

Behrooz Parhami

Department of Electrical and Computer Engineering University of California, Santa Barbara, USA

parhami@ece.ucsb.edu

Outline

- Intro: HW Design and Recursion
- Iterative Refinement (SW & HW)
- Algor/SW/HW Recursion Example
- Example 1: Fast Fourier Transform
- Example 2: Recursive Multipliers
- Example 3: Counting Networks
 - Parallel Counters
 - Weight-Checkers
 - Threshold Counters
 - Variations in Counting
- Conclusion and Future Work

Introduction: Hardware Design

- Time- and work-intensive; expensive; error-prone
- Choice of algorithm, technology, design methodology
- Quick proof-of-concept, followed by fine-tuning
- Fine-tuning adds complexity and thus errors
- In some cases, correctness / reliability more important
- Modularity, packageability, reusability are key attributes
- Ditto for testability, serviceability, availability
- We may opt for simpler designs, older technologies
- $O(\sqrt{n}) \& O(\lg n)$ complexities about the same for small n

The Concept of Recursion

To iterate is human, to recurse divine!

Textbook definition:

Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem.

Problem
$$\begin{cases} Base case \\ Subproblem(s) \end{cases}$$
$$n! = \begin{cases} if n \le 1 \text{ then } 1 \\ else n \times (n-1)! \end{cases}$$

$$fib(n) = \begin{cases} \text{if } n \le 2 \text{ then } 1 \\ \text{else } fib(n-1) + fib(n-2) \end{cases}$$

Recursive Pizzas

Iterative Refinement

- Compute f(z) by iteratively refining an approximation \bullet
- Example $x = \sqrt{z}$: $x^{(i+1)} = 0.5(x^{(i)} + z/x^{(i)})$

Unrolling and Pipelining

- Compute *f*(*z*) by iteratively refining an approximation
- Example $x = \sqrt{z}$:

$$x^{(i+1)} = 0.5(x^{(i)} + z/x^{(i)})$$

- Pipelining: Five different square-rootings in progress
- No unrolling: One orange box, used four times
- Partial unrolling: Two orange boxes, used twice

Algorithm/SW/HW Example: Selection Sort

selectionsort(x_0, x_1, \dots, x_{n-1}) if n = 1 then exit find $x_j = max(x_0, x_1, \dots, x_{n-1})$ swap x_j and x_{n-1} selectionsort(x_0, x_1, \dots, x_{n-2})

Recursion Drawbacks and Benefits

- Many procedure calls, with associated overheads
- Overhead not as bad on modern hardware
- Tail-recursion: Recursive call is in last statement
- Unroll the recursion into a loop (smart compiler?)
- Partial unrolling: $n! = n \times (n-1) \times (n-2) \times (n-3)!$
- May be preferred, even if not the most efficient
- In the case of hardware, the <u>design</u> is recursive
- +
- The circuit-level realization is often fully unrolled
- Recursive design provides analyzability & reliability

Discrete Fourier Transform: FFT Network

DFT:
$$y_i = \sum_{j=0}^{n-1} \omega_n^{ij} x_j$$

Naïve algorithm: $T(n) = O(n^2)$

FFT:
$$y_i = u_i + \omega_n^i V_i \ (0 \le i < n/2)$$

 $y_{i+n/2} = u_i - \omega_n^i V_i$

Seq:
$$T(n) = 2T(n/2) + n = O(n \log n)$$

Par: $T(n) = T(n/2) + 1 = O(\log n)$

Inverse DFT is almost exactly the same computation:

IDFT:
$$x_i = (1/n) \sum_{j=0}^{n-1} \omega_n^{-ij} y_j$$

u: DFT of even-indexed inputs *v*: DFT of odd-indexed inputs

Distinguished Visitors Program

Regularized Butterfly: Shuffle-Exchange

Recursive Multipliers: Concept

Building wide multiplier from narrower ones

Form the 4 half-products Add the resulting 4 (3) numbers Add much faster than multiply

 $D(n) = D(n/2) + O(\log n) = O(\log^2 n)$ $C(n) = 4C(n/2) + O(n) = O(n^2)$

Recursive Multipliers: Example

Multipliers can be built recursively from square or non-square component multipliers

An 8×8 multiplier built from 4×4 component multipliers

Recursive Multipliers: Circuit

Karatsuba Multiplication

 $2b \times 2b$ multiplication requires four $b \times b$ multiplications:

 $(2^{b}a_{H} + a_{L}) \times (2^{b}x_{H} + x_{L}) = 2^{2b}a_{H}x_{H} + 2^{b}(a_{H}x_{L} + a_{L}x_{H}) + a_{L}x_{L}$

Karatsuba noted that one of the four multiplications can be removed at the expense of a few extra additions:

Special Case of Squaring

Non-square building blocks not beneficial for squarers because we won't be able to use squarers

An 8×8 squarer built from 4×4 component multipliers/squarers

Counting Networks

- Circuits that compute (symmetric) logic functions based on the number of 1s among the inputs
- ?/n How many 1s are there? (Parallel counters)
- =k/n Are there exactly k 1s?
- $\geq l/n$ Are there at least l 1s?
- < m/n Are there fewer than m 1s? (or $\le (m-1)/n$)
- $\in [l,m)/n$ Are there at least l and fewer than m 1s?
- $\in [l, m-1]/n$ Are there at least l and at most m-1 1s?
- $\{j_1, j_2, ..., j_k\}/n$ Is the number of 1s in the set $\{j_1, j_2, ..., j_k\}$?
- Also, Hamming-weight-comparators, not discussed here

