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• Intro: HW Design and Recursion
• Iterative Refinement (SW & HW)
• Algor/SW/HW Recursion Example
• Example 1: Fast Fourier Transform
• Example 2: Recursive Multipliers
• Example 3: Counting Networks

– Parallel Counters
– Weight-Checkers
– Threshold Counters
– Variations in Counting

• Conclusion and Future Work
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Introduction: Hardware Design
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• Time- and work-intensive; expensive; error-prone
• Choice of algorithm, technology, design methodology
• Quick proof-of-concept, followed by fine-tuning
• Fine-tuning adds complexity and thus errors
• In some cases, correctness / reliability more important
• Modularity, packageability, reusability are key attributes
• Ditto for testability, serviceability, availability
• We may opt for simpler designs, older technologies
• O(n) & O(lg n) complexities about the same for small n
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The Concept of Recursion




















1

2

1

2

2 if     ,12

2 if                     ,

1

1

nn

n

WW

WW

n

n

To iterate is human, to recurse divine!

Textbook definition:
Recursion is a method where the 
solution to a problem depends on 
solutions to smaller instances of the 
same problem.

Problem
Base case

Subproblem(s)

n! =
if n  1 then 1

else n  (n – 1)!
fib(n) =

if n  2 then 1

else fib(n – 1) + fib(n – 2)
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Recursive 
Dolls
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Recursive 
Pizzas
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Iterative Refinement
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z  x (0) = 1.5

z  1 + z/4

z  7/8 + z/4

z  17/24 + z/3
Best linear approx.

Subrange 1 Subrange 2

1 + (z – 1)/2 1 + z/4

• Compute f(z) by iteratively refining an approximation
• Example x = z: x (i+1) =  0.5(x (i) + z /x (i))
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Unrolling and Pipelining
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• Compute f(z) by iteratively refining an approximation
• Example x = z: x (i+1) =  0.5(x (i) + z /x (i))

x (0) x (1) x (2) x (3) x (4)

z


z

• Pipelining: Five different square-rootings in progress
• No unrolling: One orange box, used four times
• Partial unrolling: Two orange boxes, used twice
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Algorithm/SW/HW Example: Selection Sort
max

xj xn1

max
xjxn1

selectionsort(x0, x1, … xn1)
if n = 1 then exit
find xj = max(x0, x1, … xn1)
swap xj and xn1

selectionsort(x0, x1, … xn2)

x0

x0
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Recursion Drawbacks and Benefits
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• Many procedure calls, with associated overheads
• Overhead not as bad on modern hardware
• Tail-recursion: Recursive call is in last statement
• Unroll the recursion into a loop (smart compiler?)
• Partial unrolling: n! = n  (n – 1)  (n – 2)  (n – 3)!
-----------------------------------------------------------------------------------------------------------------------------------------------------

• May be preferred, even if not the most efficient
• In the case of hardware, the design is recursive
• The circuit-level realization is often fully unrolled 
• Recursive design provides analyzability & reliability
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Discrete Fourier Transform: FFT Network
u: DFT of even-indexed inputs
v: DFT of odd-indexed inputs

yi = ui + wn
i vi  (0  i < n/2)

yi+n/2 = ui – wn
i vi

DFT: yi =  ∑
j = 0

wn
ij xj

n–1 

Inverse DFT is almost exactly the 
same computation:

IDFT: xi = (1/n) ∑
j=0

wn
ij yj     

n–1 

Naïve algorithm: T(n) = O(n2)

Seq: T(n) = 2T(n/2) + n = O(n log n)
Par:  T(n) =  T(n/2)  + 1  = O(log n)

FFT:
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Regularized Butterfly: Shuffle-Exchange
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More 
Economical 

FFT 
Hardware
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Recursive Multipliers: Concept
Building wide multiplier from narrower ones

a



p

Rearranged partial products 
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL

xHa H

a H xL

a L xH

a L xLxHa H

b bits

 

Form the 4 half-products
Add the resulting 4 (3) numbers
Add much faster than multiply

D(n) = D(n/2) + O(log n) = O(log2 n)

C(n) = 4C(n/2) + O(n) = O(n2)
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Recursive Multipliers: Example
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An 8  8 multiplier built from 4  4 component multipliers

Multipliers can be built recursively from square or non-square 
component multipliers
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Recursive Multipliers: Circuit
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A 32-bit array multiplier built 
of four 16-bit array multipliers

