

About This Presentation

This slide show was first developed as a keynote talk for remote delivery at CSICC-2016, Computer Society of Iran Computer Conference, held in Tehran on March 8-10. The talk was presented at a special session on March 9, 11:30 AM to 12:30 PM Tehran time (12:00-1:00 AM PST). An updated version of the talk was prepared and used within B. Parhami's suite of lectures for IEEE Computer Society's Distinguished Visitors Program, 2021-2023. All rights reserved for the author. ©2021 Behrooz Parhami

Edition	Released	Revised	Revised	Revised
First	Mar. 2016	July 2017		
Second	Mar. 2021	Sep. 2021	Sep. 2022	

My Personal Academic Journey

Sep. 2022

Eight Key Ideas in Computer Architecture

Some of the material in this talk come from, or will appear in updated versions of, my two computer architecture textbooks

BEHROOZ PARHAMI

Plenum Series in Computer Science

Introduction to Parallel Processing

Algorithms and Architectures

Behrooz Parhami

Sep. 2022

Eight Key Ideas in Computer Architecture

Eight Key Ideas in Computer Architecture, from Eight Decades of Innovation

Computer architecture became an established discipline when the stored-program concept was incorporated into barebones computers of the 1940s. Since then, the field has seen multiple minor and major innovations in each decade. I will present my pick of the most-important innovation in each of the eight decades, from the 1940s to the 2010s, and show how these ideas, when connected to each other and allowed to interact and cross-fertilize, produced the phenomenal growth of computer performance, now approaching exa-op/s (billion billion operations per second) level, as well as to ultra-low-energy and single-chip systems. I will also offer predictions for what to expect in the 2020s and beyond.

We Are Fond of Making Top-n Lists

0101107 **The Eight Key Ideas** 1000110001 100101101001 1010010101 **2010s Specialization** 1990s FPGAs 2000s **GPUs 1980s Pipelining** 1970s Cache memor 10101010 10107/01011010 1950s Microprogramming 1940s Stored program Come back in 2040,

for my top-10 list!

Background: 1820s-1930s

Program (Instructions) Data (Variable values)

Sep. 2022

Eight Key Ideas in Computer Architecture

Difference Engine: Fixed Program

Babbage's Difference Engine 2

f(x)**D**(2) **D**(1) X $x^2 + x + 41$ 41 0 43 2 3 2 10 2 5

2nd-degree polynomial evaluation Babbage used 7th-degree f(x)

Eight Key Ideas in Computer Architecture

Analytical Engine: Programmable

Ada Lovelace, world's first programmer

Sample program >

Eight Key Ideas in Computer Architecture

Slide 10

Sep. 2022

The Programs of Charles Babbage

IEEE Annals of the History of Computing, January-March 2021 (article by Raul Rojas)

THE LIST OF PROGRAMS

The 26 Babbage's tables in London's Museum can be arranged in the following groups. There are (with overlaps):

- Eleven programs for linear algebra (mostly solutions of simultaneous equations).
- Four for the evaluation of polynomial multiplication and division.
- Two for computing recursions (using loopunrolling, i.e., sequential code obtained by writing one loop execution right after the other).
- Four for the simulation of a Difference Engine using the so-called carriages.
- Three for the evaluation of astronomical formulas.
- A program showing how to use "combinatorial cards."
- An example program for the computation of a simple formula.

Eight Key Ideas in Computer Architecture

Slide 11

Sep. 2022

Electromechanical and Plug-Programmable Computing Machines

Sep. 2022

Eight Key Ideas in Computer Architecture

1940s: Stored Program

Exactly who came up with the stored-program concept is unclear

Legally, John Vincent Atanasoff is designated as inventor, but many others deserve to share the credit

Babbage

Eckert Sep. 2022

Turing

Mauchly

von Neumann

Eight Key Ideas in Computer Architecture

Foreword by DOUGLAS HOFSTADTER author of the Puliter prize-winning Gödel, Escher, Bach: An Eternal Golden Braid

ALICE ROWE BURKS

THE COMPUTER?

