
INSTRUCTOR’S MANUAL FOR

Volume 2: Presentation Material

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

E-mail: parhami@ece.ucsb.edu

© Oxford University Press, Fall 2001

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 2

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

This instructor’s manual is for
Computer Arithmetic: Algorithms and Hardware Designs, by Behrooz Parhami

ISBN 0-19-512583-5, QA76.9.C62P37
©2000 Oxford University Press, New York, http://www.oup-usa.org

For information and errata, see http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm

All rights reserved for the author. No part of this instructor’s manual may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without written permission. Contact the author at:
ECE Dept., Univ. of California, Santa Barbara, CA 93106-9560, USA (parhami@ece.ucsb.edu)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 3

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Preface to the Instructor’s Manual

This instructor’s manual consists of two volumes. Volume 1 presents solutions to selected
problems and includes additional problems (many with solutions) that did not make the cut for
inclusion in the text Computer Arithmetic: Algorithms and Hardware Designs (Oxford
University Press, 2000) or that were designed after the book went to print. Volume 2 contains
enlarged versions of the figures and tables in the text as well as additional material, presented in
a format that is suitable for use as transparency masters.

The fall 2001 edition Volume 1, which consists of the following parts, is available to qualified
instructors through the publisher:

Volume 1 Part I Selected solutions and additional problems

 Part II Question bank, assignments, and projects

The fall 2001 edition of Volume 2, which consists of the following parts, is available as a large
file in postscript format through the book’s Web page:

Volume 2 Parts I-VII Lecture slides and other presentation material

The book’s Web page, given below, also contains an errata and a host of other material (please
note the upper-case “F” and “P” and the underscore symbol after “text” and “comp”:

http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm

The author would appreciate the reporting of any error in the textbook or in this manual,
suggestions for additional problems, alternate solutions to solved problems, solutions to other
problems, and sharing of teaching experiences. Please e-mail your comments to

 parhami@ece.ucsb.edu

or send them by regular mail to the author’s postal address:

 Department of Electrical and Computer Engineering
 University of California
 Santa Barbara, CA 93106-9560, USA

Contributions will be acknowledged to the extent possible.

 Behrooz Parhami
 Santa Barbara, Fall 2001

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 4

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table of Contents

Part I Number Representation
 1 Numbers and Arithmetic
 2 Representing Signed Numbers
 3 Redundant Number Systems
 4 Residue Number Systems

Part II Addition/Subtraction
 5 Basic Addition and Counting
 6 Carry-Lookahead Adders
 7 Variations in Fast Adders
 8 Multioperand Addition

Part III Multiplication
 9 Basic Multiplication Schemes
10 High-Radix Multipliers
11 Tree and Array Multipliers
12 Variations in Multipliers

Part IV Division
13 Basic Division Schemes
14 High-Radix Dividers
15 Variations in Dividers
16 Division by Convergence

Part V Real Arithmetic
17 Floating-Point Representations
18 Floating-Point Operations
19 Errors and Error Control
20 Precise and Certifiable Arithmetic

Part VI Function Evaluation
21 Square-Rooting Methods
22 The CORDIC Algorithms
23 Variations in Function Evaluation
24 Arithmetic by Table Lookup

Part VII Implementation Topics
25 High-Throughput Arithmetic
26 Low-Power Arithmetic
27 Fault-Tolerant Arithmetic
28 Past, Present, and Future

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 5

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part I Number Representation

Part Goals
 Review fixed-point number systems
 (floating-point covered in Part V)
 Learn how to handle signed numbers
 Discuss some unconventional methods

Part Synopsis
 Number representation is is a key element
 affecting hardware cost and speed
 Conventional, redundant, residue systems
 Intermediate vs endpoint representations
 Limits of fast arithmetic

Part Contents
Chapter 1 Numbers and Arithmetic
Chapter 2 Representing Signed Numbers
Chapter 3 Redundant Number Systems
Chapter 4 Residue Number Systems

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 6

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1 Numbers and Arithmetic

 Go to TOC
Chapter Goals
 Define scope and provide motivation
 Set the framework for the rest of the book
 Review positional fixed-point numbers

Chapter Highlights
 What goes on inside your calculator?
 Ways of encoding numbers in k bits
 Radix and digit set: conventional, exotic
 Conversion from one system to another

Chapter Contents
1.1 What is Computer Arithmetic?
1.2 A Motivating Example
1.3 Numbers and Their Encodings
1.4 Fixed-Radix Positional Number Systems
1.5 Number Radix Conversion
1.6 Classes of Number Representations

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 7

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.1 What Is Computer Arithmetic?

Pentium Division Bug (1994-95): Pentium’s radix-4 SRT
algorithm occasionally produced an incorrect quotient
First noted in 1994 by T. Nicely who computed sums of
reciprocals of twin primes:

1/5 + 1/7 + 1/11 + 1/13 + . . . + 1/p + 1/(p + 2) + . . .
Worst-case example of division error in Pentium:

4 195 835

3 145 727

1.333 820 44...
1.333 739 06...

c = =
Correct quotient

circa 1994 Pentium
double FLP value;

 accurate to only 14 bits
(worse than single!)

Humor, circa 1995

Top Ten New Intel Slogans for the Pentium:

9.999 997 325 It’s a FLAW, dammit, not a bug
8.999 916 336 It’s close enough, we say so
7.999 941 461 Nearly 300 correct opcodes
6.999 983 153 You don’t need to know what’s inside
5.999 983 513 Redefining the PC –– and math as well
4.999 999 902 We fixed it, really
3.999 824 591 Division considered harmful
2.999 152 361 Why do you think it’s called “floating” point?
1.999 910 351 We’re looking for a few good flaws
0.999 999 999 The errata inside

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 8

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 Hardware (our focus in this book) Software –––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––
 Design of efficient digital circuits for Numerical methods for solving
 primitive and other arithmetic operations systems of linear equations,
 such as +, –, ×, ÷, √, log, sin, and cos partial differential equations, etc.

 Issues: Algorithms Issues: Algorithms
 Error analysis Error analysis
 Speed/cost tradeoffs Computational complexity
 Hardware implementation Programming
 Testing, verification Testing, verification

 General-Purpose Special-Purpose –––––––––––––– ––––––––––––––––
 Flexible data paths Tailored to application
 Fast primitive areas such as:
 operations like Digital filtering
 +, –, ×, ÷, √ Image processing
 Benchmarking Radar tracking

 Fig. 1.1 The scope of computer arithmetic.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 9

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.2 A Motivating Example

Using a calculator with √, x2, and xy functions, compute:

u = ... 2 = 1.000 677 131 “1024th root of 2”

 10 times
v = 21/1024 = 1.000 677 131

Save u and v; If you can’t, recompute when needed.
 10 times -----------
x = (((u2)2)...)2 = 1.999 999 963

x' = u1024 = 1.999 999 973
 10 times -----------
y = (((v2)2)...)2 = 1.999 999 983

y' = v1024 = 1.999 999 994

Perhaps v and u are not really the same value.

w = v – u = 1 × 10–11 Nonzero due to hidden digits

(u – 1) × 1000 = 0.677 130 680 [Hidden ... (0) 68]
(v – 1) × 1000 = 0.677 130 690 [Hidden ... (0) 69]

A simple analysis:

v1024 = (u + 10–11)1024 ≅ u1024 + 1024 × 10–11u1023

 ≅ u1024 + 2 × 10–8

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 10

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Finite Precision Can Lead to Disaster

Example: Failure of Patriot Missile (1991 Feb. 25)
 Source http://www.math.psu.edu/dna/455.f96/disasters.html

American Patriot Missile battery in Dharan, Saudi Arabia,
 failed to intercept incoming Iraqi Scud missile
The Scud struck an American Army barracks, killing 28

Cause, per GAO/IMTEC-92-26 report: “software problem”
 (inaccurate calculation of the time since boot)

Specifics of the problem: time in tenths of second
 as measured by the system’s internal clock
 was multiplied by 1/10 to get the time in seconds
Internal registers were 24 bits wide
1/10 = 0.0001 1001 1001 1001 1001 100 (chopped to 24 b)
Error ≅ 0.1100 1100 × 2–23 ≅ 9.5 × 10–8
Error in 100-hr operation period
 ≅ 9.5 × 10–8 × 100 × 60 × 60 × 10 = 0.34 s
Distance traveled by Scud = (0.34 s) × (1676 m/s) ≅ 570 m
This put the Scud outside the Patriot’s “range gate”

Ironically, the fact that the bad time calculation
 had been improved in some (but not all) code parts
 contributed to the problem,
 since it meant that inaccuracies did not cancel out

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 11

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Finite Range Can Lead to Disaster

Example: Explosion of Ariane Rocket (1996 June 4)
 Source http://www.math.psu.edu/dna/455.f96/disasters.html

Unmanned Ariane 5 rocket
 launched by the European Space Agency
 veered off its flight path, broke up, and exploded
 only 30 seconds after lift-off (altitude of 3700 m)

The $500 million rocket (with cargo) was on its 1st voyage
 after a decade of development costing $7 billion

Cause: “software error in the inertial reference system”

Specifics of the problem: a 64 bit floating point number
 relating to the horizontal velocity of the rocket
 was being converted to a 16 bit signed integer

An SRI* software exception arose during conversion
 because the 64-bit floating point number
 had a value greater than what could be represented
 by a 16-bit signed integer (max 32 767)

*SRI stands for Système de Référence Inertielle
 or Inertial Reference System

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 12

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.3 Numbers and Their Encodings

Numbers versus their representations (numerals)

The number “twenty-seven” can be represented in
different ways using numerals or numeration systems:

||||| ||||| ||||| ||||| ||||| || sticks or unary code

27 radix-10 or decimal code (27)ten
11011 radix-2 or binary code (11011)two
XXVII Roman numerals

Encoding of digit sets as binary strings: BCD example

 Digit BCD representation

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 13

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Encoding of numbers in 4 bits:

Unsigned integer ± Signed integer

Signed fraction 2's-compl fraction

Floating point Logarithmic

Fixed point, 3+1

±

e s log x

Radix
point

0 2 4 6 8 10 12 14 16 −2 −4 −6 −8 −10 −12 −14 −16

Unsigned integers

Signed-magnitude

3 + 1 fixed-point, xxx.x

Signed fractions, ±.xxx

2’s-compl. fractions, x.xxx

2 + 2 floating-point, s × 2^e
 e in [−2, 1], s in [0, 3]

2 + 2 logarithmic (log = xx.xx)

Fig. 1.2 Some of the possible ways of assigning 16 distinct
codes to represent numbers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 14

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.4 Fixed-Radix Positional Number Systems

 (xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l)r = ∑
i=–l

k–1
 xi r

i

One can generalize to:
arbitrary radix (not necessarily integer, positive, constant)
arbitrary digit set, usually {–α, –α+1, ... , β–1, β} = [–α, β]

Example 1.1. Balanced ternary number system:
 radix r = 3, digit set = [–1, 1]

Example 1.2. Negative-radix number systems:
 radix –r, r ≥ 2, digit set = [0, r – 1]

 The special case with radix –2 and digit set [0, 1]
 is known as the negabinary number system

Example 1.3. Digit set [–4, 5] for r = 10:
 (3 -1 5)ten represents 295 = 300 – 10 + 5

Example 1.4. Digit set [–7, 7] for r = 10:
 (3 -1 5)ten = (3 0 -5)ten = (1 -7 0 -5)ten

Example 1.7. Quater-imaginary number system:
 radix r = 2j, digit set [0, 3].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 15

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.5 Number Radix Conversion

u = w . v

 = (xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l)r Old

 = (XK–1XK–2 . . . X1X0 . X–1X–2 . . . Xx–L)R New

Radix conversion: arithmetic in the old radix r

Converting whole part w: (105)ten = (?)five
Repeatedly divide by five Quotient Remainder
 105 0
 21 1
 4 4
 0
Therefore, (105)ten = (410)five

Converting fractional part v: (105.486)ten = (410.?)five
Repeatedly multiply by five Whole Part Fraction
 .486
 2 .430
 2 .150
 0 .750
 3 .750
 3 .750
Therefore, (105.486)ten ≅ (410.22033)five

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 16

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Radix conversion: arithmetic in the new radix R

Converting the whole part w
 ((((2 × 5) + 2) × 5 + 0) × 5 + 3) × 5 + 3
 |-----| : : : :
 10 : : : :
 |-----------| : : :
 12 : : :
 |---------------------| : :
 60 : :
 |-------------------------------| :
 303 :
 |---|
 1518

Fig. 1.A Horner’s rule used to convert (22033)five to decimal.

Converting fractional part v: (410.22033)five = (105.?)ten

 (0.22033)five × 55 = (22033)five = (1518)ten

 1518 / 55 = 1518 / 3125 = 0.48576
Therefore, (410.22033)five = (105.48576)ten

 (((((3 / 5) + 3) / 5 + 0) / 5 + 2) / 5 + 2) / 5
 |-----| : : : :
 0.6 : : : :
 |-----------| : : :
 3.6 : : :
 |---------------------| : :
 0.72 : :
 |-------------------------------| :
 2.144 :
 |---|
 2.4288
|---|
 0.48576

Fig. 1.3 Horner’s rule used to convert (0.22033)five to
decimal.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 17

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1.6 Classes of Number Representations

Integers (fixed-point), unsigned: Chapter 1

Integers (fixed-point), signed

 signed-magnitude, biased, complement: Chapter 2

 signed-digit: Chapter 3
 (but the key point of Chapter 3 is
 use of redundancy for faster arithmetic,
 not how to represent signed values)

 residue number system: Chapter 4
 (again, the key to Chapter 4 is
 use of parallelism for faster arithmetic,
 not how to represent signed values)

Real numbers, floating-point: Chapter 17
 covered in Part V, just before real-number arithmetic

Real numbers, exact: Chapter 20
 continued-fraction, slash, ... (for error-free arithmetic)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 18

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

2 Representing Signed Numbers

 Go to TOC
Chapter Goals
 Learn different encodings of the sign info
 Discuss implications for arithmetic design

Chapter Highlights
 Using sign bit, biasing, complementation
 Properties of 2’s-complement numbers
 Signed vs unsigned arithmetic
 Signed numbers, positions, or digits

Chapter Contents
2.1 Signed-Magnitude Representation
2.2 Biased Representations
2.3 Complement Representations
2.4 Two’s- and 1’s-Complement Numbers
2.5 Direct and Indirect Signed Arithmetic
2.6 Using Signed Positions or Signed Digits

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 19

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

When Numbers Go into the Red!

 “This can’t be right ... It goes into the red.”

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 20

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

2.1 Signed-Magnitude Representation

0000
0001 1111

0010 1110

0011 1101

0100 1100

1000

0101 1011

0110 1010

0111 1001

0
+1

+3

+4

+5

+6
+7

-7

-3

-5

-4

-0
-1

+2
-

+ _

Bit pattern
(representation)

Signed values
(signed magnitude)

+2 -6

Increment Decrement

Fig. 2.1 Four-bit signed-magnitude number representation
system for integers.

Adder cc

s

x ySign x Sign y

Sign

Sign s

Selective
Complement

Selective
Complement

out in

Comp x

Control

Comp s

Add/Sub
__

Fig. 2.2 Adding signed-magnitude numbers using
precomplementation and postcomplementation.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 21

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

2.2 Biased Representations

0000
0001 1111

0010 1110

0011 1101

0100 1100

1000

0101 1011

0110 1010

0111 1001

-8
-7

-5

-4

-3

-2
-1

+7

+3

+5

+4

 0
+1

+2

+
_

Bit pattern
(representation)

Signed values
(biased by 8)

-6 +6

Increment Increment

Fig. 2.3 Four-bit biased integer number representation
system with a bias of 8.

Addition/subtraction of biased numbers

 x + y + bias = (x + bias) + (y + bias) – bias
 x – y + bias = (x + bias) – (y + bias) + bias

A power-of-2 (or 2a – 1) bias simplifies the above

Comparison of biased numbers:
 compare like ordinary unsigned numbers
 find true difference by ordinary subtraction

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 22

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

2.3 Complement Representations

0
1

2

3

4

M - N

P

+0
+1

+3

+4

-1

+
_

Unsigned
representations

Signed values

+2 -2

+ P
- N

M - 1

M - 2

Increment Decrement

Fig. 2.4 Complement representation of signed integers.

Table 2.1 Addition in a complement number system with
complementation constant M and range [–N, +P]

–––
Desired Computation to be Correct result Overflow
operation performed mod M with no overflow condition
–––

 (+x) + (+y) x + y x + y x + y > P

(+x) + (–y) x + (M – y) x – y if y ≤ x N/A
 M – (y – x) if y > x

(–x) + (+y) (M – x) + y y – x if x ≤ y N/A
 M – (x – y) if x > y

(–x) + (–y) (M – x) + (M – y) M – (x + y) x + y > N

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 23

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example -- complement system for fixed-point numbers:

 complementation constant M = 12.000
 fixed-point number range [–6.000, +5.999]
 represent –3.258 as 12.000 – 3.258 = 8.742

Auxiliary operations for complement representations
 complementation or change of sign (computing M – x)
 computations of residues mod M

Thus M must be selected to simplify these operations

Two choices allow just this for fixed-point radix-r arithmetic
 with k whole digits and l fractional digits

 Radix complement M = rk

Digit complement M = rk – ulp
(diminished radix complement)

ulp (unit in least position) stands for r−l
 it allows us to forget about l even for nonintegers

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 24

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

2.4 Two’s- and 1’s-Complement Numbers

Two’s complement = radix complement system for r = 2

 2k – x = [(2k – ulp) – x] + ulp = xcompl + ulp

Range of representable numbers in with k whole bits:

 from –2k–1 to 2k–1 – ulp

0000
0001 1111

0010 1110

0011 1101

0100 1100

1000

0101 1011

0110 1010

0111 1001

+0
+1

+3

+4

+5

+6
+7

-1

-5

-3

-4

-8
-7

-6

+ _

Unsigned
representations

Signed values
(2’s complement)

+2 -2

Fig. 2.5 Four-bit 2’s-complement number representation
system for integers.

Range/precision extension for 2’s-complement numbers

 ... xk–1xk–1xk–1xk–1xk–2 ... x1x0 . x–1x–2 ... x–l 0 0 0 ...

 � Sign extension � Sign Extension
 bit

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 25

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

One’s complement = digit complement system for r = 2

 (2k – ulp) – x = xcompl

Mod-(2k – ulp) operation is done via end-around carry
 (x + y) – (2k – ulp) = x – y – 2k + ulp

Range of representable numbers with k whole bits:

 from –2k–1 to 2k–1 – ulp

0000
0001 1111

0010 1110

0011 1101

0100 1100

1000

0101 1011

0110 1010

0111 1001

+0
+1

+3

+4

+5

+6
+7

-0

-4

-2

-3

-7
-6

-5

+ _

Unsigned
representations

Signed values
(1’s complement)

+2 -1

Fig. 2.6 Four-bit 1’s-complement number representation
system for integers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 26

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 2.2 Comparing radix- and digit-complement number
representation systems

–––
Feature/Property Radix complement Digit complement
–––
Symmetry (P = N?) Possible for odd r Possible for even r
 (radices of practical
 interest are even)

Unique zero? Yes No

Complementation Complement all digits Complement all digits
 and add ulp

Mod-M addition Drop the carry-out End-around carry
–––

Mux

Adder

0 1

x y

y or y
_

s = x ± y

add/sub

c in

Controlled
complementation

0 for addition,
1 for subtraction

c out

Fig. 2.7 Adder/subtractor architecture for two’s-complement
numbers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 27

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

2.5 Direct and Indirect Signed Arithmetic

x y

f

x y

f(x, y)

Sign
logic

Unsigned
operation

Sign removal

f(x, y)

Adjustment

Fig. 2.8 Direct vs indirect operation on signed numbers.

Advantage of direct signed arithmetic
 usually faster (not always)

Advantages of indirect signed arithmetic
 can be simpler (not always)
 allows sharing of signed/unsigned hardware
 when both operation types are needed

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 28

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

2.6 Using Signed Positions or Signed Digits

A very important property of 2’s-complement numbers that
is used extensively in computer arithemetic:

 x = (1 0 1 0 0 1 1 0)two's-compl

 –27 26 25 24 23 22 21 20

 –128 + 32 + 4 + 2 = –90

 Check:

 x = (1 0 1 0 0 1 1 0)two's-compl

 –x = (0 1 0 1 1 0 1 0)two

 –27 26 25 24 23 22 21 20

 64 + 16 + 8 + 2 = 90

Fig. 2.9 Interpreting a 2’s-complement number as having a
negatively weighted most-significant digit.

Generalization: associate a sign with each digit position

 λ = (λk–1λk–2 ... λ1λ0 . λ–1λ–2 ... λ–l) λi in {–1, 1}

 (xk–1xk–2 ... x1x0 . x–1x–2 ... x–l)r, λ = ∑
i=–l

k–1
 λi xi r

i

 λ = 1 1 1 ... 1 1 1 1 positive-radix
 λ = –1 1 1 ... 1 1 1 1 two’s-complement
 λ = ... –1 1 –1 1 negative-radix

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 29

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Signed digits: associate signs not with digit positions but
with the digits themselves

 3 1 2 0 2 3 Original digits in [0, 3]
 | | | | | |

 –1 1 2 0 2 –1 Rewritten digits in [–1, 2]
���������� ��� ��� ���� ��� ���� ��

 1 0 0 0 0 1 Transfer digits in [0, 1]
 ––––––––––––––––––
 1 –1 1 2 0 3 –1 Sum digits in [–1, 3]
 | | | | | | |

 1 –1 1 2 0 –1 –1 Rewritten digits in [–1, 2]
���������� ��� ��� ���� ��� ���� ��

 0 0 0 0 1 0 Transfer digits in [0, 1]
 ––––––––––––––––––
 1 –1 1 2 1 –1 –1 Sum digits in [–1, 3]

Fig. 2.10 Converting a standard radix-4 integer to a radix-4
integer with the non-standard digit set [–1, 2].

 3 1 2 0 2 3 Original digits in [0, 3]
 | | | | | |

 –1 1 –2 0 –2 –1 Interim digits in [–2, 1]
���������� ��� ��� ���� ��� ���� ��

 1 0 1 0 1 1 Transfer digits in [0, 1]
 ––––––––––––––––––
 1 –1 2 –2 1 –1 –1 Sum digits in [–2, 2]

Fig. 2.11 Converting a standard radix-4 integer to a radix-4
integer with the non-standard digit set [–2, 2].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 30

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

3 Redundant Number Systems

 Go to TOC
Chapter Goals
 Explore the advantages and drawbacks
 of using more than r digit values in radix r

Chapter Highlights
 Redundancy eliminates long carry chains
 Redundancy takes many forms: tradeoffs
 Conversions between redundant
 and nonredundant representations
 Redundancy used for end values too?

Chapter Contents
3.1 Coping with the Carry Problem
3.2 Redundancy in Computer Arithmetic
3.3 Digit Sets and Digit-Set Conversions
3.4 Generalized Signed-Digit Numbers
3.5 Carry-Free Addition Algorithms
3.6 Conversions and Support Functions

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 31

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

3.1 Coping with the Carry Problem

The carry problem can be dealt with in several ways:
1. Limit carry propagation to within a small number of bits
2. Detect end of propagation; don’t wait for worst case
3. Speed up propagation via lookahead etc.
4. Ideal: Eliminate carry propagation altogether!

 5 7 8 2 4 9
 + 6 2 9 3 8 9 Operand digits in [0, 9]
 –––––––––––––––––
 11 9 17 5 12 18 Position sums in [0, 18]

 But how can we extend this beyond a single addition?

 11 9 17 10 12 18
 + 6 12 9 10 8 18 Operand digits in [0, 18]
 –––––––––––––––––
 17 21 26 20 20 36 Position sums in [0, 36]
 | | | | | |

 7 11 16 0 10 16 Interim sums in [0, 16]
����������� ���� ���� ���� ���� ��������

 1 1 1 2 1 2 Transfer digits in [0, 2]
 –––––––––––––––––––
 1 8 12 18 1 12 16 Sum digits in [0, 18]

Fig. 3.1 Adding radix-10 numbers with digit set [0, 18].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 32

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Position sum decomposition [0, 36] = 10 × [0, 2] + [0, 16]

Absorption of transfer digit [0, 16] + [0, 2] = [0, 18]

So, redundancy helps us achieve carry-free addition

But how much redundancy is actually needed?

 11 10 7 11 3 8
 + 7 2 9 10 9 8 Operand digits in [0, 11]
 ––––––––––––––––––
 18 12 16 21 12 16 Position sums in [0, 22]
 | | | | | |

 8 2 6 1 2 6 Interim sums in [0, 9]
���������� �����������������������������

 1 1 1 2 1 1 Transfer digits in [0, 2]
 ––––––––––––––––––––
 1 9 3 8 2 3 6 Sum digits in [0, 11]

Fig. 3.3 Adding radix-10 numbers with digit set [0, 11].

s i+1 s i–1s i

+1 i+1 xi–1,yi–1,xixi+1,yi+1 yi

(b) Two-stage carry-free.

s i+1 s i–1s i

ti

(c) Single-stage with lookahead.

s i+1 s i–1s i

xi–1,yi–1,xixi+1,yi+1 yi

(a) Ideal single-stage carry-free.

(Impossible for positional
system with fixed digit set)

Fig. 3.2 Ideal and practical carry-free addition schemes.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 33

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

3.2 Redundancy in Computer Arithmetic

Oldest example of redundancy in computer arithmetic is
the stored-carry representation (carry-save addition):

 0 0 1 0 0 1 First binary number
 + 0 1 1 1 1 0 Add 2nd binary number
 ––––––––––––––––––
 0 1 2 1 1 1 Position sums in [0, 2]
 + 0 1 1 1 0 1 Add 3rd binary number
 ––––––––––––––––––
 0 2 3 2 1 2 Position sums in [0, 3]
 | | | | | |

 0 0 1 0 1 0 Interim sums in [0, 1]
���������� �����������������������������

 0 1 1 1 0 1 Transfer digits in [0, 1]
 ––––––––––––––––––
 1 1 2 0 2 0 Position sums in [0, 2]
 + 0 0 1 0 1 1 Add 4th binary number
 ––––––––––––––––––
 1 1 3 0 3 1 Position sums in [0, 3]
 | | | | | |

 1 1 1 0 1 1 Interim sums in [0, 1]
���������� �����������������������������

 0 0 1 0 1 0 Transfer digits in [0, 1]
 ––––––––––––––––––
 1 2 1 1 1 1 Sum digits in [0, 2]

Fig. 3.4 Addition of 4 binary numbers, with the sum obtained
in stored-carry form.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 34

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Possible 2-bit encoding for binary stored-carry digits:

 0 represented as 0 0
 1 represented as 0 1 or 1 0
 2 represented as 1 1

Binary
Full
Adder
(Stage i)

c incout

Digit in [0, 2] Binary digit

Digit in [0, 2]

To
Stage
i+1

From
Stage
i – 1

x y

s

Fig. 3.5 Carry-save addition using an array of independent
binary full adders.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 35

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

3.3 Digit Sets and Digit-Set Conversions

Example 3.1: Convert from digit set [0, 18]
 to the digit set [0, 9] in radix 10.

 11 9 17 10 12 18 Rewrite 18 as 10 (carry 1) + 8
 11 9 17 10 13 8 13 = 10 (carry 1) + 3
 11 9 17 11 3 8 11 = 10 (carry 1) + 1
 11 9 18 1 3 8 18 = 10 (carry 1) + 8
 11 10 8 1 3 8 10 = 10 (carry 1) + 0
 12 0 8 1 3 8 12 = 10 (carry 1) + 2
 1 2 0 8 1 3 8 Answer; all digits in [0, 9]

Example 3.2: Convert from digit set [0, 2]
 to digit set [0, 1] in radix 2.

 1 1 2 0 2 0 Rewrite 2 as 2 (carry 1) + 0
 1 1 2 1 0 0 2 = 2 (carry 1) + 0
 1 2 0 1 0 0 2 = 2 (carry 1) + 0
 2 0 0 1 0 0 2 = 2 (carry 1) + 0
 1 0 0 0 1 0 0 Answer; all digits in [0, 1]

 Another way: Decompose the carry-save number
 into two numbers and add them:

 1 1 1 0 1 0 First number: “Sum” bits
 + 0 0 1 0 1 0 Second number: “Carry” bits
 ––––––––––––––––––––
 1 0 0 0 1 0 0 Sum of the two numbers

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 36

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example 3.3: Convert from digit set [0, 18]
 to the digit set [–6, 5] in radix 10
 (same as Example 3.1, but with an
 asymmetric target digit set)

 11 9 17 10 12 18 Rewrite 18 as 20 (carry 2) – 2
 11 9 17 10 14 –2 14 = 10 (carry 1) + 4 [or 20 – 6]
 11 9 17 11 4 –2 11 = 10 (carry 1) + 1
 11 9 18 1 4 –2 18 = 20 (carry 1) + –2
 11 11 –2 1 4 –2 11 = 10 (carry 1) + 1
 12 1 –2 1 4 –2 12 = 10 (carry 1) + 2
 1 2 1 –2 1 4 –2 Answer; all digits in [0, 9]

Example 3.4: Convert from digit set [0, 2]
 to digit set [–1, 1] in radix 2
 (same as Example 3.2, but with the
 target digit set [–1, 1] instead of [0, 1])

 Carry-free conversion:

 1 1 2 0 2 0 Given carry-save number
 –1 –1 0 0 0 0 Interim digits in [–1, 0]
 1 1 1 0 1 0 Transfer digits in [0, 1]
 ––––––––––––––––––––
 1 0 0 0 1 0 0 Answer; all digits in [0, 1]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 37

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

3.4 Generalized Signed-Digit Numbers

Radix r
Digit set [–α, β] feasibility requirement α + β + 1 ≥ r
Redundancy index ρ = α + β + 1 – r

Radix-r Positional
ρ = 0 ρ ≥ 1

Non-redundant

α = 0 α ≥ 1

Conventional Non-redundant
signed-digit

Generalized
signed-digit (GSD)

ρ = 1 ρ ≥ 2

Minimal
GSD

Non-minimal
GSD

α = β
(even r)

α ≠ β

Symmetric
minimal GSD

r = 2

BSD or
BSB

Asymmetric
minimal GSD

α = 0 α = 1
(r ° 2)

Stored-
carry (SC)

Non-binary
SB

Symmetric non-
minimal GSD

α = β α ≠ β

Asymmetric non-
minimal GSD

α < r

Ordinary
signed-digit

Minimally
redundant OSD

Maximally
redundant OSD BSCB

SCB

r = 2

α = 1
β = rα = 0

Unsigned-digit
redundant (UDR)

r = 2

BSC

α = r – 1α =  r/2 + 1

Fig. 3.6 A taxonomy of redundant and non-redundant
positional number systems.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 38

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Binary vs multivalue-logic encoding of GSD digit sets

xi 1 –1 0 –1 0 BSD representation of +6

(s,v) 01 11 00 11 00 Sign & value encoding
2’s-compl 01 10 00 10 00 2-bit 2’s-complement
(n,p) 01 10 00 10 00 Negative & positive flags
(n,z,p) 001 100 010 100 010 1-out-of-3 encoding

Fig. 3.7 Four encodings for the BSD digit set [–1, 1].

The hybrid example in Fig. 3.8, with a regular pattern of
binary (B) and BSD positions, can be viewed as an
implementation of a GSD system with
 r = 8 Three positions form one digit
 digit set [–4, 7] –1 0 0 to 1 1 1

 BSD B B BSD B B BSD B B Type

 1 0 1 –1 0 1 –1 0 1 xi
 + 0 1 1 –1 1 0 0 1 0 yi ––––––––––––––––––––––––––––––––––––––
 1 1 2 –2 1 1 –1 1 1 pi
 | | |

 –1 0 –1 wi
���������� ������ � � � ������ � � � �������

 1 –1 0 0 ti+1 ––––––––––––––––––––––––––––––––––––––
 1 –1 1 1 0 1 1 –1 1 1 si

Fig. 3.8 Example of addition for hybrid signed-digit
numbers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 39

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

3.5 Carry-Free Addition Algorithms

xi–1,yi–1,xixi+1,yi+1 yi

s i+1 s i–1s i

ti

Carry-free addition of GSD numbers
Compute the position sums pi = xi + yi
Divide pi into a transfer ti+1 and interim sum wi = pi – rti+1
Add incoming transfers to get the sum digits si = wi + ti

If the transfer digits ti are in [–λ, µ], we must have:

 –α + λ ≤ pi – rti+1 ≤ β – µ
 | interim sum |
 | |
Smallest interim sum Largest interim sum
if a transfer of –λ if a transfer of µ
is to be absorbable is to be absorbable

These constraints lead to

 λ ≥
α

r – 1 µ ≥
β

r – 1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 40

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Constants C–λ C–λ+1 C–λ+2 ... C0 C1 ... Cµ–1 Cµ Cµ+1
 –∞ | | | | | | +∞
pi range [---) [----)[---)... [---)[---)...[---)[----)

ti+1 chosen –λ –λ+1 –λ+2 0 1 µ–1 µ

Fig. 3.9 Choosing the transfer digit ti+1 based on comparing
the interim sum pi to the comparison constants Cj.

Example 3.5: r = 10, digit set [–5, 9] lead to λ ≥ 5/9, µ ≥ 1
Choose the minimal values:
λmin = µmin = 1 i.e., transfer digits are in [–1, 1]

–∞ = C–1 –4 ≤ C0 ≤ –1 6 ≤ C1 ≤ 9 C2 = +∞
Deriving range of C1: The position sum pi is in [–10, 18]
 We can set ti+1 to 1 for pi values as low as 6
 We must transfer 1 for pi values of 9 or more

For pi ≥ C1, where 6 ≤ C1 ≤ 9, we choose ti+1 = 1

For pi < C0, we choose ti+1 = –1, where –4 ≤ C0 ≤ –1
In all other cases, ti+1 = 0
If pi is given as a 6-bit 2’s-complement number abcdef,
good choices for the constants are C0 = –4, C1 = 8
The logic expressions for the signals g1 and g–1:
 g–1 = a (c +d) generate a transfer of –1
 g1 =a (b + c) generate a transfer of 1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 41

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 3 –4 9 –2 8 xi in [–5, 9]

 + 8 –4 9 8 1 yi in [–5, 9]
 –––––––––––––––
 11 –8 18 6 9 pi in [–10, 18]
 | | | | |

 1 2 8 6 –1 wi in [–4, 8]
���������� ���������������������������

 1 –1 1 0 1 ti+1 in [–1, 1]
 –––––––––––––––––
 1 0 3 8 7 –1 si in [–5, 9]

Fig. 3.10 Adding radix-10 numbers with digit set [–5, 9].

The preceding carry-free addition algorithm is applicable if
 r > 2, ρ ≥ 3
 r > 2, ρ = 2, α ≠ 1, β ≠ 1

In other words, it is inapplicable for
 r = 2
 ρ = 1
 ρ = 2 with α = 1 or β = 1

Fortunately, in such cases, a limited-carry algorithm is
always applicable

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 42

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

(a) Three-stage carry estimate. (b) Three-stage repeated-carry.

s i+1 s i–1s i

ei

ti

i+1 i+

s i+1 s i–1s i

ti

t'i

xi–1,yi–1,xixi+1,yi+1 yi

(c) Two-stage parallel-carries.

s i+1 s i–1s i

ti
(2)

ti
(1)

xi–1,yi–1,xixi+1,yi+1 yi

Fig. 3.11 Some implementations for limited-carry addition.

 1 –1 0 –1 0 xi in [–1, 1]

 + 0 –1 –1 0 1 yi in [–1, 1]
 –––––––––––––––
 1 –2 –1 –1 1 pi in [–2, 2]
���������� ���������������������������
 high low high low high high ei in {low:[–1, 0], high:[0, 1]}
 | | | | |

 1 0 1 –1 –1 wi in [–1, 1]
���������� ���������������������������

 0 –1 –1 0 1 ti+1 in [–1, 1]
 –––––––––––––––
 0 0 –1 1 0 –1 si in [–1, 1]

Fig. 3.12 Limited-carry addition of radix-2 numbers with digit
set [–1, 1] using carry estimates. A position sum –1
is kept intact when the incoming transfer is in [0, 1],
whereas it is rewritten as 1 with a carry of –1 for
incoming transfer in [–1, 0]. This guarantees that ti ≠
wi and thus –1 ≤ si ≤ 1.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 43

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 1 1 3 1 2 xi in [0, 3]
 + 0 0 2 2 1 yi in [0, 3]
 –––––––––––––––
 1 1 5 3 3 pi in [0, 6]
���������� ���������������������������

 low low high low low low ei in {low:[0, 2], high:[1, 3]}
 | | | | |

 1 –1 1 1 1 wi in [–1, 1]
���������� ����������������������������

 0 1 2 1 1 ti+1 in [0, 3]
 –––––––––––––––––
 0 2 1 2 2 1 si in [0, 3]

Fig. 3.13 Limited-carry addition of radix-2 numbers with the
digit set [0, 3] using carry estimates. A position sum
of 1 is kept intact when incoming transfer is in [0, 2],
whereas it is rewritten as –1 with a carry of 1 if
incoming transfer is in [1, 3].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 44

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

3.6 Conversions and Support Functions

BSD-to-binary conversion example
 1 –1 0 –1 0 BSD representation of +6
 1 0 0 0 0 Positive part (1 digits)
 0 1 0 1 0 Negative part (–1 digits)
 0 0 1 1 0 Difference = conversion result

Zero test: zero has a unique code under some conditions

Sign test: needs carry propagation

 xk–1 xk–2 . . . x1 x0 k-digit GSD operands

 + yk–1 yk–2 . . . y1 y0
 ––––––––––––––––––––
 pk–1 pk–2 . . . p1 p0 Position sums
 | | | |

 wk–1 wk–2 . . . w1 w0 Interim sum digits
���������� ���� � ���� � � � ������ ��������

 tk tk–1 . . . t2 t1 Transfer digits
 ––––––––––––––––––––––
 sk–1 sk–2 . . . s1 s0 k-digit apparent sum

Fig. 3.16. Overflow and its detection in GSD arithmetic.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 45

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

4 Residue Number Systems

 Go to TOC
Chapter Goals
 Study a way of encoding large numbers
 as a collection of smaller numbers
 to simplify and speed up some operations

Chapter Highlights
 RNS moduli, range, & arithmetic ops
 Many sets of moduli possible: tradeoffs
 Conversions between RNS and binary
 The Chinese remainder theorem
 Why are RNS applications limited?