The same design is valid 
for non-array multipliers 
of the additive type 
(square or rectangular)

2 x 4 additive multiplier
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Karatsuba Multiplication
2b  2b multiplication requires four b  b multiplications:

(2baH + aL)  (2bxH + xL) = 22baHxH + 2b (aHxL + aLxH) + aLxL

aH aL

xH xL

Karatsuba noted that one of the four multiplications can be removed at

the expense of a few extra additions:

(2baH + aL)  (2bxH + xL) =

22baHxH + 2b [(aH + aL)  (xH + xL) – aHxH – aLxL] + aLxL

Mult 1 Mult 2Mult 3

Benefit is quite significant for extremely wide operands

(4/3)5 = 4.2 (4/3)10 = 17.8 (4/3)15 = 74.8 (4/3)20 = 315.3

b bits

C(n) = 3C(n/2) + O(n) = O(n1.58)Form the 3 half-products; do additions:
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Special Case of Squaring

Non-square building blocks not beneficial for squarers 
because we won’t be able to use squarers

Two
squarers

A single 
multiplier

An 8  8 squarer built from 4  4 component multipliers/squarers
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Counting Networks
• Circuits that compute (symmetric) logic functions based on 

the number of 1s among the inputs
• ?/n How many 1s are there? (Parallel counters)
• =k/n Are there exactly k 1s?
•  l/n Are there at least l 1s?
• <m/n Are there fewer than m 1s? (or (m–1)/n)
• [l,m)/n Are there at least l and fewer than m 1s?
• [l,m–1]/n Are there at least l and at most m – 1 1s?
• {j1, j2,…, jk}/n Is the number of 1s in the set {j1, j2,…, jk}?
• Also, Hamming-weight-comparators, not discussed here
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Recursive Design of Parallel Counters
D(LSB ?/n) = 1 + D(LSB ?/n/2) = log2 n

D(?/n) = D(LSB ?/n) + log2 n – 1 
= 2 log2 n – 1   

C(?/n) = 2C(?/ n/2) + log2 n  2n
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Mux-Based Hardware Realizations
Shannon expansion or decomposition
f(x1, x2, . . . , xn–1, xn) = xn f(x1, x2, . . . , xn–1, 0)  xn f(x1, x2, . . . , xn–1, 1)

f(x1, x2, . . . , xn–1, xn)
f(x1, x2, . . . , xn–1, 0)

f(x1, x2, . . . , xn–1, 1)

x1.
.
.
xn–1
xn

n – 1 

Multiplexer

Example: Majority voter
f(x1, x2, x3) = x1x2  x2x3  x3x1

= x3(x1x2)  x3(x1  x2)  

2/2

2 
x1

x2

x3

2/3

1/2
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Recursive Design of Weight-Checkers
B(=k/n) = 1 + B(=k/(n – 1)) + B(=(k – 1)/(n – 1))
B(=k/n) = 1 + B(=k/(n–1)) + B(=(k–1)/(n–1)) – B(=(k–1)/(n–2)) 

= k(n – k) – 1 
C(=k/n) = B(=k/n) + peripheral gates
D(=k/n) = n – 2 + max(DAND(2), DNOR(2), DXOR)

B(=3/6) = 1 + B(=3/5) + B(=2/5) – B(=2/4)
= 1 + 5 + 5 – 3 = 8 

Shared parts
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Recursive Design of Threshold Counters
B(l/n) = 1 + B(l/(n–1)) + B((l–1)/(n–1)) – B((k–1)/(n–1)) = (n – l)(l – 1) – 1 
C(k/n) = B(k/n) + peripheral gates
D(l/n) = 1 + max[D(l/(n – 1)), D((l – 1)/(n – 1))] = n – 3 + small constant
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Example (Inverse) Threshold Counters
B(l/n) = 1 + B(l/(n–1)) + B((l–1)/(n–1)) – B((k–1)/(n–1)) = (n – l)(l – 1) – 1 
C(k/n) = B(k/n) + peripheral gates
D(l/n) = 1 + max[D(l/(n – 1)), D((l – 1)/(n – 1))] = n – 3 + small constant

< 2/8

Direct realization of a <m/n TPCN 
is beneficial for 2  m  n/2
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Example CMOS Implementation
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Design High-level 
implementation