THE LEGAL BATTLE THAT CHANGED COMPUTING HISTORY

First Stored-Program Computer

Manchester Small-Scale Experimental Machine

Ran a stored program on June 21, 1948 (Its successor, Manchester Mark 1, operational in April 1949)

EDSAC (Cambridge University; Wilkes et al.) Fully operational on May 6, 1949

EDVAC (IAS, Princeton University; von Neumann et al.) Conceived in 1945 but not delivered until August 1949

BINAC (Binary Automatic Computer, Eckert & Mauchly) Delivered on August 22, 1949, but did not function correctly

Source: Wikipedia

Eight Key Ideas in Computer Architecture

von Neumann vs. Harvard Architecture

von Neumann architecture (unified memory for code & data)

Programs can be modified like data More efficient use of memory space

Harvard architecture (separate memories for code & data)

Better protection of programs Higher aggregate memory bandwidth Memory optimization for access type

Eight Key Ideas in Computer Architecture

1950s: Microprogramming

Traditional control unit design (multicycle): Specify which control signals are to be asserted in each cycle and synthesize

Sep. 2022

Eight Key Ideas in Computer Architecture

The Birth of Microprogramming

The control state machine resembles a program (microprogram) comprised of instructions (microinstructions) and sequencing

Microprogramming Implementation

Each microinstruction controls the data path for one clock cycle

1960s: Parallel Processing

Associative (content-addressed) memories and other forms of parallelism (compute-I/O overlap, functional parallelism) had been in existence since the 1940s

Highly parallel machine, proposed by Daniel Slotnick in 1964, later morphed into ILLIAC IV in 1968 (operational in 1975)

Michael J. Flynn devised his now-famous 4-way taxonomy (SISD, SIMD, MISD, MIMD) in 1966 and Amdahl formulated his speed-up law and rules for system balance in 1967

Sep. 2022

Eight Key Ideas in Computer Architecture

The ILLIAC IV Concept: SIMD Parallelism

Common control unit fetches and decodes instructions, broadcasting the control signals to all PEs

Each PE executes or ignores the instruction based on local, datadependent conditions

The interprocessor routing network is only partially shown

Various Forms of MIMD Parallelism

Warehouse-Sized Data Centers

COOLING: High-efficiency water-based cooling systems—less energy-intensive than traditional chillers—circulate cold water through the containers to remove heat, eliminating the need for air-conditioned rooms. STRUCTURE: A 24 000-square-meter facility houses 400 containers. Delivered by trucks, the containers attach to a spine infrastructure that feeds network connectivity, power, and water. The data center has no conventional raised floors.

POWER: Two power substations feed a total of 300 megawatts to the data center, with 200 MW used for computing equipment and 100 MW for cooling and electrical losses. Batteries and generators provide backup power.

Power and water distribution

Water-based cooling system

Truck carrying container **CONTAINER:** Each 67.5cubic-meter container houses 2500 servers, about 10 times as many as conventional data centers pack in the same space. Each container integrates computing, networking, power, and cooling systems.

Racks of servers Power supply Image from *IEEE Spectrum*, June 2009

Sep. 2022

Eight Key Ideas in Computer Architecture

Top 500 Supercomputers in the World

The Shrinking Supercomputer

Sep. 2022

Eight Key Ideas in Computer Architecture

1970s: Cache Memory

First paper on "buffer" memory: Maurice Wilkes, 1965

First implementation of a general cache memory: IBM 360 Model 85 (J. S. Liptay; *IBM Systems J.*, 1968)

Broad understanding, varied implementations, and studies of optimization and performance issues in the 1970s

Modern cache implementations

- Harvard arch for L1 cashes
- von Neumann arch higher up
- Many other caches in system besides processor cashes

Sep. 2022

Memory Hierarchy

Hierarchical memory provides the illusion that high speed and large size are achieved simultaneously

Cache Memory Analogy

Hierarchical memory provides the illusion that high speed and large size are achieved simultaneously

Hit/Miss Rate, and Effective Cycle Time

Go to main 1 – *h* of the time (say, cache miss rate of 2%)

One level of cache with hit rate h

$$C_{\text{eff}} = hC_{\text{fast}} + (1-h)(C_{\text{slow}} + C_{\text{fast}}) = C_{\text{fast}} + (1-h)C_{\text{slow}}$$

Sep. 2022

Eight Key Ideas in Computer Architecture

The Locality Principle

Summary of Memory Hierarchy

Translation Lookaside Buffer

Virtual-to-physical address translation by a TLB and how the resulting physical address is used to access the cache memory.

Eight Key Ideas in Computer Architecture

Disk Caching and Other Applications

Web caching

- Client-side caching
- Caching within the cloud
- Server-side caching

Eight Key Ideas in Computer Architecture

Slide 33

Sep. 2022

1980s: Pipelining

An important form of parallelism that is given its own name Used from early days of digital circuits in various forms

Vector Processor Implementation

Eight Key Ideas in Computer Architecture

Overlapped Load/Store and Computation

Vector processing via segmented load/store of vectors in registers in a double-buffering scheme. Solid (dashed) lines show data flow in the current (next) segment.