Chapter Contents
4.1 RNS Representation and Arithmetic
4.2 Choosing the RNS Moduli
4.3 Encoding and Decoding of Numbers
4.4 Difficult RNS Arithmetic Operations
4.5 Redundant RNS Representations
4.6 Limits of Fast Arithmetic in RNS

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 46

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

4.1 RNS Representation and Arithmetic

Chinese puzzle, 1500 years ago:
What number has the remainders of 2, 3, and 2 when
divided by the numbers 7, 5, and 3, respectively?

Pairwise relatively prime moduli: mk–1 > ... > m1 > m0

The residue xi of x wrt the ith modulus mi is akin to a digit:

 xi = x mod mi = 〈x〉mi

RNS representation contains a list of k residues or digits:
 x = (2 | 3 | 2)RNS(7|5|3)

Default RNS for this chapter RNS(8 | 7 | 5 | 3)

The product M of the k pairwise relatively prime moduli is
the dynamic range
 M = mk–1 × ... × m1 × m0

For RNS(8 | 7 | 5 | 3), M = 8 × 7 × 5 × 3 = 840

Negative numbers: Complement representation with
complementation constant M
 〈–x〉mi

 = 〈M – x〉mi

 21 = (5 | 0 | 1 | 0)RNS
 –21 = (8 – 5 | 0 | 5 – 1 | 0)RNS = (3 | 0 | 4 | 0)RNS

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 47

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Here are some example numbers in RNS(8 | 7 | 5 | 3):

 (0 | 0 | 0 | 0)RNS Represents 0 or 840 or ...

 (1 | 1 | 1 | 1)RNS Represents 1 or 841 or ...

 (2 | 2 | 2 | 2)RNS Represents 2 or 842 or ...

 (0 | 1 | 3 | 2)RNS Represents 8 or 848 or ...

 (5 | 0 | 1 | 0)RNS Represents 21 or 861 or ...

 (0 | 1 | 4 | 1)RNS Represents 64 or 904 or ...

 (2 | 0 | 0 | 2)RNS Represents –70 or 770 or ...

 (7 | 6 | 4 | 2)RNS Represents –1 or 839 or ...

Any RNS can be viewed as a weighted representation.
For RNS(8 | 7 | 5 | 3), the weights of the 4 positions are:

 105 120 336 280

Example: (1 | 2 | 4 | 0)RNS represents the number

 〈105×1 + 120×2 + 336×4 + 280×0〉840 = 〈1689〉840 = 9

mod 8 mod 7 mod 5 mod 3

Fig. 4.1 Binary-coded format for RNS(8 | 7 | 5 | 3).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 48

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

RNS Arithmetic

 (5 | 5 | 0 | 2)RNS Represents x = +5

 (7 | 6 | 4 | 2)RNS Represents y = –1

 (4 | 4 | 4 | 1)RNS x + y : 〈5 + 7〉8 = 4, 〈5 + 6〉7 = 4, etc.

 (6 | 6 | 1 | 0)RNS x – y : 〈5 – 7〉8 = 6, 〈5 – 6〉7 = 6, etc.
 (alternatively, find –y and add to x)

 (3 | 2 | 0 | 1)RNS x × y : 〈5 × 7〉8 = 3, 〈5 × 6〉7 = 2, etc.

mod 8 mod 7 mod 5 mod 3

Mod-8
 Unit

Mod-7
 Unit

Mod-5
 Unit

Mod-3
 Unit

3 3 3 2

Operand 1 Operand 2

Result

Fig. 4.2 The structure of an adder, subtractor, or multiplier
for RNS(8 | 7 | 5 | 3).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 49

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

4.2 Choosing the RNS moduli

Target range: Decimal values [0, 100 000]

Pick prime numbers in sequence:

m0 = 2, m1 = 3, m2 = 5, etc. After adding m5 = 13:
RNS(13 | 11 | 7 | 5 | 3 | 2) M = 30 030 Inadequate
RNS(17 | 13 | 11 | 7 | 5 | 3 | 2) M = 510 510 Too large
RNS(17 | 13 | 11 | 7 | 3 | 2) M = 102 102 Just right!

 5 + 4 + 4 + 3 + 2 + 1 = 19 bits

Combine pairs of moduli 2 & 13 and 3 & 7:
RNS(26 | 21 | 17 | 11) M = 102 102

Include powers of smaller primes before moving to
larger primes.

RNS(22 | 3) M = 12

RNS(32 | 23 | 7 | 5) M = 2520

RNS(11 | 32 | 23 | 7 | 5) M = 27 720

RNS(13 | 11 | 32 | 23 | 7 | 5) M = 360 360 Too large

RNS(15 | 13 | 11 | 23 | 7) M = 120 120

 4 + 4 + 4 + 3 + 3 = 18 bits

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 50

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Maximize the size of the even modulus within the 4-bit
residue limit:

RNS(24 | 13 | 11 | 32 | 7 | 5) M = 720 720 Too large

 Can remove 5 or 7

Restrict the choice to moduli of the form 2a or 2a – 1:

 RNS(2ak–2 | 2ak–2 – 1 | . . . | 2a1 – 1 | 2a0 – 1)

Such “low-cost” moduli simplify both the complementation
and modulo operations

2ai and 2aj are relatively prime iff ai and aj are relatively
prime.

RNS(23 | 23–1 | 22–1) basis: 3, 2 M = 168
RNS(24 | 24–1 | 23–1) basis: 4, 3 M = 1680
RNS(25 | 25–1 | 23–1 | 22–1) basis: 5, 3, 2 M = 20 832
RNS(25 | 25–1 | 24–1 | 24–1) basis: 5, 4, 3 M = 104 160

Comparison

RNS(15 | 13 | 11 | 23 | 7) 18 bits M = 120 120
RNS(25 | 25–1 | 24–1 | 23–1) 17 bits M = 104 160

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 51

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

4.3 Encoding and Decoding of Numbers

Conversion from binary/decimal to RNS

〈(yk–1 ... y1y0)two〉mi = 〈 〈2k–1yk–1〉mi
+ ... + 〈2y1〉mi

+ 〈y0〉mi
〉mi

Table 4.1 Residues of the first 10 powers of 2

 –––––––––––––––––––––––––––

 i 2i 〈2i〉7 〈2i〉5 〈2i〉3

 –––––––––––––––––––––––––––
 0 1 1 1 1
 1 2 2 2 2
 2 4 4 4 1
 3 8 1 3 2
 4 16 2 1 1
 5 32 4 2 2
 6 64 1 4 1
 7 128 2 3 2
 8 256 4 1 1
 9 512 1 2 2
 –––––––––––––––––––––––––––

High-radix version (processing 2 or more bits at a time) is
also possible

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 52

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Conversion from RNS to mixed-radix

MRS(mk–1 | ... | m2 | m1 | m0)is a k-digit positional system
with position weights
mk–2...m2m1m0 . . . m2m1m0 m1m0 m0 1
and digit sets
 [0, mk–1–1] . . . [0,m3–1] [0,m2–1] [0,m1–1] [0,m0–1]

(0 | 3 | 1 | 0)MRS(8|7|5|3) = 0×105 + 3×15 + 1×3 + 0×1 = 48

RNS-to-MRS conversion problem:
y = (xk–1 | ... | x2 | x1 | x0)RNS = (zk–1 | ... | z2 | z1 | z0)MRS

Mixed-radix representation allows us to compare the
magnitudes of two RNS numbers or to detect the sign of a
number.

Example: 48 versus 45

RNS representations
(0 | 6 | 3 | 0)RNS vs (5 | 3 | 0 | 0)RNS
(000 | 110 | 011 | 00)RNS vs (101 | 011 | 000 | 00)RNS

Equivalent mixed-radix representations
(0 | 3 | 1 | 0)MRS vs (0 | 3 | 0 | 0)MRS
(000 | 011 | 001 | 00)MRS vs (000 | 011 | 000 | 00)MRS

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 53

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Theorem 4.1 (The Chinese remainder theorem)
The magnitude of an RNS number can be obtained from:

 x = (xk–1 | ... | x2 | x1 | x0)RNS = 〈 ∑k–1
i=0 Mi 〈α ixi〉mi 〉M

where, by definition, Mi = M/mi and α i = 〈Mi–1〉mi is the
multiplicative inverse of Mi with respect to mi

Table 4.2 Values needed in applying the Chinese remainder
theorem to RNS(8 | 7 | 5 | 3)

 ––––––––––––––––––––––––––––––––––––
 i mi xi 〈Mi 〈α ixi〉mi〉M
 ––––––––––––––––––––––––––––––––––––
 3 8 0 0
 1 105
 2 210
 3 315
 4 420
 5 525
 6 630
 7 735

 2 7 0 0
 1 120
 2 240
 3 360
 4 480
 5 600
 6 720

 1 5 0 0
 1 336
 2 672
 3 168
 4 504

 0 3 0 0
 1 280
 2 560
 ––––––––––––––––––––––––––––––––––––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 54

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

4.4 Difficult RNS Arithmetic Operations

Sign test and magnitude comparison are difficult

Example: of the following RNS(8 | 7 | 5 | 3) numbers

 which, if any, are negative?
 which is the largest?
 which is the smallest?

Assume a range of [–420, 419]

 a = (0 | 1 | 3 | 2)RNS
 b = (0 | 1 | 4 | 1)RNS
 c = (0 | 6 | 2 | 1)RNS
 d = (2 | 0 | 0 | 2)RNS
 e = (5 | 0 | 1 | 0)RNS
 f = (7 | 6 | 4 | 2)RNS

Answer:

 d < c < f < a < e < b
–70 < –8 < –1 < 8 < 21 < 64

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 55

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Approximate CRT decoding: Divide both sides of the
CRT equality by M, to get the scaled value of x in [0, 1):

x/M = (xk–1 | ... | x2 | x1 | x0)RNS/M = 〈 ∑k–1
i=0 mi–1〈α ixi〉mi 〉1

Terms are added modulo 1, meaning that the whole part of
each result is discarded and the fractional part is kept.

Table 4.3 Values needed in applying approximate CRT
decoding to RNS(8 | 7 | 5 | 3)

 ––––––––––––––––––––––––––––––––––––
 i mi xi mi–1〈α ixi〉mi ––––––––––––––––––––––––––––––––––––
 3 8 0 .0000
 1 .1250
 2 .2500
 3 .3750
 4 .5000
 5 .6250
 6 .7500
 7 .8750

 2 7 0 .0000
 1 .1429
 2 .2857
 3 .4286
 4 .5714
 5 .7143
 6 .8571

 1 5 0 .0000
 1 .4000
 2 .8000
 3 .2000
 4 .6000

 0 3 0 .0000
 1 .3333
 2 .6667 ––––––––––––––––––––––––––––––––––––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 56

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example: Use approximate CRT decoding to determine
the larger of the two numbers

 x = (0 | 6 | 3 | 0)RNS y = (5 | 3 | 0 | 0)RNS

Reading values from Table 4.3, we get:

x/M ≅ 〈 .0000 + .8571 + .2000 + .0000〉1 ≅ .0571

y/M ≅ 〈 .6250 + .4286 + .0000 + .0000〉1 ≅ .0536

Thus, x > y, subject to approximation errors.
Errors are no problem here because each entry has a
maximum error of 0.00005, for a total of at most 0.0002

RNS general division

Use an algorithm that has built-in tolerance to imprecision

Example –– SRT algorithm (s is the partial remainder)

 s < 0 quotient digit = –1

 s ≅ 0 quotient digit = 0

 s > 0 quotient digit = 1

The partial remainder is decoded approximately
The BSD quotient is converted to RNS on the fly

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 57

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

4.5 Redundant RNS Representations

The mod-mi residue need not be restricted to [0, mi – 1]

 (just as radix-r digits need not be limited to [0, r – 1])

Adder

Adder

x y

z

cout
0 0

Drop

Figure 4.3 Adder design for 4-bit mod-13 pseudoresidues.

sum in sum o

Mux

0

2h

operand residue

coefficient
residue

h

2h+1

h

–m

LSBs

 h

2h
 h

 h
2h

MSB

×

+ +

0
1

Figure 4.4 A modulo-m multiply-add cell that accumulates the
sum into a double-length redundant pseudoresidue.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 58

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

4.6 Limits of Fast Arithmetic in RNS

Theorem 4.2: The ith prime pi is asymptotically i ln i

Theorem 4.3: The number of primes in [1, n]
is asymptotically n/ln n

Theorem 4.4: The product of all primes in [1, n]
is asymptotically en.

Table 4.4 The ith prime pi and the number of primes in [1, n]
versus their asymptotic approximations

 –––
 i pi i ln i Error n No of n/ln n Error
 (%) primes (%)
 –––
 1 2 0.000 100 5 2 3.107 55
 2 3 1.386 54 10 4 4.343 9
 3 5 3.296 34 15 6 5.539 8
 4 7 5.545 21 20 8 6.676 17
 5 11 8.047 27 25 9 7.767 14
 10 29 23.03 21 30 10 8.820 12
 15 47 40.62 14 40 12 10.84 10
 20 71 59.91 16 50 15 12.78 15
 30 113 102.0 10 100 25 21.71 13
 40 173 147.6 15 200 46 37.75 18
 50 229 195.6 15 500 95 80.46 15
 100 521 460.5 12 1000 170 144.8 15
 –––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 59

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Theorem 4.5: It is possible to represent

all k-bit binary numbers in RNS with O(k / log k) moduli

such that the largest modulus has O(log k) bits

 Implication: a fast adder would need O(log log k) time

Theorem 4.6: The numbers 2a – 1 and 2b – 1

are relatively prime iff a and b are relatively prime

Theorem 4.7: The sum of the first i primes

is asymptotically O(i2 ln i).

Theorem 4.8: It is possible to represent

all k-bit binary numbers in RNS

with O(k / log k) low-cost moduli of the form 2a – 1

such that the largest modulus has O(k log k) bits.

 Implication: a fast adder would need O(log k) time,

 thus offering little advantage over standard binary

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 60

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part II Addition/Subtraction

Part Goals
 Review basic adders & the carry problem
 Learn how to speed up carry propagation
 Discuss speed/cost tradeoffs in adders

Part Synopsis
 Addition is a fundamental operation
 (arithmetic and address calculations)
 Also a building block for other operations
 Subtraction = negation + addition
 Carry speedup: lookahead, skip, select, ...
 Two-operand vs multioperand addition

Part Contents
Chapter 5 Basic Addition and Counting
Chapter 6 Carry-Lookahead Adders
Chapter 7 Variations in Fast Adders
Chapter 8 Multioperand Addition

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 61

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

5 Basic Addition and Counting

 Go to TOC
Chapter Goals
 Study the design of ripple-carry adders,
 discuss why their latency is unacceptable,
 and set the foundation for faster adders

Chapter Highlights
 Full-adders are versatile building blocks
 Worst-case carry chain in k-bit addition
 has an average length of log2k
 Fast asynchronous adders are simple
 Counting is relatively easy to speed up

Chapter Contents
5.1 Bit-Serial and Ripple-Carry Adders
5.2 Conditions and Exceptions
5.3 Analysis of Carry Propagation
5.4 Carry Completion Detection
5.5 Addition of a Constant: Counters
5.6 Manchester Carry Chains and Adders

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 62

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

5.1 Bit-serial and ripple-carry adders

Single-bit half-adder (HA)

x y c s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Inputs Outputs

HA

x y

c

s

Fig. 5.A Truth table and symbol for a binary half-adder.

c

s

(b) NOR-gate half-adder.

x

y

x

y

(c) NAND-gate half-adder with complemented carry.

x

y

c

s

s

c
x

y

x

y

(a) AND/XOR half-adder.
_

_
_

Fig. 5.1 Three implementations of a half-adder.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 63

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Single-bit full-adder (FA)

x y c c s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 Inputs Outputs

c out c in

out in x

y

 s

FA

Fig. 5.B Truth table and symbol for binary full-adder.

 s = x ⊕ y ⊕ cin (odd parity function)

 = x y cin + x y cin + x y cin + x y cin

 cout = x y + x cin + y cin (majority function)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 64

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

HA

HA

xy

cin

cout

(a) Built of half-adders.

s

(b) Built as an AND-OR circuit.

(c) Suitable for CMOS realization.

cout

s

cin

xy

0
1
2
3

0
1
2
3

xy

cin

cout

s

0

1

Mux

Fig. 5.2 Possible designs for a full-adder in terms of half-
adders, logic gates, and CMOS transmission gates.

z

x

x

0

1

(a) CMOS transmission gate:
circuit and symbol

(b) Two-input mux built of two
transmission gates

TG

TG
TG

y
 P

N

Fig. 5.C CMOS transmission gate and its use in a 2-to-1 mux.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 65

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

(a) Bit-serial adder.

FA

xiyi

cici+1

s i

Carry
Latch

FAFA

xy 11 x0y0

c0c1

s 0s 1

FAFA

xy 33 x2y2

c2c3

s 2s 3

c4

cout cin

(b) Four-bit ripple-carry adder.

Clock

s 4

x

y

Shift

s
Shift

Fig. 5.3 Using full-adders in building bit-serial and ripple-
carry adders.

xy 11 x0y0

c1c2cout cinc3

x2y2x3y3

Clock

s 1 s 0s 2s 3

150

760λ

λ

7 inverters

 Two
4-to-1
Mux's

VDD

V SS

Fig. 5.4 The layout of a 4-bit ripple-carry adder in CMOS

implementation [Puck94].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 66

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Tripple-add = TFA(x,y→cout) + (k – 2)×TFA(cin→cout) + TFA(cin→s)

x

s

y

c

x

s

y

c

x

s

y

c

x

s

y

c

c out c in

0 0

0

c 0

1 1

1

1

k-2 k–2

k–2

2 k

k–1

k–1

k–1

k–1

FA FA FA FA . . .
c k–2

s k

Fig. 5.5 Critical path in a k-bit ripple-carry adder.

0

xy0z1w10

xyxyzw+xyzw+xyz

w+xyz

Bit 3 Bit 2 Bit 1 Bit 0

c1 cin
cout c2c3

Fig. 5.6 Four-bit binary adder used to realize the logic
function f = w + xyz and its complement.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 67

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

5.2 Conditions and exceptions

In an ALU, it is customary to provide information about
certain outcomes during addition or other operations

Flag bits within a condition/exception register:
cout a carry-out of 1 is produced
overflow the output is not the correct sum
negative Indicating that the addition result is negative
zero Indicating that the addition result is zero

 overflow2’s-compl = xk–1 yk–1sk–1 +xk–1yk–1 sk–1

 overflow2’s-compl = ck ⊕ ck–1 = ckck–1 +ck ck–1

FAFA

xy 11 x0y0

c0c1

s 0s 1

FA
c2

s k–1

cout cin
...

ck–1
ck–2

s k–2

ck

xk–2yk–2xk–1yk–1

FA

Overflow

Negative

Zero

Fig. 5.7 Two’s-complement adder with provisions for
detecting conditions and exceptions.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 68

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

5.3 Analysis of carry propagation

 Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 ----------- ----------- ----------- -----------
 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0
 cout 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 cin
 __________/__________________/ ________/____/
 4 6 3 2
 Carry chains and their lengths
Fig. 5.8 Example addition and its carry propagation chains.

Fig. 5.C Positions with known incoming carries.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 69

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Given binary numbers with random bit values, for each
position i we have:
 Probability of carry generation = 1/4
 Probability of carry annihilation = 1/4
 Probability of carry propagation = 1/2

Average length of the longest carry chain

The probability that carry generated at position i
propagates to position j – 1 and stops at position j (j > i)
 2–(j–1–i) × 1/2 = 2–(j–i)

Expected length of the carry chain that starts at position i
 2 – 2–(k–i–1)

Average length of the longest carry chain in k-bit addition
is less than log2k; it is log2(1.25k) per experimental results

Analogy (order statictics)

Roll a die: Outcome in [1, 6], expected outcome = 3.5
Roll a pair of dice:

What is the expected value of the larger outcome?
Number of cases 11 9 7 5 3 1
Larger outcome 6 5 4 3 2 1
Expected outcome = 161 / 36 = 4.472

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 70

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

5.4 Carry Completion Detection

 (bi, ci) = 00 Carry not yet known

 01 Carry known to be 1

 10 Carry known to be 0

. . .

. . .

. . .

. . .

x y = x +y

alldone
From other bit positions

i+1

c = c

b = c

b = 1: No carry
c = 1: Carry

b

i+1c
0

i i i i

ib

ic

x + yi i

x y i i

x y i i

0

in

in

}

di+1 i
i

c = c k out

b k

Fig. 5.9 The carry network of an adder with two-rail carries
and carry completion detection logic.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 71

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

5.4 Addition of a Constant: Counters

Count register

Mux

Incrementer
(Decrementer)

+1 (−1)

Data in

Load

Count / Initialize

x + 1

x

0 1

Data out

Reset Clear

Enable Clock

Counter
overflow

(x − 1)

c out

Fig. 5.10 An up (down) counter built of a register, an
incrementer (decrementer), and a multiplexer.

T

Q

Q T

Q

Q T

Q

Q T

Q

Q
Increment

0

0

1

1

2

2

3

3

Count Output

Fig. 5.11 Four-bit asynchronous up counter built only of
negative-edge-triggered T flip-flops.

Load

Load Increment

Control
 1

Control
 2

Incrementer

1

Incrementer

1

Count register divided into three stages

Fig. 5.12 Fast three-stage up counter.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 72

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

5.6 Manchester Carry Chains and Adders

Sum digit in radix r si = (xi + yi + ci) mod r

Special case of radix 2 si = xi ⊕ yi ⊕ ci

Computing the carries is thus our central problem
For this, the actual operand digits are not important
What matters is whether in a given position a carry is

 generated, propagated, or annihilated (absorbed)

For binary addition: _____

 gi = xi yi pi = xi ⊕ yi ai =xi yi = xi + yi

It is also helpful to define a transfer signal:
 ti = gi + pi = ai = xi + yi

Using these signals, the carry recurrence is written as
 ci+1 = gi + ci pi = gi + ci gi + ci pi = gi + ci ti

p

g

a

Logic 1

Logic 0

c

c

i+1

i

i

i

i

0

1

0

1

0

1

(a) Conceptual representation

c'i+1 ic'

Clock

ip

VDD

VSS

ig

(b) Possible CMOS realization.

Fig. 5.13 One stage in a Manchester carry chain.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 73

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Preview of fast adders

The gi and pi (ti) signals, along with the carry recurrence

 ci+1 = gi + ci pi = gi + ci ti

allow us to decouple the problem of designing a fast carry
network from details of the number system (radix, digit set)

It does not even matter whether we are adding or
subtracting; any carry network can be used as a borrow
network by defining the signals to represent borrow
generation, borrow propagation, etc.

Carry network

.

x i y i

g p

s

i i

i

c i

c i+1

c k−1

c k

c k−2 c 1

c 0

g p 1 1 g p 0 0

g p k−2 k−2 g p i+1 i+1
g p k−1 k−1

c 0

Fig. 5.D The main part of an adder is the carry network. The
rest is just a set of gates to produce the g and p
signals and the sum bits.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 74

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Carry-ripple adder (already discussed)
 Worst-case allowance or self-timed

Fast adders to be studied in the next two chapters differ in
the way they generate the carries:

Carry lookahead (Chapter 6)
 and a variant known as Ling adder

Other fast adders (Chapter 7)
 Carry-skip (single- or multilevel)
 Carry-select
 and its limiting case known as conditional sum
 Hybrid (e.g., lookahead and select)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 75

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

6 Carry-Lookahead Adders

 Go to TOC
Chapter Goals
 Understand the carry-lookahead method
 and its many variations
 used in the design of fast adders

Chapter Highlights
 Single- and multilevel carry lookahead
 Various designs for log-time adders
 Relating the carry determination problem
 to parallel prefix computation
 Implementing fast adders in VLSI

Chapter Contents
6.1. Unrolling the Carry Recurrence
6.2. Carry-Lookahead Adder Design
6.3. Ling Adder and Related Designs
6.4. Carry Determination as Prefix Computation
6.5. Alternative Parallel Prefix Networks
6.6. VLSI Implementation Aspects

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 76

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

6.1 Unrolling the Carry Recurrence

Recall gi (generate), pi (propagate), ai (annihilate/absorb),
and ti (transfer)

 gi = 1 iff xi + yi ≥ r Carry is generated
 pi = 1 iff xi + yi = r – 1 Carry is propagated
 ti =ai = gi + pi Carry is not annihilated

 ci = gi–1 + ci–1pi–1

 = gi–1 + (gi–2 + ci–2pi–2)pi–1

 = gi–1 + gi–2pi–1 + ci–2pi–2pi–1

 = gi–1 + gi–2pi–1 + gi–3pi–2pi–1 + ci–3pi–3pi–2pi–1

 = gi–1 + gi–2pi–1 + gi–3pi–2pi–1 + gi–4pi–3pi–2pi–1

 + ci–4pi–4pi–3pi–2pi–1

 = . . .

Theoretically, we can unroll as far as we want
but the number of terms, and literals in each term,
increase to the point of being impractical
for two-level circuit realization

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 77

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Four-bit CLA adder:

 c4 = g3 + g2p3 + g1p2p3 + g0p1p2p3 + c0p0p1p2p3
 c3 = g2 + g1p2 + g0p1p2 + c0p0p1p2
 c2 = g1 + g0p1 + c0p0p1
 c1 = g0 + c0p0

Note the use of c4 = g3 + c3p3 in the following diagram

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

Fig. 6.1 Four-bit carry network with full lookahead.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 78

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Full carry lookahead is impractical for wide words

The fully unrolled carry equation for c31 consists of 32
 product terms, the largest of which has 32 literals

Thus, the required ANDs and ORs must be realized by
 tree networks, leading to increased latency and cost

Two schemes for managing this complexity:
 High-radix addition (i.e., radix 2g)
 increases the latency for generating
 the auxiliary signals and sum digits
 but simplifies the carry network (optimal radix?)
 Multilevel lookahead

Example: 16-bit addition
 Radix-16 (four digits)
 Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c4, c8, and c12 are determined first
c16 c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0
cout ? ? ? cin

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 79

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

6.2 Carry-Lookahead Adder Design

g[i,i+3] = gi+3 + gi+2pi+3 + gi+1pi+2pi+3 + gipi+1pi+2pi+3
p[i,i+3] = pi pi+1 pi+2 pi+3

gi

gi+1

g
i+2

gi+3

ci

ci+1

ci+2

ci+3

pi+3

pi+2

pi+1

pi

g

p[i,i+3]

Block Signal Generation
Intermediate Carries

[i,i+3]

Fig. 6.2 Four-bit lookahead carry generator.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 80

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

ic
4-bit lookahead carry generator

g p g p g p g p

 [i,i+3]
p

 i+1
c

 i+2
c

 i+3
c

g

iii+1i+1i+2 i+2 i+3 i+3

 [i,i+3]

Fig. 6.3 Schematic diagram of a 4-bit lookahead carry
generator.

j +1j +1 c
0

ic
4-bit lookahead carry generator

g p

0

i 0
i 1

i 2
i 3

j 0
j 1

j 2
j 3

j +1c
1

c
2

g pg p g p

g p

Fig. 6.4 Combining of g and p signals of four (contiguous or
overlapping) blocks of arbitrary widths into the g
and p signals for the overall block [i0, j3].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 81

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

cccc

4-bit lookahead carry generator

4-bit lookahead carry generator

g
p

ccc

g
p

12 8 4 0

48 32 16

[0,63]

16-bit
Carry-Lookahead
Adder

[0,63]

[48,63]

[48,63] g
p

[32,47]

[32,47] g
p

[0,15]

[0,15]g
p

[16,31]

[16,31]

g
p [12,15]

[12,15] g
p [8,11]

[8,11] g
p [4,7]

[4,7] g
p [0,3]

[0,3]

Fig. 6.5 Building a 64-bit carry-lookahead adder from 16
4-bit adders and 5 lookahead carry generators.

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions (1 gate level)
g and p signals for 4-bit blocks (2 gate levels)
block carry-in signals c4, c8, and c12 (2 gate levels)
internal carries within 4-bit blocks (2 gate levels)
sum bits (2 gate levels)

Total latency for the 16-bit adder = 9 gate levels
(compare to 32 gate levels for a 16-bit ripple-carry adder)

 Tlookahead-add = 4 log4k + 1 gate levels

 cout = xk–1yk–1 +sk–1(xk–1 + yk–1)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 82

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

6.3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:

ci = gi–1 + gi–2ti–1 + gi–3ti–2ti–1 + gi–4ti–3ti–2ti–1

 + ci–4ti–4ti–3ti–2ti–1

Ling’s modification:
 propagate hi = ci + ci–1 instead of ci

hi = gi–1 + gi–2 + gi–3 ti–2 + gi–4 ti–3 ti–2 + hi–4 ti–4 ti–3 ti–2

CLA: 5 gates max 5 inputs 19 gate inputs
Ling: 4 gates max 5 inputs 14 gate inputs

The advantage of hi over ci is even greater with wired-OR:

CLA: 4 gates max 5 inputs 14 gate inputs
Ling: 3 gates max 4 inputs 9 gate inputs

Once hi is known, however, the sum is obtained by a

slightly more complex expression compared to si = pi ⊕ ci

 si = (ti ⊕ hi+1) + hi gi ti–1

Other designs similar to Ling’s are possible [Dora88]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 83

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

6.4 Carry Determination as Prefix Computation

g" p"

i 0
i 1

j 0
j 1

g p

g' p'

Block B'

Block B"

Block B
(g, p)

(g", p") (g', p')

¢

g = g" + g'p"
p = p'p"

Fig. 6.6 Combining of g and p signals of two (contiguous or
overlapping) blocks B' and B" of arbitrary widths
into the g and p signals for block B.

The problem of carry determination can be formulated as:

Given (g0, p0) (g1, p1) . . . (gk–2, pk–2) (gk–1, pk–1)

Find (g[0,0],p[0,0]) (g[0,1],p[0,1]) . . . (g[0,k–2],p[0,k–2]) (g[0,k–1],p[0,k–1])

The desired pairs are found by evaluating all prefixes of
 (g0, p0) ¢ (g1, p1) ¢ ... ¢ (gk–2, pk–2) ¢ (gk–1, pk–1)

Prefix sums analogy:
Given x0 x1 x2 . . . xk–1

Find x0 x0+x1 x0+x1+x2 . . . x0+x1+...+xk–1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 84

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

6.5 Alternative Parallel Prefix Networks

. . .

Prefix Sums k/2 Prefix Sums k/2

. . .

xk–1 xk/2 xk/2–1 x0

s k–1 s k/2

s k/2–1 s 0+ +
. . .

. . .

.

. . .

.

Fig. 6.7 Parallel prefix sums network built of two k/2-input
networks and k/2 adders.

Delay recurrence D(k) = D(k/2) + 1 = log2k
Cost recurrence C(k) = 2C(k/2) + k/2 = (k/2) log2k

Prefix Sums k/2

xk–1 xk–2 x3 x2 x1 x0

s k–1 s k–2 s 3 s 2 s 1 s 0

++

+

+

+

. . .

. . .

. . .

. . .

Fig. 6.8 Parallel prefix sums network built of one k/2-input
network and k – 1 adders.

Delay D(k) = D(k/2) + 2 = 2 log2k – 1 (–2 really)
Cost C(k) = C(k/2) + k – 1 = 2k – 2 – log2k

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 85

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

¢ ¢ ¢

[7, 7] [6, 6] [5, 5] [4, 4] [3, 3] [2, 2] [1, 1] [0, 0]

[0, 7] [0, 6] [0, 5] [0, 4] [0, 3] [0, 2] [0, 1] [0, 0]

g p [0,1] [0,1]

g p [1,1] [1,1]
g
 p
[0,0]
 [0,0]

[2, 3]
[4, 5]

[6, 7]

[4, 7]
[0, 3]

[0, 1]

Fig. 6.A Brent-Kung lookahead carry network (8-digit adder).

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

1

2

3

4

5

6

Level

Fig. 6.9 Brent-Kung parallel prefix graph for 16 inputs.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 86

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

Fig. 6.10 Kogge-Stone parallel prefix graph for 16 inputs.

Delay D(k) = log2k
Cost C(k) = (k – 1) + (k – 2) + (k – 4) + ... + (k – k/2)

 = k log2k – k + 1

Method Delay Cost
Simple Div&Conq log2k (k/2) log2k
Kogge-Stone log2k k log2k – k + 1
Brent-Kung 2 log2k – 2 2k – 2 – log2k

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 87

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s0s1s2s3s4s5s6s7
s8s 9s10s11s12s13s14s15

1

2

3

4

5

6

Level

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s 1s2s 3s4s5s 6s7s8s9s 10s11
s12s13s14s15

 B-K: Six levels, 26 cells K-S: Four levels, 49 cells

 Hybrid: Five levels, 32 cells
x0x1x2x3x4x5x6x7

x8x9x10x11
x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

Brent-
Kung

Brent-
Kung

Kogge-
Stone

Fig. 6.11 A Hybrid Brent-Kung/Kogge-Stone parallel prefix
graph for 16 inputs.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 88

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

6.6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers
 as implemented in the AMD Am29050 CMOS micro
The following description is based on the 64-bit version
In radix-256 addition of 64-bit numbers, only the carries
 c8, c16, c24, c32, c40, c48, and c56 are needed
First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a
are used to derive g and p signals for 4-bit blocks

PH2
g2

PH2
g3

PH2
g1

PH2
g0

p3

p2

p1

p0

g[0,3]

PH2
p[0,3]

(a)

PH2

PH2

g2

g3

g1

g0

p3

p2

p1

p0

g[0,3]

p[0,3]

g[0,2]

p[0,2]

g[0,1]

p[0,1]

PH2PH2

(b)

PH2 PH2

PH2 PH2

PH2 PH2

PH2PH2

Fig. 6.12 Example four-bit Manchester carry chain designs in

CMOS technology [Lync92].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 89

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

These signal pairs,
 denoted [0, 3], [4, 7], ... at the left edge of Fig. 6.13,
 form the inputs to one 5-bit and three 4-bit MCCs
 that in turn feed two more MCCs in the third level

The MCCs in Fig. 6.13 are of the type shown in Fig. 6.12b

[60,63]
[56,59]
[52,55]
[48,51]

[44,47]
[40,43]
[36,39]
[32,35]

[28,31]
[24,27]
[20,23]
[16,19]

[12,15]
 [8,11]
 [4,7]
 [0,3]

[48,63]
[48,59]
[48,55]

[32,47]
[32,43]
[32,39]

[16,31]
[16,27]
[16,23]

 [0,15]
 [0,11]
 [0,7]

[0,55]
[0,47]
[0,31]

[0,39]
[0,31]

[0,23]

c
c

c
c

c

c

c

c

56
48

40
32

24

16

8

0

c0

[48,55]
[32,47]
[16,31]
 [0,15]

[32,39]
[16,31]

[16,23]
 [0,15]

MCC

MCC

MCC

MCC

MCC

MCC

 Manchester
Carry Chain

Level 2

Level 3

[i,j] represents the pair of signals p and g .[i,j] [i,j]

[0,j] should really be [–1,j], as c is taken to be g .0 –1

Fig. 6.13 Spanning-tree carry-lookahead network [Lync92].
The 16 MCCs at level 1, that produce generate and
propagate signals for 4-bit blocks, are not shown.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 90

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

7 Variations in Fast Adders

 Go to TOC
Chapter Goals
 Study alternatives to the CLA method
 for designing fast adders

Chapter Highlights
 Many methods besides CLA are available
 (both competing and complementary)
 Best design is technology-dependent
 (often hybrid rather than pure)
 Knowledge of timing allows optimizations

Chapter Contents
7.1 Simple Carry-Skip Adders
7.2 Multilevel Carry-Skip Adders
7.3 Carry-Select Adders
7.4 Conditional-Sum Adder
7.5 Hybrid Adder Designs
7.6 Optimizations in Fast Adders

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 91

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

7.1 Simple Carry-Skip Adders

cc ccc

cc ccc

pppp

SkipSkipSkip

4-Bit
Block

Skip logic (2 gates)

16
12

8

4

0

0

4

8

12
16

[12,15] [8,11] [4,7]
[0,3]

(a) Ripple-carry adder.

(b) Simple carry-skip adder.

3 2 1 0

Ripple-carry stages

4-Bit
Block

4-Bit
Block

4-Bit
Block

4-Bit
Block

4-Bit
Block

3 2 1 0

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple
carry-skip adder with 4-bit skip blocks.

One-way street

Freeway

Fig. 7.A Road analogy for carry-skip addition.

Assume driving time the same for one city block or one
freeway “block” (between two exits)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 92

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Skip with fixed-width blocks of b bits

Tfixed-skip-add = (b – 1) + 0.5 + (k/b – 2) + (b – 1)
 in block 0 OR gate skips in last block

 ≅ 2b + k/b – 3.5 stages

dTfixed-skip-add
db = 2 – k/b2 = 0 ⇒ b opt = k/2

T
opt
fixed-skip-add ≅ 2 2k – 3.5

Example: k = 32, b opt = 4, T
opt
fixed-skip-add = 12.5 stages

 (contrast with 32 stages for a ripple-carry adder)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 93

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Skip with variable-width blocks

b b b b. . .

Ripple
Skip

Carry path (1)

01t–1 t–2 Block widths

Carry path (3)

Carry path (2)

Fig. 7.2 Carry-skip adder with variable-size blocks and three
sample carry paths.

