_{1}, \ldots x_{n-2}\right)$


## Recursion Drawbacks and Benefits

- Many procedure calls, with associated overheads
- Overhead not as bad on modern hardware
- Tail-recursion: Recursive call is in last statement
- Unroll the recursion into a loop (smart compiler?)
- Partial unrolling: $n!=n \times(n-1) \times(n-2) \times(n-3)$ !
- May be preferred, even if not the most efficient
- In the case of hardware, the design is recursive
- The circuit-level realization is often fully unrolled
- Recursive design provides analyzability \& reliability


## Recursive Synthesis of Digital Circuits

## Discrete Fourier Transform: FFT Network

DFT: $y_{i}=\sum_{j=0}^{n-1} \omega_{n}{ }^{i j} x_{j}$
Naïve algorithm: $T(n)=O\left(n^{2}\right)$
FFT: $\quad y_{i}=u_{i}+\omega_{n}{ }^{i} v_{i}(0 \leq i<n / 2)$
$y_{i+n / 2}=u_{i}-\omega_{n}{ }^{i} v_{i}$
Seq: $T(n)=2 T(n / 2)+n=O(n \log n)$
Par: $T(n)=T(n / 2)+1=O(\log n)$
Inverse DFT is almost exactly the same computation:
IDFT: $x_{i}=(1 / n) \sum_{j=0}^{n-1} \omega_{n}^{-i j} y_{j}$
$u$ : DFT of even-indexed inputs
$v$ : DFT of odd-indexed inputs



Presentation on Behalf of IEEE Computer Society's Distinguished Visitors Program

## Regularized Butterfly: Shuffle-Exchange

Rearranged nodes, same connectivity

Removal / sharing of some links


## Recursive Synthesis of Digital Circuits

## More Economical FFT

 Hardware




## Recursive Multipliers: Concept

Building wide multiplier from narrower ones


Rearranged partial products in 2b-by-2b multiplication


Form the 4 half-products Add the resulting 4 (3) numbers Add much faster than multiply

$$
\begin{aligned}
& D(n)=D(n / 2)+O(\log n)=O\left(\log ^{2} n\right) \\
& C(n)=4 C(n / 2)+O(n)=O\left(n^{2}\right)
\end{aligned}
$$

## Recursive Multipliers: Example

Multipliers can be built recursively from square or non-square component multipliers

sum \& unprocessed bits carry bits

$$
p=a \times x
$$

An $8 \times 8$ multiplier built from $4 \times 4$ component multipliers

## Recursive Synthesis of Digital Circuits

## Recursive Multipliers: Circuit

A 32-bit array multiplier built of four 16-bit array multipliers

The same design is valid for non-array multipliers of the additive type (square or rectangular)
$2 \times 4$ additive multiplier


## Karatsuba Multiplication

$2 b \times 2 b$ multiplication requires four $b \times b$ multiplications:
$\left(2^{b} a_{H}+a_{L}\right) \times\left(2^{b} x_{H}+x_{L}\right)=2^{2 b} a_{H} x_{H}+2^{b}\left(a_{H} x_{L}+a_{L} x_{H}\right)+a_{L} x_{L}$
Karatsuba noted that one of the four multiplications can be removed at the expense of a few extra additions:
$\left(2^{b} a_{H}+a_{L}\right) \times\left(2^{b} x_{H}+x_{L}\right)=$
$2^{2 b} a_{H} x_{H}+2^{b}\left[\left(a_{H}+a_{L}\right) \times\left(x_{H}+x_{L}\right)-a_{H} x_{H}-a_{L} x_{L}\right]+a_{L} x_{L}$


Mult 1 Mult 3
Mult 2
Form the 3 half-products; do additions: $\quad C(n)=3 C(n / 2)+O(n)=O\left(n^{1.58}\right)$
Benefit is quite significant for extremely wide operands
$(4 / 3)^{5}=4.2$
$(4 / 3)^{10}=17.8$
$(4 / 3)^{15}=74.8$
$(4 / 3)^{20}=315.3$

## Special Case of Squaring

Non-square building blocks not beneficial for squarers because we won't be able to use squarers