Recursive Design of Parallel Counters

Mux-Based Hardware Realizations

Shannon expansion or decomposition

 $f(x_1, x_2, \ldots, x_{n-1}, x_n) = x_n' f(x_1, x_2, \ldots, x_{n-1}, 0) \vee x_n f(x_1, x_2, \ldots, x_{n-1}, 1)$

Example: Majority voter $f(x_1, x_2, x_3) = x_1 x_2 \lor x_2 x_3 \lor x_3 x_1$ $= x_3'(x_1 x_2) \lor x_3(x_1 \lor x_2)$

Recursive Design of Weight-Checkers

B. Parhami (UCSB)

Recursive Design of Threshold Counters

 $B(\geq l/n) = 1 + B(\geq l/(n-1)) + B(\geq (l-1)/(n-1)) - B(\geq (k-1)/(n-1)) = (n-l)(l-1) - 1$ $C(\geq k/n) = B(\geq k/n) + peripheral gates$

 $D(\geq l/n) = 1 + \max[D(\geq l/(n-1)), D(\geq (l-1)/(n-1))] = n-3 + \text{small constant}$

Example (Inverse) Threshold Counters $B(\ge l/n) = 1 + B(\ge l/(n-1)) + B(\ge (l-1)/(n-1)) - B(\ge (k-1)/(n-1)) = (n-l)(l-1) - 1$ $C(\ge k/n) = B(\ge k/n) + peripheral gates$

 $D(\geq l/n) = 1 + \max[D(\geq l/(n-1)), D(\geq (l-1)/(n-1))] = \frac{n-3}{n-3} + \text{small constant}$

Distinguished Visitors Program

Example CMOS Implementation

Between-Limits Threshold Counters

Presentation on Behalf of IEEE Computer Society's Distinguished Visitors Program

B. Parhami (UCSB)

Membership Checkers

{3,4,6}/8 membership checker

Negative terms and terms larger than *n* are dropped

Even- or Odd-Parity Checker

Advantages and Drawbacks

- Recursion not applicable to all of our needs
- May not lead to theoretically-optimal design
- But ... Optimal designs tend to be complex
 → Long design times and many design errors
- Recursive designs: Analyzable and verifiable
- Stop recursion upon hitting a known design
- Commonly-used parts can be fully optimized
- Good for prototyping, if not for final circuit

Speed vs. Regularity

- Tree: Fast, but irregular
- Array: Slow, but regular

Conclusion and Future Work

- Recursive hardware design is feasible and beneficial
- I covered three examples: FFT; Multiplier; Counter
- Counting-network designs are new
- There are other examples: e.g., sorting networks
- Benefits: Ease of analysis and correctness proof
- May be preferred, even if not the most efficient
- All designs can be pipelined for higher throughput
- Latency, cost, power for implemented networks

Questions?

parhami@ece.ucsb.edu PDF files of B. Parhami's publications are available at: www.ece.ucsb.edu/~parhami/publications.htm

B. Parhami (UCSB)

Presentation on Behalf of IEEE Computer Society's Distinguished Visitors Program

Slide 33

Back-up Slides

parhami@ece.ucsb.edu www.ece.ucsb.edu/~parhami

B. Parhami (UCSB)

Presentation on Behalf of IEEE Computer Society's Distinguished Visitors Program

Slide 34

Insertion Sort and Selection Sort

Batcher's Even-Odd Merge Sorting

The recursive structure of Batcher's even-odd merge sorting network. Batcher's (m, m) even-odd merger, for *m* a power of 2:

$$C(m) = 2C(m/2) + m - 1$$

= (m-1) + 2(m/2-1) + 4(m/4-1) + . . .
= m log₂m + 1

$$D(m) = D(m/2) + 1 = \log_2 m + 1$$

 $\operatorname{Cost} \times \operatorname{Delay} = \Theta(m \log^2 m)$

Batcher sorting networks based on the even-odd merge technique:

$$C(n) = 2C(n/2) + (n/2)(\log_2(n/2)) + 1$$

$$\cong n(\log_2 n)^2/2$$

$$D(n) = D(n/2) + \log_2(n/2) + 1$$

$$= D(n/2) + \log_2 n$$

$$= \log_2 n (\log_2 n + 1)/2$$

 $Cost \times Delay = \Theta(n \log^4 n)$

Example Batcher's Even-Odd 8-Sorter

Presentation on Behalf of IEEE Computer Society's Distinguished Visitors Program

B. Parhami (UCSB)

(Non-)Square Recursive Multipliers

Example with No Height Reduction

12×8 multiplication 3×4 components	0-0-0 0-0-0 0-0-0 0-0-0 0-0-0-0 0-0-0-0	4/3/2/1 B/A
2		1A
	0-0-0-0-0-0	2A
	0-0-0-0-0-0	3A
0-0-0-0-0-0		4A
	0-0-0-0-0-0	1B
		2 B
0-0-0-0		3B
0-0-0-0-0-0		4B
		2B/1A
	0-0-0-0-0-0	1B
0-0-0-0-0-0		4A
0-0-0-0-0 0-0-0-0-0-0		4B/3A
0-0-0-0		3B/2A
0-0-0-0-0-0		

Examples of Matrix Height Reduction