Optimal variable-width blocks

 b b + 1 . . . b + t/2 – 1 b + t/2 – 1 . . . b + 1 b

The total number of bits in the t blocks is k:

 2[b + (b+1) + ... + (b+t/2–1)] = t(b + t/4 – 1/2) = k
 b = k/t – t/4 + 1/2

Tvar-skip-add = 2(b – 1) + 0.5 + t – 2 = 2k/t + t/2 – 2.5

dTvar-skip-add
dt = –2k/t2 + 1/2 = 0 ⇒ t opt = 2 k

Optimal number of blocks 2 times that of fixed blocks

T
opt
var-skip-add ≅ 2 k – 2.5

Roughly a factor of 2 smaller than for fixed blocks

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 94

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

7.2 Multilevel carry-skip adders

 S 1

 c out c in

 S 1 S 1 S 1 S 1

Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

 S 2

 S 1

 c out c in

 S 1 S 1 S 1 S 1

Fig. 7.4 Example of a two-level carry-skip adder.

 c out c in

 S

 2

 S

 1

 S

 1

 S

 1

Fig. 7.5 Two-level carry-skip adder optimized by removing
the short-block skip circuits.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 95

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example 7.1
Each of the following operations takes one unit of time:
generation of gi and pi, generation of level-i skip signal
from level-(i–1) skip signals, ripple, skip, and computation
of sum bit once the incoming carry is known
Build the widest possible single-level carry-skip adder with
a total delay not exceeding 8 time units

c c
bbbbbbb

0
234567

8
2

inout

S1 S1 S1 S1 S1

0123456

Fig. 7.6 Timing constraints of a single-level carry-skip adder
with a delay of 8 units.

Max adder width = 1 + 2 + 3 + 4 + 4 + 3 + 1 = 18 bits

Generalization of Example 7.1:
For a single-level carry-skip adder with total latency of T,
where T is even, the block widths are:
 1 2 3 . . . T/2 T/2 . . . 4 3 1
This yields a total width of T2/4 + T/2 – 2 bits
When T is odd, the block widths become:
 1 2 3 . . . (T + 1)/2 . . . 4 3 1
This yields a total width of (T + 1)2/4 – 2

Thus, for any T, the total width is  (T + 1)2/4 – 2

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 96

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example 7.2
Each of the following operations takes one unit of time:
generation of gi and pi, generation of level-i skip signal
from level-(i–1) skip signals, ripple, skip, and computation
of sum bit once the incoming carry is known
Build the widest possible two-level carry-skip adder with a
total delay not exceeding 8 time units

First determine the number of blocks and timing
constraints at the second level

The remaining problem is to build single-level carry-skip
adders with Tproduce = β and Tassimilate = α

c c

8

0

7 6 5 34 3

b b b b b b
{8, 1} {7, 2} {6, 3} {5, 4} {4, 5} {3, 8}

inout
ABCDEF

S2 S2 S2 S2 S2

Tproduce Tassimilate

(a)

3457 6

2 t=0t=8
cout cin2

3

Block E Block D Block C Block B Block AF

(b)

Fig. 7.7 Two-level carry-skip adder with a delay of 8 units:
(a) Initial timing constraints, (b) Final design.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 97

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 7.1 Second-level constraints Tproduce and Tassimilate,
with associated subblock and block widths, in a
two-level carry-skip adder with a total delay of 8
time units (Fig. 7.7)

––
Block Tproduce Tassimilate Number of Subblock Block
 subblocks widths width
 β α min(β–1, α) (bits) (bits)
––
 A 3 8 2 1, 3 4
 B 4 5 3 2, 3, 3 8
 C 5 4 4 2, 3, 2, 1 8
 D 6 3 3 3, 2, 1 6
 E 7 2 2 2, 1 3
 F 8 1 1 1 1
––
 Total width: 30 bits

Inputs

Level-h skip

Block of b full-adder units

I(b)

A(b)

G(b)

E (b) h
S (b) h

Fig. 7.8 Generalized delay model for carry-skip adders.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 98

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Elaboration on Example 7.2
Given the delay pair {β, α} for a level-2 block in Fig. 7.7a,
the number of level-1 blocks in the corresponding
single-level carry-skip adder will be γ = min(β – 1, α)
This is easily verified from the following two diagrams.

c c
bb

0123

α
inout

S1 S1 S1 S1 S1

12

– 1α – 2α
S1

b0

S1

b –1α b –2α

 Single-level carry-skip adder with Tassimilate = α

c c
bb

234β

inout

S1 S1 S1 S1 S1

12

– 1β – 2β
b –3βb –2β

S1

b0

S1

1

 Single-level carry-skip adder with Tproduce = β

The width of the ith level-1 block
in the level-2 block characterized by {β, α}
is bi = min(β – γ + i + 1, α – i)
So, the total width of such a block is:

 ∑
i=0

γ–1
 min(β – γ + i + 1, α – i)

The only exception occurs in the rightmost level-2 block A
for which b0 is one unit less than the value given above
in order to accommodate the carry-in signal

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 99

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

7.3 Carry-Select Adders

k /2-bit adder
k/2-bit adder

k - 1 k /2 k - 1 0

 0

1

k/2+1 k/2+1 k/2

1 0
Mux

k/2
c out

c k/2

c in

High k /2 bits Low k /2 bits

k /2-bit adder

Fig. 7.9 Carry-select adder for k-bit numbers built from three
k/2-bit adders.

 Cselect-add(k) = 3Cadd(k/2) + k/2 + 1
 Tselect-add(k) = Tadd(k/2) + 1

k /4-bit adder k /4-bit adder

k/2 - 1 k/4 k/4 - 1 0

 0

1

k/4+1 k/4+1 k/4

1 0
Mux

k/4

k /4-bit adder

k - 1 3k/4
 0

1

k/4+1 k/4+1 k/4

1 0
Mux

k /4-bit adder

3k /4 - 1 k/2
 0

1

1 0
Mux

k/2+1

k/4

c k/2

c k/4

c out

c in

, High k /2 bits Middle k /4 bits Low k /4 bits

Fig. 7.10 Two-level carry-select adder built of k/4-bit adders.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 100

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

7.4 Conditional-Sum Adder

Multilevel carry-select idea carried out to the extreme, until
we arrive at single-bit blocks.

 C(k) ≅ 2C(k/2) + k + 2 ≅ k (log2k + 2) + k C(1)

 T(k) = T(k/2) + 1 = log2k + T(1)

where C(1) and T(1) are the cost and delay of the circuit of
Fig. 7.11 used at the top to derive the sum and carry bits
with a carry-in of 0 and 1

The term k + 2 in the first recurrence represents an upper
bound on the number of single-bit 2-to-1 multiplexers
needed for combining two k/2-bit adders into a k-bit adder

sc

xy

sc

ii

ii+1 i+1 i

For c = 0iFor c = 1i

Fig. 7.11 Top-level block for one bit position of a conditional-
sum adder.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 101

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 7.2 Conditional-sum addition of two 16-bit numbers.
The width of the block for which the sum and carry
bits are known doubles with each additional level,
leading to an addition time that grows as the
logarithm of the word width k.

 x 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0
 y 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1

 1 0 s 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1
 c 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

 1 s 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
 c 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

 2 0 s 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1
 c 0 0 0 1 1 0 1 0

 1 s 1 0 1 1 0 0 1 0 0 1 0 0 1 0
 c 0 0 1 1 1 1 1

 4 0 s 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1
 c 0 1 1 1

 1 s 0 1 1 1 0 0 1 0 0 1 0 0
 c 0 1 1

 8 0 s 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1
 c 0 1

 1 s 0 1 1 1 0 0 1 0
 c 0

16 0 s 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1
 c 0

 1 s
 c

Block
width

Block
carry-in

Block sum and block carry-out
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

c in

c out

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 102

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

7.5 Hybrid Adder Designs

Lookahead Carry Generator

Carry-Select

c

g, p

in

MuxMuxMux

cout

0

1
0

1

0

1

Block

Fig. 7.12 A hybrid carry-lookahead/carry-select adder.

cccc

4-Bit Lookahead Carry Generator

c
12 8 4 016

16-bit Carry-Lookahead Adder

g
p [12,15]

[12,15] g
p [8,11]

[8,11] g
p [4,7]

[4,7] g
p [0,3]

[0,3]

c32c48

(with carry-out)

Fig. 7.13 Example 48-bit adder with hybrid ripple-carry/carry-
lookahead design.

Other possibilities: hybrid carry-select/ripple-carry
 hybrid ripple-carry/carry-select
 . . .

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 103

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

7.6 Optimizations in Fast Adders

What looks best at the block diagram or gate level may not
be best when a circuit-level design is generated (effects of
wire length, signal loading, ...)
 Modern practice: optimization at the transistor level

Variable-block carry-lookahead adder

Optimization based on knowledge of given input timing or
required output timing

15

10

 5

 0

Bit Position

Latency from inputs
in XOR-gate delays

0 20 40 60

Fig. 7.14 Example arrival times for operand bits in the final
fast adder of a tree multiplier [Oklo96].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 104

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

8 Multi-Operand Addition

 Go to TOC
Chapter Goals
 Learn methods for speeding up the
 Addition of several numbers (needed
 for multiplication or inner-product)

Chapter Highlights
 Running total kept in redundant form
 Current total + Next number → New total
 Deferred carry assimilation
 Wallace/Dadda trees and parallel counters

Chapter Contents
8.1 Using Two-Operand Adders
8.2 Carry-Save Adders
8.3 Wallace and Dadda Trees
8.4 Parallel Counters
8.5 Generalized Parallel Counters
8.6 Adding Multiple Signed Numbers

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 105

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

8.1 Using Two-Operand Adders

 • • • • a
 • • • • x

 • • • • x a
 • • • • x a
 • • • • x a
 • • • • x a

• • • • • • • • p

×

0
1
2
3

0
1
2
3

2
2
2
2

 • • • • • • p
 • • • • • • p
 • • • • • • p
 • • • • • • p
 • • • • • • p
 • • • • • • p
 • • • • • • p

• • • • • • • • • s

(0)
(1)
(2)
(3)
(4)
(5)
(6)

Fig. 8.1 Multioperand addition problems for multiplication or
inner-product computation in dot notation.

Adder
x

k bits

k + log n bits
∑ x
j=0
i–1

(i)

2 (j)

Partial sum
register

Fig. 8.2 Serial implementation of multi-operand addition
with a single 2-operand adder.

 Tserial-multi-add = O(n log(k + log n))

Because max(k, log n) < k + log n • max(2k, 2 log n)
we have log(k + log n) = O(log k + log log n) and:

 Tserial-multi-add = O(n log k + n log log n)

Therefore, addition time grows superlinearly with n when k
is fixed and logarithmically with k for a given n

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 106

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

One can pipeline the serial solution to get somewhat better
performance.

(i–10)(i–9)

Delay

Delays
Ready to
compute s (i–12)

x(i–1)

x(i)

x +(i) x(i–1)

x +(i–8) x + (i–11)x + x

(i–7)x +(i–6) x

(i–5)x +(i–4) x

Fig. 8.3 Serial multi-operand addition when each adder is a
4-stage pipeline.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 107

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Adder Adder Adder

AdderAdder

Adder

k

k+1

k+2

k+3

k+2

k+1k+1

k kk kk k

Fig. 8.4 Adding 7 numbers in a binary tree of adders.

Ttree-fast-multi-add = O(log k + log(k + 1) + . . .

 + log(k +  log2n – 1))
 = O(log n log k + log n log log n)

Ttree-ripple-multi-add = O(k + log n)

. . .

 . . . Level i

Level i+1

HAFA

HAFA

t

t+1

tt+1t+1

t+1

t+1

t+2

t+2 t+2

t+2

t+3
t+2t+3

Fig. 8.5 Ripple-carry adders at levels i and i + 1 in the tree of
adders used for multi-operand addition.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 108

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

8.2 Carry-Save Adders

FA FAFA FA FAFA

FA FAFA FA FAFA

Cut

Fig. 8.6 A ripple-carry adder turns into a carry-save adder if
the carries are saved (stored) rather than
propagated.

Carry-propagate adder

Carry-save adder (CSA)
or
(3; 2)-counter
or
3-to-2 reduction circuit

c

in

c

out

Fig. 8.7 Carry-propagate adder (CPA) and carry-save adder
(CSA) functions in dot notation.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 109

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Half-adder

 Full-adder

Fig. 8.8 Specifying full- and half-adder blocks, with their
inputs and outputs, in dot notation.

A full-adder compacts 3 dots into 2 dots
A half-adder rearranges 2 dots

CSACSA

CSA

CSA

CSA

Fig. 8.9 Tree of carry-save adders reducing seven numbers
to two.

Tcarry-save-multi-add = O(tree height + TCPA)
 = O(log n + log k)

Ccarry-save-multi-add = (n – 2)CCSA + CCPA

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 110

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

12 FAs

6 FAs

6 FAs

4 FAs + 1 HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.10 Addition of seven 6-bit numbers in dot notation.

 8 7 6 5 4 3 2 1 0 Bit position

 7 7 7 7 7 7 6 × 2 = 12 FAs
 2 5 5 5 5 5 3 6 FAs

 3 4 4 4 4 4 1 6 FAs

 1 2 3 3 3 3 2 1 4 FAs + 1 HA

 2 2 2 2 2 1 2 1 7-bit adder
 ––– Carry-propagate adder –––
 1 1 1 1 1 1 1 1 1

Fig. 8.11 Representing a seven-operand addition in tabular
form.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 111

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

k-bit CPA

k-bit CSA k-bit CSA

k-bit CSA

k-bit CSA

0k+2

The index pair
[i, j] means that
bit positions
from i up to j
are involved.

k-bit CSA

[0, k–1]
[0, k–1]

[0, k–1]
[0, k–1]

[0, k–1] [0, k–1]

[0, k–1]
[0, k–1]

[0, k–1]

[1, k] [1, k]

[1, k]

[1, k]

[0, k–1]

[2, k+1] [2, k+1]

[2, k+1]

[2, k+1] [1, k–1]

1

[1, k+1]

Fig. 8.12 Adding seven k-bit numbers and the CSA/CPA
widths required.

CSA

Input

Sum register
Carry register

Output

CPA

Fig. 8.13 Serial carry-save addition using a single CSA.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 112

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

8.3 Wallace and Dadda Trees

. . .
inputsn

2 outputs

levelsh

 h(n) = 1 + h(2n/3)

 n(h) = 3n(h – 1)/2

 2 × 1.5h–1< n(h) ≤ 2 × 1.5h

Table 8.1 The maximum number n(h) of inputs for an h-level
carry-save-adder tree

 –––––––––––––––––––––––––––––––––
 h n(h) h n(h) h n(h)
 –––––––––––––––––––––––––––––––––
 0 2 7 28 14 474
 1 3 8 42 15 711
 2 4 9 63 16 1066
 3 6 10 94 17 1599
 4 9 11 141 18 2398
 5 13 12 211 19 3597
 6 19 13 316 20 5395
 –––––––––––––––––––––––––––––––––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 113

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

In a Wallace tree, we reduce the number of operands at
the earliest possible opportunity

In a Dadda tree, we reduce the number of operands at the
latest possible opportunity that leads to no added delay
(target the next smaller number in Table 8.1)

6 FAs

 11 FAs

7 FAs

4 FAs + 1 HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.14 Adding seven 6-bit numbers using Dadda’s strategy.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 114

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

6 FAs

 11 FAs

6 FAs + 1 HA

3 FAs + 2 HA

7-bit adder

Total cost = 7-bit adder + 26 FAs + 3 HA

Fig. 8.15 Adding seven 6-bit numbers by taking advantage of
the final adder’s carry-in.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 115

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

8.4 Parallel Counters

Single-bit full-adder = (3; 2)-counter
Circuit reducing 7 bits to their 3-bit sum = (7; 3)-counter
Circuit reducing n bits to their  log2(n + 1) -bit sum
 = (n;  log2(n + 1))-counter

0

1 0 1 0 1 0

2 1 1 0

1

0

2

13 2

3-bit
ripple-carry
adder

FA FA

HA

HA

FA

FAFAFA

Fig. 8.16 A 10-input parallel counter also known as a (10; 4)-
counter.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 116

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

8.5 Generalized Parallel Counters

. . .

Fig. 8.17 Dot notation for a (5, 5; 4)-counter and the use of
such counters for reducing five numbers to two
numbers.

(n; 2)-counters

. . . i – 3 i – 2 i – 1 i

n inputs

To i + 1

To i + 2

To i + 3

One circuit slice

ψ 1

ψ 2

ψ 3

ψ 1

ψ 2

ψ 3

 n + ψ1 + ψ2 + ψ3 + ... ≤ 3 + 2ψ1 + 4ψ2 + 8ψ3 + . . .

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 117

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

8.6 Adding Multiple Signed Numbers

 Extended positions Sign Magnitude positions

 xk–1 xk–1 xk–1 xk–1 xk–1 xk–1 xk–2 xk–3 xk–4 . . .

 yk–1 yk–1 yk–1 yk–1 yk–1 yk–1 yk–2 yk–3 yk–4 . . .

 zk–1 zk–1 zk–1 zk–1 zk–1 zk–1 zk–2 zk–3 zk–4 . . .

 (a)

 Extended positions Sign Magnitude positions

 1 1 1 1 0 xk–1 xk–2 xk–3 xk–4 . . .

 yk–1 yk–2 yk–3 yk–4 . . .

 zk–1 zk–2 zk–3 zk–4 . . .

 1

 (b)
Fig. 8.18 Adding three 2's-complement numbers using sign

extension (a) or by the method based on negatively
weighted sign bits (b).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 118

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part III Multiplication

Part Goals
 Review shift-add multiplication schemes
 Learn about faster multipliers
 Discuss speed/cost tradeoffs in multipliers

Part Synopsis
 Multiplication is an often-used operation
 (arithmetic & array index calculations)
 Division = reciprocation + multiplication
 Multiplication speedup: high-radix, tree, ...
 Bit-serial, modular, and array multipliers

Part Contents
Chapter 9 Basic Multiplication Schemes
Chapter 10 High-Radix Multipliers
Chapter 11 Tree and Array Multipliers
Chapter 12 Variations in Multipliers

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 119

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

9 Basic Multiplication Schemes

 Go to TOC
Chapter Goals
 Study shift/add or bit-at-a-time multipliers
 and set the stage for faster methods and
 variations to be covered in Chapters 10-12

Chapter Highlights
 Multiplication = multioperand addition
 Hardware, firmware, software algorithms
 Multiplying 2’s-complement numbers
 The special case of one constant operand

Chapter Contents
9.1. Shift/Add Multiplication Algorithms
9.2. Programmed Multiplication
9.3. Basic Hardware Multipliers
9.4. Multiplication of Signed Numbers
9.5. Multiplication by Constants
9.6. Preview of Fast Multipliers

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 120

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

❝ At least one good reason

for studying multiplication and division is that

there is an infinite number of ways

of performing these operations

and hence there is an infinite number of PhDs

(or expenses-paid visits to conferences in the USA)

to be won from inventing new forms of multiplier.❞

 Alan Clements
 The Principles of Computer Hardware, 1986

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 121

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

9.1 Shift/Add Multiplication Algorithms

Notation for our discussion of multiplication algorithms:

 a Multiplicand ak–1ak–2 . . . a1a0

 x Multiplier xk–1xk–2 . . . x1x0

 p Product (a × x) p2k–1p2k–2 . . . p1p0

Initially, we assume unsigned operands

Product

Partial
products
bit-matrix

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

Multiplicand
Multiplier ×

Fig. 9.1 Multiplication of two 4-bit unsigned binary numbers

in dot notation.

Multiplication with right shifts: top-to-bottom accumulation
p(j+1) = (p(j) + xj a 2k) 2–1 with p(0) = 0 and

 |–––add–––| p(k) = p = ax + p(0)2–k
 |––shift right––|

Multiplication with left shifts: bottom-to-top accumulation
p(j+1) = 2p(j) + xk–j–1a with p(0) = 0 and

 |shift| p(k) = p = ax + p(0)2k
 |––––add––––|

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 122

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 Right-shift algorithm Left-shift algorithm
======================= ====================
a 1 0 1 0 a 1 0 1 0
x 1 0 1 1 x 1 0 1 1
======================= ====================
p(0) 0 0 0 0 p(0) 0 0 0 0
+x0a 1 0 1 0 2p(0) 0 0 0 0 0
–––––––––––––––––––––––– +x3a 1 0 1 0
2p(1) 0 1 0 1 0 –––––––––––––––––––––
p(1) 0 1 0 1 0 p(1) 0 1 0 1 0
+x1a 1 0 1 0 2p(1) 0 1 0 1 0 0
–––––––––––––––––––––––– +x2a 0 0 0 0
2p(2) 0 1 1 1 1 0 –––––––––––––––––––––
p(2) 0 1 1 1 1 0 p(2) 0 1 0 1 0 0
+x2a 0 0 0 0 2p(2) 0 1 0 1 0 0 0
–––––––––––––––––––––––– +x1a 1 0 1 0
2p(3) 0 0 1 1 1 1 0 –––––––––––––––––––––
p(3) 0 0 1 1 1 1 0 p(3) 0 1 1 0 0 1 0
+x3a 1 0 1 0 2p(3) 0 1 1 0 0 1 0 0
–––––––––––––––––––––––– +x0a 1 0 1 0
2p(4) 0 1 1 0 1 1 1 0 –––––––––––––––––––––
p(4) 0 1 1 0 1 1 1 0 p(4) 0 1 1 0 1 1 1 0
======================= ====================

Fig. 9.2 Examples of sequential multiplication with right and
left shifts.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 123

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Programmed multiplication of k-bit numbers

6k + 3 to 7k + 3 machine instructions,

ignoring operand loads and result store

k = 32 implies 200+ instructions on average

This is too slow for many modern applications!

Microprogrammed multiply would be somewhat better

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 124

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

9.2 Programmed Multiplication

R0 Rc Counter0
Ra Rx
Rp Rq

Multiplicand Multiplier
Product, high Product, low

 {Using right shifts, multiply unsigned m_cand and m_ier,
 storing the resultant 2k-bit product in p_high and p_low.
 Registers: R0 holds 0 Rc for counter
 Ra for m_cand Rx for m_ier
 Rp for p_high Rq for p_low}

 {Load operands into registers Ra and Rx}

 mult: load Ra with m_cand
 load Rx with m_ier

 {Initialize partial product and counter}

 copy R0 into Rp
 copy R0 into Rq
 load k into Rc

 {Begin multiplication loop}

 m_loop: shift Rx right 1 {LSB moves to carry flag}
 branch no_add if carry = 0
 add Ra to Rp {carry flag is set to cout}
 no_add: rotate Rp right 1 {carry to MSB, LSB to carry}
 rotate Rq right 1 {carry to MSB, LSB to carry}
 decr Rc {decrement counter by 1}
 branch m_loop if Rc ≠ 0

 {Store the product}

 store Rp into p_high
 store Rq into p_low
 m_done: ...

Fig. 9.3 Programmed multiplication (right-shift algorithm).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 125

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

9.3 Basic Hardware Multipliers

Multiplier x

Mux

Adder

0

out c

0 1

Doublewidth partial product p

Multiplicand a

Shift

Shift

(j)

j x

x a j

k

k

k

Fig. 9.4 Hardware realization of the sequential multiplication
algorithm with additions and right shifts.

Partial product p (j)

k

Unused
part of the
multiplier x

Adder’s
carry-out

Adder’s sum

k

k – 1

k – 1

To mux control To adder

Fig. 9.5 Combining the loading and shifting of the double-
width register holding the partial product and the
partially used multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 126

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Multiplier x

Mux

2k-bit adder

0

out c

0 1

Doublewidth partial product p

Multiplicand a

Shift

Shift

(j)

k-j-1 x

a

 2k

k k-j-1 x

2k

Fig. 9.6 Hardware realization of the sequential multiplication
algorithm with left shifts and additions.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 127

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

9.4 Multiplication of Signed Numbers

 =============================
 a 1 0 1 1 0
 x 0 1 0 1 1
 =============================
 p(0) 0 0 0 0 0
 +x0a 1 0 1 1 0
 –––––––––––––––––––––––––––––––
 2p(1) 1 1 0 1 1 0
 p(1) 1 1 0 1 1 0
 +x1a 1 0 1 1 0
 –––––––––––––––––––––––––––––––
 2p(2) 1 1 0 0 0 1 0
 p(2) 1 1 0 0 0 1 0
 +x2a 0 0 0 0 0
 –––––––––––––––––––––––––––––––
 2p(3) 1 1 1 0 0 0 1 0
 p(3) 1 1 1 0 0 0 1 0
 +x3a 1 0 1 1 0
 –––––––––––––––––––––––––––––––
 2p(4) 1 1 0 0 1 0 0 1 0
 p(4) 1 1 0 0 1 0 0 1 0
 +x4a 0 0 0 0 0
 –––––––––––––––––––––––––––––––
 2p(5) 1 1 1 0 0 1 0 0 1 0
 p(5) 1 1 1 0 0 1 0 0 1 0
 =============================
Fig. 9.7 Sequential multiplication of 2’s-complement

numbers with right shifts (positive multiplier).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 128

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 =============================
 a 1 0 1 1 0
 x 1 0 1 0 1
 =============================
 p(0) 0 0 0 0 0
 +x0a 1 0 1 1 0
 –––––––––––––––––––––––––––––––
 2p(1) 1 1 0 1 1 0
 p(1) 1 1 0 1 1 0
 +x1a 0 0 0 0 0
 –––––––––––––––––––––––––––––––
 2p(2) 1 1 1 0 1 1 0
 p(2) 1 1 1 0 1 1 0
 +x2a 1 0 1 1 0
 –––––––––––––––––––––––––––––––
 2p(3) 1 1 0 0 1 1 1 0
 p(3) 1 1 0 0 1 1 1 0
 +x3a 0 0 0 0 0
 –––––––––––––––––––––––––––––––
 2p(4) 1 1 1 0 0 1 1 1 0
 p(4) 1 1 1 0 0 1 1 1 0
 +(–x4a) 0 1 0 1 0
 –––––––––––––––––––––––––––––––
 2p(5) 0 0 0 1 1 0 1 1 1 0
 p(5) 0 0 0 1 1 0 1 1 1 0
 =============================
Fig. 9.8 Sequential multiplication of 2’s-complement

numbers with right shifts (negative multiplier).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 129

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 9.1 Radix-2 Booth’s recoding

 –––––––––––––––––––––––––––––––––––––
 xi xi–1 yi Explanation
 –––––––––––––––––––––––––––––––––––––

 0 0 0 No string of 1s in sight

 0 1 1 End of string of 1s in x

 1 0 -1 Beginning of string of 1s in x

 1 1 0 Continuation of string of 1s in x

 –––––––––––––––––––––––––––––––––––––

Example

 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 Operand x

(1) -1 0 1 0 0 -1 1 0 -1 1 -1 1 0 0 -1 0 Recoded
 version y

Justification

 2j + 2j–1 + . . . + 2i+1 + 2i = 2j+1 – 2i

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 130

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 ==============================
 a 1 0 1 1 0
 x 1 0 1 0 1 Multiplier
 y -1 1 -1 1 -1 Booth-recoded
 =============================
 p(0) 0 0 0 0 0
 +y0a 0 1 0 1 0
 –––––––––––––––––––––––––––––––
 2p(1) 0 0 1 0 1 0
 p(1) 0 0 1 0 1 0
 +y1a 1 0 1 1 0
 –––––––––––––––––––––––––––––––
 2p(2) 1 1 1 0 1 1 0
 p(2) 1 1 1 0 1 1 0
 +y2a 0 1 0 1 0
 –––––––––––––––––––––––––––––––
 2p(3) 0 0 0 1 1 1 1 0
 p(3) 0 0 0 1 1 1 1 0
 +y3a 1 0 1 1 0
 –––––––––––––––––––––––––––––––
 2p(4) 1 1 1 0 0 1 1 1 0
 p(4) 1 1 1 0 0 1 1 1 0
 +y4a 0 1 0 1 0
 –––––––––––––––––––––––––––––––
 2p(5) 0 0 0 1 1 0 1 1 1 0
 p(5) 0 0 0 1 1 0 1 1 1 0
 =============================

Fig. 9.9 Sequential multiplication of 2’s-complement
numbers with right shifts using Booth’s recoding.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 131

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

9.5 Multiplication by Constants

Explicit multiplications, e.g. y : = 12 ∗ x + 1
Implicit multiplications, e.g. A[i, j] := A[i, j] + B[i, j]
 Address of A[i, j] = base + n ∗ i + j

Aspects of multiplication by integer constants:
Produce efficient code using as few registers as possible
Find the best code by a time/space-efficient algorithm

Use binary expansion
Example: multiply R1 by 113 = (1110001)two

 R2 ← R1 shift-left 1

 R3 ← R2 + R1

 R6 ← R3 shift-left 1

 R7 ← R6 + R1

 R112 ← R7 shift-left 4

 R113 ← R112 + R1

Only two registers are required; R1 and another

Shorter sequence using shift-and-add instructions
 R3 ← R1 shift-left 1 + R1

 R7 ← R3 shift-left 1 + R1

 R113 ← R7 shift-left 4 + R1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 132

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Use of subtraction (Booth’s recoding) may help
Example:

multiply R1 by 113 = (1110001)two = (100-10001)two

 R8 ← R1 shift-left 3

 R7 ← R8 – R1

 R112 ← R7 shift-left 4

 R113 ← R112 + R1

Use of factoring may help
Example: multiply R1 by 119 = 7 × 17 = (8 – 1) × (16 + 1)

 R8 ← R1 shift-left 3

 R7 ← R8 – R1

 R112 ← R7 shift-left 4

 R119 ← R112 + R7

Shorter sequence using shift-and-add/subtract instructions
 R7 ← R1 shift-left 3 – R1

 R119 ← R7 shift-left 4 + R7

Factors of the form 2b ± 1 translate directly into a shift
followed by an add or subtract

Program execution time improvement by an optimizing
compiler using the preceding methods: 20-60% [Bern86]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 133

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

9.6 Preview of Fast Multipliers

Viewing multiplication as a multioperand addition problem,
there are but two ways to speed it up

a. Reducing the number of operands to be added:
 handling more than one multiplier bit at a time
 (high-radix multipliers, Chapter 10)

b. Adding the operands faster:
 parallel/pipelined multioperand addition
 (tree and array multipliers, Chapter 11)

In Chapter 12, we cover all remaining multiplication topics,
 including bit-serial multipliers, multiply-add units,
 and the special case of squaring

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 134

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

10 High-Radix Multipliers

 Go to TOC
Chapter Goals
 Study techniques that allow us to handle
 more than one multiplier bit in each cycle
 (two bits in radix 4, three in radix 8, . . .)

Chapter Highlights
 High radix gives rise to “difficult” multiples
 Recoding (change of digit-set) as remedy
 Carry-save addition reduces cycle time
 Implementation and optimization methods

Chapter Contents
10.1 Radix-4 Multiplication
10.2 Modified Booth’s Recoding
10.3 Using Carry-Save Adders
10.4 Radix-8 and Radix-16 Multipliers
10.5 Multibeat Multipliers
10.6 VLSI Complexity Issues

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 135

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

10.1 Radix-4 Multiplication

Radix-r versions of multiplication recurrences

Multiplication with right shifts: top-to-bottom accumulation

p(j+1) = (p(j) + xj a r

k) r–1 with p(0) = 0 and

 |–––add–––| p(k) = p = ax + p(0)r
–k

 |––shift right––|

Multiplication with left shifts: bottom-to-top accumulation

p(j+1) = r p(j) + xk–j–1a with p(0) = 0 and

 |shift| p(k) = p = ax + p(0)r
k

 |––––add––––|

 • • • • a
 • • • • x

 • • • • • • (x x) a 4
• • • • • • (x x) a 4

• • • • • • • • p

×

0 1
2 3 two

two
0
1

Fig. 10.1 Radix-4, or two-bit-at-a-time, multiplication in dot
notation.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 136

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

0 a 2a

3a
Multiplier

To the adder

2-bit shifts

00 01 10 11
Mux

xi+1 xi

Fig. 10.2 The multiple generation part of a radix-4 multiplier
with precomputation of 3a.

 ================================
 a 0 1 1 0
 3a 0 1 0 0 1 0
 x 1 1 1 0
 ================================
 p(0) 0 0 0 0
 +(x1x0)twoa 0 0 1 1 0 0
 ––––––––––––––––––––––––––––––––––
 4p(1) 0 0 1 1 0 0
 p(1) 0 0 1 1 0 0
 +(x3x2)twoa 0 1 0 0 1 0
 ––––––––––––––––––––––––––––––––––
 4p(2) 0 1 0 1 0 1 0 0
 p(2) 0 1 0 1 0 1 0 0
 ================================

Fig. 10.3 Example of radix-4 multiplication using the 3a
multiple.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 137

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

0 a 2a –a

Multiplier

To the adder

+c
FF

Set if = = 1
 or if = c = 1c

00 01 10 11
Mux

2-bit shifts

mod 4

Carry
xi+1 xi

xi+1
xi+1

xi

Fig. 10.4 The multiple generation part of a radix-4 multiplier
based on replacing 3a with 4a (carry into next
higher radix-4 multiplier digit) and –a.

xi+1 xi c Mux control Set carry
--- --- --- ----------------- ------------
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 0 1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 138

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

10.2 Modified Booth’s Recoding

Table 10.1 Radix-4 Booth’s recoding yielding (zk/2
. . . z1z0)four

–––
 xi+1 xi xi–1 yi+1 yi zi/2 Explanation
–––

 0 0 0 0 0 0 No string of 1s in sight

 0 0 1 0 1 1 End of string of 1s

 0 1 0 0 1 1 Isolated 1

 0 1 1 1 0 2 End of string of 1s

 1 0 0 -1 0 -2 Beginning of string of 1s

 1 0 1 -1 1 -1 End a string, begin new one

 1 1 0 0 -1 -1 Beginning of string of 1s

 1 1 1 0 0 0 Continuation of string of 1s

––

Example: (21 31 22 32)four

 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 Operand x
 ––– ––– ––– ––– ––– ––– ––– –––
 (1) -2 2 -1 2 -1 -1 0 -2 Recoded
 version z

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 139

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 ===========================
 a 0 1 1 0
 x 1 0 1 0
 z -1 -2 Recoded version of x
 ===========================
 p(0) 0 0 0 0 0 0
 +z0a 1 1 0 1 0 0
 –––––––––––––––––––––––––––––
 4p(1) 1 1 0 1 0 0
 p(1) 1 1 1 1 0 1 0 0
 +z1a 1 1 1 0 1 0
 –––––––––––––––––––––––––––––
 4p(2) 1 1 0 1 1 1 0 0
 p(2) 1 1 0 1 1 1 0 0
 ===========================

Fig. 10.5 Example radix-4 multiplication with modified
Booth’s recoding of the 2’s-complement multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 140

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

two non0
a 2a

Enable

Select

 z a

neg

ii+1 i–1

i/2

0 1
Mux

k+1
0, a, or 2a

To adder input
Add/subtract
 control

x

Multiplier

xx

Recoding Logic

Multiplicand

0

k

0

2-bit shift

Init. 0

Fig. 10.6 The multiple generation part of a radix-4 multiplier
based on Booth’s recoding.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 141

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

10.3 Using Carry-Save Adders

Mux

0 2a

0 a

Multiplier

New Cumulative Partial Product

Old Cumulative
 Partial Product

CSA

Mux
xi+1 xi

Adder

Fig. 10.7 Radix-4 multiplication with a carry-save adder used
to combine the cumulative partial product, xia, and

2xi+1a into two numbers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 142

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

0

Multiplier

k

k

k-Bit CSA

k

Partial Product

k

Mux

k-Bit Adder

Mux

Multiplicand

Carry

Sum

Fig. 10.8 Radix-2 multiplication with the upper half of the
cumulative partial product in stored-carry form.

a

Multiplier

x

i+1

x

i

Adder

New cumulative
 partial product

Old cumulative
 partial product

FF

2-bit
 Adder

To the lower half
 of partial product

 Booth recoder
and selector

CSA

x

i-1

z a
 i/2

Extra “dot”

Fig. 10.9 Radix-4 multiplication with a carry-save adder used
to combine the stored-carry cumulative partial
product and zi/2a into two numbers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 143

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

x x x x

Recoding Logic

two non0
a 2a

Enable

Select

 z a

neg

ii+1 i–1

i/2

i–2

0 1
Mux

k+1

0, a, or 2a

k+2

Selective Complement

0, a, –a, 2a, or –2a

 Extra "Dot"
for Column i

xi+2

Fig. 10.10 Booth recoding and multiple selection logic for

high-radix or parallel multiplication.

Mux

0 2a

0 a

Multiplier

CSA

Mux xi+1 xi

Adder

CSA
New Cumulative
 Partial Product

Old Cumulative
 Partial Product

FF
2-Bit
Adder

To the Lower Half
 of Partial Product

Fig. 10.11 Radix-4 multiplication with two carry-save adders.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 144

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

10.4 Radix-8 and Radix-16 Multipliers

Multiplier

CSA CSA

CSA

CSA

Partial Product
 (Upper Half)

Mux

0 8a

Mux

0 4a

Mux

0 2a

Mux

0 a

xi+3

xi+2

xi+1

xi

Carry

Sum

4-Bit
Shift

FF

To the Lower Half
 of Partial Product

3 4-Bit
Adder

4

4

Fig. 10.12 Radix-16 multiplication with the upper half of the
cumulative partial product in carry-save form.

Remove the mux corresponding to xi+3
and the CSA right below it to get a radix-8 multiplier
(the cycle time will remain the same, though)
Must also modify the small adder at the lower right

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 145

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Radix-16 multiplier design can become a radix-32 design
if modified Booth’s recoding is applied first

Basic
binary

Adder

Adder

 Next
multiple

Partial product

...

 Several
multiples

Adder

. . .

All multiples

Small CSA
 tree Full CSA

 tree

High-radix
 or
 partial tree

Full
treeSpeed up Economize

Partial product

Fig. 10.13 High-radix multipliers as intermediate between
sequential radix-2 and full-tree multipliers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 146

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

10.5 Multibeat Multipliers

Adder

CSA

Sum

Carry

CSA

Sum

Carry

FF

To the Lower Half
 of Partial Product

6-Bit
Adder

6

65

 Pipelined
 Radix-8
 Booth
 Recoder
& Selector

3a a 3a a
4 4

Twin Multiplier
 Registers

 Pipelined
 Radix-8
 Booth
 Recoder
& Selector

Fig. 10.14 Twin-beat multiplier with radix-8 Booth’s recoding.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 147

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Next-state
logic

State
flip-flops

Inputs
Next-state
excitation

Present
state

Next-state
logic

State
latches

Inputs

Next-state
logic

Inputs
State

latches

PH1

PH2 CLK

(a) Sequential machine with FFs (b) Sequential machine with latches and 2-phase clock
Fig. 10.? Conceptual view of a twin-beat multiplier.