Sep. 2022

Eight Key Ideas in Computer Architecture

Simple Instruction-Execution Pipeline

Sep. 2022

Eight Key Ideas in Computer Architecture

Pipeline Stalls or Bubbles

Data dependency and its possible resolution via forwarding

Sep. 2022

Problems Arising from Deeper Pipelines

Forwarding more complex and not always workable Interlocking/stalling mechanisms needed to prevent errors

Eight Key Ideas in Computer Architecture

Branching and Other Complex Pipelines

Front end: Instr. issue: Write-back: Commit: In-order or out-of-order In-order or out-of-order In-order or out-of-order In-order or out-of-order

The more OoO stages, the higher the complexity

Sep. 2022

Eight Key Ideas in Computer Architecture

1990s: FPGAs

Programmable logic arrays were developed in the 1970s

- PLAs provided cost-effective and flexible replacements for random logic or ROM/PROM
- The related programmable array logic devices came later
- PALs were less flexible than PLAs, but more cost-effective

Why FPGA Represents a Paradigm Shift

Modern FPGAs can implement any functionality

Initially used only for prototyping

Even a complete CPU needs a small fraction of an FPGA's resources

FPGAs come with multipliers and IP cores (CPUs/SPs)

Sep. 2022

Eight Key Ideas in Computer Architecture

FPGAs Are Everywhere

Applications are found in virtually all industry segments:

Aerospace and defense Medical electronics Automotive control Software-defined radio Encoding and decoding

Sep. 2022

Eight Key Ideas in Computer Architecture

Example: Bit-Serial 2nd-Order Digital Filter

2000s: GPUs

Simple graphics and signal processing units were used since the 1970s

In the early 2000s, the two major players, ATI and Nvidia, produced powerful chips to improve the speed of shading

In the late 2000s, GPGPUs (extended stream processors) emerged and were used in lieu of, or in conjunction with, CPUs in high-performance supercomputers

GPUs are faster and more power-efficient than CPUs.

GPUs use a mixture of parallel processing and functional specialization to achieve super-high performance

CPU vs. GPU Organization

Small number of powerful cores versus Very large number of simple stream processors

Demo (analogy for MPP): https://www.youtube.com/watch?v=fKK933KK6Gg

Sep. 2022

Eight Key Ideas in Computer Architecture

CPU vs. GPU Performance

Peak performance (GFLOPS) and peak data rate (GB/s)

Sep. 2022

Eight Key Ideas in Computer Architecture

General-Purpose Computing on GPUs

Suitable for numerically intensive matrix computations

First application to run faster on a GPU was LU factorization

Users can ignore GPU features and focus on problem solving

- Nvidia CUDA Programming System
- Matlab Parallel Computing Toolbox
- C++ Accelerated Massive Parallelism

Many vendors now give users direct access to GPU features

Example system (Titan): Cray XK7 at DOE's Oak Ridge Nat'l Lab used more than ¼ M Nvidia K20x cores to accelerate computations (energy-efficient: 2+ gigaflops/W)

Sep. 2022

Eight Key Ideas in Computer Architecture

The Eight Key Ideas 1000110001 100101101001 **2010s Specialization** 0010101 2000s **GPUs** 1990s FPGAs **1980s Pipelining** 1970s Cache memory 01010010010 10111 960s Parallel processing

1950s Microprogramming

1940s Stored program

Methodological advances Performance improvements

Innovations for Improved Performance

(Adapted from: Parhami, Computer Architecture, 2005)

Computer performance grew by a factor of about 10000 between 1985 and 2010 100 due to faster technology 100 due to better architecture Available computing power ca. 2010: TFLOPS on desktop PFLOPS in supercomputer center EFLOPS on drawing board

	Architectural method Improvemen	it factor	
stablished methods	 Pipelining (and superpipelining) Cache memory, 2-3 levels RISC and related ideas Multiple instruction issue (superscalar) 	3-8 √ 2-5 √ 2-3 √ 2-3 √	Previously discussed
Newer methods	 5. ISA extensions (e.g., for multimedia) 6. Multithreading (super-, hyper-) 7. Speculation and value prediction 8. Hardware acceleration [e.g., GPU] 9. Vector and array processing 10. Parallel/distributed computing 2-10 	1-3 √ 2-5 ? 2-3 ? 2-10 ? 2-10 ? 000s ?	Covered in Part VII

Sep. 2022

Eight Key Ideas in Computer Architecture

Shares of Technology and Architecture in Processor Performance Improvement

Source: "CPU DB: Recording Microprocessor History," CACM, April 2012.