An $8 \times 8$ squarer built from $4 \times 4$ component multipliers/squarers

## Counting Networks

- Circuits that compute (symmetric) logic functions based on the number of 1 s among the inputs
- ?/n How many 1s are there? (Parallel counters)
- $=k / n \quad$ Are there exactly $k$ 1s?
- $\geq l / n \quad$ Are there at least $l 1 s$ ?
- $<m / n \quad$ Are there fewer than $m$ 1s? (or $\leq(m-1) / n$ )
- $\in[l, m) / n \quad$ Are there at least $l$ and fewer than $m 1 s$ ?
- $\in[l, m-1] / n \quad$ Are there at least $l$ and at most $m-11 \mathrm{~s}$ ?
- $\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} / n \quad$ Is the number of 1 s in the set $\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ ?
- Also, Hamming-weight-comparators, not discussed here


## Recursive Synthesis of Digital Circuits

## Recursive Design of Parallel Counters

$$
\begin{aligned}
D(\text { LSB ?/n) } & =1+D(L S B \text { ?/ }\lfloor n / 2\rfloor)=\left\lfloor\log _{2} n\right\rfloor \\
D(? / n) & =D\left(\lfloor S B ? / n)+\left\lfloor\log _{2} n\right\rfloor-1\right. \\
& =2\left\lfloor\log _{2} n\right\rfloor-1 \\
C(? / n) & =2 C(? /\lfloor n / 2\rfloor)+\left\lfloor\log _{2} n\right\rfloor \cong 2 n
\end{aligned}
$$



## Mux-Based Hardware Realizations

Shannon expansion or decomposition
$f\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=x_{n}{ }^{\prime} f\left(x_{1}, x_{2}, \ldots, x_{n-1}, 0\right) \vee x_{n} f\left(x_{1}, x_{2}, \ldots, x_{n-1}, 1\right)$


Example: Majority voter

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2} \vee x_{2} x_{3} \vee x_{3} x_{1} \\
& =x_{3}^{\prime}\left(x_{1} x_{2}\right) \vee x_{3}\left(x_{1} \vee x_{2}\right)
\end{aligned}
$$



## Recursive Synthesis of Digital Circuits

## Recursive Design of Weight-Checkers

$B(=k / n)=1+B(=k /(n-1))+B(=(k-1) /(n-1))$
$B(=k / n)=1+B(=k /(n-1))+B(=(k-1) /(n-1))-B(=(k-1) /(n-2))$
$=k(n-k)-1$
$C(=k / n)=B(=k / n)+$ peripheral gates
$D(=k / n)=n-2+\max \left(D_{\text {AND }}(2), D_{\text {NOR }}(2), D_{\text {XOR }}\right)$
$B(=3 / 6)=1+B(=3 / 5)+B(=2 / 5)-B(=2 / 4)$
(AND gates) $=1+5+5-3=8$
$(\mathrm{XOR})=2 / 2$
(NOR gates)

(NOR gates)
(OR gates)

## Recursive Design of Threshold Counters

$B(\geq I / n)=1+B(\geq I /(n-1))+B(\geq(l-1) /(n-1))-B(\geq(k-1) /(n-1))=(n-l)(I-1)-1$
$C(\geq k / n)=B(\geq k / n)+$ peripheral gates
$D(\geq I / n)=1+\max [D(\geq I /(n-1)), D(\geq(I-1) /(n-1))]=n-3+$ small constant


## Example (Inverse) Threshold Counters

$$
B(\geq I / n)=1+B(\geq I /(n-1))+B(\geq(l-1) /(n-1))-B(\geq(k-1) /(n-1))=(n-l)(I-1)-1
$$

$C(\geq k / n)=B(\geq k / n)+$ peripheral gates
$D(\geq I / n)=1+\max [D(\geq I /(n-1)), D(\geq(I-1) /(n-1))]=n-3+$ small constant


Direct realization of a $<m / n$ TPCN is beneficial for $2 \leq m \leq n / 2$


## Recursive Synthesis of Digital Circuits

## Example CMOS Implementation



High-level
implementation


Three possible mux designs:
Ordinary CMOS; bypass transistor; transmission gate


Average improvements: ~10\% delay
~65\% power
~55\% transistor count
More results forthcoming