Beat-1
 Input

Beat-3
 Input

Beat-2
 Input

Node 1

Node 2

Node 3

Fig. 10.15 Conceptual view of a three-beat multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 148

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

10.6 VLSI Complexity Issues

Radix-2b multiplication
 bk two-input AND gates

 O(bk) area for the CSA tree

 Total area: A = O(bk)

 Latency: T = O((k/b) log b + log k)

Any VLSI circuit computing the product of two k-bit
integers must satisfy the following constraints
 AT grows at least as fast as k k .
 AT2 is at least proportional to k2

For the preceding implementations, we have:

 AT = O(k2 log b + bk log k)

 AT2 = O((k3/b) log2b)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 149

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Suboptimality of radix-b multipliers

Low cost High speed Optimal wrt
b constant b = O(k) AT or AT2

AT = O(k2) AT = O(k2 log k) AT = O(k k)

AT2 = O(k3) AT2 = O(k2 log2k) AT2 = O(k2)

Intermediate designs do not yield better AT and AT2
The multipliers remain asymptotically suboptimal for any b

By the AT measure (indicator of cost-effectiveness)
 slower radix-2 multipliers are better than
 high-radix or tree multipliers

When many independent multiplications are required,
 it may be appropriate to use the available chip area
 for a large number of slow multipliers
 as opposed to a small number of faster units

Latency of high-radix multipliers can actually be reduced
 from O((k/b) log b + log k) to O(k/b + log k)
 through more effective pipelining (Chapter 11)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 150

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

11 Tree and Array Multipliers

 Go to TOC
Chapter Goals
 Study the design of multipliers for highest
 possible performance (speed, throughput)

Chapter Highlights
 Tree multiplier = reduction tree
 + redundant-to-binary converter
 Avoiding full sign extension in multiplying
 signed numbers
 Array multiplier = one-sided reduction tree
 + ripple-carry adder

Chapter Contents
11.1 Full-Tree Multipliers
11.2 Alternative Reduction Trees
11.3 Tree Multipliers for Signed Numbers
11.4 Partial-Tree Multipliers
11.5 Array Multipliers
11.6 Pipelined Tree and Array Multipliers

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 151

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

11.1 Full-Tree Multipliers

Basic
Binary

Adder

Adder

 Next
Multiple

Partial Product

...

 Several
Multiples

Adder

. . .

All Multiples

Small CSA
 Tree Full CSA

 Tree

High-Radix
 or
Partial-Tree

Full-
TreeSpeed up Economize

Partial Product

Previously covered Our next topic

Fig. 10.13 High-radix multipliers as intermediate between
sequential radix-2 and full-tree multipliers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 152

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Higher-order
 product bits

Multiplier
a

a

a

a. . .

. . .

Some lower-order
product bits are
generated directly

Redundant result

Redundant-to-Binary
 Converter

Multiple-
Forming
Circuits

(Multi-Operand
 Addition Tree)

Partial-Products
 Reduction Tree

Fig. 11.1 General structure of a full-tree multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 153

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Adder

Large tree of
carry-save

adders

. . .

All partial products

Product

Adder

Small tree of
carry-save

adders

. . .

Several partial products

Product

Log-
depth

Log-
depth

Fig. x Schematic diagrams for full-tree and partial-tree
multipliers.

Variations in tree multipliers are distinguished by
the designs of the following three elements:
 multiple-forming circuits
 partial products reduction tree
 redundant-to-binary converter

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 154

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 1 2 3 4 3 2 1
 FA FA FA HA

 1 3 2 3 2 1 1
 FA HA FA HA

 2 2 2 2 1 1 1
 4-Bit Adder

1 1 1 1 1 1 1 1

Wallace Tree
(5 FAs + 3 HAs + 4-Bit Adder)

 1 2 3 4 3 2 1
 FA FA

 1 3 2 2 3 2 1
 FA HA HA FA

 2 2 2 2 1 2 1
 6-Bit Adder

1 1 1 1 1 1 1 1

Dadda Tree
(4 FAs + 2 HAs + 6-Bit Adder)

Fig. 11.2 Two different binary 4 × 4 tree multipliers.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 155

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

10-bit CPA

7-bit CSA 7-bit CSA

7-bit CSA

10-bit CSA

2Ignore

The index pair
[i, j] means that
bit positions
from i up to j
are involved.

7-bit CSA

[0, 6]
[1, 7]

[2, 8]
[6, 12]

[3, 11] [1,8]

[3, 9]
[4, 10]

[5, 11]

[2, 8] [5, 11]

[6, 12]

[2,12]

[3, 12]

[4,13] [4,12]

[4, 13]

[3,9]

3

[3,12]

[2, 8]

[3,12]

[1, 6]

01

Fig. 11.3 Possible CSA tree for a 7 × 7 tree multiplier.

CSA trees are generally quite irregular,
thus causing problems in VLSI implementation

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 156

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

11.2 Alternative Reduction Trees

FA FA FA

FA FA

FA FA

FA

FA

Inputs

Level-1
carries

Level-2
carries

Level-3
carries

Level-4
carry

Outputs

Fig. 11.4 A slice of a balanced-delay tree for 11 inputs.

CSA

CSA

4-to-2 4-to-2 4-to-2 4-to-2

4-to-2 4-to-2

4-to-2
4-to-2 reduction module
implemented with two
levels of (3; 2)-counters

Fig. 11.5 Tree multiplier with a more regular structure based
on 4-to-2 reduction modules.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 157

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

M u l t i p l i c a n d . . .

Redundant-to-binary converter

Multiple
generation

circuits

M
 u

 l
t

i p
 l

e
 s

 e
 l

e
c

t
i o

 n

s
i g

 n
 a

 l
s

Fig. 11.6 Layout of a partial-products reduction tree

composed of 4-to-2 reduction modules. Each solid
arrow represents two numbers.

If 4-to-2 reduction is done by using two CSAs,
 the binary tree will often have more CSA levels,
 but regularity will improve

Use of Booth’s recoding reduces the gate complexity
 but may not prove worthwhile due to irregularity

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 158

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

11.3 Tree Multipliers for Signed Numbers

Sign extension in multioperand addition (from Fig. 8.18)

 Extended positions Sign Magnitude positions

 xk–1 xk–1 xk–1 xk–1 xk–1 xk–1 xk–2 xk–3 xk–4 . . .

 yk–1 yk–1 yk–1 yk–1 yk–1 yk–1 yk–2 yk–3 yk–4 . . .

 zk–1 zk–1 zk–1 zk–1 zk–1 zk–1 zk–2 zk–3 zk–4 . . .

The difference in multiplication is the shifting sign positions

α

β

γ

αβγ

x α

β

γ

α

β

γ

α

β

γ

α

β

γ

α

β

γ

α

β

α

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

 FA FA FA FA FA FA

Five redundant copies
removed

Sign extensions
Signs

Fig. 11.7 Sharing of full adders to reduce the CSA width in a

signed tree multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 159

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 4 3 2 1 0
 4 3 2 1 0

 4 3 2 1 0
 4 3 2 1 0
 a x a x a x a x a x

 a a a a a
 x x x x x

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

×

 a a a a a
 x x x x x

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 --
-

p p p p p p p p p p

 a a a a a
 x x x x x

 -a x a x a x a x a x
 -a x a x a x a x a x
 -a x a x a x a x a x
 -a x a x a x a x a x
 a x -a x -a x -a x -a x
 --
-

p p p p p p p p p p

 a a a a a
 x x x x x

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a a
 1 x x
 --
-

p p p p p p p p p p

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x

--
-

p p p p p p p p p p

1 1

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4
 4 4
 4 4

 4 3 2 1 0
 4 3 2 1 0

 4 3 2 1 0
 4 3 2 1 0

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

×

×

×

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

a. Unsigned

b. 2's-complement

c. Baugh-Wooley

d. Modified B-W
 __

__
__

__
__ __ __ __

_
_

_
_

_ _ _ _

Fig. 11.8 Baugh-Wooley 2’s-complement multiplication.

 –a4 x0 = a4(1 – x0) – a4 = a4x0 – a4

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 160

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

11.4 Partial-Tree Multipliers

. . .

CSA Tree

h inputs

Adder

Lower part of
 the cumulative
 partial product

FF

h-Bit
 Adder

Sum
 Carry

Upper part of
 the cumulative
 partial product
 (stored-carry)

Fig. 11.9 General structure of a partial-tree multiplier.

High-radix versus partial-tree multipliers
 difference is quantitative rather than qualitative
 for small h, say < 8 bits, the multiplier of Fig. 11.9
 is viewed as a high-radix multiplier
 when h is a significant fraction of k, say k/2 or k/4,
 then we view it as a partial-tree multiplier

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 161

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

11.4 Array Multipliers

0x ax ax a

x a

x a

CSA

CSA

CSA

CSA

Ripple-Carry Adder

012

3

4

ax

Fig. 11.10 A basic array multiplier uses a one-sided CSA tree
and a ripple-carry adder.

p

0

p

1

p

2

p

3

p

4

p

6

p

7

p

8

a x

0 0

a x

1 0

a x

2 0

a x

3 0

a x

4 0

0

0

0

0

a x

0 1

a x

1 1

a x

2 1

a x

3 1

p

9

p

5

a x

4 1

a x

4 2

a x

4 3

a x

4 4

a x

0 2

a x

1 2

a x

2 2

a x

3 2

a x

0 3

a x

1 3

a x

2 3

a x

3 3

a x

0 4

a x

1 4

a x

2 4

a x

3 4

0

Fig. 11.11 Details of a 5 × 5 array multiplier using FA blocks.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 162

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

p

0

p

1

p

2

p

3

p

4

p

6 p

7 p 8

a x

0 0

a x

1 0

a x

2 0

a x

3 0

a x

4 0

0

0

0

0

a x

0 1

a x

1 1

a x

2 1

a x

3 1

p 9 p

5

a x

4 1

a x

4 2

a x

4 3

a x

4 4

a x

0 2

a x

1 2

a x

2 2

a x

3 2

a x

0 3

a x

1 3

a x

2 3

a x

3 3

a x

0 4

a x

1 4

a x

2 4

a x

3 4
 1

 x

4

a

4

a

4
 x

4

_

_

_

_

_

_

_

_

_

_

Fig. 11.12 Modifications in a 5 × 5 array multiplier to deal with

2’s-complement inputs using the Baugh-Wooley
method or to shorten the critical path.

Nearly half of the hardware in array/tree multipliers is there
to get the last bit right (1 dot = one FPGA cell)

 ulp
 . o o o o o o o o k-by-k
× . o o o o o o o o multiplication

 . o o o o o o o|o
 . o o o o o o|o o
 . o o o o o|o o o
 . o o o o|o o o o
 . o o o|o o o o o
 . o o|o o o o o o
 . o|o o o o o o o
 . |o o o o o o o o

 . o o o o o o o o|o o o o o o o o

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 163

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Max error = 8/2 + 7/4 + 6/8 + 5/16 + 4/32 + 3/64 + 2/128 +
1/256 = 7.004 ulp

Mean error = 1.751 ulp

Constant compensation Variable compensation
 . o o o o o o o| . o o o o o o o|
 . o o o o o o| . o o o o o o|
 . o o o o o| . o o o o o|
 . o o o o| . o o o o|
 . o o o| . o o o|
 . 1 o o| . o o|
 . o| . x–1o|
 . | . y–1 |

p p p p
p

4 3 2 1 0 a a a a a

4

3

2

1

0

x

x

x

x

x

4

3

2

1

0

p

p

p

p

p

9 8 7 6
5

Fig. 11.13 Design of a 5 × 5 array multiplier with two additive
inputs and full-adder blocks that include AND gates.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 164

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

i+1

i

i+1

i

i i

Mux

Mux

Mux
k

[k, 2k–1] 1i–1ii+1k–1

Level i

k k

0

Mux

..
.

..
.

Bi+1

Bi

Fig. 11.14 Conceptual view of a modified array multiplier that
does not need a final carry-propagate adder.

Dots in row i + 1

B

 i

B

 i+1

Dots in row i

i Conditional bits

 i + 1 Conditional bits
of the final product

Fig. 11.15 Carry-save addition, performed in level i, extends
the conditionally computed bits of the final product.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 165

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

11.6 Pipelined Tree and Array Multipliers

. . .

CSA Tree

h inputs

Adder

Lower part of
 the cumulative
 partial product

FF

h-Bit
 Adder

Sum
 Carry

Upper part of
 the cumulative
 partial product
 (stored-carry)

Fig. 11.9 General structure of a partial-tree multiplier.

. . .

h inputs

Adder

Lower part of
 the cumulative
 partial product

FF

h-Bit
 Adder

Sum

Carry

CSA

Pipelined
CSA Tree

Latches

Latches

Latches

CSA

(h + 2)-input
CSA tree

Latch

Fig. 11.16 Efficiently pipelined partial-tree multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 166

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

p p p p p

4 3 2 1 0 a a a a a 4 3 2 1 0 x x x x x

4 3 2 1 0 p p p p p 9 8 7 6 5

Latched
FA with
AND gate

Latch

FA

FA

FA

FA

Fig. 11.17 Pipelined 5 × 5 array multiplier using latched FA
blocks. The small shaded boxes are latches.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 167

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

12 Variations in Multipliers

 Go to TOC
Chapter Goals
 Learn additional methods for synthesizing
 fast multipliers as well as other types
 of multipliers (bit-serial, modular, etc.)

Chapter Highlights
 Building a multiplier from smaller units
 Performing multiply-add as one operation
 Bit-serial and (semi)systolic multipliers
 Using a multiplier for squaring is wasteful

Chapter Contents
12.1 Divide-and-Conquer Designs
12.2 Additive Multiply Modules
12.3 Bit-Serial Multipliers
12.4 Modular Multipliers
12.5 The Special Case of Squaring
12.6 Combined Multiply-Add Units

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 168

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

12.1 Divide-and-Conquer Designs

a

×

p

Rearranged partial products
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL

xHa H

a H xL

a L xH

a L xLxHa H

b bits

Fig. 12.1 Divide-and-conquer (recursive) strategy for
synthesizing a 2b × 2b multiplier from b × b
multipliers.

4b × 4b

3b × 3b

2b × 2b

b × b

Fig. 12.2 Using b × b multipliers to synthesize 2b × 2b,
3b × 3b, and 4b × 4b multipliers.

2b × 2b use (3; 2)-counters
3b × 3b use (5; 2)-counters
4b × 4b use (7; 2)-counters

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 169

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 a x a x a x a x

Add

Add

Add

Add Add

p p p p

000

8

8

12

12

H L H H H L L L
[4, 7] [4, 7] [0, 3] [4, 7] [4, 7] [0, 3] [0, 3] [0, 3]

[12,15] [8,11] [8,11] [4, 7] [8,11] [4, 7] [4, 7] [0, 3]

[4, 7]

[4, 7]

[8,11]

[8,11]

[12,15]

[12,15] [8,11] [0, 3] [4, 7]

Multiply Multiply Multiply Multiply

Fig. 12.3 Using 4 × 4 multipliers and 4-bit adders to
synthesize an 8 × 8 multiplier.

Generalization

2b × 2c use b × c multipliers and (3; 2)-counters
2b × 4c use b × c multipliers and (5; 2)-counters
gb × hc use b × c multipliers and (?; 2)-counters

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 170

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

12.2 Additive Multiply Modules

c

in

y

z

ax

p

4-bit adder

y

z

x
 a

p = ax + y + z

(a) Block diagram
v

(b) Dot notation
v

Fig. 12.4 Additive multiply module with 2 × 4 multiplier (ax)
plus 4-bit and 2-bit additive inputs (y and z).

b × c AMM

 b-bit and c-bit multiplicative inputs
 b-bit additive input
 c-bit additive input
 (b + c)-bit output

 (2b – 1) × (2c – 1) + (2b – 1) + (2c – 1) = 2b+c – 1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 171

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 [0, 1]

 [2, 3]

 [4, 5]

 [6, 7]

[8, 9][10,11][12,15]

[0, 1]

[2, 3]

[4,5]
[6, 7]

x

x

x

x
 [0, 3]a

[0, 3]a

[0, 3]a

[0, 3]a

p

p
p

p
ppp

 [0, 1]x

 [2, 3]

 [4, 5]

 [6, 7]x

x

x

[10,11]

[8, 9]

[4, 7]a

[4, 7]a

[4, 7]a

[4, 7]a

[8, 9]

[0, 1]

[2, 3]
[4, 5]

[6, 7]
[4,5]

[6, 7]

[8, 11]

[10,13]

[2, 5]

[4,7]

[6, 9]
[8, 11]

[6, 9]

*

*

* *

**

Legend:
2 bits
4 bits

Fig. 12.5 An 8 × 8 multiplier built of 4 × 2 AMMs. Inputs
marked with an asterisk carry 0s.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 172

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

[8, 9]p

* *

*

*

*

*

 [0, 1]

 [2, 3]

 [4, 5]

 [6, 7]

x

x

x

x

[10,11][12,15]

[0, 1]

[2, 3]
[4,5]

[6, 7]
p

p
p

p
p

p

 [0,3] [4, 7] aa

Legend:
2 bits
4 bits

Fig. 12.6 Alternate 8 × 8 multiplier design based on 4 × 2
AMMs. Inputs marked with an asterisk carry 0s.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 173

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

12.3 Bit-Serial Multipliers

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Carry

Sum

FA
Product
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Fig. 12.7 Semi-systolic circuit for 4 × 4 multiplication in 8
clock cycles.

Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

Fig. 12.8 Example of retiming by delaying the inputs to CL
and advancing the outputs from CL by d units.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 174

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Carry

FA
Product
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Sum

Cut 1Cut 2Cut 3

Fig. 12.9 A retimed version of our semi-systolic multiplier.

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Sum

FA
Product
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Carry

Fig. 12.10 Systolic circuit for 4 × 4 multiplication in 15 cycles.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 175

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Mux

(5; 3)-counter

0

1

012

a x

a x

ss

c c

t t in

out in

in out

out

p

ii

ii(i–1)

Fig. 12.11 Building block for a latency-free bit-serial multiplier.

a
x

ss

c c

t t in

out in

in out

out

p

i

i

. . .

. . .

. . .

. . .

. . .

i

LSB

0

Fig. 12.12 The cellular structure of the bit-serial multiplier
based on the cell in Fig. 12.11.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 176

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

p

x

a

Already
accumulated

into three
numbers

(i - 1)

a

x

(i - 1)

i

a

x

i

 x

i

(i - 1)

a

i

a

x

(i - 1)

x

i

i

a

Already output

(a) Structure of the bit-matrix

(b) Reduction after each input bit

p

(i - 1)

i

a

x

(i - 1)

 x

i

(i - 1)

a

x

i

i

a

2p

 (i)

Shift right to
obtain p

(i)

Fig. 12.13 Bit-serial multiplier design in dot notation.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 177

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

12.4 Modular Multipliers

. . .FA FAFAFAFA

Fig. 12.14 Modulo-(2b – 1) carry-save adder.

Mod-15 CSA

Divide by 16

4

4

4

4

Mod-15 CSA

4

Mod-15 CPA

Fig. 12.15 Design of a 4 × 4 modulo-15 multiplier.

Fig. 12.16 One way to design of a 4 × 4 modulo-13 multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 178

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

. . .

Table

n inputs

CSA Tree

sum mod m

 3-input
Modulo-m
 Adder

.

.

.

Address

Data

Fig. 12.17 A method for modular multioperand addition.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 179

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

12.5 The Special Case of Squaring

x 0 x 1 x 2 x 3 x 4
x 0 x 1 x 2 x 3 x 4

x 0 x 1 x 2 x 3 x 4 x 0 x 0

p 0

x 4

x 1

x 4

x 0
x 1

x 2
x 3

x 4

x 0
x 1

x 2
x 3

x 4

x 0

Multiply x by x

x 1 x 2 x 3 x 4 x 0
x 1 x 2 x 3 x 4 x 0

x 1 x 2 x 3 x 4 x 0
x 1 x 2 x 3 x 4 x 0

x 1
x 2
x 3

x 1
x 2
x 3

x 2
x 3

x 4

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9

x 1 x 2 x 3 x 4 x 0
x 1

x 0

x 2

x 0
x 1

x 0
x 2 x 3

x 4 x 0
x 3

x 4

x 0

x 1

x 2 x 1
x 2

x 3

x 3 x 4
x 4

p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 0

_

Simplify

Fig. 12.18 Design of a 5-bit squarer.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 180

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

12.6 Combined Multiply-Add Units

Dot matrix for the
4 4 multiplication

• • • • • • • • • • • •
 • • • • • • •
(a) • • • •

×

Additive input

• • • • • • • • • • • •
 • • • • • • •
 • • • • •
 • • •
(c) •

• • • • • • • • • • • •
• • • • • • • • • • •
 • • • • • • •
 • • • • •
 • • •
(d) •

• • • • • • • • • • • •
• • • • • • • • • • •
 • • • • • • •
(b) • • • •

}

}

CSA-tree output

}

}

Carry-save additive input

CSA-tree output

Additive input

Dot matrix for the
4 4 multiplication×

Carry-save additive input

Fig. 12.19 Dot-notation representations of various methods for
performing a multiply-add operation in hardware.

Multiply-add versus multiply-accumulate
Multiply-accumulate units often have wider additive inputs

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 181

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part IV Division

Part Goals
 Review shift-subtract division schemes
 Learn about faster dividers
 Discuss speed/cost tradeoffs in dividers

Part Synopsis
 Division is the hardest basic operation
 Fortunately, it is also the least common
 Division speedup: high-radix, array, ...
 Combined multiplication/division hardware
 Digit-recurrence vs convergence division

Part Contents
Chapter 13 Basic Division Schemes
Chapter 14 High-Radix Dividers
Chapter 15 Variations in Dividers
Chapter 16 Division by Convergence

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 182

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

13 Basic Division Schemes

 Go to TOC
Chapter Goals
 Study shift/subtract (bit-at-a-time) dividers
 and set the stage for faster methods and
 variations to be covered in Chapters 14-16

Chapter Highlights
 Shift/sub divide vs shift/add multiply
 Hardware, firmware, software algorithms
 Dividing 2’s-complement numbers
 The special case of a constant divisor

Chapter Contents
13.1 Shift/Subtract Division Algorithms
13.2 Programmed Division
13.3 Restoring Hardware Dividers
13.4 Nonrestoring and Signed Division
13.5 Division by Constants
13.6 Preview of Fast Dividers

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 183

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

13.1 Shift/Subtract Division Algorithms

Notation for our discussion of division algorithms:
 z Dividend z2k–1z2k–2 . . . z1z0

 d Divisor dk–1dk–2 . . . d1d0

 q Quotient qk–1qk–2 . . . q1q0

 s Remainder (z – d × q) sk–1sk–2 . . . s1s0

Dividend

Subtracted
bit-matrix

z

s Remainder

Quotient q
Divisor d

q d 2 3
3 –

q d 2 2
2 –

q d 2 1
1 –

q d 2 0
0 –

Fig. 13.1 Division of an 8-bit number by a 4-bit number in dot
notation.

Division is more complex than multiplication:

 Need for quotient digit selection or estimation

 Possibility of overflow: the high-order k bits of z
 must be strictly less than d; this overflow check
 also detects the divide-by-zero condition.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 184

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Fractional division can be reformulated as integer division

 Integer division is characterized by z = d × q + s
 multiply both sides by 2–2k to get

 2–2kz = (2–kd) × (2–kq) + 2–2ks

 zfrac = dfrac × qfrac + 2–ksfrac

Divide fractions like integers; adjust the final remainder
No-overflow condition in this case is zfrac < dfrac

Sequential division with left shifts

s(j) = 2s(j–1) – qk–j (2

k d) with s(0) = z and

 | shift | s(k) = 2k s
 |––– subtract –––|

There is no division algorithm with right shifts

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 185

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 Integer division Fractional division
====================== =====================
z 0 1 1 1 0 1 0 1 zfrac . 0 1 1 1 0 1 0 1
24d 1 0 1 0 dfrac . 1 0 1 0
====================== =====================
s(0) 0 1 1 1 0 1 0 1 s(0) . 0 1 1 1 0 1 0 1
2s(0) 0 1 1 1 0 1 0 1 2s(0) 0 . 1 1 1 0 1 0 1
–q3 2

4d 1 0 1 0 {q3 = 1} –q–1d . 1 0 1 0 {q–1=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(1) 0 1 0 0 1 0 1 s(1) . 0 1 0 0 1 0 1
2s(1) 0 1 0 0 1 0 1 2s(1) 0 . 1 0 0 1 0 1
–q2 2

4d 0 0 0 0 {q2 = 0} –q–2d . 0 0 0 0 {q–2=0}
––––––––––––––––––––––– ––––––––––––––––––––––
s(2) 1 0 0 1 0 1 s(2) . 1 0 0 1 0 1
2s(2) 1 0 0 1 0 1 2s(2) 1 . 0 0 1 0 1
–q1 2

4d 1 0 1 0 {q1 = 1} –q–3d . 1 0 1 0 {q–3=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(3) 1 0 0 0 1 s(3) . 1 0 0 0 1
2s(3) 1 0 0 0 1 2s(3) 1 . 0 0 0 1
–q0 2

4d 1 0 1 0 {q0 = 1} –q–1d . 1 0 1 0 {q–4=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(4) 0 1 1 1 s(4) . 0 1 1 1
s 0 1 1 1 sfrac 0 . 0 0 0 0 0 1 1 1
q 1 0 1 1 qfrac . 1 0 1 1
====================== =====================
Fig. 13.2 Examples of sequential division with integer and

fractional operands.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 186

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

13.2 Programmed Division

Rs Rq

Rd

0 0 . . . 0 0 0 0

2 dk

Carry
 Flag

Shifted Partial
 Remainder

Shifted Partial
 Quotient

Partial Remainder
 (2k – j Bits)

Partial Quotient
 (j Bits)

Next
quotient
digit
inserted
here

Divisor d

Fig. 13.3 Register usage for programmed division.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 187

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 {Using left shifts, divide unsigned 2k-bit dividend,
 z_high|z_low, storing the k-bit quotient and remainder.
 Registers: R0 holds 0 Rc for counter
 Rd for divisor Rs for z_high & remainder
 Rq for z_low & quotient}
 {Load operands into registers Rd, Rs, and Rq}
 div: load Rd with divisor
 load Rs with z_high
 load Rq with z_low
 {Check for exceptions}
 branch d_by_0 if Rd = R0
 branch d_ovfl if Rs > Rd
 {Initialize counter}
 load k into Rc
 {Begin division loop}
 d_loop: shift Rq left 1 {zero to LSB, MSB to carry}
 rotate Rs left 1 {carry to LSB, MSB to carry}
 skip if carry = 1
 branch no_sub if Rs < Rd
 sub Rd from Rs
 incr Rq {set quotient digit to 1}
 no_sub: decr Rc {decrement counter by 1}
 branch d_loop if Rc ≠ 0
 {Store the quotient and remainder}
 store Rq into quotient
 store Rs into remainder
 d_by_0: ...
 d_ovfl: ...
 d_done: ...

Fig. 13.4 Programmed division using left shifts.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 188

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

13.3 Restoring Hardware Dividers

Division with signed operands: q and s are defined by

 z = d × q + s sign(s) = sign(z) |s| < |d|

Examples of division with signed operands
 z = 5 d = 3 ⇒ q = 1 s = 2
 z = 5 d = –3 ⇒ q = –1 s = 2
 z = –5 d = 3 ⇒ q = –1 s = –2
 z = –5 d = –3 ⇒ q = 1 s = –2
Magnitudes of q and s are unaffected by input signs
Signs of q and s are derivable from signs of z and d
Will discuss direct signed division later

Quotient q

Mux

Adder
out c

0 1

Partial remainder s (initial value z)

Divisor d

Shift

Shift

 Load

1
in c

(j)

Quotient
digit

selector

q k–j

MSB of
2s (j–1)

k

k

k

Trial difference

Fig. 13.5 Shift/subtract sequential restoring divider.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 189

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

==========================
z 0 1 1 1 0 1 0 1 No overflow, since:
24d 0 1 0 1 0 (0111)two < (1010)two
–24d 1 0 1 1 0
==========================
s(0) 0 0 1 1 1 0 1 0 1
2s(0) 0 1 1 1 0 1 0 1
+(–24d) 1 0 1 1 0
–––––––––––––––––––––––––––
s(1) 0 0 1 0 0 1 0 1 Positive, so set q3 = 1
2s(1) 0 1 0 0 1 0 1
+(–24d) 1 0 1 1 0
–––––––––––––––––––––––––––
s(2) 1 1 1 1 1 0 1 Negative, so set q2 = 0
s(2)=2s(1) 0 1 0 0 1 0 1 and restore
2s(2) 1 0 0 1 0 1
+(–24d) 1 0 1 1 0
–––––––––––––––––––––––––––
s(3) 0 1 0 0 0 1 Positive, so set q1 = 1
2s(3) 1 0 0 0 1
+(–24d) 1 0 1 1 0
–––––––––––––––––––––––––––
s(4) 0 0 1 1 1 Positive, so set q0 = 1
s 0 1 1 1
q 1 0 1 1
==========================
Fig. 13.6 Example of restoring unsigned division.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 190

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

13.4 Nonrestoring and Signed Division

The cycle time in restoring division must accommodate
 shifting the registers
 allowing signals to propagate through the adder
 determining and storing the next quotient digit
 storing the trial difference, if required
Later events depend on earlier ones in the same cycle
Such dependencies tend to lengthen the clock cycle

Nonrestoring division algorithm to the rescue!
 assume qk–j = 1 and perform a subtraction
 store the difference as the new partial remainder
 (the partial remainder can become incorrect,
 hence the name “nonrestoring”)

Why it is acceptable to store an incorrect value
 in the partial-remainder register?

Shifted partial remainder at start of the cycle is u
Subtraction yields the negative result u – 2kd

Option 1: restore the partial remainder to correct value u,
 shift, and subtract to get 2u – 2kd
Option 2: keep the incorrect partial remainder u – 2kd,
 shift, and add to get 2(u – 2kd) + 2kd = 2u – 2kd

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 191

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

==========================
z 0 1 1 1 0 1 0 1 No overflow, since:
24d 0 1 0 1 0 (0111)two < (1010)two
–24d 1 0 1 1 0
==========================
s(0) 0 0 1 1 1 0 1 0 1
2s(0) 0 1 1 1 0 1 0 1 Positive,
+(–24d) 1 0 1 1 0 so subtract
–––––––––––––––––––––––––––
s(1) 0 0 1 0 0 1 0 1
2s(1) 0 1 0 0 1 0 1 Positive, so set q3 = 1
+(–24d) 1 0 1 1 0 and subtract
–––––––––––––––––––––––––––
s(2) 1 1 1 1 1 0 1
2s(2) 1 1 1 1 0 1 Negative, so set q2 = 0
+24d 0 1 0 1 0 and add
–––––––––––––––––––––––––––
s(3) 0 1 0 0 0 1
2s(3) 1 0 0 0 1 Positive, so set q1 = 1
+(–24d) 1 0 1 1 0 and subtract
–––––––––––––––––––––––––––
s(4) 0 0 1 1 1 Positive, so set q0 = 1
s 0 1 1 1
q 1 0 1 1
==========================
Fig. 13.7 Example of nonrestoring unsigned division.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 192

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example

(0 1 1 1 0 1 0 1)two / (1 0 1 0)two
(117)ten / (10)ten

300

200

100

0

–100

117

234

74

148

–12

 296

136

272

112

s

(0)

s

(1)

s

(2)

s

(3)

s =16s

(4)

–160

2

×

2

×

2

×

×

2

–160

 –160
 –160

P
ar

tia
l r

e
m

ai
nd

er

(a) Restoring

 148

300

200

100

0

–100

117

234

74

148

–12
 –24

136

272

112

s

(0)

s

(1)

s

(2)

s

(3)

s =16s

(4)

–160

2

×

2

×

2

×

×

2

–160
 +160

–160

P
ar

tia
l r

e
m

ai
nd

er

(b) Nonrestoring

Fig. 13.8 Partial remainder variations for restoring and
nonrestoring division.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 193

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Restoring division
 qk–j = 0 means no subtraction (or subtraction of 0)
 qk–j = 1 means subtraction of d
Nonrestoring division
 We always subtract or add
 As if quotient digits are selected from the set {1, -1}
 1 corresponds to subtraction
 -1 corresponds to addition
 Our goal is to end up with a remainder
 that matches the sign of the dividend

This idea of trying to match the sign of s with the sign z,
 leads to a direct signed division algorithm

 If sign(s) = sign(d) then qk–j = 1 else qk–j = -1

Two problems must be dealt with at the end:
1. Converting the quotient with digits 1 and -1 to binary
2. Adjusting the results if final remainder has wrong sign
 (correction step involves addition of ±d to remainder
 and subtraction of ±1 from quotient)

Correction might be required even in unsigned division
 (when the final remainder is negative)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 194

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

==========================
z 0 0 1 0 0 0 0 1 Dividend = (33)ten
24d 1 1 0 0 1 Divisor = (–7)ten
–24d 0 0 1 1 1
==========================
s(0) 0 0 0 1 0 0 0 0 1
2s(0) 0 0 1 0 0 0 0 1 sign(s(0)) • sign(d),
+24d 1 1 0 0 1 so set q3 = -1 and add
–––––––––––––––––––––––––––
s(1) 1 1 1 0 1 0 0 1
2s(1) 1 1 0 1 0 0 1 sign(s(1)) = sign(d),
+(–24d) 0 0 1 1 1 so set q2 = 1 and sub
–––––––––––––––––––––––––––
s(2) 0 0 0 0 1 0 1
2s(2) 0 0 0 1 0 1 sign(s(2)) • sign(d),
+24d 1 1 0 0 1 so set q1 = -1 and add
+(–24d) 1 0 1 1 0
–––––––––––––––––––––––––––
s(3) 1 1 0 1 1 1
2s(3) 1 0 1 1 1 sign(s(3)) = sign(d),
+(–24d) 0 0 1 1 1 so set q0 = 1 and sub
–––––––––––––––––––––––––––
s(4) 1 1 1 1 0 sign(s(4)) • sign(z)
+(–24d) 0 0 1 1 1 Corrective subtraction
–––––––––––––––––––––––––––
s(4) 0 0 1 0 1
s 0 1 0 1 Remainder = (5)ten
q -1 1 -1 1 Uncorrected BSD form
q2’s-compl 1 1 0 0 Corrected q = (–4)ten
==========================
Fig. 13.9 Example of nonrestoring signed division.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 195

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Quotient

k

Partial Remainder

Divisor

add/sub

k-bit adder

k

cout cin

Complement

qk–j

2s (j–1)
MSB of

Divisor Sign

 Complement of
Partial Remainder Sign

Fig. 13.10 Shift-subtract sequential nonrestoring divider.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 196

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

13.5 Division by Constants

Method 1: find the reciprocal of the constant and multiply

Method 2: use the property that for each odd integer d
 there exists an odd integer m such that d × m = 2n – 1

1
d =

m
2n – 1

 =
m

2n (1 – 2–n)

 =
m
2n (1 + 2–n) (1 + 2–2n) (1 + 2–4n) . . .

Number of shift-adds required is proportional to log k

Example: division by d = 5 with 24 bits of precision
 m = 3, n = 4 by inspection

z
5 =

3z
24 – 1

 =
3z

16(1 – 2–4)
 =

3z
16 (1 + 2–4)(1 + 2–8)(1 + 2–16)

q ← z + z shift-left 1 {3z computed}
q ← q + q shift-right 4 {3z (1 + 2–4)}
q ← q + q shift-right 8 {3z (1 + 2–4)(1 + 2–8)}
q ← q + q shift-right 16 {3z (1 + 2–4)(1 + 2–8)(1 + 2–16)}
q ← q shift-right 4 {3z (1+2–4)(1+2–8)(1+2–16)/16}

This divide-by-5 algorithm uses 5 shifts and 4 adds

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 197

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

13.6 Preview of Fast Dividers

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

×

(a) k × k integer multiplication

z

s

q
Divisor d

q d 2 3
3 –

q d 2 2
2 –

q d 2 1
1 –

q d 2 0
0 –

(b) 2k / k integer division
Fig. 13.11 (a) Multiplication and (b) division as multioperand

addition problems.

Like multiplication, division is multioperand addition
Thus, there are but two ways to speed it up:

 a. Reducing the number of operands
 (high-radix dividers)

 b. Adding them faster
 (use carry-save partial remainder)

There is one complication making division more difficult:

 terms to be subtracted from (added to) the dividend
 are not known a priori but become known
 as the quotient digits are computed;
 quotient digits in turn depend on partial remainders

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 198

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

14 High-Radix Dividers

 Go to TOC
Chapter Goals
 Study techniques that allow us to obtain
 more than one quotient bit in each cycle
 (two bits in radix 4, three in radix 8, . . .)