Sep. 2022

Eight Key Ideas in Computer Architecture

2010s: Specialization

Sep. 2022

Eight Key Ideas in Computer Architecture

Hennessy/Patterson's Turing Lecture

Recipients of 2017 ACM Turing Award heralded in their 2018 joint lecture **"A New Golden Age of Computer Architecture"** in which domain-specific hardware dominates

Further progress in "conventional" architectures impeded by slowing Moore scaling, end of Dennard scaling (power wall), diminishing return at high energy cost for ILP, multi-core, etc., sorry state of security (software-only solutions not working)

- Domain-specific languages along with domain-specific arch's
- Agile hardware-development methodologies (for, otherwise, developing many domain-specific systems would be costly)
- Free open architectures and open-source implementations

Shades of Domain-Specificity

Domain-specificity is achieved via ASIC design

ASIC types Full-custom Semi-custom Programmable

Nothing new: ASICs have been around since the 1970s

Controller chips for DVD players, automotive electronics, phones

Generality lowers per-unit cost but hurts performance

ASIC's popularity: Standards & high-volume products Higher volume \rightarrow We can afford to make it more specific

Google's Tensor-Processing Unit

Al-accelerator ASIC aimed at machine-learning applications Developed in 2015 and released for third-party use in 2018 Pixel Neural Core announced in 2019 for Pixel 4 phone

Intodor

	integer			lable tro	m wikipeala
Google TPU	TPUv1	TPUv2	TPUv3	TPUv4 ^[14]	Edge v1
Date Introduced	201 <mark>6</mark>	2017	2018	2021	2018
Process Node	28 nm	16 nm	16 nm	7 nm	
Die Size (mm2)	331	< 625	< 700	< 400	
On chip memory (MiB)	28	32	32	144	
Clock Speed (MHz)	700	700	940	1050	
Memory (GB)	8GB DDR3	16GB HBM	32GB HBM	8GB	
TDP(W)	75	280	450	175	2
TOPS	23	45	90	?	4
NVIDIA: Tensor Cor	΄ρ →	$2\mathbf{v} \rightarrow 2$	$2v \rightarrow$	2v2	

Sep. 2022

Eight Key Ideas in Computer Architecture

Tensor-Processing Unit Architecture

Optimized for matrix multiplication, a key computation in ML Faster than CPU/GPU, 15-30x; More energy-frugal, 30-80x

Figures from: https://research.google/pubs/pub46078/

Perils of Technology Forecasting

Nobel Laureate Physicist Niels Bohr: "Prediction is difficult, especially if it's about the future." [Paraphrased by Yogi Berra in his famous version]

Anonymous quotes about forecasting:

"Forecasting is the art of saying what will happen, and then explaining why it didn't."

"There are two kinds of forecasts: lucky and wrong."

"A good forecaster is not smarter than everyone else; he merely has his ignorance better organized."

Henri Poincare was more positive: "It is far better to foresee even without certainty than not to foresee at all."

Sep. 2022

Eight Key Ideas in Computer Architecture

2020s and Beyond: Looking Ahead

Design improvements

- Adaptation and self-optimization (learning)
- Security (hardware-implemented)
- Reliability via redundancy and self-repair
- Logic-in-memory designs (memory wall)
- Mixed analog/digital design style

Performance improvements

- Revolutionary new technologies
- New computational paradigms
- Brain-inspired and biological computing
- Speculation and value prediction
- Better performance per watt (power wall)

Sep. 2022

Trends in Processor Chip Density, Performance, Clock Speed, Power, and Number of Cores

Original data up to 2010 collected/plotted by M. Horowitz et al.; Data for 2010-2017 extension collected by K. Rupp

Sep. 2022

Eight Key Ideas in Computer Architecture

The Quest for Higher Performance

Top-Five Supercomputers in November 2020 (http://www.top500.org)

Rank (previous) ^{\$}	Rmax Rpeak \$ (PFLOPS)	Name 🕈	Model 💠	CPU cores \$	Accelerator (e.g. GPU) \$ cores	Interconnect +	Manufacturer 🗢	
1	442.010 537.212	Fugaku	Supercomputer Fugaku	158,976 × 48 A64FX @2.2 GHz	0	Tofu interconnect D	Fujitsu	
2▼ (1)	148.600 200.795	Summit	IBM Power System AC922	9,216 × 22 POWER9 @3.07 GHz	27,648 × 80 Tesla V100	InfiniBand EDR	IBM	
3 🗸 (2)	94.640 125.712	Sierra	IBM Power System S922LC	8,640 × 22 POWER9 @3.1 GHz	17,280 × 80 Tesla V100	InfiniBand EDR	IBM	
4▼ (3)	93.015 125.436	Sunway TaihuLight	Sunway MPP	40,960 × 260 SW26010 @1.45 GHz	0	Sunway ^[26]	NRCPC	
5 <mark>▲ (</mark> 7)	63.460 79.215	Selene	Nvidia	1,120 × 64 Epyc 7742 @2.25 GHz	4,480 × 108 Ampere A100	Mellanox HDR Infiniband	Nvidia	