## Recursive Synthesis of Digital Circuits

## Between-Limits Threshold Counters





## Membership Checkers

$\{3,4,6\} / 8$ membership checker
Negative terms and terms larger than $n$ are dropped


## Even- or Odd-Parity Checker

Parity checking: XOR-tree networks
First attempt at recursive formulation
$\operatorname{odd}-\operatorname{parity}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)$


$$
=\operatorname{odd}-\operatorname{parity}\left(x_{1}, \ldots, x_{m}\right)
$$

$$
\{0,2,4,6\} / 7
$$

$\oplus$ odd-parity $\left(x_{m+1}, \ldots, x_{n}\right)$


## Advantages and Drawbacks

- Recursion not applicable to all of our needs
- May not lead to theoretically-optimal design
- But ... Optimal designs tend to be complex $\rightarrow$ Long design times and many design errors
- Recursive designs: Analyzable and verifiable
- Stop recursion upon hitting a known design
- Commonly-used parts can be fully optimized
- Good for prototyping, if not for final circuit


## Recursive Synthesis of Digital Circuits

## Speed vs. Regularity

- Tree: Fast, but irregular
- Array: Slow, but regular



## Conclusion and Future Work

- Recursive hardware design is feasible and beneficial
- I covered three examples: FFT; Multiplier; Counter
- Counting-network designs are new
- There are other examples: e.g., sorting networks
- Benefits: Ease of analysis and correctness proof
- May be preferred, even if not the most efficient
- All designs can be pipelined for higher throughput
- Latency, cost, power for implemented networks


## Recursive Synthesis of Digital Circuits

## Questions?

parhami@ece.ucsb.edu
PDF files of B. Parhami's publications are available at: www.ece.ucsb.edu/~parhami/publications.htm

## Recursive Synthesis of Digital Circuits

# Back-up Slides 

parhami@ece.ucsb.edu www.ece.ucsb.edu/~parhami

## Recursive Synthesis of Digital Circuits

## Insertion Sort and Selection Sort



Parallel insertion sort $=$ Parallel selection sort $=$ Parallel bubble sort!
$C(n)=n(n-1) / 2$
$D(n)=2 n-3$
Cost $\times$ Delay
$=\Theta\left(n^{3}\right)$


## Batcher's Even-Odd Merge Sorting



The recursive structure of Batcher's even-odd merge sorting network.

Batcher's $(m, m)$ even-odd merger, for $m$ a power of 2:

$$
\begin{aligned}
& C(m)=2 C(m / 2)+m-1 \\
&=(m-1)+2(m / 2-1)+4(m / 4-1)+\ldots \\
&=m \log _{2} m+1 \\
& D(m)=D(m / 2)+1=\log _{2} m+1 \\
& \text { Cost } \times \text { Delay }=\Theta\left(m \log ^{2} m\right)
\end{aligned}
$$

Batcher sorting networks based on the even-odd merge technique:

$$
\begin{aligned}
C(n) & =2 C(n / 2)+(n / 2)\left(\log _{2}(n / 2)\right)+1 \\
& \cong n\left(\log _{2} n\right)^{2} / 2 \\
D(n) & =D(n / 2)+\log _{2}(n / 2)+1 \\
& =D(n / 2)+\log _{2} n \\
& =\log _{2} n\left(\log _{2} n+1\right) / 2
\end{aligned}
$$

Cost $\times$ Delay $=\Theta\left(n \log ^{4} n\right)$

## Example Batcher's Even-Odd 8-Sorter



Batcher's even-odd merge sorting network for eight inputs

## (Non-)Square Recursive Multipliers



Non-square components may lead to matrix height reduction

Non-square components

Square components


## Example with No Height Reduction

$12 \times 8$ multiplication $3 \times 4$ components



## Recursive Synthesis of Digital Circuits

## Examples of Matrix Height Reduction

$2 \times 2$ components
$12 \times 6$ multiplication
$2 \times 3$ components