Chapter Highlights
 Radix > 2 ⇒ quotient digit selection harder
 Cure: redundant quotient representation
 Carry-save addition reduces cycle time
 Implementation methods and tradeoffs

Chapter Contents
14.1 Basics of High-Radix Division
14.2 Radix-2 SRT Division
14.3 Using Carry-Save Adders
14.4 Choosing the Quotient Digits
14.5 Radix-4 SRT Division
14.6 General High-Radix Dividers

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 199

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

14.1 Basics of High-Radix Division

Radix-r version of division recurrence of Section 13.1

 s(j) = r s(j–1) – qk–j (r
kd) with s(0) = z and s(k) = rks

High-radix dividers of practical interest have r = 2b
 (and, occasionally, r = 10)

Dividend z

s Remainder

Quotient q
Divisor d

(q q) d 4 1
3 – 2 two

4 0 d (q q) 1 – 0 two

Fig. 14.1 Radix-4 division in dot notation.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 200

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 Radix-4 integer division Radix-10 fractional division
====================== =================
z 0 1 2 3 1 1 2 3 zfrac . 7 0 0 3
44d 1 0 0 3 dfrac . 9 9
====================== =================
s(0) 0 1 2 3 1 1 2 3 s(0) . 7 0 0 3
4s(0) 0 1 2 3 1 1 2 3 10s(0) 7 . 0 0 3
–q3 4

4d 0 1 2 0 3 {q3 = 1} –q–1d 6 . 9 3 {q–1 = 7}
––––––––––––––––––––––– ––––––––––––––––––
s(1) 0 0 2 2 1 2 3 s(1) . 0 7 3
4s(1) 0 0 2 2 1 2 3 10s(1) 0 . 7 3
–q2 4

4d 0 0 0 0 0 {q2 = 0} –q–2d 0 . 0 0 {q–2 = 0}
––––––––––––––––––––––– ––––––––––––––––––
s(2) 0 2 2 1 2 3 s(2) . 7 3
4s(2) 0 2 2 1 2 3 sfrac . 0 0 7 3
–q1 4

4d 0 1 2 0 3 {q1 = 1} qfrac . 7 0
––––––––––––––––––––––– =================
s(3) 1 0 0 3 3
4s(3) 1 0 0 3 3
–q0 4

4d 0 3 0 1 2 {q0 = 2}
–––––––––––––––––––––––
s(4) 1 0 2 1
s 1 0 2 1
q 1 0 1 2
======================
Fig. 14.2 Examples of high-radix division with integer and

fractional operands.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 201

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

14.2 Radix-2 SRT Division

Radix-2 nonrestoring division, fractional operands

 s(j) = 2s(j–1) – q–j d with s(0) = z and s(k) = 2ks

–2d

2d

d

 –d

q =–1

q =1

2s

(j–1)

s

(j)

–j

–j

d

–d

Fig. 14.3 The new partial remainder, s(j), as a function of the
shifted old partial remainder, 2s(j–1), in radix-2
nonrestoring division.

–2d

2d

d

–d

q =–1

q =0

q =1

2s

(j–1)

s

(j)

–j

–j

–j

d

–d

Fig. 14.4 The new partial remainder s(j) as a function of 2s(j–1),
with q–j in {–1, 0, 1}.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 202

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

–2d

2d

d

 –d

q =–1

q =0

q =1

2s

(j–1)

s

(j)

–j

–j

–j

d

–d

–1/2

 1/2

 –1

 1

 –1/2

 1/2

Fig. 14.5 The relationship between new and old partial
remainders in radix-2 SRT division.

SRT algorithm (Sweeney, Robertson, Tocher)

2s(j–1) ≥ +1/2 = (0.1)2’s-compl

 ⇒ 2s(j–1) = (0.1u–2u–3
. . .)2’s-compl

2s(j–1) < –1/2 = (1.1)2’s-compl

 ⇒ 2s(j–1) = (1.0u–2u–3
. . .)2’s-compl

Skipping over identical leading bits by shifting

s(j–1) = 0.0000110 . . . Shift left by 4 bits and subtract;
 append q with 0 0 0 1
s(j–1) = 1.1110100 . . . Shift left by 3 bits and add;
 append q with 0 0-1

Average skipping distance (statistically): 2.67 bits

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 203

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

============================
z . 0 1 0 0 0 1 0 1 In [–1/2,1/2), so OK
d . 1 0 1 0 In [1/2,1), so OK
–d 1 . 0 1 1 0
============================
s(0) 0 . 0 1 0 0 0 1 0 1
2s(0) 0 . 1 0 0 0 1 0 1 ≥ 1/2, so set q–1 = 1
+(–d) 1 . 0 1 1 0 and subtract
–––––––––––––––––––––––––––––
s(1) 1 . 1 1 1 0 1 0 1
2s(1) 1 . 1 1 0 1 0 1 In [–1/2,1/2), so q–2 = 0
–––––––––––––––––––––––––––––
s(2) = 2s(1) 1 . 1 1 0 1 0 1
2s(2) 1 . 1 0 1 0 1 In [–1/2, 0), so q–3 = 0
–––––––––––––––––––––––––––––
s(3) = 2s(2) 1 . 1 0 1 0 1
2s(3) 1 . 0 1 0 1 < –1/2, so q–4 = -1
+d 0 . 1 0 1 0 and add
–––––––––––––––––––––––––––––
s(4) 1 . 1 1 1 1 Negative,
+d 0 . 1 0 1 0 so add to correct
–––––––––––––––––––––––––––––
s(4) 0 . 1 0 0 1
s 0 . 0 0 0 0 1 0 0 1
q 0 . 1 0 0 -1 Ucorrected BSD form
q 0 . 0 1 1 0 Convert, subtract ulp
============================

Fig. 14.6 Example of unsigned radix-2 SRT division.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 204

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

14.3 Using Carry-Save Adders

–2d 2d

d

–d

q =–1

q =0 q =1

2s
(j–1)

s (j)

–j

–j

–j

d–d

–1/2 0
Choose –1 Choose 0 Choose 1

–1/0 0/+1
Overlap Overlap

Fig. 14.7 Constant thresholds used for quotient digit
selection in radix-2 division with qk–j in {–1, 0, 1}.

Sum part of 2s(j–1): u = (u1u0 .u–1u–2 . . .)2’s-compl

Carry part of 2s(j–1): v = (v1v0 .v–1v–2 . . .)2’s-compl
 t = u[–2,1] + v[–2,1] {Add the 4 MSBs of u and v}
 if t < –1/2
 then q–j = –1
 else if t • 0
 then q–j = 1
 else q–j = 0
 endif
 endif

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 205

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Carry v

Mux

Adder

0 1

Divisor d

k k

Carry-save adder

Select
 q –j

4 bits
Shift left

2s

+ulp for
2’s compl

Sum u

Non0
(enable)

Sign
(select)

0, d, or d’

Carry Sum

Fig. 14.8 Block diagram of a radix-2 divider with partial
remainder in stored-carry form.

–2d

2d

d

 –d

q =–1

q =0

q =1

2s

(j–1)

s

(j)

–j

–j

–j

d

–d

 1 – d

 –1

 1

 –1/2

 1/2

 1 – d

Fig. 14.9 Overlap regions in radix-2 SRT division.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 206

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

14.4 Choosing the Quotient Digits

 d

p

Infeasible region
(p cannot be ≥ 2d)

Infeasible region
(p cannot be < −2d)

.100 .101 .110 .111 1.

00.1

00.0

11.1

10.0

10.1

11.0

01.1

01.0

 −00.1

 −01.0

 −01.1

 −10.0

 d

 2d

 −2d

 −d

Worst-case error
margin in comparison

Choose 1

Choose −1

Choose 0

−1

 1

−1
max

−1 min

 1 min

 1
max

 0 max

 0 min

O
ve

rl
a

p

O
ve

rl
a

p

 0

Fig. 14.10 A p-d plot for radix-2 division with d ∈ [1/2,1), partial
remainder in [–d, d), and quotient digits in [–1, 1].

Approx. shifted partial remainder t = (t1t0.t–1t–2)2’s-compl

 Non0 =  t1 + t0 + t–1 = t1 t0 t–1

 Sign = t1 ( t0 + t–1)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 207

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

14.5 Radix-4 SRT division

–4d 4d

d

–d

4s(j–1)

–3 –2 –1 0 +1 +2 +3

s (j)

Fig. 14.11 New versus shifted old partial remainder in radix-4
division with q–j in [–3, 3].

 d

p

Infeasible region
(p cannot be ≥ 4d)

.100 .101 .110 .111

10.1

10.0

01.1

00.0

00.1

01.0

11.1

11.0

 d

 2d

Choose 2

Choose 0

Choose 1

 3

 1

 2 max

 2 min

 1 min

 1 max

 0 max

O
ve

rla
p

 0

 3d

 4d

Choose 3

 3 min

 2
O

ve
rla

p
O

ve
rla

p

Fig. 14.12 p-d plot for radix-4 SRT division with quotient digit
set [–3, 3].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 208

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

–4d 4d

d

–d

4s
(j–1)

–3 –2 –1 0 +1 +2 +3

s (j)

2d/3

8d/3
–2d/3

–8d/3

Fig. 14.13 New versus shifted old partial remainder in radix-4
division with q–j in [–2, 2].

 d

p

.100 .101 .110 .111

10.1

10.0

01.1

00.0

00.1

01.0

11.1

11.0

Choose 2

Choose 0

Choose 1 1

 2 min

 1 min

 2 max

 1 max

 0 max

 0

 2

O
ve

rla
p

O
ve

rla
p

Infeasible region
(p cannot be ≥ 8d/3)

 8d/3

 5d/3

 4d/3

 2d/3

 d/3

Fig. 14.14 A p-d plot for radix-4 SRT division with quotient
digit set [–2, 2].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 209

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

14.6 General High-Radix Dividers

Carry v

CSA tree

Adder

Divisor d

k k

Select
 q –j

Shift left

2s
Sum u

Multiple
generation /

selection

Carry Sum

q –j

. . . q –j | | d
or its complement

Fig. 14.15 Block diagram of radix-r divider with partial
remainder in stored-carry form.

Design process to determine details of the above divider:

 Radix r
 Digit set [–α, α] for q–j
 Number of bits of p (v and u) and d to be inspected
 Quotient digit selection table or logic
 Multiple generation/selection scheme
 Conversion of redundant q to 2’s complement

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 210

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

15 Variations in Dividers

 Go to TOC
Chapter Goals
 Discuss practical aspects of designing
 high-radix dividers and cover
 other types of fast hardware dividers

Chapter Highlights
 Building and using p-d plots in practice
 Prescaling simplifies q digit selection
 Parallel hardware (array) dividers
 Shared hardware in multipliers/dividers
 Square-rooting not special case of division

Chapter Contents
15.1 Quotient-Digit Selection Revisited
15.2 Using p-d Plots in Practice
15.3 Division with Prescaling
15.4 Modular Dividers and Reducers
15.5 Array Dividers
15.6 Combined Multiply/Divide Units

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 211

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

15.1 Quotient-Digit Selection Revisited

–α

r s (j–1)

 s (j)

 r–1

rhd –rhd

hd

–hd

 d

 –d

–r+1 α –1 1 0

rd –rd αd –αd d –d 0

Fig. 15.1 The relationship between new and shifted old partial
remainders in radix-r division with quotient digits in
[–α, +α].

Radix-r division with quotient digit set [–α, α], α < r – 1

Restrict the partial remainder range, say to [–hd, hd)

From the solid rectangle in Fig. 15.1, we get

 rhd – αd ≤ hd or h ≤ α/(r – 1)

To minimize the range restriction, we choose h = α/(r – 1)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 212

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

p

d

 Choose β + 1

Choose β

 d min

Overlap
region

(h + β + 1)d

 A

(h + β)d

(–h + β + 1)d

(–h + β)d

 B

4 bits of p
3 bits of d

3 bits of p
4 bits of d

Note: h = α / (r – 1)

Fig. 15.2 A part of p-d plot showing the overlap region for

choosing the quotient digit value β or β+1 in radix-r
division with quotient digit set [–α, α].

p

d

β

 +1

(h +)d

(–h +)d

(h + + 1)d

(–h + + 1)d

Note: h = /(r–1)

β
β

β

β

β

α
β

β+1β+1 β
β

β
β

β
β

β
β

β+1β+1 β+1β+1
β+1β+1 β+1β+1

β+1β+1 β+1β+1
β+1β+1

β+1β+1
orδ+1δ

Origin

Fig. 15.3 A part of p-d plot showing an overlap region and its
staircase-like selection boundary.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 213

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

15.2 Using p-d Plots in Practice

∆p

p

d

Choose α

Choose α − 1

 d min

Overlap
region

(h + α − 1)d

(−h + α)d

∆d

 d min ∆d +

(h + α − 1) d min

(−h + α) d min

Fig. 15.4 Establishing upper bounds on the dimensions of

uncertainty rectangles.

Smallest ∆d occurs for the overlap region of α and α – 1

 ∆d = dmin 2h – 1
–h + α

 ∆p = dmin (2h – 1)

Example: For r = 4, divisor range [0.5, 1), digit set [–2, 2],
we have α = 2, dmin = 1/2, h = α/(r – 1) = 2/3

 ∆d = (1/2)
4/3 – 1

 –2/3 + 2 = 1/8 ∆p = (1/2)(4/3 – 1) = 1/6

Because 1/8 = 2–3 and 2–3
 ≤ 1/6 < 2–2, we must inspect at

least 3 bits of d (2, given its leading 1) and 3 bits of p
These are lower bounds and may prove inadequate
In fact, 3 bits of p and 4 (3) bits of d are required
With p in carry-save form, 4 bits of each component must
be inspected (or added to give the high-order 3 bits)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 214

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Theorem: Once lower bounds on precision are determined
based on ∆d and ∆p, one more bit of precision in each
direction is always adequate [Parh01] (Asilomar 2001)

Proof: Let w be the vertical spacing of grid lines

w ≤ ∆d/2 ⇒ v ≤ ∆p/2 ⇒ u ≥ ∆p/2

u
v

∆p

p

d

w

Choose a

Choose a − 1

 d min

Overlap
region

w

(a − 1 + h)d

(a − h)d

∆d A

B

p

 d

Choose β + 1

Choose β

 d min

A

B

 d max

 −β

β + 1

Choose −β + 1

Choose −β

Fig. 15.5 The asymmetry of quotient digit selection process.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 215

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

p

d

β

 +1

β

β

β

β
 β

β

δ
 β

β+β+1

β+β+1

β+β+1

β+β+1

β+β+1

β+β+1
 or

δ+1

δ

*

*
 *

*

Fig. 15.6 Example of p-d plot allowing larger uncertainty
rectangles, if the 4 cases marked with asterisks are
handled as exceptions.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 216

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example: A complete p-d plot
5d/3

4d/3

d

1.000 1.001 1.010 1.011 1.100 0.100 0.101 0.110 0.111 1.000

01.10

01.01

01.00

00.11

00.10

00.00

00.01

11.11

11.10

11.01

11.00

10.11

10.10

2d/3

d/3

–d/3

–4d/3

–5d/3

–2d/3

2 1
2 1

2 1,2 1

1,2 1

2 1,2 1

2 1,2

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 217

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

15.3 Division with Prescaling

Overlap regions of a p-d plot are wider toward the high
end of the divisor range

p

 d

Choose β + 1

Choose β

 d min d max

Choose −β + 1

Choose −β

If we can restrict the magnitude of the divisor to an interval
close to dmax (say 1 – ε < d < 1 + δ, when dmax = 1),
quotient digit selection may become simpler

This restriction can be achieved by performing the division
(zm)/(dm) for a suitably chosen scale factor m (m > 1)

Of course, prescaling (multiplying z and d by the scale
factor m) should be done without real multiplications

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 218

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

15.4 Modular Dividers and Reducers

Given a dividend z and divisor d, with d ≥ 0, a modular
divider computes

 q = z / d and s = z mod d = 〈z〉d

The quotient q is, by definition, an integer
 but the inputs z and d do not have to be integers

Example:

 –3.76 / 1.23 = –4 and 〈–3.76〉1.23 = 1.16

The modular remainder is always positive
A modular reducer computes only the modular remainder

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 219

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

15.5 Array Dividers

z

z

–5

–6

 s s s –4 –5 –6

q

q

q

–1

–2

–3

FS

Cell

z z z z–1 –2 –3 –4

1 0

 d d d –1 –2 –3

0

0

0

 –1 –2 –3 –4 –5 –6
 –1 –2 –3
 –1 –2 –3
 –4 –5 –6

Dividend z = .z z z z z z
Divisor d = .d d d
Quotient q = .q q q
Remainder s = .0 0 0 s s s

Fig. 15.7 Restoring array divider composed of controlled
subtractor cells.

The similarity of the array divider of Fig. 15.7 to an array
multiplier is somewhat deceiving
The same number of cells are involved in both designs,
and the cells have comparable complexities
However, the critical path in a k × k array multiplier
contains O(k) cells, whereas in Fig. 15.7, the critical path
passes through all k2 cells (borrow ripples in each row)
Thus, an array divider is quite slow, and, given its high
cost, not very cost-effective

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 220

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Dividend z = z .z z z z z z
Divisor d = d .d d d
Quotient q = q .q q q
Remainder s = 0 .0 0 s s s s

0 –1 –2 –3 –4 –5 –6
0 –1 –2 –3
0 –1 –2 –3
 –3 –4 –5 –6

z

z

z

–4

–5

–6

s s s s–3 –4 –5 –6

q

q

q

0

–1

–2

q –3

d d d d0 –1 –2 –3
z z z z0 –1 –2 –3

FA

XOR

Cell

1

Fig. 15.8 Nonrestoring array divider built of controlled
add/subtract cells.

Speedup method:
Pass the partial remainder downward in carry-save form
However, we still need to know the carry-out or borrow-out
from each row to determine the action in the following row:
subtract/no-change (Fig. 15.7) or subtract/add (Fig. 15.8)
This can be done by using a carry- (borrow-) lookahead
circuit laid out between successive rows
Not used in practice

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 221

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

15.6 Combined Multiply/Divide Units

Multiplier x
or quotient q

Mux

Adder
out c

0 1

Partial product p or
partial remainder s

Multiplicand a
or divisor d

 Shift control

Shift

Enable

in c

q k–j

MSB of 2s (j–1)

k

k

k

j x

MSB of p (j+1)

 Divisor sign

Multiply/
divide
control

Select

 Mul Div

Fig. 15.9 Sequential radix-2 multiply/divide unit.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 222

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 Multiplicand
 or divisor

Multiplier

Product or remainder

Quotient

Mul/Div

Additive input
 or dividend

Fig. 15.10 I/O specification of a universal circuit that can act as
an array multiplier or array divider.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 223

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

16 Division by Convergence

 Go to TOC
Chapter Goals
 Show how by using multiplication as the
 basic operation in each division step,
 the number of iterations can be reduced

Chapter Highlights
 Digit-recurrence as convergence method
 Convergence by Newton-Raphson iteration
 Computing the reciprocal of a number
 Hardware implementation and fine tuning

Chapter Contents
16.1 General Convergence Methods
16.2 Division by Repeated Multiplications
16.3 Division by Reciprocation
16.4 Speedup of Convergence Division
16.5 Hardware Implementation
16.6 Analysis of Lookup Table Size

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 224

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

16.1 General Convergence Methods

 u(i+1) = f(u(i), v(i)) u(i+1) = f(u(i), v(i), w(i))
 v(i+1) = g(u(i), v(i)) v(i+1) = g(u(i), v(i), w(i))
 w(i+1) = h(u(i), v(i), w(i))

We direct the iterations such that one value, say u,
 converges to some constant.

The value of v (and/or w) then converges to
 the desired function(s)

The complexity of this method depends on two factors:

 a. Ease of evaluating f and g (and h)
 b. Rate of convergence (no. of iterations needed)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 225

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

16.2 Division by Repeated Multiplications

q =
z
d =

z x(0)x(1) . . . x(m–1)

d x(0)x(1) . . . x(m–1)
Converges to q
Made to converge to 1

To turn the above into a division algorithm,
we face three questions:

 1. How to select the multipliers x(i)?
 2. How many iterations (pairs of multiplications)?
 3. How to implement in hardware?

Formulate as convergence computation, for d in [1/2, 1)

d(i+1) = d(i)x(i) Set d(0) = d; make d(m) converge to 1

z(i+1) = z(i)x(i) Set z(0) = z; obtain z/d = q ≅ z(m)

Q1: How to select the multipliers x(i)?

 x(i) = 2 – d(i)

This choice transforms the recurrence equations into:

d(i+1) = d(i) (2 – d(i)) Set d(0) = d; iterate until d(m) ≅ 1

z(i+1) = z(i) (2 – d(i)) Set z(0) = z; obtain z/d = q ≅ z(m)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 226

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Q2: How quickly does d(i) converge to 1?

 d(i+1) = d(i) (2 – d(i)) = 1 – (1 – d(i))2

 1 – d(i+1) = (1 – d(i))2

Thus, 1 – d(i) ≤ ε leads to 1 – d(i+1) ≤ ε2:
quadratic convergence

In general, for k-bit operands, we need

 2m – 1 multiplications and m 2’s complementations

where m =  log2k

Table 16.1 Quadratic convergence in computing z/d by
repeated multiplications, where 1/2 ≤ d = 1 – y < 1

––

i d(i) = d(i–1)x(i–1), with d(0) = d x(i)= 2 – d(i)
––

0 1 – y = (.1xxx xxxx xxxx xxxx)two ≥ 1/2 1 + y

1 1 – y2 = (.11xx xxxx xxxx xxxx)two ≥ 3/4 1 + y2

2 1 – y4 = (.1111 xxxx xxxx xxxx)two ≥ 15/16 1 + y4

3 1 – y8 = (.1111 1111 xxxx xxxx)two ≥ 255/256 1 + y8

4 1 – y16 = (.1111 1111 1111 1111)two = 1 – ulp

––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 227

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1 1 – ulp

d

z

q –

Iteration i

d

z

0 1 2 3 4 5 6

(i)

(i)

q ε

Fig. 16.1. Graphical representation of convergence in division
by repeated multiplications.

Q3: How implemented in hardware?

 … to be discussed later

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 228

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

16.3 Division by Reciprocation

To find q = z/d, compute 1/d and multiply it by z

Particularly efficient if several divisions byd are required

Newton-Raphson iteration to determine a root of f(x) = 0
 Start with some initial estimate x(0) for the root
 Iteratively refine the estimate using the recurrence

 x(i+1) = x(i) – f(x(i)) / f'(x(i))

Justification: tan α(i) = f'(x(i)) = f(x(i)) / (x(i) – x(i+1))

f(x)

xx(i+1)x

f(x)

Tangent at x(i)

Root α x
(i)(i+2)

(i)

(i)

Fig. 16.2 Convergence to a root of f(x) = 0 in the Newton-
Raphson method.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 229

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

To compute 1/d, find the root of f(x) = 1/x – d

f'(x) = –1/x2, leading to the recurrence:

x(i+1) = x(i) (2 – x(i)d)

One iteration = 2 multiplications + a 2’s complementation

Let δ(i) = 1/d – x(i) be the error at the ith iteration. Then:

δ(i+1) = 1/d – x(i+1) = 1/d – x(i) (2 – x(i)d)

 = d(1/d – x(i))2

= d(δ(i))2

Because d < 1, we have δ(i+1) < (δ(i))2

Choosing the initial value x(0)

0 < x(0) < 2/d ⇒ |δ(0)| < 1/d ⇒ guaranteed convergence

For d in [1/2, 1):

 simple choice x(0) = 1.5 ⇒ |δ(0)| • 0.5

 better approx. x(0) = 4(3 – 1) – 2d = 2.9282 – 2d
 max error ≅ 0.1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 230

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

16.4 Speedup of Convergence Division

Division can be done via 2  log2k – 1 multiplications
This is not yet very impressive
 64-bit numbers, 5-ns multiplier ⇒ 55-ns division

Three types of speedup are possible:

 Reducing the number of multiplications
 Using narrower multiplications
 Performing the multiplications faster

Convergence is slow in the beginning
It takes 6 multiplications to get 8 bits of convergence and
another 5 to go from 8 bits to 64 bits

 dx(0)x(1)x(2) = (0.1111 1111 . . .)two

 x(0+) read from table

A 2w × w lookup table is necessary and sufficient for w bits
of convergence after the first pair of multiplications

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 231

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1 1 – ulp

d

z

q –

Iterations

After table lookup and 1st
pair of multiplications,
replacing several iterations

After the 2nd pair
of multiplications

ε

Fig. 16.3 Convergence in division by repeated multiplications
with initial table lookup.

1 1 ± ulp

d

z

q ±

Iterations

ε

Fig. 16.4 Convergence in division by repeated multiplications
with initial table lookup and the use of truncated
multiplicative factors.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 232

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1

Approximate
iteration

Precise
iteration

B

A

i + 1 i

Iteration

 (x (i+1)

d x (0) x (1) x (i) ...
x (i+1)

) T

d x (0) x (1) x (i) ...

d x (0) x (1) x (i) ...

< 2 −a

Fig. 16.5 One step in convergence division with truncated
multiplicative factors.

Example (64-bit multiplication)
 Table of size 256 × 8 = 2K bits for the lookup step
 Then we need multiplication pairs, with the multiplier
 being 9 bits, 17 bits, and 33 bits wide
 The final step involves a single 64 × 64 multiplication

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 233

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

16.5 Hardware Implementation

Repeated multiplications:

z x(i)(i)

d x(i)(i)

x(i)z(i)
d(i+1)

d
(i+1)

x(i+1)

z x(i)(i)

d x(i+1)
(i+1)

z(i+1)

2's Compl
z(i+1) x(i+1)

z x(i+1)
(i+1)

d(i+2)

d x(i+1)
(i+1)

Fig. 16.6 Two multiplications fully overlapped in a 2-stage
pipelined multiplier.

Reciprocation:

Can begin with a good approximation to the reciprocal by
 consulting a large table

Table lookup, along with interpolation

Augmenting the multiplier tree

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 234

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

16.6 Analysis of Lookup Table Size

Table 16.2 Sample entries in the lookup table replacing the first
four multiplications in division by repeated
multiplications

 –––
 Address d = 0.1 xxxx xxxx x(0+) = 1. xxxx xxxx
 –––
 55 0011 0111 1010 0101
 64 0100 0000 1001 1001
 –––

Example: derivation of the table entry for 55

311
512 ≤ d <

312
512

For 8 bits of convergence, the table entry f must satisfy

311
512 (1 + .f) ≥ 1 – 2–8

312
512(1 + .f) ≤ 1 + 2–8

Thus

199
311 ≤ .f ≤

101
156 or for the integer f = 256 × .f

 163.81 • f • 165.74

Two choices: 164 = (1010 0100)two or
165 = (1010 0101)two

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 235

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part V Real Arithmetic

Part Goals
 Review floating-point representations
 Learn about floating-point arithmetic
 Discuss error sources and error bounds

Part Synopsis
 Combining wide range and high precision
 Floating-point formats and operations
 The ANSI/IEEE standard
 Errors: causes and consequences
 When can we trust computation results?

Part Contents
Chapter 17 Floating-Point Representations
Chapter 18 Floating-Point Operations
Chapter 19 Errors and Error Control
Chapter 20 Precise and Certifiable Arithmetic

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 236

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17 Floating-Point Representations

 Go to TOC
Chapter Goals
 Study representation method offering both
 wide range (e.g., astronomical distances)
 and high precision (e.g., atomic distances)

Chapter Highlights
 Floating-point formats and tradeoffs
 Why a floating-point standard?
 Finiteness of precision and range
 The two extreme special cases:
 fixed-point and logarithmic numbers

Chapter Contents
17.1 Floating-Point Numbers
17.2 The ANSI/IEEE Floating-Point Standard
17.3 Basic Floating-Point Algorithms
17.4 Conversions and Exceptions
17.5 Rounding Schemes
17.6 Logarithmic Number Systems

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 237

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.1 Floating-Point Numbers

No finite number system can represent all real numbers
Various systems can be used for a subset of real numbers

 Fixed-point ± w . f low precision and/or range
 Rational ± p / q difficult arithmetic
 Floating-point ± s × be most common scheme
 Logarithmic ± logbx limiting case of floating-point

Fixed-point numbers
 x = (0000 0000 . 0000 1001)two Small number

 y = (1001 0000 . 0000 0000)two Large number

Floating-point numbers

 x = ± s × be or ± significand × baseexponent

Two signs are involved in a floating-point number.

 1. The significand or number sign,
 usually represented by a separate sign bit

 2. The exponent sign,
 usually embedded in the biased exponent
 (when the bias is a power of 2,
 the exponent sign is the complement of its MSB)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 238

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

E x p o n e n t :
Signed integer,
often represented
as unsigned value
by adding a bias

Range with h bits:
[–bias, 2 –1–bias]h

S i g n i f i c a n d :
Represented as a fixed-point number

Usually normalized by shifting,
so that the MSB becomes nonzero.
In radix 2, the fixed leading 1
can be removed to save one bit;
this bit is known as "hidden 1".

Sign

0 : +
1 : –

± e s

Fig. 17.1 Typical floating-point number format.

–∞ +∞ 0 FLP– FLP+

Underflow
 Regions

Overflow
 Region

Overflow
 Region

max min

Denser Sparser
Positive
numbers

Negative
numbers

–max –min

Denser Sparser
.

Fig. 17.2 Subranges and special values in floating-point
number representations.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 239

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.2 The ANSI/IEEE Floating-Point Standard

Short (32-bit) format

Long (64-bit) format

Sign Exponent Significand

 8 bits,
 bias = 127,
 –126 to 127

 11 bits,
 bias = 1023,
 –1022 to 1023

52 bits for fractional part
(plus hidden 1 in integer part)

23 bits for fractional part
(plus hidden 1 in integer part)

Fig. 17.3 The ANSI/IEEE standard floating-point number
representation formats.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 240

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 17.1 Some features of the ANSI/IEEE standard floating-
point number representation formats

–––
Feature Single/Short Double/Long
–––
Word width (bits) 32 64

Significand bits 23 + 1 hidden 52 + 1 hidden

Significand range [1, 2 – 2–23] [1, 2 – 2–52]

Exponent bits 8 11

Exponent bias 127 1023

Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0

Denormal e + bias = 0, f ≠ 0 e + bias = 0, f ≠ 0
 represents ±0.f×2–126 represents ±0.f×2–1022

Infinity (±∞) e + bias = 255, f = 0 e + bias = 2047, f = 0

Not-a-number (NaN) e + bias = 255, f ≠ 0 e + bias = 2047, f ≠ 0

Ordinary number e + bias ∈ [1, 254] e + bias ∈ [1, 2046]
 e ∈ [–126, 127] e ∈ [–1022, 1023]
 represents 1.f × 2e represents 1.f × 2e

min 2–126 ≅ 1.2 × 10–38 2–1022 ≅ 2.2 × 10–308

max ≅ 2128 ≅ 3.4 × 1038 ≅ 21024 ≅ 1.8 × 10308
–––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 241

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Operations on special operands:
 Ordinary number ÷ (+∞) = ±0
 (+∞) × Ordinary number = ±∞
 NaN + Ordinary number = NaN

0 2
–126Denormals 2

–125

.

min

. . .

Fig. 17.4 Denormals in the IEEE single-precision format.

The IEEE floating-point standard also defines

 The four basic arithmetic op’s (+, –, ×, ÷) and x
 must match the results that would be obtained if
 intermediate computations were infinitely precise

 Extended formats for greater internal precision

 Single-extended: ≥ 11 bits for exponent
 ≥ 32 bits for significand
 bias unspecified, but
 exp range ⊇ [–1022, 1023]

 Double-extended: ≥ 15 bits for exponent
 ≥ 64 bits for significand
 exp range ⊇ [–16 382, 16 383]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 242

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.3 Basic Floating-Point Algorithms

Addition/Subtraction

Assume e1 ≥ e2; need alignment shift (preshift) if e1 > e2:

 (± s1 × be1) + (± s2 × be2) = (± s1 × be1) + (± s2 / be1–e2) × be1
 = (± s1 ± s2 / be1–e1) × be1 = ± s × be

Like signs: 1-digit normalizing right shift may be needed
Different signs: shifting by many positions may be needed
Overflow/underflow during addition or normalization

Multiplication

(± s1 × be1) × (± s2 × be2) = ± (s1 × s2) × be1+e2

Postshifting for normalization, exponent adjustment
Overflow/underflow during multiplication or normalization

Division

(± s1 × be1) / (± s2 × be2) = ± (s1/s2) × be1–e2

Square-rooting

First make the exponent even, if necessary

 √(s × be) = s × be/2

In all algorithms, rounding complications are ignored here

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 243

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.4 Conversions and Exceptions

Conversions from fixed- to floating-point

Conversions between floating-point formats

Conversion from high to lower precision: Rounding

ANSI/IEEE standard includes four rounding modes:

 Round to nearest even [default rounding mode]
 Round toward zero (inward)
 Round toward +∞ (upward)
 Round toward –∞ (downward)

Exceptions

 divide by zero
 overflow
 underflow
 inexact result: rounded value not same as original
 invalid operation: examples include
 addition (+∞) + (–∞)
 multiplication 0 × ∞
 division 0 / 0 or ∞ / ∞
 square-root operand < 0

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 244

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.5 Rounding Schemes

 Round

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l ⇒ yk–1yk–2 . . . y1y0 .

Special case: truncation or chopping

 Chop

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l ⇒ xk–1xk–2 . . . x1x0 .

chop(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

chop(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.5 Truncation or chopping of a signed-magnitude

number (same as round toward 0).

Fig. 17.6 Truncation or chopping of a 2’s-complement
number (same as downward-directed rounding).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 245

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

rtn(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.7 Rounding of a signed-magnitude value to the
nearest number.

Ordinary rounding has a slight upward bias

Assume that (xk–1xk–2

. . . x1x0 . x–1x–2)two is to be rounded

 to an integer (yk–1yk–2
. . . y1y0 .)two

The four possible cases, and their representation errors:

 x–1x–2 = 00 round down error = 0
 x–1x–2 = 01 round down error = –0.25
 x–1x–2 = 10 round up error = 0.5
 x–1x–2 = 11 round up error = 0.25

Assume 4 cases are equiprobable ⇒ mean error = 0.125

For certain calculations, the probability of getting a
midpoint value can be much higher than 2–l

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 246

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

rtne(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

R*(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.8 Rounding to the nearest even number.

Fig. 17.9 R* rounding or rounding to the nearest odd number.

jam(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.10 Jamming or von Neumann rounding.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 247

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

ROM rounding

 32×4-ROM-Round

xk–1 . . . x4x3x2x1x0 . x–1 . . . x–l ⇒ xk–1 . . . x4y3y2y1y0 .
 |–––––––––––| |––––––|
 ROM Address ROM Data

The rounding result is the same as that of the round to
nearest scheme in 15 of the 16 possible cases, but a
larger error is introduced when x3 = x2 = x1 = x0 = 1

ROM(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.11 ROM rounding with an 8 × 2 table.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 248

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

We may need result errors to be in a known direction

Example: in computing upper bounds,
 larger results are acceptable,
 but results that are smaller than correct values
 could invalidate the upper bound

This leads to the definition of directed rounding modes
 upward-directed rounding (round toward +∞) and
 downward-directed rounding (round toward –∞)
 (required features of the IEEE floating-point standard)

up(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

chop(x) = down(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.12 Upward-directed rounding or rounding toward +∞

(see Fig. 17.6 for downward-directed rounding, or
rounding toward –∞).

Fig. 17.6 Truncation or chopping of a 2’s-complement
number (same as downward-directed rounding).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 249

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

17.6 Logarithmic Number Systems

sign-and-logarithm number system:
 limiting case of floating-point representation

 x = ±be × 1 e = logb |x|

b usually called the logarithm base, not exponent base

Sign

Implied radix point

e±

Fixed-point exponent

Fig. 17.13 Logarithmic number representation with sign and
fixed-point exponent.

The log is often represented as a 2’s-complement number

 (Sx, Lx) = (sign(x), log2|x|)

Simple multiply and divide; harder add and subtract

Example: 12-bit, base-2, logarithmic number system

 1 1 0 1 1 0 0 0 1 0 1 1
 ∆
 Sign Radix point

The above represents –2–9.828125 ≅ –(0.0011)ten

number range ≅ [–216, 216], with min = 2–16

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 250

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

18 Floating-Point Operations

 Go to TOC
Chapter Goals
 See how adders, multipliers, and dividers
 are designed for floating-point operands
 (square-rooting postponed to Chapter 21)

Chapter Highlights
 Floating-point operation = preprocessing +
 exponent arith + significand arith +
 postprocessing (+ exception handling)
 Adders need preshift, postshift, rounding
 Multipliers and dividers are easy to design

Chapter Contents
18.1 Floating-Point Adders/Subtractors
18.2 Pre- and Postshifting
18.3 Rounding and Exceptions
18.4 Floating-Point Multipliers
18.5 Floating-Point Dividers
18.6 Logarithmic Arithmetic Unit

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 251

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

18.1 Floating-Point Adders/Subtractors

Floating-point add/subtract algorithm

Assume e1 ≥ e2; need alignment shift (preshift) if e1 > e2:

 (± s1 × be1) + (± s2 × be2) = (± s1 × be1) + (± s2 / be1–e2) × be1

 = (± s1 ± s2 / be1–e1) × be1

 = ± s × be

Like signs: 1-digit normalizing right shift may be needed
Different signs: shifting by many positions may be needed
Overflow/underflow during addition or normalization

Example floating-point addition with rounding

Operands after alignment shift:

x = 2 1.00101101
y = 2 0.000111101101

Numbers to be added:

x = 2 1.00101101
y = 2 1.11101101

5
1

×
×

5
5

×
×

Extra bits to be
rounded off

Operand with
smaller exponent
to be preshifted

Result of addition:

s = 2 1.010010111101
s = 2 1.01001100

5
5 Rounded sum

×
×

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 252

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Normalize
& round

Add

Align
significands

Possible swap
& complement

Unpack

Control
& sign
logic

Add/
Sub

Pack

Inputs

Output

Significands Exponents Signs

Significand Exponent Sign

x y

s

Sub

Add

Mux

Block diagram of a floating-point adder/subtractor
(simple version from the encyclopedia article).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 253

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Normalize

Add

Align significands

Unpack

Control
& sign
logic

Add/
Sub

Pack

Operands

Sum/Difference

Significands Exponents Signs

Significand Exponent Sign

x y

s

Sub

Add

Mux

c out c in

Selective complement
and possible swap

Round and

selective complement

Normalize

Fig. 18.1 Block diagram of a floating-point adder/subtractor.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 254

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Unpacking of the operands involves:

Separating sign, exponent, and significand
Reinstating the hidden 1
Converting the operands to the internal format
Testing for special operands and exceptions

Packing of the result involves:

Combining sign, exponent, and significand
Hiding (removing) the leading 1
Testing for special outcomes and exceptions

 [Converting internal to external representation,
 if required, must be done at the rounding stage]

Other key parts of a floating-point adder:

 significand aligner or preshifter: Section 18.2
 result normalizer or postshifter, including
 leading 0s detector/predictor: Section 18.2
 rounding unit: Section 18.3
 sign logic: Problem 18.2

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 255

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

18.2 Pre- and Postshifting

yi

xixi+2 xi+1xi+30xi+31

5
Shift amount 31 30 2 1 0

. . .