Three possible mux designs:
Ordinary CMOS; bypass transistor; transmission gate

Average improvements: 
~10% delay 
~65% power 
~55% transistor count
More results forthcoming
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Example application:

Codewords of length 9 bits and 
weights 4 or 5
C(4, 9) + C(5, 9) = 126 + 126 = 252

Between-Limits Threshold Counters
C([l, m)/n) = Open problem
D([l, m)/n) = n – 2 + a small constant

 2/8

< 7/8

[2,6]/8TPCN

TPCN
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Membership Checkers
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{3,4,6}/8 membership checker
Negative terms and terms larger than n are dropped

{3,4,6}/8

{3,4,6}/7

{2,3,5}/7

{3,4,6}/6

{2,3,5}/6

{1,2,4}/6

{3,4}/5

{2,3,5}/5

{1,2,4}/5

{0,1,3}/5

{2,3}/4

{3,4}/4

{1,2,4}/4

{0,1,3}/4

{0,2}/4
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Even- or Odd-Parity Checker
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o/n (odd-parity check)

XOR

o/n (odd-parity check)

o/n (odd-parity check)

x1...
xm

xm+1...
xn

Parity checking: XOR-tree networks
First attempt at recursive formulation

odd-parity(x1, x2, . . . , xn–1, xn) 
= odd-parity(x1, . . . , xm) 
 odd-parity(xm+1, . . . , xn)

{1,3,5,7}/8

{1,3,5,7}/7

{0,2,4,6}/7



Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Advantages and Drawbacks
• Recursion not applicable to all of our needs
• May not lead to theoretically-optimal design
• But … Optimal designs tend to be complex
 Long design times and many design errors

• Recursive designs: Analyzable and verifiable
• Stop recursion upon hitting a known design 
• Commonly-used parts can be fully optimized
• Good for prototyping, if not for final circuit

Slide 30



Presentation on Behalf of IEEE Computer Society’s
Distinguished Visitors Program

Recursive Synthesis of Digital Circuits

B. Parhami (UCSB)

Speed vs. Regularity
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• Tree: Fast, but irregular
• Array: Slow, but regular
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Conclusion and Future Work
• Recursive hardware design is feasible and beneficial
• I covered three examples: FFT; Multiplier; Counter
• Counting-network designs are new 
• There are other examples: e.g., sorting networks
• Benefits: Ease of analysis and correctness proof
• May be preferred, even if not the most efficient
• All designs can be pipelined for higher throughput
• Latency, cost, power for implemented networks 
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PDF files of B. Parhami’s publications are available at:  

www.ece.ucsb.edu/~parhami/publications.htm
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Insertion Sort and Selection Sort
x
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. 
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. 
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.

Insertion sort Selection sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!

C(n)  = n(n – 1)/2
D(n ) = 2n – 3 
Cost  Delay 

= Q(n3) 
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Batcher’s Even-Odd Merge Sorting
Batcher’s (m, m) even-odd merger, 
for m a power of 2:  

C(m) =  2C(m/2) + m – 1 
= (m – 1) + 2(m/2 – 1) + 4(m/4 – 1) + . . .  
= m log2m + 1

D(m) = D(m/2) + 1 =  log2 m + 1

Cost  Delay  =  Q(m log2 m)

Batcher sorting networks based on the 
even-odd merge technique:  

C(n)  =  2C(n/2) + (n/2)(log2(n/2)) + 1  
 n(log2n)2/ 2 

D(n)  =  D(n/2) + log2(n/2) + 1 
= D(n/2) + log2n
=  log2n (log2n + 1)/2

Cost  Delay = Q(n log4n) 

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

The recursive structure 
of Batcher’s even–odd 
merge sorting network. 
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Example Batcher’s Even-Odd 8-Sorter

n/2-sorter

n/2-sorter

(n/2, n/2)- 
merger

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

4-sorters Even  
(2,2)-merger

Odd 
(2,2)-merger

Batcher’s even-odd merge 
sorting network for eight inputs 
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(Non-)Square Recursive Multipliers
4b  4b 

3b  3b 

2b  2b 

b  b 

Square components

Non-square components
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Non-square components 
may lead to matrix 
height reduction
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Example with No Height Reduction
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12  8 multiplication
3  4 components
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Examples of Matrix Height Reduction
• Efstathiou, et al., 2004
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12  6 multiplication
2  3 components

14  4 multiplication
2  2 components