Sep. 2022

Eight Key Ideas in Computer Architecture

The Quest for Higher Performance

June 2022 update (http://www.top500.org)

Top Supercomputer: 1+ exaflops performance

- Frontier system at US Oak Ridge National Lab.
- Based on the latest HPE Cray EX235a architecture
- Equipped with AMD EPYC 64C 2 GHz processors
- Number of Cores ~8.7 million
- Power efficiency rating of ~52 gigaflops/W

Top "Green" Supercomputer: ~20 petaflops

- Frontier Test & Development System at ORNL
- A subset of the top supercomputer above
- Number of cores ~120K
- Power efficiency rating of ~63 gigaflops/W
- The top supercomputer above is #2 on the Green500 list

We Need More than Sheer Performance

Environmentally responsible design

Reusable designs, parts, and material

Power efficiency

Starting publication in 2016: IEEE Transactions on Sustainable Computing

Sep. 2022

Eight Key Ideas in Computer Architecture

Peak Performance of Supercomputers

Past and Current Performance Trends

Energy Consumption is Getting out of Hand

Amdahl's Law

Sep. 2022

Eight Key Ideas in Computer Architecture

Amdahl's System Balance Rules of Thumb

The need for high-capacity, high-throughput secondary (disk) memory

Processor speed	RAM size	Disk I/O rate	Number of disks	Disk capacity	Number of disks
1 GIPS	1 GB	100 MB/s	1	100 GB	1
1 TIPS	1 TB	100 GB/s	1000	100 TB	100
1 PIPS	1 PB	100 TB/s	1 Million	100 PB	100 000
1 EIPS	1 EB	100 PB/s	1 Billion	100 EB	100 Million
1 RAM byte 1 I/O bit per sec 100 disk bytes for each IPS for each IPS for each RAM byte					G Giga T Tera P Peta Syte E Exa

Eight Key Ideas in Computer Architecture

Sep. 2022

The Flynn/Johnson Classification

Shared-Control Systems

Sep. 2022

Eight Key Ideas in Computer Architecture

MIMD Architectures

Control parallelism: executing several instruction streams in parallel

GMSV: Shared global memory – symmetric multiprocessors DMSV: Shared distributed memory – asymmetric multiprocessors DMMP: Message passing – multicomputers

Implementing Symmetric Multiprocessors

Very wide, high-bandwidth bus

Structure of a generic bus-based symmetric multiprocessor.

Interconnection Networks

(a) Direct network

(b) Indirect network

Examples of direct and indirect interconnection networks.

Eight Key Ideas in Computer Architecture

Design Space for Superscalar Pipelines

Front end: Instr. issue: Writeback: Commit: In-order or out-of-order In-order or out-of-order In-order or out-of-order In-order or out-of-order

The more OoO stages, the higher the complexity

Example of complexity due to out-of-order processing: MIPS R10000

Control Logic

Source: Ahi, A. et al., "MIPS R10000 Superscalar Microprocessor," *Proc. Hot Chips Conf.*, 1995.

Sep. 2022

Eight Key Ideas in Computer Architecture

Instruction-Level Parallelism

Available instruction-level parallelism and the speedup due to multiple instruction issue in superscalar processors [John91].

Speculative Loads

(a) Control speculation

(b) Data speculation

Examples of software speculation in IA-64.

Eight Key Ideas in Computer Architecture

Value Prediction

Value prediction for multiplication or division via a memo table.

Eight Key Ideas in Computer Architecture

Graphic Processors, Network Processors, ...

Simplified block diagram of Toaster2, Cisco Systems' network processor.

Eight Key Ideas in Computer Architecture

Computing in the Cloud

Computational resources, both hardware and software, are provided by, and managed within, the cloud

Users pay a fee for access

Managing / upgrading is much more efficient in large, centralized facilities (warehouse-sized data centers or server farms)

Image from Wikipedia: Created by Sam Johnston

This is a natural continuation of the outsourcing trend for special services, so that companies can focus their energies on their main business