32-to-1 Mux
Enable

Fig. 18.2 One bit-slice of a single-stage pre-shifter.

xixi+2 xi+1xi+4 xi+3xi+6 xi+5xi+8 xi+7

yiyi+2 yi+1yi+4 yi+3yi+6 yi+5yi+8 yi+7

LSB

MSB

 4-Bit
 Shift
Amount

Fig. 18.3 Four-stage combinational shifter for preshifting an
operand by 0 to 15 bits.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 256

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Shift amount
Post-Shifter

Significand
 Adder

 Adjust
Exponent

Count
Leading
0s/1s

Post-Shifter

Significand
 Adder

 Adjust
Exponent

Predict
Leading
0s/1s

Shift amount

Fig. 18.4 Leading zeros/ones counting versus prediction.

Leading zeros prediction
Adder inputs: (0x0.x–1x–2...)2’s-compl, (1y0.y–1y–2...)2’s-compl
How leading 0s/1s can be generated

 p p . . . p p g a a . . . a a g . . .
 p p . . . p p g a a . . . a a p . . .
 p p . . . p p a g g . . . g g a . . .
 p p . . . p p a g g . . . g g p . . .

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 257

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

18.3 Rounding and Exceptions

Adder result = (coutz1z0.z–1z–2...z–l G R S)2’s-compl
G Guard bit
R Round bit
S Sticky bit

Why only three extra bits at the right are adequate
Amount of alignment right-shift

1 bit: G holds the bit that is shifted out, no precision is lost

2 bits or more:

 shifted significand has a magnitude in [0, 1/2)
 unshifted significand has a magnitude in [1, 2)
 difference of aligned significands
 has a magnitude in [1/2, 2)
 normalization left-shift will be by at most one bit

If a normalization left-shift actually takes place:

 R = 0, round down, discarded part < ulp/2
 R = 1, round up, discarded part ≥ ulp/2

The only remaining question is establishing if the
discarded part is exactly equal to ulp/2, as this information
is needed in some rounding schemes

Providing this information is the role of S which is set to
the logical OR of all the bits that are right-shifted through it

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 258

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

The effect of 1-bit normalization shifts on the rightmost few
bits of the significand adder output is as follows

 Before postshifting (z) ... z–l+1 z–l | G R S

 1-bit normalizing right-shift ... z–l+2 z–l+1 | z–l G R∨ S

 1-bit normalizing left-shift ... z–l G | R S 0

 After normalization (Z) ... Z–l+1 Z–l | Z–l–1Z–l–2Z–l–3

Round to nearest even:

 Do nothing if Z–l–1 = 0 or Z–l = Z–l–2 = Z–l–3 = 0

 Add ulp = 2–l otherwise

No rounding needed in case of multibit left-shift,
 because full precision is preserved in this case

Overflow and underflow exceptions are detected by the
exponent adjustment blocks in Fig. 18.1

 Overflow can occur only for normalizing right-shift
 Underflow is possible only with normalizing left shifts

Exceptions involving NaNs and invalid operations are
handled by the unpacking and packing blocks in Fig. 18.1

Zero detection is a special case of leading 0s detection

Determining when the “inexact” exception must be
signalled is left as an exercise

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 259

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Dual-datapath floating-point adders

Near path Far path

0 or 1 bit preshift
Arbitrary preshift

0 or 1 bit postshift
Arbitrary postshift

Add

Add

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 260

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

18.4 Floating-Point Multipliers

Floating-point multiplication algorithm

(± s1 × be1) × (± s2 × be2) = ± (s1 × s2) × be1+e2

Postshifting for normalization, exponent adjustment
Overflow/underflow during multiplication or normalization

XOR Add
Exponents

Unpack

Normalize
 Adjust
Exponent

Round

Normalize

Pack

 Multiply
Significands

Floating-point operands

Product

 Adjust
Exponent

Fig. 18.5 Block diagram of a floating-point multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 261

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Many multipliers produce the lower half of the product
(rounding info) early

Need for normalizing right-shift is known at or near the end

Hence, rounding can be integrated in the generation of the
upper half, by producing two versions of these bits

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 262

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

18.5 Floating-Point Dividers

Floating-point division algorithm

(± s1 × be1) / (± s2 × be2) = ± (s1/s2) × be1–e2

Postshifting for normalization, exponent adjustment
Overflow/underflow during division or normalization

XOR Subtract
Exponents

Unpack

Normalize
 Adjust
Exponent

Round

Normalize

Pack

 Divide
Significands

Floating-point operands

Quotient

 Adjust
Exponent

Fig. 18.6 Block diagram of a floating-point divider.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 263

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Quotient must be produced with two extra bits (G and R),
 in case of the need for a normalizing left shift

The remainder does the job of the sticky bit

Floating-point square-rooting algorithm

Make the exponent even, if necessary, by decrementing it
and doubling the significand; significand is now in [1, 4)

 √(s × be) = s × be/2

Never overflow or underflow

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 264

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

18.6 Logarithmic Arithmetic Unit

Add/subtract: (Sx, Lx) ± (Sy, Ly) = (Sz, Lz)
Assume x > y > 0 (other cases are similar)
 Lz = log z = log(x ± y) = log(x(1 ± y/x))
 = log x + log(1 ± y/x)
Given ∆ = –(log x – log y), the term
 log(1 ± y/x) = log(1 ± log–1∆)

is obtained from a table (two tables φ+ and φ– needed)
 log(x + y) = log x + φ+(∆)
 log(x – y) = log x + φ–(∆)

Compare

Lx

Ly

Control

Sx
Sy

Sz

ROM
for
φ+, φ−

Lz

Lm

Add/
Sub

Add/
Sub

Mux Mux

Fig. 18.7 Arithmetic unit for a logarithmic number system.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 265

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19 Errors and Error Control

 Go to TOC
Chapter Goals
 Learn about sources of computation errors
 consequences of inexact arithmetic
 and methods for avoiding or limiting errors

Chapter Highlights
 Representation and computation errors
 Absolute versus relative error
 Worst-case versus average error
 Why 3 × (1/3) is not necessarily 1?
 Error analysis and bounding

Chapter Contents
19.1 Sources of Computational Errors
19.2 Invalidated Laws of Algebra
19.3 Worst-Case Error Accumulation
19.4 Error Distribution and Expected Errors
19.5 Forward Error Analysis
19.6 Backward Error Analysis

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 266

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.1 Sources of Computational Errors

FLP approximates exact computation with real numbers

Two sources of errors to understand and counteract:

 Representation errors
 e.g., no machine representation for 1/3, 2 , or π
 Arithmetic errors
 e.g., (1 + 2–12)2 = 1 + 2–11 + 2–24
 not representable in IEEE format

We saw early in the course that errors due to finite
precision can lead to disasters in life-critical applications

Example 19.1: Compute 1/99 – 1/100
(decimal floating-point format, 4-digit significand in [1, 10),
single-digit signed exponent)
precise result = 1/9900 ≅ 1.010×10–4

 (error ≅ 10–8
 or 0.01%)

x = 1/99 ≅ 1.010 × 10–2 Error ≅ 10–6 or 0.01%
y = 1/100 = 1.000 × 10–2 Error = 0
z = x –fp y = 1.010 × 10–2 – 1.000 × 10–2 = 1.000 × 10–4

 Error ≅ 10–6 or 1%

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 267

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Notation for floating-point system FLP(r, p, A)

Radix r (assume to be the same as the exponent base b)
Precision p in terms of radix-r digits
Approximation scheme A ∈ {chop, round, rtne, chop(g), ...}

Let x = res be an unsigned real number, normalized such
that 1/r ≤ s < 1, and xfp be its representation in FLP(r, p, A)

xfp = resfp = (1 + η)x

A = chop –ulp < sfp – s ≤ 0 –r × ulp < η ≤ 0

A = round –ulp/2 < sfp – s ≤ ulp/2 |η| ≤ r × ulp/2

Arithmetic in FLP(r, p, A)

Obtain an infinite-precision result, then chop, round, . . .

Real machines approximate this process by keeping g > 0
guard digits, thus doing arithmetic in FLP(r, p, chop(g))

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 268

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Error analysis for FLP(r, p, A)

Consider multiplication, division, addition, and subtraction
for positive operands xfp and yfp in FLP(r, p, A)

Due to representation errors, xfp = (1 + σ)x , yfp = (1 + τ)y

xfp ×fp yfp = (1 + η)xfpyfp = (1 + η)(1 + σ)(1 + τ)xy

 = (1 + η + σ + τ + ησ + ητ + στ + ηστ)xy
 ≅ (1 + η + σ + τ)xy

xfp /fp yfp = (1 + η)xfp/yfp = (1 + η)(1 + σ)x/[(1 + τ)y]

 = (1 + η)(1 + σ)(1 – τ)(1 + τ2)(1 + τ4)(. . .)x/y
 ≅ (1 + η + σ – τ)x/y

xfp +fp yfp = (1 + η)(xfp + yfp) = (1 + η)(x + σx + y + τy)

 = (1 + η)(1 +
σx + τy
x + y)(x + y)

Since |σx + τy| ≤ max(|σ|, |τ|)(x + y), the magnitude of the
worst-case relative error in the computed sum is roughly
bounded by |η| + max(|σ|, |τ|)

xfp –fp yfp = (1 + η)(xfp – yfp) = (1 + η)(x + σx – y – τy)

 = (1 + η)(1 +
σx – τy
x – y)(x – y)

The term (σx – τy)/(x – y) can be very large if x and y are
both large but x – y is relatively small

This is known as cancellation or loss of significance

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 269

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Fixing the problem

The part of the problem that is due to η being large can be
fixed by using guard digits

Theorem 19.1: In floating-point system FLP(r, p, chop(g))
with g ≥ 1 and –x < y < 0 < x, we have:

x +fp y = (1 + η)(x + y) with –r–p +1 < η < r–p–g+2

Corollary: In FLP(r, p, chop(1))
 x +fp y = (1 + η)(x + y) with |η| < r–p+1

So, a single guard digit is sufficient to make the relative
arithmetic error in floating-point addition/subtraction
comparable to the representation error with truncation

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 270

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example 19.2: Decimal floating-point system (r = 10)
 with p = 6 and no guard digit

x = 0.100 000 000 × 103 y = –0.999 999 456 × 102
xfp = .100 000 × 103 yfp = – .999 999 × 102

x + y = 0.544×10–4 and xfp + yfp = 10–4, but:

 xfp +fp yfp = .100 000 × 103 –fp .099 999 × 103

 = .100 000 × 10–2

Relative error = (10–3 – 0.544×10–4)/(0.544×10–4) ≅ 17.38
 (i.e., the result is 1738% larger than the correct sum!)

With 1 guard digit, we get:

 xfp +fp yfp = 0.100 000 0 × 103 –fp 0.099 999 9 × 103

 = 0.100 000 × 10–3

Relative error = 80.5% relative to the exact sum x + y
but the error is 0% with respect to xfp + yfp

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 271

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.2 Invalidated Laws of Algebra

Many laws of algebra do not hold for floating-point
arithmetic (some don’t even hold approximately)

This can be a source of confusion and incompatibility

Associative law of addition: a + (b + c) = (a + b) + c

a = 0.123 41×105 b = –0.123 40×105 c = 0.143 21×101

a +fp (b +fp c)

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)

 = 0.123 41 × 105 –fp 0.123 39 × 105

= 0.200 00 × 101

(a +fp b) +fp c

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101

 = 0.100 00 × 101 +fp 0.143 21 × 101

= 0.243 21 × 101

The two results differ by about 20%!

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 272

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

A possible remedy: unnormalized arithmetic

a +fp (b +fp c)

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)

 = 0.123 41 × 105 –fp 0.123 39 × 105 = 0.000 02 × 105

(a +fp b) +fp c

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101

 = 0.000 01 × 105 +fp 0.143 21 × 101 = 0.000 02 × 105
Not only are the two results the same but they carry with
them a kind of warning about the extent of potential error

Let’s see if using 2 guard digits helps:

a +fp (b +fp c)

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)

 = 0.123 41×105 –fp 0.123 385 7×105 = 0.243 00 × 101

(a +fp b) +fp c

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101

 = 0.100 00 × 101 +fp 0.143 21 × 101 = 0.243 21 × 101

The difference is now about 0.1%; still too high

Using more guard digits will improve the situation but does
not change the fact that laws of algebra cannot be
assumed to hold in floating-point arithmetic

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 273

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Examples of other laws of algebra that do not hold:
 Associative law of multiplication
 a × (b × c) = (a × b) × c
 Cancellation law (for a > 0)
 a × b = a × c implies b = c
 Distributive law
 a × (b + c) = (a × b) + (a × c)
 Multiplication canceling division
 a × (b / a) = b

Before the ANSI-IEEE floating-point standard became
available and widely adopted, these problems were
exacerbated by the use of many incompatible formats

Example 19.3: The formula x = –b ± d, with d = b2 – c ,
yielding the roots of the quadratic equation x2 + 2bx + c = 0,
can be rewritten as x = –c / (b ± d)

Example 19.4: The area of a triangle with sides a, b, and
c (assume a ≥ b ≥ c) is given by the formula

 A = s(s – a)(s – b)(s – c)

where s = (a + b + c)/2. When the triangle is very flat, such
that a ≅ b + c, Kahan’s version returns accurate results:

 A =
1
4 (a + (b + c))(c – (a – b))(c + (a – b))(a + (b – c))

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 274

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.3 Worst-Case Error Accumulation

In a sequence of operations, round-off errors might add up

The larger the number of cascaded computation steps
(that depend on results from previous steps), the greater
the chance for, and the magnitude of, accumulated errors

With rounding, errors of opposite signs tend to cancel
each other out in the long run, but one cannot count on
such cancellations

Example: inner-product calculation z = ∑1023
i=0 x(i)y(i)

Max error per multiply-add step = ulp/2 + ulp/2 = ulp
Total worst-case absolute error = 1024 ulp
 (equivalent to losing 10 bits of precision)

A possible cure: keep the double-width products in their
entirety and add them to compute a double-width result
which is rounded to single-width at the very last step

Multiplications do not introduce any round-off error
Max error per addition = ulp2/2
Total worst-case error = 1024 × ulp2/2

Therefore, provided that overflow is not a problem, a
highly accurate result is obtained

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 275

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Moral of the preceding examples:

Perform intermediate computations with a higher precision
than what is required in the final result

Implement multiply-accumulate in hardware (DSP chips)

Reduce the number of cascaded arithmetic operations;
So, using computationally more efficient algorithms has
the double benefit of reducing the execution time as well
as accumulated errors

Kahan’s summation algorithm or formula

To compute s = ∑n–1
i=0 x(i), proceed as follows

 s ← x(0)

 c ← 0 {c is a correction term}

 for i = 1 to n – 1 do

 y ← x(i) – c {subtract correction term}

 z ← s + y

 c ← (z – s) – y {find next correction term}

 s ← z

 endfor

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 276

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.4 Error Distribution and Expected Errors

MRRE = maximum relative representation error

 MRRE(FLP(r, p, chop)) = r–p+1

 MRRE(FLP(r, p, round)) = r–p+1/2

From a practical standpoint, however, the distribution of
errors and their expected values may be more important

Limiting ourselves to positive significands, we define:

 ARRE(FLP(r, p, A)) =
⌡


⌠

1/r

1

|xfp – x|

x
dx

x ln r

1/(x ln r) is a probability density function

0

1

2

3

1/2 1 3/4
Significand x

1 / (x ln 2)

Fig. 19.1 Probability density function for the distribution of
normalized significands in FLP(r = 2, p, A).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 277

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.5 Forward Error Analysis

Consider the computation y = ax + b
and its floating-point version:

 yfp = (afp ×fp xfp) +fp bfp = (1 + η)y

Can we establish any useful bound on the magnitude of
the relative error η, given the relative errors in the input
operands afp, bfp, and xfp?

The answer is “no”

Forward error analysis =

 Finding out how far yfp can be from ax + b,
 or at least from afpxfp + bfp, in the worst case

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 278

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

a. Automatic error analysis

 Run selected test cases with higher precision
 and observe the differences between the new,
 more precise, results and the original ones

b. Significance arithmetic

 Roughly speaking, same as unnormalized arithmetic,
 although there are some fine distinctions
 The result of the unnormalized decimal addition

 .1234 × 105 +fp .0000 × 1010 = .0000 × 1010

 warns us that precision has been lost

c. Noisy-mode computation

 Random digits, rather than 0s, are inserted
 during normalizing left shifts
 If several runs of the computation in noisy mode
 yield comparable results, then we are probably safe

d. Interval arithmetic

 An interval [xlo, xhi] represents x, xlo ≤ x ≤ xhi

 With xlo, xhi, ylo, yhi > 0, to find z = x / y, we compute

 [zlo, zhi] = [xlo /∇ fp yhi, xhi /∆fp ylo]

 Intervals tend to widen after many computation steps

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 279

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

19.6 Backward Error Analysis

Backward error analysis replaces the original question

 How much does yfp deviate from the correct result y?

with another question:

 What input changes produce the same deviation?

In other words, if the exact identity

yfp = aaltxalt + balt

holds for alternate parameter values aalt, balt, and xalt,
we ask how far aalt, balt, xalt can be from afp, bfp, xfp

Thus, computation errors are converted or compared to
additional input errors

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 280

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example of backward error analysis

yfp = afp ×fp xfp +fp bfp

 = (1 + µ)[afp ×fp xfp + bfp] with |µ| < r–p+1 = r × ulp

 = (1 + µ)[(1 + ν)afpxfp + bfp] with |ν| < r–p+1 = r × ulp

 = (1 + µ)afp (1 + ν)xfp + (1 + µ)bfp

 = (1 + µ)(1 + σ)a (1 + ν)(1 + δ)x + (1 + µ)(1 + γ)b
 ≅ (1 + σ + µ)a (1 + δ + ν)x + (1 + γ + µ)b

So the approximate solution of the original problem is the
exact solution of a problem close to the original one

We are, thus, assured that the effect of arithmetic errors
on the result yfp is no more severe than that of r × ulp
additional error in each of the inputs a, b, and x

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 281

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

20 Precise and Certifiable Arithmetic

 Go to TOC
Chapter Goals
 Discuss methods for doing arithmetic
 when results of high accuracy
 or guranteed correctness are required

Chapter Highlights
 More precise computation via
 multi- or variable-precision arithmetic
 Result certification via
 exact or error-bounded arithmetic
 Precise/exact arithmetic with low overhead

Chapter Contents
20.1 High Precision and Certifiability
20.2 Exact Arithmetic
20.3 Multiprecision Arithmetic
20.4 Variable-Precision Arithmetic
20.5 Error-Bounding via Interval Arithmetic
20.6 Adaptive and Lazy Arithmetic

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 282

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

20.1 High Precision and Certifiability

There are two aspects of precision to discuss:
 Results possessing adequate precision
 Being able to provide assurance of the same

We consider three distinct approaches
for coping with precision issues:

 1. Obtaining completely trustworthy results
 via exact arithmetic

 2. Making the arithmetic highly precise
 in order to raise our confidence
 in the validity of the results:
 multi- or variable-precision arithmetic

 3. Doing ordinary or high-precision calculations
 while tracking potential error accumulation
 (can lead to fail-safe operation)

We take the hardware to be completely trustworthy
Hardware reliability issues to be dealt with in Chapter 27

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 283

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

20.2 Exact Arithmetic

Continued fractions

Any unsigned rational number x = p/q has a unique
continued-fraction expansion

x =
p
q = a

0
+ 1

a
1
+ 1

a
2
+ 1

...
1

a
m −1

+ 1
am

with a0 ≥ 0, am ≥ 2, and ai ≥ 1 for 1 ≤ i ≤ m – 1

Example: continued-fraction representation for 277/642

277
642

= 0 + 1

2 + 1

3 + 1

6 + 1

1 + 1

3 + 1
3

= [0/2/3/6/1/3/3]

0

1/2

3/7

19/44

Can get approximations for finite representation by limiting
number of “digits” in the continued-fraction representation

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 284

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Fixed-slash number systems

Numbers are represented by the ratio p/q of two integers

 Rational number if p > 0 q > 0
 “rounded” to nearest value
 ±0 if p = 0 q odd
 ±∞ if p odd q = 0
 NaN (not a number) otherwise

Sign
Implied
slash
position

± p q

Inexact

k bits m bits

/

Fig. 20.1 Example fixed-slash number representation format.

The space waste due to multiple representations such as
3/5 = 6/10 = 9/15 = . . . is no more than one bit, because:

limn→∞ |{p/q | 1 ≤ p,q ≤ n, gcd(p, q)=1}|/n2

= 6/π2
 = 0.608

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 285

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Floating-slash number systems

Sign
± p q

Inexact

m bitsh bits
m

Floating
slash
position

k – m bits

/

Fig. 20.2 Example floating-slash representation format.

Set of numbers represented:

{±p/q | p,q ≥ 1, gcd(p, q)=1,  log2p +  log2q ≤ k – 2}

Again the following mathematical result, due to Dirichlet,
shows that the space waste is no more than one bit:

limn→∞ |{p/q | pq≤n, gcd(p,q)=1}| / |{p/q | pq≤n, p,q≥1}|
= 6/π2 = 0.608

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 286

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

20.3 Multiprecision Arithmetic

Sign ± MSB

LSB

x

x

x

x

(3)

(2)

(1)

(0)

Fig. 20.3 Example quadruple-precision integer format.

Sign ± MSB x

x

x

x

(3)

(2)

(1)

(0)

Exponent

LSB

e

Signi-
ficand

Fig. 20.4 Example quadruple-precision floating-point format.

± x x x x(3) (2) (1) (0)

y y y y(3) (2) (1) (0)

z z z z(3) (2) (1) (0)

Use to derive guard,
round, & sticky bits?

Sign-extend ±

GRS

Fig. 20.5 Quadruple-precision significands aligned for the
floating-point addition z = x +fp y.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 287

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

20.4 Variable-Precision Arithmetic

Same as multiprecision, but with dynamic adjustments

Sign

±

MSB

LSBx

x

x

(0)

(1)

(w)

w (# add'l words)

Fig. 20.6 Example variable-precision integer format.

Sign ±

MSB

x

x

x

(1)

(2)

(w)

Exponent e

LSB

Signi-
ficand

 Width w Flags

Fig. 20.7 Example variable-precision floating-point format.

x x x (u) (u–h) (1)

h words = hk bits y y (v) (1)

y (v) y (1) Case 2 Case 1
g = v+h–u ≥ 0 g = v+h–u < 0

y (g+1)
Alignment shift

. . .

.

. . .

.

Fig. 20.8 Variable-precision floating-point addition.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 288

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

20.5 Error-Bounding via Interval Arithmetic

[a, b], a ≤ b, is an interval enclosing a number x, a ≤ x ≤ b
[a, a] represents the real number x = a

The interval [a, b], a > b, represents the empty interval Φ
Intervals can be combined and compared in a natural way

[xlo, xhi] ∩ [ylo, yhi] = [max(xlo, ylo), min(xhi, yhi)]

[xlo, xhi] ∪ [ylo, yhi] = [min(xlo, ylo), max(xhi, yhi)]

[xlo, xhi] ⊇ [ylo, yhi] iff xlo ≤ ylo and xhi ≥ yhi
[xlo, xhi] = [ylo, yhi] iff xlo = ylo and xhi = yhi
[xlo, xhi] < [ylo, yhi] iff xhi < ylo

Interval arithmetic operations are intuitive and efficient

Additive inverse –x of an interval x = [xlo, xhi]

–[xlo, xhi] = [–xhi, –xlo]

Multiplicative inverse of an interval x = [xlo, xhi]

1 / [xlo, xhi] = [1/xhi, 1/xlo] provided that 0 ∉ [xlo, xhi]

when 0 ∈ [xlo, xhi], the multiplicative inverse is [–∞,+∞]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 289

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

[xlo, xhi] + [ylo, yhi] = [xlo + ylo, xhi + yhi]
[xlo, xhi] – [ylo, yhi] = [xlo – yhi, xhi – ylo]

[xlo, xhi] × [ylo, yhi] = [min(xloylo, xloyhi, xhiylo, xhiyhi),
 max(xloylo, xloyhi, xhiylo, xhiyhi)]

[xlo, xhi] / [ylo, yhi] = [xlo, xhi] × [1/yhi, 1/ylo]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 290

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

From the viewpoint of arithmetic calculations, a very
important property of interval arithmetic is:

Theorem 20.1: If f(x(1), x(2), . . . , x(n)) is a rational
expression in the interval variables x(1), x(2), . . . , x(n), that
is, f is a finite combination of x(1), x(2), . . . , x(n) and a finite
number of constant intervals by means of interval
arithmetic operations, then x(i)

 ⊃ y(i), i = 1, 2, . . . , n, implies:
 f(x(1), x(2), . . . , x(n)) ⊃ f(y(1), y(2), . . . , y(n))

Thus, arbitrarily narrow result intervals can be obtained by
simply performing arithmetic with sufficiently high precision

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 291

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

In particular, with reasonable assumptions about machine
arithmetic, the following theorem holds

Theorem 20.2: Consider the execution of an algorithm on
real numbers using machine interval arithmetic with
precision p in radix r; i.e., in FLP(r, p, ∇|∆). If the same
algorithm is executed using the precision q, with q > p, the
bounds for both the absolute error and relative error are
reduced by the factor rq–p

(the absolute or relative error itself may not be reduced by
this factor; the guarantee applies only to the upper bound)

Strategy for obtaining results with a desired error bound ε:

Let wmax be the maximum width of a result interval when
interval arithmetic is used with p radix-r digits of precision.
If wmax ≤ ε, then we are done. Otherwise, interval
calculations with the higher precision
 q = p +  logrwmax – logrε

is guaranteed to yield the desired accuracy.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 292

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

20.6 Adaptive and Lazy Arithmetic

Need-based incremental precision adjustment to avoid
high-precision calculations dictated by worst-case errors

Interestingly, the opposite of multi-precision arithmetic,
which we may call fractional-precision arithmetic, is also of
some interest. Example: Intel’s MMX

Lazy evaluation is a powerful paradigm that has been and
is being used in many different contexts. For example, in
evaluating composite conditionals such as

 if cond1 and cond2 then action

evaluation of cond2 may be skipped if cond1 yields “false”

More generally, lazy evaluation means

 postponing all computations or actions
 until they become irrelevant or unavoidable

Opposite of lazy evaluation (speculative or aggressive
execution) has been applied extensively

Redundant number representations offer some
advantages for lazy arithmetic

Because redundant representations support MSD-first
arithmetic, it is possible to produce a small number of
result digits by using correspondingly less computational
effort, until more precision is needed

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 293

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part VI Function Evaluation

Part Goals
 Learn algorithms
 and implementation methods
 for evaluating useful functions

Part Synopsis
 Divisionlike square-rooting algorithms
 Evaluating x , sin x, tanh x, ln x, ex, . . . via
 series expansion, using +, −, ×, /
 convergence computation
 Tables: the ultimate in simplicity/flexibility

Part Contents

Chapter 21 Square-Rooting Methods

Chapter 22 The CORDIC Algorithms

Chapter 23 Variations in Function Evaluation

Chapter 24 Arithmetic by Table Lookup

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 294

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

21 Square-Rooting Methods

 Go to TOC
Chapter Goals
 Learning algorithms and implementations
 for both digit-at-a-time and convergence
 square-rooting

Chapter Highlights
 Square-root part of ANSI/IEEE standard
 Digit-recurrence (divisionlike) algorithms
 Convergence square-rooting
 Square-root not special case of division

Chapter Contents
21.1 The Pencil-and-Paper Algorithm
21.2 Restoring Shift/Subtract Algorithm
21.3 Binary Nonrestoring Algorithm
21.4 High-Radix Square-Rooting
21.5 Square-Rooting by Convergence
21.6 Parallel Hardware Square-Rooters

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 295

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

21.1 The Pencil-and-Paper Algorithm

Notation for our discussion of square-rooting algorithms:
 z Radicand z2k–1z2k–2 . . . z1z0

 q Square root qk–1qk–2 . . . q1q0

 s Remainder (z – q2) sksk–1sk–2 . . . s1s0

Remainder range: 0 ≤ s ≤ 2q k + 1 digits
Justification: s ≥ 2q + 1 leads to z = q2 + s ≥ (q + 1)2
 so q cannot be the correct square-root of z

 q2 q1 q0 ← q q(0) = 0
 −−−−−−−−−−−−−−

 √ 9 5 2 4 1 ← z q2 = 3 q(1) = 3
 9

 −−−−−−−−−−−−−−
 0 5 2 6q1 × q1 ≤ 52 q1 = 0 q(2) = 30
 0 0

 −−−−−−−−−−−−−−
 5 2 4 1 60q0 × q0 ≤ 5241 q0 = 8 q(3) = 308
 4 8 6 4

 −−−−−−−−−−−−−−
 0 3 7 7 s = (377)ten q = (308) ten

Fig. 21.1 Extracting the square root of a decimal integer
using the pencil-and-paper algorithm.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 296

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Root digit selection

The root thus far is denoted by q(i) = (qk–1qk–2 . . . qk–i)ten

Attach next digit qk–i–1; root becomes q(i+1) = 10q(i) + qk–i–1

The square of q(i+1) is 100(q(i))2 + 20q(i)qk–i–1 + (qk–i–1)2

100(q(i))2 = (10q(i))2 subtracted from PR in previous steps

Must subtract (10(2q(i)) + qk–i–1) × qk–i–1 to get the new PR

In radix r, must subtract

 (r(2q(i)) + qk–i–1) × qk–i–1

In radix 2, must subtract

 (4q(i) + qk–i–1) × qk–i–1

 4q(i) + 1 if qk–i–1 = 1, 0 otherwise

 As a trial, subtract (qk–1qk–2 . . . qk–i 0 1)two

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 297

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

 q3 q2 q1 q0 ← q q(0) = 0
 −−−−−−−−−−−−−−−−−−−−−−

 √ 0 1 1 1 0 1 1 0 ← z = (118) ten q3 = 1 q(1) = 1
 0 1

 −−−−−−−−−−−−−−−−−−−−−−
 0 0 1 1 ≥ 101? No q2 = 0 q(2) = 10
 0 0 0

 −−−−−−−−−−−−−−−−−−−−−−
 0 1 1 0 1 ≥ 1001? Yes q1 = 1 q(3) = 101
 1 0 0 1

 −−−−−−−−−−−−−−−−−−−−−−
 0 1 0 0 1 0 ≥ 10101? No q0 = 0 q(4) = 1010
 0 0 0 0 0

 −−−−−−−−−−−−−−−−−−−−−−
 1 0 0 1 0 s = (18)ten q = (1010)two = (10) ten

Fig. 21.2 Extracting the square root of a binary integer using

the pencil-and-paper algorithm.

2

0

3

Radicand

Subtracted
bit-matrix

z

s Remainder

Root q

q 2 6 –
q 2 4 –
q 2 2

1 –
q (q 2 0 –

(q
(q
(q

(1)

(0)

(2)

(3)

0
0
0
0

2

0

3 q
q
q 1
q

)
)
)
)

Fig. 21.3 Binary square-rooting in dot notation.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 298

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

21.2 Restoring Shift/Subtract Algorithm

Consistent with the ANSI/IEEE floating-point standard, we
formulate our algorithms for a radicand satisfying 1 ≤ z < 4
(after possible 1-bit left shift to make the exponent even)

Notation:
 z Radicand in [1, 4) z1z0 . z–1z–2 . . . z–l

 q Square root in [1, 2) 1 . q–1q–2 . . . q–l

 s Scaled remainder s1s0 . s–1s–2 . . . s–l

Binary square-rooting is defined by the recurrence

 s(j) = 2s(j–1)

 – q–j(2q(j–1)
 + 2–jq–j)

 with s(0)
 = z – 1, q(0)

 = 1, s(j)
 = s

where q(j) is the root up to its (–j)th digit; thus q = q(l)

To choose the next root digit q–j ∈ {0, 1},

subtract from 2s(j–1) the value

 2q(j–1)
 + 2–j = (1q

(j–1)
–1 . q

(j–1)
–2 . . . q

(j–1)
–j+1 0 1)two

A negative trial difference means q–j = 0

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 299

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

================================
z 0 1 . 1 1 0 1 1 0 (118/64)
================================
s(0) = z – 1 0 0 0 . 1 1 0 1 1 0 q0=1 1.
2s(0) 0 0 1 . 1 0 1 1 0 0
–[2 × (1.)+2–1] 1 0 . 1
–––––––––––––––––––––––––––––––––
s(1) 1 1 1 . 0 0 1 1 0 0 q–1=0 1.0
s(1) = 2s(0) 0 0 1 . 1 0 1 1 0 0 Restore
2s(1) 0 1 1 . 0 1 1 0 0 0
–[2 × (1.0)+2–2] 1 0 . 0 1
–––––––––––––––––––––––––––––––––
s(2) 0 0 1 . 0 0 1 0 0 0 q–2=1 1.01
2s(2) 0 1 0 . 0 1 0 0 0 0
–[2 × (1.01)+2–3] 1 0 . 1 0 1
–––––––––––––––––––––––––––––––––
s(3) 1 1 1 . 1 0 1 0 0 0 q–3=0 1.010
s(3) = 2s(2) 0 1 0 . 0 1 0 0 0 0 Restore
2s(3) 1 0 0 . 1 0 0 0 0 0
–[2 × (1.010)+2–4] 1 0 . 1 0 0 1
–––––––––––––––––––––––––––––––––
s(4) 0 0 1 . 1 1 1 1 0 0 q–4=1 1.0101
2s(4) 0 1 1 . 1 1 1 0 0 0
–[2 × (1.0101)+2–5] 1 0 . 1 0 1 0 1
–––––––––––––––––––––––––––––––––
s(5) 0 0 1 . 0 0 1 1 1 0 q–5=1 1.01011
2s(5) 0 1 0 . 0 1 1 1 0 0
–[2×(1.01011)+2–6] 1 0 . 1 0 1 1 0 1
–––––––––––––––––––––––––––––––––
s(6) 1 1 1 . 1 0 1 1 1 1 q–6=0 1.010110
s(6) = 2s(5) 0 1 0 . 0 1 1 1 0 0 Restore
s (remainder = 156/64) 0 . 0 0 0 0 1 0 0 1 1 1 0 0
q (root = 86/64) 1 . 0 1 0 1 1 0
================================
Fig. 21.4 Example of sequential binary square-rooting using

the restoring algorithm.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 300

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Partial Remainder

Square-Root

Load

sub

(l+2)-bit
 adder

Trial Difference

l+2

cout cin

Complement

q–j

2s (j–1)
MSB of

Put z – 1 here
 at the outset

 Select
Root Digit

l+2

Fig. 21.5 Sequential shift/subtract restoring square-rooter.

In fractional square-rooting, the remainder is not needed

To round the result, we can produce an extra digit q–l–1
 truncate for q–l–1 = 0, round up for q–l–1 = 1
The midway case (q–l–1 = 1 followed by 0s), is impossible

Example: in Fig. 21.4, an extra iteration produces q–7 = 1;
So the root is rounded up to q = (1.010111)two = 87/64

The rounded-up value is closer to the root than the
truncated version

 Original: 118/64 = (86/64)2 + 156/642

 Rounded: 118/64 = (87/64)2 – 17/642

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 301

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

21.3 Binary Nonrestoring Algorithm
================================
z 0 1 . 1 1 0 1 1 0 (118/64)
================================
s(0) = z – 1 0 0 0 . 1 1 0 1 1 0 q0=1 1.
2s(0) 0 0 1 . 1 0 1 1 0 0 q–1=1 1.1
–[2 × (1.)+2–1] 1 0 . 1 –––––––––––––––––––––––––––––––––
s(1) 1 1 1 . 0 0 1 1 0 0 q–2=

-1 1.01
2s(1) 1 1 0 . 0 1 1 0 0 0
+[2 × (1.1)–2–2] 1 0 . 1 1 –––––––––––––––––––––––––––––––––
s(2) 0 0 1 . 0 0 1 0 0 0 q–3=1 1.011
2s(2) 0 1 0 . 0 1 0 0 0 0
–[2 × (1.01)+2–3] 1 0 . 1 0 1 –––––––––––––––––––––––––––––––––
s(3) 1 1 1 . 1 0 1 0 0 0 q–4=

-1 1.0101
2s(3) 1 1 1 . 0 1 0 0 0 0
+[2 × (1.011)–2–4] 1 0 . 1 0 1 1 –––––––––––––––––––––––––––––––––
s(4) 0 0 1 . 1 1 1 1 0 0 q–5=1 1.01011
2s(4) 0 1 1 . 1 1 1 0 0 0
–[2 × (1.0101)+2–5] 1 0 . 1 0 1 0 1 –––––––––––––––––––––––––––––––––
s(5) 0 0 1 . 0 0 1 1 1 0 q–6=1 1.010111
2s(5) 0 1 0 . 0 1 1 1 0 0
–[2×(1.01011)+2–6] 1 0 . 1 0 1 1 0 1 –––––––––––––––––––––––––––––––––
s(6) 1 1 1 . 1 0 1 1 1 1 Negative (–17/64)
+[2×(1.01011)+2–6] 1 0 . 1 0 1 1 0 1 Correct –––––––––––––––––––––––––––––––––
s(6) (corrected) 0 1 0 . 0 1 1 1 0 0 (156/64)
s (true remainder) 0 . 0 0 0 0 1 0 0 1 1 1 0 0
q (signed-digit) 1 . 1 -1 1 -1 1 1 (87/64)
q (corrected bin) 1 . 0 1 0 1 1 0 (86/64)
================================
Fig. 21.6 Example of nonrestoring binary square-rooting.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 302

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Details of binary nonrestoring square-rooting

Root digits in {-1, 1}; on-the-fly conversion to binary
Possible final correction

The case q–j = 1 (nonnegative PR), is handled as in the
restoring algorithm; i.e., it leads to the trial subtraction of
 q–j[2q(j–1) + 2–jq–j] = 2q(j–1) + 2–j

from the PR. For q–j = -1, we must subtract
 q–j[2q(j–1) + 2–jq–j] = –[2q(j–1) – 2–j]

which is equivalent to adding 2q(j–1) – 2–j

2q(j–1) + 2–j = 2[q(j–1) + 2–j–1] is formed by appending 01 to
the right end of q(j–1) and shifting
But computing the term 2q(j–1) – 2–j is problematic
We keep q(j–1) and q(j–1) – 2–j+1 in registers Q (partial root)
and Q* (diminished partial root), respectively. Then:
 q–j = 1 Subtract 2q(j–1) + 2–j formed by shifting Q 01

 q–j =-1 Add 2q(j–1) – 2–j formed by shifting Q*11
Updating rules for Q and Q* registers:
 q–j = 1 ⇒ Q := Q 1 Q* := Q 0

 q–j = -1 ⇒ Q := Q*1 Q* := Q*0
Additional rule for SRT-like algorithm
 q–j = 0 ⇒ Q := Q 0 Q* := Q*1

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 303

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

21.4 High-Radix Square-Rooting

Basic recurrence for fractional radix-r square-rooting:
 s(j) = rs(j–1) – q–j(2q(j–1) + r –jq–j)
As in radix-2 nonrestoring algorithm, we can use two
registers Q and Q* to hold q(j–1) and q(j–1) – r–j+1, suitably
updating them in each step.
Example: r = 4, root digit set [–2, 2]
Q* holds q(j–1) – 4–j+1 = q(j–1) – 2–2j+2. Then, one of the
following values must be subtracted from, or added to, the
shifted partial remainder rs(j–1)
 q–j = 2 Subtract 4q(j–1) + 2–2j+2 double-shift Q 010

 q–j = 1 Subtract 2q(j–1) + 2–2j shift Q 001

 q–j = -1 Add 2q(j–1) – 2–2j shift Q*111

 q–j = -2 Add 4q(j–1) – 2–2j+2 double-shift Q*110

Updating rules for Q and Q* registers:
 q–j = 2 ⇒ Q := Q 10 Q* := Q 01
 q–j = 1 ⇒ Q := Q 01 Q* := Q 00
 q–j = 0 ⇒ Q := Q 00 Q* := Q*11
 q–j = -1 ⇒ Q := Q*11 Q* := Q*10
 q–j = -2 ⇒ Q := Q*10 Q* := Q*01
Note that the root is obtained in standard binary (no
conversion needed!)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 304

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Using carry-save addition
As in division, root digit selection can be based on a few
bits of the partial remainder and of the partial root
This would allow us to keep s in carry-save form
One extra bit of each component of s (sum and carry)
must be examined for root digit estimation
With proper care, the same lookup table can be used for
quotient digit selection in division and root digit selection in
square-rooting
To see how, compare the recurrences for radix-4 division
and square-rooting:
 Division: s(j) = 4s(j–1) – q–j d

 Square-rooting: s(j) = 4s(j–1) – q–j(2q(j–1) + 4–jq–j)
To keep the magnitudes of the partial remainders for
division and square-rooting comparable, thus allowing the
use of the same tables, we can perform radix-4 square-
rooting using the digit set

 {-1, -
1
2
 , 0,

1
2 , 1}

Conversion from the digit set above to the digit set [–2, 2],
or directly to binary, is possible with no extra computation

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 305

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

21.5 Square-Rooting by Convergence

Newton-Raphson method
Choose f(x) = x2 – z which has a root at x = z
 x(i+1) = x(i) – f(x(i)) / f '(x(i))
 x(i+1) = 0.5(x(i) + z/x(i))
Each iteration needs division, addition, and a one-bit shift
Convergence is quadratic

For 0.5 ≤ z < 1, a good starting approximation is (1 + z)/2
 This approximation needs no arithmetic
The error is 0 at z = 1 and has a max of 6.07% at z = 0.5

Table-lookup can yield a better starting estimate for z
For example, if the initial estimate is accurate to within 2–8,
then 3 iterations would be sufficient to increase the
accuracy of the root to 64 bits.

Example 21.1: Compute the square root of z = (2.4)ten

x(0) read out from table = 1.5 accurate to 10–1
x(1) = 0.5(x(0)

 + 2.4/x(0)) = 1.550 000 000 accurate to 10–2
x(2) = 0.5(x(1)

 + 2.4/x(1)) = 1.549 193 548 accurate to 10–4
x(3) = 0.5(x(2)

 + 2.4/x(2)) = 1.549 193 338 accurate to 10–8

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 306

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Convergence square-rooting without division
Rewrite the square-root recurrence as:
 x(i+1) = x(i) + 0.5(1/x(i))(z – (x(i))2) = x(i) + 0.5γ(x(i))(z – (x(i))2)
where γ(x(i)) is an approximation to 1/x(i) obtained by a
simple circuit or read out from a table
Because of the approximation used in lieu of the exact
value of 1/x(i), convergence rate will be less than quadratic
Alternative: the recurrence above, but with the reciprocal
found iteratively; thus interlacing the two computations
Using the function f(y) = 1/y – x to compute 1/x, we get:
 x(i+1) = 0.5(x(i) + z y(i))
 y(i+1) = y(i)(2 – x(i)y(i))
Convergence is less than quadratic but better than linear

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 307

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example 21.2: Compute the square root of z = (1.4)ten

 x(0) = y(0) = 1.0

 x(1) = 0.5(x(0) + 1.4y(0)) = 1.200 000 000

 y(1) = y(0)(2 – x(0)y(0)) = 1.000 000 000

 x(2) = 0.5(x(1) + 1.4y(1)) = 1.300 000 000

 y(2) = y(1)(2 – x(1)y(1)) = 0.800 000 000

 x(3) = 0.5(x(2) + 1.4y(2)) = 1.210 000 000

 y(3) = y(2)(2 – x(2)y(2)) = 0.768 000 000

 x(4) = 0.5(x(3) + 1.4y(3)) = 1.142 600 000

 y(4) = y(3)(2 – x(3)y(3)) = 0.822 312 960

 x(5) = 0.5(x(4) + 1.4y(4)) = 1.146 919 072

 y(5) = y(4)(2 – x(4)y(4)) = 0.872 001 394

 x(6) = 0.5(x(5) + 1.4y(5)) = 1.183 860 512 ≅ 1.4

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 308

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Convergence square-rooting without division (cont.)
A variant is based on computing 1/ z and then multiplying
the result by z
Use the f(x) = 1/x2 – z that has a root at x = 1/ z to get
 x(i+1) = 0.5x(i)(3 – z(x(i))2)
Each iteration requires 3 multiplications and 1 addition, but
quadratic convergence leads to only a few iterations
The Cray-2 supercomputer uses this method
 An initial estimate x(0) for 1/ z is used to get x(1)
 1.5x(0) and 0.5(x(0))3 are read out from a table
 x(1) is accurate to within half the machine precision,
 so, a second iteration and a multiplication by z
 complete the process

Example 21.3: Compute the square root of z = (.5678)ten

Table lookup provides the starting value x(0) = 1.3 for 1/ z
Two iterations, plus a multiplication by z, yield a fairly
accurate result
 x(0) read out from table = 1.3
 x(1) = 0.5x(0)(3 – 0.5678(x(0))2) = 1.326 271 700
 x(2) = 0.5x(1)(3 – 0.5678(x(1))2) = 1.327 095 128
 z ≅ z × x(2) = 0.753 524 613

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 309

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

21.6 Parallel Hardware Square Rooters

Array square-rooters can be derived from the dot-notation
representation in much the same way as array dividers

2

0

3

Radicand

Subtracted
bit-matrix

z

s Remainder

Root q

q 2 6 –
q 2 4 –
q 2 2

1 –
q (q 2 0 –

(q
(q
(q

(1)

(0)

(2)

(3)

0
0
0
0

2

0

3
q
q
q

1
q

)
)
)
)

Radicand z = .z z z z z z z z
Root q = .q q q q
Remainder s = .s s s s s s s s

–1 –2 –3 –4 –5 –6 –7 –8
–1 –2 –3 –4
–1 –2 –3 –4 –5 –6 –7 –8

s s s s–1 –2 –3 –4

q

q

–1

–2

q–3

FA

XOR

Cell

s s s s–5 –6 –7 –8

q–4

z z–1 –2

z z–3 –4

z z–5 –6

z z–7 –8

1

1

1

10

0

0

0

1

Fig. 21.7 Nonrestoring array square-rooter built of controlled
add/subtract cells.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 310

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

22 The CORDIC Algorithms

 Go to TOC
Chapter Goals
 Learning a useful convergence method
 for evaluating trig and other functions

Chapter Highlights
 Basic CORDIC idea: rotate a vector with
 end point at (x,y) = (1,0) by the angle z
 to put its end point at (cos z, sin z)
 Other functions evaluated similarly
 Complexity comparable to division

Chapter Contents
22.1 Rotations and Pseudorotations
22.2 Basic CORDIC Iterations
22.3 CORDIC Hardware
22.4 Generalized CORDIC
22.5 Using the CORDIC Method
22.6 An Algebraic Formulation

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 311

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

22.1 Rotations and Pseudorotations

z

(cos z, sin z)

(1, 0)

tan y

(1, y)

–1

start at (1, 0)
rotate by z
get cos z, sin z

start at (1, y)
rotate until y = 0
rotation amount is tan y –1

Key ideas behind CORDIC

If we have a computationally efficient way of rotating a
vector, we can evaluate cos, sin, and tan–1 functions

Rotation by an arbitrary angle is difficult, so we:

 Perform psuedorotations
 Use special angles to synthesize a desired angle z
 z = α(1) + α(2) + . . . + α(m)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 312

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Rotate the vector OE(i) with end point at (x(i), y(i)) by α(i)

 x(i+1) = x(i)cos α(i) – y(i)sin α(i)

 = (x(i) – y(i)tan α(i))/(1 + tan2α(i))1/2
 y(i+1) = y(i)cos α(i) + x(i)sin α(i) [Real rotation]
 = (y(i) + x(i)tan α(i))/(1 + tan2α(i))1/2
 z(i+1) = z(i) – α(i)

Goal: eliminate the divisions by (1 + tan2α(i))1/2 and
choose α(i) so that tan α(i) is a power of 2

Elimination of the divisions by (1 + tan2α(i))1/2

x

y
Rotation

Pseudo-
rotation

O

R (i+1)

R (i) (i) α

E (i+1)
E′ (i+1)

E (i)

 y (i+1)

 x (i+1)

 y (i)

 x (i)

Fig. 22.1 A pseudorotation step in CORDIC.

Whereas a real rotation does not change the length R(i) of
the vector, a pseudorotation step increases its length to:

 R(i+1) = R(i) (1 + tan2α(i))1/2

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 313

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

The coordinates of the new end point E′(i+1) after
pseudorotation is derived by multiplying the coordinates of
E(i+1) by the expansion factor

 x(i+1) = x(i) – y(i) tan α(i)
 y(i+1) = y(i) + x(i) tan α(i) [Pseudorotation]
 z(i+1) = z(i) – α(i)

Assuming x(0) = x, y(0) = y, and z(0) = z, after m real
rotations by the angles α(1), α(2), . . . , α(m), we have:

 x(m) = x cos(∑α(i)) – y sin(∑α(i))
 y(m) = y cos(∑α(i)) + x sin(∑α(i))
 z(m) = z – (∑α(i))

After m pseudorotations by the angles α(1), α(2), . . . , α(m):

 x(m) = K(x cos(∑α(i)) – y sin(∑α(i)))
 y(m) = K(y cos(∑α(i)) + x sin(∑α(i))) [*]
 z(m) = z – (∑α(i))
 where K = Π(1 + tan2α(i))1/2

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 314

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

22.2 Basic CORDIC Iterations

Pick α(i) such that tan α(i) = di 2
–i, di ∈ {–1, 1}

 x(i+1) = x(i) – di y
(i)2–i

 y(i+1) = y(i) + di x
(i)2–i [CORDIC iteration]

 z(i+1) = z(i) – di tan–1 2–i

If we always pseudorotate by the same set of angles (with
+ or – signs), then the expansion factor K is a constant
that can be precomputed

30.0 ≅ 45.0 – 26.6 + 14.0 – 7.1 + 3.6 + 1.8 – 0.9

+ 0.4 – 0.2 + 0.1 = 30.1

Table 22.1 Approximate value of the function e(i) = tan–12–i, in
degrees, for 0 ≤ i ≤ 9

 ––––––––––––
 i e(i)
 ––––––––––––
 0 45.0
 1 26.6
 2 14.0
 3 7.1
 4 3.6
 5 1.8
 6 0.9
 7 0.4
 8 0.2
 9 0.1
 ––––––––––––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 315

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 22.2 Choosing the signs of the rotation angles in order to
force z to 0

 ––––––––––––––––––––––––––––
 i z(i) – α(i) = z(i+1)
 ––––––––––––––––––––––––––––
 0 +30.0 – 45.0 = –15.0
 1 –15.0 + 26.6 = +11.6
 2 +11.6 – 14.0 = –2.4
 3 –2.4 + 7.1 = +4.7
 4 +4.7 – 3.6 = +1.1
 5 +1.1 – 1.8 = –0.7
 6 –0.7 + 0.9 = +0.2
 7 +0.2 – 0.4 = –0.2
 8 –0.2 + 0.2 = +0.0
 9 +0.0 – 0.1 = –0.1
 ––––––––––––––––––––––––––––

y

x

x ,y

x
–45

+26.6

–14
30

(0) (0)

(10)

x ,y(1) (1)

x ,y(2) (2)

x ,y(3) (3)

Fig. 22.2 The first three of 10 pseudo-rotations leading from
(x(0), y(0)) to (x(10), 0) in rotating by +30°.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 316

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

CORDIC Rotation Mode

In CORDIC terminology, the preceding selection rule for di,
which makes z converge to 0, is known as “rotation mode”.

 x(i+1) = x(i) – di (2

–iy(i))

 y(i+1) = y(i) + di (2
–ix(i))

 z(i+1) = z(i) – di e
(i)

 where e(i) = tan–1 2–i

After m iterations in rotation mode, when z(m) ≅ 0, we have
∑α(i) = z, and the CORDIC equations [*] become:

 x(m) = K(x cos z – y sin z)
 y(m) = K(y cos z + x sin z) [Rotation mode]
 z(m) = 0
 Rule: Choose di ∈ {–1, 1} such that z → 0

The constant K is K = 1.646 760 258 121 ...

Start with x = 1/K = 0.607 252 935 ... and y = 0;
as z(m) tends to 0 with CORDIC in rotation mode,
x(m) and y(m) converge to cos z and sin z

For k bits of precision in the results, k CORDIC iterations
are needed, because tan–1 2–i ≅ 2–i

Convergence of z to 0 is possible since each of our angles
is more than half of the previous angle or, equivalently,
each is less than the sum of all the angles following it

Domain of convergence is –99.7• • z • 99.7•, where 99.7•
is the sum of all the angles (contains [–π/2, π/2] radians)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 317

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

CORDIC Vectoring Mode

Let us now make y tend to 0 by choosing di = –sign(x(i)y(i))

After m steps in “vectoring mode,” tan(∑α(i)) = –y/x

 x(m) = K(x cos(∑α(i)) – y sin(∑α(i)))
 = K(x – y tan(∑α(i)))/(1 + tan2(∑α(i)))1/2
 = K(x + y2/x)/(1 + y2/x2)1/2
 = K(x2 + y2)1/2

The CORDIC equations [*] thus become:

 x(m) = K(x2 + y2)1/2
 y(m) = 0 [Vectoring mode]
 z(m) = z + tan–1(y/x)
 Rule: Choose di ∈ {–1,1} such that y → 0

Compute tan–1y by starting with x = 1 and z = 0
This computation always converges. However, one can
take advantage of

 tan–1(1/y) = π/2 – tan–1y

to limit the range of fixed-point numbers encountered

Other trigonometric functions:

tan obtained from sin and cos via division

sin–1 and cos–1: later

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 318

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

22.3 CORDIC Hardware

x

y

z

Shift

Shift

±

±

±

Lookup
 Table

Fig. 22.3 Hardware elements needed for the CORDIC method.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 319

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

22.4 Generalized CORDIC

The basic CORDIC method of Section 22.2 can be
generalized to provide a more powerful tool for function
evaluation. Generalized CORDIC is defined as follows:

 x(i+1) = x(i) – µdi y

(i)2–i

 y(i+1) = y(i) + di x
(i)2–i [Gen. CORDIC iteration]

 z(i+1) = z(i) – di e
(i)

µ = 1 Circular rotations (basic CORDIC) e(i) = tan–12–i
µ = 0 Linear rotations e(i) = 2–i
µ = –1 Hyperbolic rotations e(i) = tanh–12–i

x

y

O

B A

 F

 E

 C

 D

µ = –1 µ = 1 µ = 0

U V W

Fig. 24.4 Circular, linear, and hyperbolic CORDIC.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 320

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

22.5 Using the CORDIC Method

For cos & sin, set x = 1/K, y = 0

 tan z = sin z / cos z

For tan , set x = 1, z = 0

–1

For multiplication, set y = 0

For division, set z = 0

In executing the iterations for = –1, steps 4, 13, 40, 121, . . . , j , 3j + 1, . . .

µ
 must be repeated. These repetitions are incorporated in the constant K' below.

For cosh & sinh, set x = 1/K', y = 0

tanh z = sinh z / cosh z
 exp(z) = sinh z + cosh z

For tanh , set x = 1, z = 0

–1

w = exp(t ln w)

t

ln w = 2 tanh |(w – 1)/(w + 1)|

–1

Rotation: d = sign(z),

 i

z → 0

(i)

(i)

e =

 = 1
 Circular

tan 2

–i

µ

(i)
 –1

 = –1
 Hyperbolic

µ

e =

(i)

tanh 2

–i

–1

Mode → Vectoring: d = –sign(x y),

 i

 (i)

 (i)

y → 0

(i)

K(x cos z – y sin z)
 K(y cos z + x sin z)
 0

x
 y
 z

C
O
R
D
I
C

x

y + xz
 0

x
 y
 z

C
O
R
D
I
C

x
 0
 z + y/x

x
 y
 z

C
O
R
D
I
C

K' (x cosh z – y sinh z)
 K' (y cosh z + x sinh z)
 0

x
 y
 z

C
O
R
D
I
C

0
 z + tan (y/x)

–1

x
 y
 z

C
O
R
D
I
C

K √ x + y

2

2

0
 z + tanh (y/x)

–1

x
 y
 z

C
O
R
D
I
C

K' √ x – y

2

 2

cos w = tan [√1 – w / w]

2

–1

–1

sin w = tan [w / √1 – w]

 2

–1

–1

√w = √(w + 1/4) – (w – 1/4)

2

 2

cosh w = ln(w + √ 1 – w)

–1

 2

sinh w = ln(w + √ 1 + w)

–1

 2

Note →

e = 2

 = 0
 Linear

µ

(i)

 –i

 x(i+1) = x(i) – µdi (2
–iy(i)) µ ∈ {–1, 0, 1}, di ∈ {–1, 1}

 y(i+1) = y(i) + di (2
–ix(i)) K = 1.646 760 258 121 ...

 z(i+1) = z(i) – di e
(i) K' = 0.828 159 360 960 2 ...

Fig. 22.5 Summary of generalized CORDIC algorithms.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 321

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Speedup Methods for CORDIC

Skipping some rotations

Must keep track of the expansion factor via the recurrence:

 (K(i+1))2 = (K(i))2(1 ± 2–2i)

Given the additional work, variable-factor CORDIC is often
not cost-effective compared to constant-factor CORDIC

Early termination

Do k/2 iterations as usual, then combine the remaining k/2
iterations into a single step, involving multiplication:

 x(k/2+1) = x(k/2) – y(k/2)z(k/2)
 y(k/2+1) = y(k/2) + x(k/2)z(k/2)
 z(k/2+1) = z(k/2) – z(k/2) = 0

Possible because for very small z, tan–1z ≅ z ≅ tan z

The expansion factor K presents no problem because for
e(i) < 2–k/2, the contribution of the ignored terms that would
have been multiplied by K is provably less than ulp

High-radix CORDIC

In a radix-4 CORDIC, di assumes values in {–2, –1, 1, 2}
(perhaps with 0 also included) rather than in {–1, 1}

The hardware required for the radix-4 version of CORDIC
is quite similar to Fig. 22.3

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 322

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

22.6 An Algebraic Formulation

Because

 cos z + j sin z = e j z where j = –1

cos z and sin z can be computed via evaluating the
complex exponential function e j z

This leads to an alternate derivation of CORDIC iterations

Details in the text

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 323

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

23 Variations in Function Evaluation

 Go to TOC
Chapter Goals
 Learning alternate computation methods
 (convergence and otherwise) for some
 functions computable through CORDIC

Chapter Highlights
 Reasons for needing alternate methods:
 Achieve higher performance or precision
 Allow speed/cost tradeoffs
 Optimizations, fit to diverse technologies

Chapter Contents
23.1 Additive/Multiplicative Normalization
23.2 Computing Logarithms
23.3 Exponentiation
23.4 Division and Square-Rooting, Again
23.5 Use of Approximating Functions
23.6 Merged Arithmetic

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 324

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

23.1 Additive/Multiplicative Normalization

Convergence methods characterized by recurrences

 u(i+1) = f(u(i), v(i)) u(i+1) = f(u(i), v(i), w(i))
 v(i+1) = g(u(i), v(i)) v(i+1) = g(u(i), v(i), w(i))
 w(i+1) = h(u(i), v(i), w(i))

Making u converge to a constant = “normalization”

Additive normalization = u normalized by adding values

Multiplicative normalization = u multiplied by values

Availability of cost-effective fast adders and multipliers
 make these two classes of methods useful

Multipliers are slower and more costly than adders,
 so we avoid multiplicative normalization
 when additive normalization would do

Multiplicative methods often offer faster convergence,
 thus making up for the slower steps

Multiplicative terms 1 ± 2a are desirable (shift-add)

Examples we have seen before:

 Additive normalization: CORDIC
 Multiplicative normalization: convergence division

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 325

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

23.2 Computing Logarithms

A multiplicative normalization method using shift-add

 x(i+1) = x(i)c(i) = x(i)(1 + di 2
–i) di ∈ {–1, 0, 1}

 y(i+1) = y(i) – ln c(i) = y(i) – ln(1 + di 2
–i)

where ln(1 + di 2
–i) is read out from a table

Begin with x(0) = x, y(0) = y; Choose di such that x(m) → 1

 x(m) = x Πc(i) ≅ 1 ⇒ Πc(i) ≅ 1/x
 y(m) = y – ∑ ln c(i) = y – ln Πc(i) ≅ y + ln x

To find ln x, start with y = 0

The algorithm’s domain of convergence is easily obtained:

 1/Π(1 + 2–i) ≤ x ≤ 1/Π(1 – 2–i) or 0.21 ≤ x ≤ 3.45

For large i, we have ln(1 ± 2–i) ≅ ±2–i

So, we need k iterations to find ln x with k bits of precision

This method can be used directly for x in [1, 2)

Any x outside [1, 2) can be written as x = 2qs, 1 ≤ s < 2

 ln x = ln(2qs) = q ln 2 + ln s = 0.693 147 180 q + ln s

A radix-4 version of this algorithm can be easily developed

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 326

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

A clever method based on squaring

Let y = log2x be a fractional number (.y–1y–2 . . . y–l)two

 x = 2y = 2(.y–1y–2y–3...y–l)two

 x2 = 22y = 2(y–1.y–2y–3...y–l)two ⇒ y–1 = 1 iff x2 ≥ 2

If y–1 = 0, we are back to the original situation
If y–1 = 1, we divide both sides of the equation by 2 to get

 x2/2 = 2(1.y–2y–3...y–l)two / 2 = 2(.y–2y–3...y–l)two

Subsequent bits of y can be determined in a similar way.

log x

Square
r

Initialized to x

value ≥2 iff
this bit is 1

2

Radix Shift
0 1

Point

Fig. 23.1 Hardware elements needed for computing log2x.

Generalization to base-b logarithms: y = logbx implies

 x = by = b.(.y–1y–2y–3...y–l)two

 x2 = b2y = b(y–1.y–2y–3...y–l)two ⇒ y–1 = 1 iff x2 ≥ b

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 327

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

23.3 Exponentiation

An additive normalization method for computing ex

 x(i+1) = x(i) – ln c(i) = x(i) – ln(1 + di 2
–i)

 y(i+1) = y(i)c(i) = y(i)(1 + di 2
–i) di ∈ {–1, 0, 1}

As before, ln(1 + di 2
–i) is read out from a table

Begin with x(0) = x, y(0) = y; Choose di such that x(m) → 0

 x(m) = x – ∑ ln c(i) ≅ 0 ⇒ ∑ ln c(i) ≅ x

 y(m) = y Πc(i) = y eln Πc(i) = y eΣ ln c(i) ≅ y ex

The algorithm’s domain of convergence is easily obtained:

 ∑ ln(1 – 2–i) ≤ x ≤ ∑ ln(1 + 2–i) or –1.24 ≤ x ≤ 1.56

Half of the k iterations can be eliminated by noting:

 ln (1 + ε) = ε – ε2/2 + ε3/3 – . . . ≅ ε for ε2 < ulp

So when x(j) = 0.00 . . . 00xx . . . xx, with k/2 leading zeros,
we have ln(1 + x(j)) ≅ x(j), allowing us to terminate by

 x(j+1) = x(j) – x(j) = 0
 y(j+1) = y(j)(1 + x(j))

A radix-4 version of this ex algorithm can be developed

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 328

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

General exponentiation function xy

Can be computed by combining the logarithm and
exponential functions and a single multiplication:

 xy = (eln x)y = ey ln x

When y is a positive integer, exponentiation can be done
by repeated multiplication

In particular, when y is a constant, the methods used are
reminiscent of multiplication by constants (Section 9.5)

Example:

 x25 = ((((x)2x)2)2)2x

which implies 4 squarings and 2 multiplications.

Noting that

 25 = (1 1 0 0 1)two

leads us to a general procedure

To raise x to the power y, where y is a positive integer:

 Initialize the partial result to 1
 Scan the binary representation of y starting at its MSB
 If the current bit is 1, multiply the partial result by x
 If the current bit is 0, do not change the partial result
 Square the partial result before the next step (if any)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 329

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

23.5 Use of Approximating Functions

Convert the problem of evaluating the function f to that of
evaluating a different function g that approximates f,
perhaps with a few pre- and postprocessing operations

Approximating polynomials attractive because they need
only additions and multiplications

Polynomial approximations can be obtained based on
various schemes; e.g., Taylor-Maclaurin series expansion
The Taylor-series expansion of f(x) about x = a is

 f(x) = ∑ j=0 to ∞ f
(j)(a)(x – a)j / j!

The error due to omitting terms of degree > m is:

 f
(m+1)(a + µ(x – a))(x – a)m+1/(m + 1)! 0 < µ < 1

Setting a = 0 yields the Maclaurin-series expansion

 f(x) = ∑ j=0 to ∞ f
(j)(0)x

j / j!

and its corresponding error bound:

 f
(m+1)(µx)xm+1/(m + 1)! 0 < µ < 1

Efficiency can be gained via Horner’s method and
incremental evaluation

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 330

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 23.1 Polynomial approximations for some useful
functions

 –––

 Function Polynomial approximation Conditions

 –––
 1/x 1 + y + y2 + y3 + . . . + yi + . . . 0 < x < 2 and y = 1 – x

 ex 1 +
1
1! x +

1
2! x

2 +
1
3! x

3 + . . . +
1
i! x

i + . . .

 ln x –y –
1
2 y2 –

1
3 y3 –

1
4 y4 – . . . –

1
i y

i – . . . 0 < x ≤ 2 and y = 1 – x

 ln x 2[z +
1
3 z3 +

1
5 z5 + . . . +

1
2i+1 z2i+1 + . . .] x > 0 and z =

x–1
x+1

 sin x x –
1
3! x

3 +
1
5! x

5 –
1
7! x

7 + . . . + (–1)i
1

(2i+1)!
 x2i+1 + . . .

 cos x 1 –
1
2! x

2 +
1
4! x

4 –
1
6! x

6 + . . . + (–1)i
1

(2i)!
 x2i + . . .

 tan–1x x –
1
3 x3 +

1
5 x5 –

1
7 x7 + . . . + (–1)i

1
2i+1 x2i+1 + . . . –1 < x < 1

 sinh x x +
1
3! x

3 +
1
5! x

5 +
1
7! x

7 + . . . +
1

(2i+1)!
 x2i+1 + . . .

 cosh x 1 +
1
2! x

2 +
1
4! x

4 +
1
6! x

6 + . . . +
1

(2i)!
 x2i + . . .

 tanh–1x x +
1
3 x3 +

1
5 x5 +

1
7 x7 + . . . +

1
2i+1 x2i+1 + . . . –1 < x < 1

 –––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 331

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

A divide-and-conquer strategy for function evaluation

Let x in [0, 4) be the (l + 2)-bit significand of a FLP number
or its shifted version. Divide x into two chunks xH and xL:

 x = xH + 2–t xL 0 ≤ xH < 4 0 ≤ xL < 1
 t + 2 bits l – t bits

The Taylor-series expansion of f(x) about x = xH is

 f(x) = ∑ j=0 to ∞ f
(j)(xH)(2–txL) j / j!

where f(j)(x) is the jth derivative of f(x). If one takes just the
first two terms, a linear approximation is obtained

 f(x) ≅ f(xH) + 2–t xL f '(xH)

If t is not too large, f and/or f ' (and other derivatives of f, if
needed) can be evaluated by table lookup

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 332

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Approximation by the ratio of two polynomials

Example, yielding good results for many elementary
functions:

 f(x) ≅
a(5)x5 + a(4)x4 + a(3)x3 + a(2)x2 + a(1)x + a(0)

b(5)x5 + b(4)x4 + b(3)x3 + b(2)x2 + b(1)x + b(0)

Using Horner’s method, such a “rational approximation”
needs 10 multiplications, 10 additions, and 1 division

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 333

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

23.6 Merged Arithmetic

Our methods thus far rely on word-level building-block
operations such as addition, multiplication, shifting, . . .

Can compute a function of interest directly without
breaking it down into conventional operations

Example: merged arithmetic for inner product computation

 z = z(0) + x(1)y(1) + x(2)y(2) + x(3)y(3)

 o o o o o o o o z(0)
 o o o o |
 o o o o | x(1)y(1)
 o o o o |
 o o o o |
 o o o o |
 o o o o | x(2)y(2)
 o o o o |
 o o o o |
 o o o o |
 o o o o | x(3)y(3)
 o o o o |
 o o o o |

Fig. 23.2 Merged-arithmetic computation of an inner product
followed by accumulation.

 1 4 7 10 13 10 7 4 16 FAs

 2 4 6 8 8 6 4 2 10 FAs + 1 HA

 3 4 4 6 6 3 3 1 9 FAs

 1 2 3 4 4 3 2 1 1 4 FAs + 1 HA

 1 3 2 3 3 2 1 1 1 3 FAs + 2 HAs

 2 2 2 2 2 1 1 1 1 5-bit CPA

Fig. 23.3 Tabular representation of the dot matrix for inner-
product computation and its reduction.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 334

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

24 Arithmetic by Table Lookup

 Go to TOC
Chapter Goals
 Learning table lookup techniques
 for flexible and dense VLSI realization
 of arithmetic functions

Chapter Highlights
 We have used tables to simplify or speedup
 q digit selection, convergence methods, . . .
 Now come tables as primary computational
 mechanisms (as stars, not supporting cast)

Chapter Contents
24.1. Direct and Indirect Table Lookup
24.2. Binary-to-Unary Reduction
24.3. Tables in Bit-Serial Arithmetic
24.4. Interpolating Memory
24.5. Tradeoffs in Cost, Speed, and Accuracy
24.6. Piecewise Lookup Tables

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 335

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

24.1 Direct and Indirect Table Lookup

2 by
table

Result(s)
 bits

Pre-
proces-
sing
logic

Post-
processing
logic

Smaller
table(s)

Operand(s)
 bitsu u v

v

Operand(s)
 bitsu

Result(s)
 bitsv

.

.

.

. . .

Fig. 24.1 Direct table lookup versus table-lookup with pre-
and post-processing.

Tables are used in two ways:
 In supporting role, as in initial estimate for division
 As main computing mechanism
Boundary between two uses is fuzzy

Pure logic ------ Hybrid solutions ----- Pure tabular

Previously, we started with the goal of designing logic
circuits for particular arithmetic computations and ended
up using tables to facilitate or speed up certain steps

Here, we aim for a tabular implementation and end up
using peripheral logic circuits to reduce the table size

Some solutions can be derived starting at either endpoint

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 336

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

24.2 Binary-to-Unary Reduction

Can reduce the table size by using an auxiliary unary
function to evaluate a desired binary function

Example 1: Addition in a logarithmic number system
 Lz = log(x ± y) = log(x(1 ± y/x))
 = log x + log(1 ± y/x)
 = Lx + log(1 ± log–1∆) (∆ = Ly – Lx)

Example 2: Multiplication via squaring

 xy = (x + y)2/4 – (x – y)2/4

Simplification

 (x ± y)/2 =  (x ± y)/2 + ε/2 ε ∈ {0, 1} is the LSB
 (x + y)2/4 – (x – y)2/4
 = [ (x + y)/2 + ε/2]2 – [ (x – y)/2 + ε/2]2
 =  (x + y)/2 2 –  (x – y)/2 2 + εy

Compute x + y and x – y in the preprocessing stage,
Drop the least significant bit of each result,
Consult squaring table(s) of size 2k × (2k – 1)

Post-processing requires a carry-save adder (to reduce
the 3 values to 2) followed by a carry-propagate adder

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 337

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

24.3 Tables in Bit-Serial Arithmetic

a
b c

f op-
code

g op-
code

f(a, b, c)

g(a, b, c)

 From
Memory

0
1
2
3
4
5
6
7

Mux

0
1
2
3
4
5
6
7

Mux

Flags

To Memory

Fig. 24.2 Bit-serial ALU with two tables implemented as
multiplexers.

In the bit-serial ALU of Fig. 24.2:

a, b come from a 64K-bit memory (16-bit addresses)
c comes from a 4-bit “flags” register (2-bit address)
f output is stored as a flag bit (2-bit address)
g output replaces the a operand in a third clock cycle

Three additional bits are used to specify a flag bit and a
value (0 or 1) for conditionalizing the operation

To perform integer addition with the CM-2 ALU
 a and b: numbers to be added
 c: flag bit holding the carry from one position into next
 f op code: “00010111” (majority or ab + bc + ca)
 g op-code: “01010101” (3-input XOR)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 338

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Second-order digital filter example

y(i) = a(0)x(i) + a(1)x(i–1) + a(2)x(i–2) – b(1)y(i–1) – b(2)y(i–2)

Expand the equation for y(i) in terms of the bits in operands
x = (x0.x–1x–2 . . . x–l)two and y = (y0.y–1y–2 . . . y–l)two

y(i) = a(0)(–x0
(i) + ∑–1

j=–l 2jxj
(i))

 + a(1)(–x0
(i–1) + ∑–1

j=–l 2jxj
(i–1)) + a(2)(–x0

(i–2) + ∑–1
j=–l 2jxj

(i–2))

 – b(1)(–y0
(i–1) + ∑–1

j=–l 2jxj
(i–1)) – b(2)(–y0

(i–2) + ∑–1
j=–l 2jxj

(i–2))

Define f(s, t, u, v, w) = a(0)s + a(1)t + a(2)u – b(1)v – b(2)w

y(i) = ∑–1
j=–l 2j f(xj

(i), xj
(i–1), xj

(i–2), yj
(i–1), yj

(i–2))

 – f(x0
(i), x0

(i–1), x0
(i–2), y0

(i–1), y0
(i–2))

f

x

x

x

(i)

(i–1)

(i–2)

j

j

j

y(i–1)
j

y (i–2)
j

LSB-first y(i)

±

Input

32-Entry
 Table
 (ROM)

 Output
 Shift
Register

(m+3)-Bit
 Register

Data Out

Address In

s

Right-Shift

LSB-first
Output

Shift
Reg.

Shift
Reg.

Shift
Reg.

Shift
Reg.

Register

Fig. 24.3 Bit-serial tabular realization of a second-order filter.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 339

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

24.4 Interpolating Memory

Computing f(x), x ∈ [xlo, xhi], from f(xlo) and f(xhi):

 f(x) = f(xlo) +
(x – xlo) [f(xhi) – f(xlo)]

xhi – xlo

If the endpoints are consecutive multiples of a power of 2,
the division and two of the additions trivial

Example: evaluating log2x for x in [1, 2)
f(xlo) = log21 = 0, f(xhi) = log22 = 1; thus:

 log2x ≅ x – 1 = the fractional part of x

An improved linear interpolation formula

 log2x ≅
ln 2 – ln(ln 2) – 1

2 ln 2 + (x – 1) = 0.043 036 + ∆x

Add

a

f(x)

Multiply

b

∆x

∆x

x lo x hi x

f(x)

Initial linear
approximation

Improved linear
approximation

a + b ∆x

Fig. 24.4 Linear interpolation for computing f(x) and its
hardware realization.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 340

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Add

a

f(x)

Multiply 4∆x

 ∆x

x min x max x

f(x)

i = 0

a + b ∆x

 (i) b /4 (i)

4-entry tables
2-bit address

x

(i) (i)

i = 1
i = 2

i = 3

Fig. 24.5 Linear interpolation for computing f(x) using 4
subintervals.

Table 24.1 Approximating log2x for x in [1, 2) using linear
interpolation within 4 subintervals

––
i xlo xhi a(j) b(j)/4 Max error

––

0 1.00 1.25 0.004 487 0.321 928 ± 0.004 487
1 1.25 1.50 0.324 924 0.263 034 ± 0.002 996
2 1.50 1.75 0.587 105 0.222 392 ± 0.002 142
3 1.75 2.00 0.808 962 0.192 645 ± 0.001 607
––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 341

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Interpolating memory with linear interpolation

Add

x

Table
for a

Output

Table
for b

x Input x H L

f(x)

Multiply

h bits k − h bits

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 342

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

24.5 Trade-offs in Cost, Speed, and Accuracy

6 8 10
−9

W
or

st
-c

as
e

ab
so

lu
te

 e
rr

or

Number of bits (h)

Linear

0 2 4
10

−6
10

−3
10

−8
10

−5
10

−2
10

−7
10

−4
10

−1
10

Second-
order

Third-
order

Fig. 24.6 Maximum absolute error in computing log2x as a

function of number h of address bits for the tables
with linear, quadratic (second-degree), and cubic
(third-degree) interpolations [Noet89].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 343

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

24.6 Piecewise Lookup Tables

Function of a short (single) IEEE floating-point number

Divide the 26-bit significand x (with 2 whole and 24
fractional bits) into four sections:

 x = t + λu + λ2v + λ3w = t + 2–6u + 2–12v + 2–18w

where u, v, and w are 6-bit fractions in [0, 1) and t, with up
to 8 bits, depending on the function, is in [0, 4)

Taylor polynomial for f(x):

 f(x) = ∑i=0 to ∞ f(i)(t + λu) (λ2v + λ3w)i / i!

Ignore terms smaller than λ5 = 2–30

 f(x) ≅ f(t + λu) +
λ
2 [f(t + λu + λv) – f(t + λu – λv)]

 +
λ2

2 [f(t+λu+λw) – f(t+λu–λw)] + λ4[
v2

2 f(2)(t) –
v3

6 f(3)(t)]

With this method, computing f(x) reduces to:

a. Derive the 14-bit values t+λu+λv, t+λu–λv, t+λu+λw,
 t+λu–λw (4 additions; t+λu needs no computation)
b. Read the five values of f from table(s)

c. Read the last term λ4[
v2

2 f(2)(t) –
v3

6 f(3)(t)] from a table
d. Perform a 6-operand addition

Error in this computation is provably less than ulp/2 = 2–24

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 344

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Computing z mod p (modular reduction)

Table
 1

Table
 2

v

d d

Adder

Adder

–p

Mux+ –

d-bit output

b-bit input
b–g g

d d

d+1

dd

Sign

d+1

z

z mod p

LvH

Fig. 24.7 Two-table modular reduction scheme based on
divide-and-conquer.

Table
 2 m*

d

d-bit output

b–h h

z mod p

b-bit
input

z

Adder

Table
 1

v

d*

d*–h h d*

d*

Fig. 24.8 Modular reduction based on successive refinement.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 345

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Part VII Implementation Topics

Part Goals
 Sample more advanced implementation
 methods and ponder some of the
 practical aspects of computer arithmetic

Part Synopsis
 Speed/latency is often not the only concern
 Other attributes of interest include
 throughput, size, power, reliability
 Case studies: arithmetic in micros to supers
 Lessons from the past, future outlook

Part Contents

Chapter 25 High-Throughput Arithmetic

Chapter 26 Low-Power Arithmetic

Chapter 27 Fault-Tolerant Arithmetic

Chapter 28 Past, Present, and Future

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 346

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

25 High-Throughput Arithmetic

 Go to TOC
Chapter Goals
 Learn how to improve the performance of
 an arithmetic unit via higher throughput
 rather than reduced latency

Chapter Highlights
 To improve overall performance, one has to
 ● look beyond individual operations
 ● trade off latency for throughput
 E.g., a multiply may take 20 clock cycles,
 but a new one can begin every cycle
 Data availability and hazards limit the depth

Chapter Contents
25.1. Pipelining of Arithmetic Functions
25.2. Clock Rate and Throughput
25.3. The Earle Latch
25.4. Parallel and Digit-Serial Pipelines
25.5. On-Line or Digit-Pipelined Arithmetic
25.6. Systolic Arithmetic Units

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 347

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

25.1 Pipelining of Arithmetic Functions

Throughput = number of operations per unit time

Pipelining period = time interval between the application of
successive input data

Latency, though secondary, is still important because:

a. Occasional need for doing single operations

b. Dependencies may lead to bubbles or even drainage

At times, a pipelined implementation may improve the
latency of a multistep computation and also reduce its cost

In such a case, pipelining is obviously preferred

In Out
1 . . .

Inter-stage latchesInput
latches

Output
latches

In Out
Non-pipelined

t/ +τ

2 σ3

σ
t + στ

t

Fig. 26.1 An arithmetic function unit and its σ-stage pipelined
version.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 348

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Analysis of pipelining

Consider an arithmetic circuit with cost g and latency t.
Simplifying assumptions for our analysis:

1. Time overhead per stage is τ (latching delay)

2. Cost overhead per stage is γ (latching cost)

3. Function is divisible into σ equal stages for any σ

Then, for the pipelined implementation:

 Latency T = t + στ

 Throughput R =
1

T/σ =
1

t/σ + τ

 Cost G = g + σγ

Throughput approaches its maximum of 1/τ for large σ

In practice, however, it does not pay to reduce t/σ below a
certain threshold; typically 4 logic gate levels

Assuming a stage delay of 4δ, we have σ = t/(4δ) and:

 Latency T = t(1 +
τ

4δ)

 Throughput R =
1

T/σ =
1

4δ + τ

 Cost G = g(1 +
tγ

4gδ)

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 349

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Cost-effectiveness

If throughput isn’t the single most important factor,
then one might try to maximize a composite figure of merit

Throughput per unit cost represents cost-effectiveness:

 E =
R
G =

σ
(t + στ)(g + σγ)

To maximize E, we compute dE/dσ:

dE
dσ =

tg – σ2τγ
(t + στ)2(g + σγ)2

Equating dE/dσ with 0 yields:

 σ opt =
t g
τ γ

We see that the optimal number of pipeline stages for
maximal cost-effectiveness is

 directly related to the latency and cost of the function
 (it pays to have many pipeline stages if the
 function implemented is very slow or complex)

 inversely related to pipelining delay & cost overheads
 (few pipeline stages are in order if the time and/or
 cost overhead of pipelining is too high)

All in all, not a surprising result!

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 350

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

25.2 Clock Rate and Throughput

Consider a σ-stage pipeline with stage delay tstage

One set of inputs are applied to the pipeline at time t1

At t1 + tstage + τ, results are safely stored in latches

Apply the next set of inputs at time t2 satisfying

 t2 ≥ t1 + tstage + τ

Clock period = ∆t = t2 – t1 ≥ tstage + τ

Pipeline throughput is the inverse of the clock period:

 Throughput =
1

Clock period ≤
1

 tstage + τ

Implicit assumptions:
one clock signal is distributed to all circuit elements
all latches are clocked at precisely the same time

Uncontrolled or random clock skew causes the clock
signal to arrive at point B before/after its arrival at point A

With proper design of the clock distribution network, we
can place an upper bound ±ε on the uncontrolled clock
skew at the input and output latches of a pipeline stage

Then, the clock period is lower bounded as:

 clock period = ∆t = t2 – t1 ≥ tstage + τ + 2ε

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 351

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Wave Pipelining

Note that the stage delay tstage is really not a constant but
varies from tmin to tmax

 tmin represents fast paths (with fewer or faster gates)
 tmax represents slow paths

Suppose that one set of inputs is applied at time t1

At t1 + tmax + τ, the results are safely stored in latches

If that the next inputs are applied at time t2, we must have:

 t2 + tmin ≥ t1 + tmax + τ

This places a lower bound on the clock period:

 clock period = ∆t = t2 – t1 ≥ tmax – tmin + τ

Thus, we can approach the maximum possible throughput
of 1/τ without necessarily requiring very small stage delay

All we need is a very small delay variance tmax – tmin

Hence, there are two distinct strategies for increasing the
throughput of a pipelined function unit:

 (1) the traditional method of reducing tmax, and
 (2) the counterintuitive method of increasing tmin

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 352

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

S
ta

ge
 in

pu
t

S
ta

ge
 o

ut
pu

t

Wavefront
i + 3

(not yet applied)

Wavefront
i + 2

Wavefront
i + 1

Wavefront
i

(arriving at output)

Faster signals

Slower signals

Allowance for
latching, skew, etc.

t

 – t
 max

 min

Fig. 25.2 Wave pipelining allows multiple computational

wavefronts to coexist in a single pipeline stage.

Stage
output

Stage
input

Stationary
region

(unshaed)

Transient
region

(unshaed)

Clock cycle

L
o

gi
c

de
p

th

t t min max

Stage
output

Stage
input

Clock cycle

L
o

gi
c

de
p

th

t t min max

Time

Time

Controlled
clock skew

(a)

(b)
Fig. 25.3 An alternate view of the throughput advantage of

wave pipelining (b) over ordinary pipelining (a).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 353

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Wave pipelining is routinely used in high-speed LANs

Data adapted (rounded figures) from Myrinet [Bode95]

Sender Receiver

Gb/s link (cable)

30 m

10 b

Gb/s throughput → Clock rate = 108 → clock cycle = 10 ns

In 10 ns, signals travel 1-1.5 m (speed of light = 0.3 m/ns)

For a 30 m cable, 20-30 characters will be in flight

At the circuit and logic level (µm-mm distances, not m),
there are still problems that are being worked out

For example, delay equalization to reduce tmax – tmin is
nearly impossible in CMOS

2-input NAND delay varies by factor of 2 based on inputs

Biased CMOS (pseudo-CMOS) can solve this problem but
has power consumption penalties

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 354

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Controlled clock skew

 clock period = ∆t = t2 – t1 ≥ tmax – tmin + τ

tmax – tmin = 0 → ∆t ≥ τ

A new input enters the pipeline stage every ∆t time units
 and the stage latency is tmax + τ

Clock application at the output latch must be skewed by
(tmax + τ) mod ∆t to ensure proper sampling of the results

Example: tmax + τ = 12 ns and ∆t = 5 ns
A clock skew of +2 ns is required at the stage output
latches relative to the input latches

Generally tmax – tmin > 0; perhaps different for each stage

 ∆t ≥ maxσ
i=1 [tmax

(i) – tmax
(i) + τ]

The controlled clock skew at the output of stage i will be:

 S(i) = ∑i
j=1 [tmax

(i) – tmin
(i) + τ] mod ∆t

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 355

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Random clock skew in wave pipelining

 clock period = ∆t = t2 – t1 ≥ tmax – tmin + τ + 4ε

Reason for including the term 4ε:

 The clocking of the first input set may lag by ε, while
 that of the second set leads by ε (net difference = 2ε)
 The reverse condition may exist at the output

Uncontrolled skew has a larger effect on wave pipelining
than on standard pipelining, especially in relative terms

Graphical justification of the term 4ε

Stage
output

Stage
input

Clock cycle

L
o

gi
c

de
p

th

Stage
output

Stage
input

Clock cycle

L
o

gi
c

de
p

th

Time

Time

ε ε

ε ε

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 356

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

25.3 The Earle Latch

d
C

z

w

x

y

_
C

Fig. 25.4 Two-level AND-OR realization of the Earl latch.

We derived constraints on the maximum clock rate 1/∆t

Clock period ∆t has two parts: clock high, and clock low

 ∆t = Chigh + Clow

Consider a pipeline stage between Earle latches

Chigh, must satisfy the inequalities

 3δmax – δmin + Smax(C↑, C↓) ≤ Chigh ≤ 2δmin + tmin

 Clock must go low
before the fastest
signals from the
next input data set
can affect the input
z of the latch

The clock pulse must be
wide enough to ensure
that valid data is stored in
the output latch and to
avoid logic hazard should
C slightly lead C

_

δmax and δmin are maximum and minimum gate delays;

Smax(C↑, C↓) ≥ 0 is max skew between C↑ and C↓

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 357

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Merged logic and latch

A key property of the Earle latch is that it can be merged
with the 2-level AND-OR logic that precedes it

Example: to latch

 d = vw + xy

we substitute for d in the equation for the Earle latch

 z = dC + dz + Cz

to get a “logic+latch” circuit implementing z = vw + xy

 z = (vw + xy)C + (vw + xy)z + Cz
 = vwC + xyC + vwz + xyz + Cz

C

C

z

v
w

x
y

_

Fig. 25.5 Two-level AND-OR latched realization of the
function z = vw + xy.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 358

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

25.4 Parallel and Digit-Serial Pipelines

×

+

×

−

×

/ √

√

/

×

−

+

Pipelining period
Latency

t = 0

Latch positions in a four-stage pipeline

a
b

c
d

e
f

z

Output
available

Time

(a + b) c d
e − f

Fig. 25.6 Flow-graph representation of an arithmetic
expression and timing diagram for its evaluation
with digit-parallel computation.

Bit-serial addition and multiplication can be done LSB-first,
but division and square-rooting are MSB-first operations

Besides, division can’t be done in pipelined bit-serial
fashion, because the MSB of the quotient q in general
depends on all the bits of the dividend and divisor

Example: consider the decimal division .1234/.2469

.1xxx
.2xxx = .?xxx

.12xx

.24xx = .?xxx
.123x
.246x = .?xxx

Solution: redundant number representation!

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 359

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

25.5 On-Line or Digit-Pipelined Arithmetic

×

√
/

×

−

+

t = 0

Output
available

Time

(a + b) c d
e − f

×

√
/

×

−

+

t = 0

Output
complete

Output
Operation
latencies

Begin next
computation

Digit-parallel

Digit-serial

Fig. 25.7 Digit-parallel versus digit-pipelined computation.

Decimal example:

.1 8

.4 2

.5

Shaded boxes show the
"unseen" or unprocessed
parts of the operands and
unknown part of the sum

+
x

y
t

w

s

w

–i+1

–i+1

–i+1

–i

–i

–i

Latch
Latch

(interim sum)

-

Fig. 25.8 Digit-pipelined MSD-first carry-free addition.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 360

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

BSD example:

.1 0 1

.0 1 1

.1

Shaded boxes show the
"unseen" or unprocessed
parts of the operands and
unknown part of the sum

+

x

y
e

p

s

p

–i+2

–i+1

–i+1

–i

–i

–i

Latch

Latch

(position sum)

w–i+1 (interim sum)

w–i+2

Latch

t –i+2
-

Fig. 25.9 Digit-pipelined MSD-first limited-carry addition.

. 1 0 1

. 1 1 1

. 1 0 1

. 1 0 1

. 1 0 1

-

- -

. 0

a
x

Already
processed

Being
processed Not yet

known

×

Fig. 25.10 Digit-pipelined MSD-first multiplication process.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 361

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

a

Mux
–1 1 0

0

x

Mux

0

p

3-operand carry-free adder

Partial Multiplicand Partial Multiplier

Product Residual

Shift

–i+2

–i–i

–1 1 0

MSD

Fig. 25.11 Digit-pipelined MSD-first BSD multiplier.

Table 25.1 Example of digit-pipelined division showing that
three cycles of delay are necessary before quotient
digits can be output (radix = 4, digit set = [–2, 2])

––
Cycle Dividend Divisor q Range q–1 Range

––

 1 (.0 ...)four (.1...)four (–2/3, 2/3) [–2, 2]

 2 (.0 0...)four (.1-2...)four (–2/4, 2/4) [–2, 2]

 3 (.0 0 1...)four (.1-2-2...)four (1/16, 5/16) [0, 1]

 4 (.0 0 1 0...)four (.1-2-2-2...)four (10/64, 14/64) 1
––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 362

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Table 25.2 Examples of digit-pipelined square-root computa-
tion showing that 1-2 cycles of delay are necessary
before root digits can be output (radix = 10, digit set
= [–6, 6], and radix = 2, digit set = [–1, 1]).

–––
Cycle Radicand q Range q–1 Range
–––

 1 (.3 ...)ten (7/30 , 11/30) [5, 6]

 2 (.3 4 ...)ten (1/3 , 26/75) 6
–––

 1 (.0 ...)two (0, 1/2) [0, 1]

 2 (.0 1 ...)two (0, 1/2) [0, 1]

 3 (.0 1 1 ...)two (1/2, 1/2) 1
–––

a

x–i

–i . . .
. . .

. . .p–i+1

Head
Cell

Fig. 25.12 High-level design of a systolic radix-4 digit-
pipelined multiplier.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 363

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

26 Low-Power Arithmetic

 Go to TOC
Chapter Goals
 Learn how to improve the power efficiency
 of arithmetic circuits by means of
 algorithmic and logic design strategies

Chapter Highlights
 Reduced power dissipation needed due to
 ● limited source (portable, embedded)
 ● difficulty of heat disposal
 Algorithm & logic-level methods: discussed
 Technology & circuit methods: ignored here

Chapter Contents
26.1. The Need for Low-Power Design
26.2. Sources of Power Consumption
26.3. Reduction of Power Waste
26.4. Reduction of Activity
26.5. Transformations and Tradeoffs
26.6. Some Emerging Methods

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 364

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

26.1 The Need for Low-Power Design

Portable and wearable electronic devices

Nickel-cadmium batteries: 40-50 W-hr per kg of weight

Practical battery weight < 1 kg (<0.1 kg if wearable device)

Total power ≅ 3-5 W for a day’s work between recharges

Modern high-performance mircoprocessors use 10s Watts

 Power is proportional to die area × clock frequency
 Cooling of micros not yet a problem; but for MPPs . . .

New battery technologies cannot keep pace with demand

Demand for more speed & functionality (multimedia, etc.)

1980 1990 2000
10–4

10–3

10–2

10–1

1

Fig. 26.1 Power consumption trend in DSPs [Raba98].

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 365

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

26.2 Sources of Power Consumption

Both average and peak power are important

Peak power impacts power distribution and signal integrity

Typically, low-power design aims at reducing both

Power dissipation in CMOS digital circuits

 Static: leakage current in imperfect switches (< 10%)
 Dynamic: due to (dis)charging of parasitic capacitance
 Pavg ≅ αfCV2

 f: data rate (clock frequency) α: “activity”

Example: A 32-bit off-chip bus operates at 5 V & 100 MHz
and drives a capacitance of 30 pF per bit. If random values
were put on the bus in every cycle, we would have α = 0.5.
To account for data correlation and idle bus cycles,
assume α = 0.2. Then:

 Pavg ≅ αfCV2 = 0.2 × 108
 × (32 × 30 × 10–12) × 52

 = 0.48 W

Once we fix the data rate f, there are but three ways to
reduce the power requirements:

 1. Using a lower supply voltageV
 2. Reducing the parasitic capacitance C
 3. Lowering the switching activity α

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 366

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

26.3 Reduction of Power Waste

Function
 Unit Clock

Enable

Data Inputs

Data Outputs

Fig. 26.2 Saving power through clock gating.

Function
 Unit

FU Inputs
FU Output

Mux

Select

Latches0

1

Fig. 26.3 Saving power via guarded evaluation.

s i

xi yi

ci c0Carry propagationpi

xi

yi

s i

ci

Fig. 26.4 Example of glitching in a ripple-carry adder.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 367

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

p0

p1

p2

p3

p4p
6

p
7p8

0 0 0

p9
p5

0 0

0

0

0

0

0

a0a1
a2a3a4

x4

x3

x2

x1

x0
Carry

Sum

Fig. 26.5 An array multiplier with gated FA cells.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 368

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

26.4 Reduction of Activity

Arithmetic
 Circuit

m bits n – m bits

Precomputation

n inputs

Output

Load enable

Fig. 26.6 Reduction of activity by precomputation.

n – 1 inputs

 Function
 Unit
for x = 0

 Function
 Unit
for x = 1

Select

x n–1

Mux
0 1

n–1n–1

Fig. 26.7 Reduction of activity via Shannon expansion.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 369

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

26.5 Transformations and Tradeoffs

Clock

Arithmetic
 Circuit

f

Frequency = f
Capacitance = C
Voltage = V
Power = P

Frequency = 0.5f
Capacitance = 2.2C
Voltage = 0.6V
Power = 0.396P

Frequency = f
Capacitance = 1.2C
Voltage = 0.6V
Power = 0.432P

Circuit
Copy 1

Circuit
Copy 2

Mux

Circuit
Stage 1

Circuit
Stage 2

Clock

f

Register

Input Reg. Input Reg.

Output Reg.

Output Reg.
Clock

f

Select

Input Reg.
Clock

f

Output Reg.

Fig. 26.8 Reduction of power via parallelism or pipelining.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 370

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

x(i)

×

+

×a b

y(i–1)

y(i)

x

×

+

× ab

y (i)

×

+

×a b

y

y(i–2)

2
×ab

y(i–3)

x

(i–1)

(i)

(i–1)

Fig. 26.9 Direct realization of a first-order IIR filter.

Fig. 26.10 Realization of a first-order filter, unrolled once.

x(i) a

x(i–1)

x(i–3)

b

d

×

×

×

+

+

y(i)
y(i–1)

x(i–2) c

×

+

x(i) a

b

d

×

×

×

+

+

y(i)
y(i–1)

c

×

+

u(i)

v(i–1)

w(i–1)

u(i–1)

Fig. 26.11 Possible realization of a fourth-order FIR filter.

Fig. 26.12 Realization of the retimed fourth-order FIR filter.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 371

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

26.6 Some Emerging Methods

Local
Control

Local
Control

Local
Control

Arithmetic
 Circuit

Arithmetic
 Circuit

Arithmetic
 Circuit

Data readyData

Release

Fig. 26.13 Part of an asynchronous chain of computations.

×
×

× ×
+

+ +x

x

a

x

b

x

c

Fig. for problem 26.5

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 372

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

27 Fault-Tolerant Arithmetic

 Go to TOC
Chapter Goals
 Learn about errors due to hardware faults
 or hostile environmental conditions,
 and how to deal with or circumvent them

Chapter Highlights
 Modern components are very robust, but ...
 put millions/billions of them together
 and something is bound to go wrong
 Can arithmetic be protected via encoding?
 Reliable circuits and robust algorithms

Chapter Contents
27.1 Faults, Errors, and Error Codes
27.2 Arithmetic Error-Detecting Codes
27.3 Arithmetic Error-Correcting Codes
27.4 Self-Checking Function Units
27.5 Algorithm-Based Fault Tolerance
27.6 Fault-Tolerant RNS Arithmetic

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 373

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

27.1 Faults, Errors, and Error Codes

Protected
 by
Encoding

Input

Encode

Send

Store

Send

Decode

Output

Manipulate

Unprotected
 Protected

 by
encoding

Fig. 27.1 A common way of applying information coding
techniques.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 374

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Coded
inputs Decode

 1

Decode
 2

ALU
 1

ALU
 2

Compare

Mismatch
detected

Encode

Coded
outputs

Coded
inputs Decode

 1

Decode
 2

ALU
 1

ALU
 2

Decode
 3

ALU
 3

Vote Encode

Coded
outputs

Non-codeword
detected

Fig. 27.2 Arithmetic fault detection or fault tolerance
(masking) with replicated units.

 Unsigned addition 0010 0111 0010 0001
 + 0101 1000 1101 0011
 –––––––––––––––––
 Correct sum 0111 1111 1111 0100
 Erroneous sum 1000 0000 0000 0100
 ↑
 Stage generating an
 erroneous carry of 1

Fig. 27.3 How a single carry error can produce an arbitrary
number of bit-errors (inversions).

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 375

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

The arithmetic weight of an error

Minimum number of signed powers of 2 that must be
added to the correct value in order to produce the
erroneous result (or vice versa).

Examples:
Correct 0111 1111 1111 0100 1101 1111 1111 0100

Erroneous 1000 0000 0000 0100 0110 0000 0000 0100

Difference 16 = 24 –32752 = –215 + 24
(error)

Error 0000 0000 0001 0000 -1000 0000 0001 0000
(min-weight
BSD)

Arithmetic 1 2
weight of error

Error type Single, positive Double, negative

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 376

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

27.2 Arithmetic Error-Detecting Codes

Arithmetic error-detecting codes:

 1. Are characterized by arithmetic weights of
 detectable errors

 2. Allow direct arithmetic on coded operands

a. Product codes or AN codes

Represent N by the product AN (A = check modulus)

For odd A, all weight-1 arithmetic errors are detected

Arithmetic errors of weight ≥ 2 may go undetected
 e.g., the error 32736 = 215 – 25
 undetectable with A = 3, 11, or 31

Error detection: check divisibility by A

Encoding/decoding: multiply/divide by A

Arithmetic also requires multiplication and division by A

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 377

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Low-cost product codes: A = 2a – 1

 Multiplication by A = 2a – 1: done by shift-subtract

 Division by A = 2a – 1: done a bits at a time as follows
 Given y = (2a – 1)x, find x by computing 2ax – y
 . . . xxxx 0000 – . . . xxxx xxxx = . . . xxxx xxxx
 Unknown 2ax Known (2a – 1)x Unknown x

Theorem 27.1: Any unidirectional error with arithmetic
weight not exceeding a – 1 is detectable by a low-cost
product code using the check modulus A = 2a – 1

Product codes are nonseparate (nonseparable) codes
 Data and redundant check info are intermixed

Arithmetic on AN-coded operands

Add/subtract is done directly: Ax ± Ay = A(x ± y)

Direct multiplication results in: Aa × Ax = A2ax

The result must be corrected through division by A

For division, if z = qd + s, we have: Az = q(Ad) + As
 Thus, q is unprotected
 Possible cure: premultiply the dividend Az by A
 The result will need correction

Square rooting leads to a problem similar to division

  A2x  =  A x  which is not the same as A  x 

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 378

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

b. Residue codes

Represent N by the pair (N, C(N)), where C(N) = N mod A

Residue codes are separate (separable) codes
 Separate data and check parts make decoding trivial

Encoding: given N, compute C(N) = N mod A

Low-cost residue codes use A = 2a – 1

Arithmetic on residue-coded operands
Add/subtract: data and check parts are handled separately

 (x, C(x)) ± (y, C(y)) = (x ± y, (C(x) ± C(y)) mod A)

Multiply

 (a, C(a)) × (x, C(x)) = (a × x, (C(a)×C(x)) mod A)

Divide/square-root: difficult

 Main
Arithmetic
Processor

 Check
Processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error
Indicator

A

Fig. 27.4 Arithmetic processor with residue checking.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 379

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example: residue-checked adder

Add

x, x mod A

Add mod A

Compare
Find
mod A

y, y mod A

s, s mod A Error

 Not
 equal

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 380

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

27.3 Arithmetic Error-Correcting Codes

Table 27.1 Error syndromes for weight-1 arithmetic errors in
the (7, 15) biresidue code

––
Positive Error syndrome Negative Error syndrome
error mod 7 mod 15 error mod 7 mod 15
––
 1 1 1 –1 6 14
 2 2 2 –2 5 13
 4 4 4 –4 3 11
 8 1 8 –8 6 7

 16 2 1 –16 5 14
 32 4 2 –32 3 13
 64 1 4 –64 6 11
 128 2 8 –128 5 7

 256 4 1 –256 3 14
 512 1 2 –512 6 13
 1024 2 4 –1024 5 11
 2048 4 8 –2048 3 7
––
 4096 1 1 –4096 6 14
 8192 2 2 –8192 5 13
 16384 4 4 –16384 3 11
 32768 1 8 –32768 6 7
––

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 381

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Properties of biresidue codes

Biresidue code with relatively prime low-cost check moduli
A = 2a – 1 and B = 2b – 1 supports a × b bits of data for
weight-1 error correction

Representational redundancy = (a + b)/(ab) = 1/a + 1/b

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 382

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

27.4 Self-Checking Function Units

Self-checking (SC) unit: any fault from a prescribed set
 does not affect the correct output (masked)
 or leads to a noncodeword output (detected)

An invalid result is
 detected immediately by a code checker or
 propagated downstream by the next self-checking unit

To build SC units, we need SC code checkers that never
validate a noncodeword, even when they are faulty

Example: SC checker for inverse residue code (N, C' (N))
N mod A should be the bitwise complement of C' (N)
Verifying that signal pairs (xi, yi) are all (1, 0) or (0, 1)
 = finding the AND of Boolean values encoded as
 1: (1, 0) or (0, 1) 0: (0, 0) or (1, 1)

x

yi

i

x

yj

j

Fig. 27.5 Two-input AND circuit, with 2-bit inputs (xi, yi) and
(xj, yj), for use in a self-checking code checker.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 383

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

27.5 Algorithm-Based Fault Tolerance

Alternative to error detection at each basic operation:
Accept that operations may yield incorrect results
Detect/correct errors at data-structure or application level

Example: multiplication of matrices X and Y yielding P
Row, column, and full checksum matrices (mod 8)

 M =






 2 1 6
 5 3 4
 3 2 7

 Mr =






 2 1 6 1
 5 3 4 4
 3 2 7 4

 Mc =







 2 1 6
 5 3 4
 3 2 7
 2 6 1

 Mf =







 2 1 6 1
 5 3 4 4
 3 2 7 4
 2 6 1 1

Fig. 27.6 A 3×3 matrix M with its row, column, and full
checksum matrices Mr, Mc, and Mf.

Theorem 27.3: If P = X × Y , we have Pf = Xc × Yr
With floating-point values, the equalities are approximate

Theorem 27.4: In a full-checksum matrix, any single
erroneous element can be corrected and any three errors
can be detected

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 384

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

27.6 Fault-Tolerant RNS Arithmetic

Residue number systems allow very elegant and effective
error detection and correction schemes by means of
redundant residues (extra moduli)

Example: RNS(8 | 7 | 5 | 3), Dynamic range M = 8×7×5×3
= 840; redundant modulus: 11. Any error confined to a
single residue is detectable

The redundant modulus must be the largest one, say m

Error detection scheme:

 (1) Use other residues to compute the residue of the
number mod m (this process is known as base extension)

 (2) Compare the computed and actual mod-m residues

The beauty of this method is that arithmetic algorithms are
totally unaffected; error detection is made possible by
simply extending the dynamic range of the RNS

Example: RNS(8 | 7 | 5 | 3), redundant moduli: 13, 11

25 = (12, 3, 1, 4, 0, 1), erroneous version = (12, 3, 1, 6, 0, 1)

Transform (–,–,1,6,0,1) to (5,1,1,6,0,1) via base extension

The difference between the first two components of the
corrupted and reconstructed numbers is (+7, +2) which is
the error syndrome

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 385

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

28 Past, Present, and Future

 Go to TOC
Chapter Goals
 Wrap things up, provide perspective, and
 examine arithmetic in a few key systems

Chapter Highlights
 One must look at arithmetic in context of
 ● computational requirements
 ● technological constraints
 ● overall system design goals
 ● past and future developments
 Current trends and research directions?

Chapter Contents
28.1 Historical Perspective
28.2 An Early High-Performance Machine
28.3 A Modern Vector Supercomputer
28.4 Digital Signal Processors
28.5 A Widely Used Microprocessor
28.6 Trends and Future Outlook

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 386

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

28.1 Historical Perspective

1940s

Machine arithmetic was crucial in proving the feasibility of
computing with stored-program electronic devices

Hardware for addition, use of complement representation,
and shift-add multiplication and division algorithms were
developed and fine-tuned

A seminal report by A.W. Burkes, H.H. Goldstein, and J.
von Neumann contained ideas on choice of number radix,
carry propagation chains, fast multiplication via carry-save
addition, and restoring division

State of computer arithmetic circa 1950:

overview paper by R.F. Shaw [Shaw50]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 387

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1950s

The focus shifted from feasibility to algorithmic speedup
methods and cost-effective hardware realizations

By the end of the decade, virtually all important fast-adder
designs had already been published or were in the final
phases of development

Rresidue arithmetic, SRT division, CORDIC algorithms
were proposed and implemented

Snapshot of the field circa 1960:

overview paper by O.L. MacSorley [MacS61]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 388

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1960s

Tree multipliers, array multipliers, high-radix dividers,
convergence division, redundant signed-digit arithmetic
were introduced

Implementation of floating-point arithmetic operations in
hardware or firmware (in microprogram) became prevalent

Many innovative ideas originated from the design of early
supercomputers, when the demand for high performance,
along with the still high cost of hardware, led designers to
novel and cost-effective solutions.

Examples: IBM System/360 Model 91 [Ande67]
 CDC 6600 [Thor70]

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 389

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1970s

Advent of microprocessors and vector supercomputers

Early LSI chips were quite limited in the number of
transistors or logic gates that they could accommodate

Microprogrammed control (with just a hardware adder)
was a natural choice for single-chip processors which
were not yet expected to offer high performance

For high end machines, pipelining methods were perfected
to allow the throughput of arithmetic units to keep up with
computational demand in vector supercomputers

Example: Cray 1 supercomputer and its successors

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 390

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1980s

Spread of VLSI triggered a reconsideration of all arithmetic
designs in light of interconnection cost and pin limitations

For example, carry-lookahead adders, that appeared to be
ill-suited to VLSI, were shown to be efficiently realizable
after suitable modifications. Similar ideas were applied to
more efficient VLSI tree and array multipliers

Bit-serial and on-line arithmetic were advanced to deal
with severe pin limitations in VLSI packages

Arithmetic-intensive signal processing functions became
driving forces for low-cost and/or high-performance
embedded hardware: DSP chips

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 391

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

1990s

No breakthrough design concept

Demand for performance led to fine-tuning of arithmetic
algorithms and implementations (many hybrid designs)

Increasing use of table lookup and tight integration of
arithmetic unit and other parts of the processor for
maximum performance

Clock speeds reached and surpassed 100, 200, 300, 400,
and 500 MHz in rapid succession; pipelining used to
ensure smooth flow of data through the system

Example: Intel’s Pentium Pro (P6) → Pentium II

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 392

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

28.2 An Early High-Performance Machine

Floating-
Point
Instruction
Unit

RS1 RS2 RS3 RS1 RS2

Register Bus

Buffer Bus

Common Bus

Instruction
Buffers and
Controls

4 Registers 6 Buffers

To Storage

Adder
Stage 1

Adder
Stage 2

Result Bus

Result Result

Multiply
Iteration
Unit

Propagate
Adder

From Storage To Fixed-Point Unit

Add
Unit

Mul./
Div.
Unit

Floating-Point
Execution Unit 1

Floating-
Point
Execution
Unit 2

Fig. 28.1 Overall structure of the IBM System/360 Model 91
floating-point execution unit.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 393

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

28.3 A Modern Vector Supercomputer

V0

V7
V6

V5
V4

V3
V2

V1
 0
 1
 2
 3

 .
 .
 .

62
63

Vector
Registers

Vector
Integer
Units

Logical 1

Shift
 Add

Logical 2

Weight/
Parity

Stages = 5

4

2

3

3

Floating-
Point
Units

Multiply

 Add

Reciprocal
Approx.

Stages = 14

7

6

To/from Scalar Unit

Vector Length,
Mask, & Control

From
Address
Unit

Control
Signals

Fig. 28.2 The vector section of one of the processors in the
Cray X-MP/Model 24 supercomputer.

Pipeline setup and shutdown overheads

Vector unit not efficient for short vectors (break-even point)

Pipeline chaining

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 394

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

28.4 Digital Signal Processors

B Shifter/Limiter

X Bus
Y Bus

X1 X0
Y1 Y0

X
Y

24 24

24 24

24

A1 A0
B1 B0

A

B
A2
B2

56 56Shifter

56

A Shifter/Limiter

Accumulator,
Rounding, and
Logical Unit

Multiplier

Input
Registers

Accumulator
Registers

24+
Ovf

Fig. 28.3 Block diagram of the data ALU in Motorola’s
DSP56002 (fixed-point) processor.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 395

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Example DSP instructions

 ADD A, B { A + B → B }

 SUB X, A { A – X → A }

 MPY ±X1, X0, B { ±X1 × X0 → B }

 MAC ±Y1, X1, A { A ± Y1 × X1 → A }

 AND X1, A { A AND X1 → A }

I/O Format Converter

X Bus
Y Bus

32 32

Register File
10 96-bit,
or 10 64-bit,
or 30 32-bit

Add/
Subtract
Unit

Multiply
Unit

Special
Function
Unit

Fig. 28.4 Block diagram of the data ALU in Motorola’s
DSP96002 (floating-point) processor.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 396

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

28.5 A Widely Used Microprocessor

Performance trends in Intel micros

1990 1980 2000 2010
KIPS

MIPS

GIPS

TIPS

P
ro

ce
ss

or
 p

er
fo

rm
a

nc
e

Calendar year

80286
68000

80386

80486 68040
Pentium

Pentium II R10000

×1.6 / yr

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 397

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Integer
 Execution
 Unit 0

80

80

80

Port-0
 Units

Port-1
 Units

Port 0

Port 1

Port 2

Dedicated to
 memory access
 (address
 generation
 units, etc)

Port 3

Port 4

Reservation
 Station

Reorder
 Buffer and
 Retirement
 Register
 File

FLP Add

Integer Div

FLP Div

FLP Mult

Shift

Integer
 Execution
 Unit 1

Jump
 Exec
 Unit

Fig. 28.5 Key parts of the CPU in the Intel Pentium Pro (P6)
microprocessor.

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 398

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

28.6 Trends and Future Outlook

Present focus areas

Design: Shift of attention from algorithms to optimizations
at the level of transistors and wires

This explains the proliferation of hybrid designs

Technology: Predominantly CMOS, with a phenomenol
rate of improvement in size/speed

 New technologies cannot compete

Applications: Shift from high-speed or high-throughput
designs in mainframes to embedded systems requiring

 low cost

 low power

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 399

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

Trends and ongoing debates

Renewed interest in bit- and digit-serial arithmetic as
mechanisms to reduce the VLSI area and to improve
packageability and testability

Synchronous versus asynchronous design (asynchrony
has some overhead, but an equivalent overhead is being
paid for clock distribution and/or systolization)

New design paradigms may alter the way in which we view
or design arithmetic circuits

 Neuronlike computational elements

 Optical computing (redundant representations)

 Multivalued logic (match to high-radix arithmetic)

 Configurable logic

Arithmetic complexity theory

Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 400

 Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara

THE END!

 “You’re up to date. Take my advice and try to keep it
that way. It’ll be tough to do; make no mistake about it.
The phone will ring and it’ll be the administrator –– talking
about budgets. The doctors will come in, and they’ll want
this bit of information and that. Then you’ll get the
salesman. Until at the end of the day you’ll wonder what
happened to it and what you’ve accomplished; what
you’ve achieved.
 “That’s the way the next day can go, and the next,
and the one after that. Until you find a year has slipped by,
and another, and another. And then suddenly, one day,
you’ll find everything you knew is out of date. That’s when
it’s too late to change.
 “Listen to an old man who’s been through it all, who
made the mistake of falling behind. Don’t let it happen to
you! Lock yourself in a closet if you have to! Get away
from the phone and the files and paper, and read and
learn and listen and keep up to date. Then they can never
touch you, never say, ‘He’s finished, all washed up; he
belongs to yesterday.’ ”
 Arthur Hailey, The Final Diagnosis

How to keep up to date:

IEEE Trans. Computers
Symp. Computer Arithmetic, aka ARITH-n, in odd years

Go to TOC

