INSTRUCTOR'S MANUAL FOR

Volume 2: Presentation Material

Behrooz Parhami

Department of Electrical and Computer Engineering University of California
Santa Barbara, CA 93106-9560, USA
E-mail: parhami@ece.ucsb.edu
© Oxford University Press, Fall 2001

	Part I: Number Representation	1. Numbers and Arithmetic 2. Representing Signed Numbers 3. Redundant Number Systems 4. Residue Number Systems
	$\begin{gathered} \text { Part II: } \\ \text { Addition/Subtraction } \end{gathered}$	5. Basic Addition and Counting 6. Carry-Lookahead Adders 7. Variations in Fast Adders 8. Multioperand Addition
	Part III: Multiplication	9. Basic Multiplication Schemes 10. High-Radix Multipliers 11. Tree and Array Multipliers 12. Variations in Multipliers
	Part V : Division	13. 日asic Division Schemes 14. High-Radix Dividers 15. Variations in Dividers 16. Division by Convergence
	Part V . Real Arithmetic	17. Floating-Point Representations 18. Floating-Point Operations 19. Errors and Error Control 20. Precise and Certifable Arithmetic
	Part V : Function Evauation	21. Square-Rooting Methods 22. The CORDIC Algorithms 23. Variations in Function Evaluation 24. Arithmetic by Table Lookup
	Part VII: Implementation Topics	25. High-Throughput Arithmetic 26. Low-Power Arithmetic 27. Fault-Tolerant Arithmetic 28. Past, Present, and Future

This instructor's manual is for

Computer Arithmetic: Algorithms and Hardware Designs, by Behrooz Parhami ISBN 0-19-512583-5, QA76.9.C62P37
©2000 Oxford University Press, New York, http://www.oup-usa.org
For information and errata, see http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm
All rights reserved for the author. No part of this instructor's manual may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission. Contact the author at: ECE Dept., Univ. of California, Santa Barbara, CA 93106-9560, USA (parhami@ece.ucsb.edu)

Preface to the Instructor's Manual

This instructor's manual consists of two volumes. Volume 1 presents solutions to selected problems and includes additional problems (many with solutions) that did not make the cut for inclusion in the text Computer Arithmetic: Algorithms and Hardware Designs (Oxford University Press, 2000) or that were designed after the book went to print. Volume 2 contains enlarged versions of the figures and tables in the text as well as additional material, presented in a format that is suitable for use as transparency masters.

The fall 2001 edition Volume 1, which consists of the following parts, is available to qualified instructors through the publisher:

Volume 1 Part I Selected solutions and additional problems
Part II Question bank, assignments, and projects
The fall 2001 edition of Volume 2, which consists of the following parts, is available as a large file in postscript format through the book's Web page:

Volume 2 Parts I-VII Lecture slides and other presentation material
The book's Web page, given below, also contains an errata and a host of other material (please note the upper-case "F" and "P" and the underscore symbol after "text" and "comp":
http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm
The author would appreciate the reporting of any error in the textbook or in this manual, suggestions for additional problems, alternate solutions to solved problems, solutions to other problems, and sharing of teaching experiences. Please e-mail your comments to
parhami@ece.ucsb.edu
or send them by regular mail to the author's postal address:
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA
Contributions will be acknowledged to the extent possible.

Behrooz Parhami

Santa Barbara, Fall 2001

Table of Contents

Part I Number Representation1 Numbers and Arithmetic2 Representing Signed Numbers
3 Redundant Number Systems
4 Residue Number Systems
Part II Addition/Subtraction
5 Basic Addition and Counting
6 Carry-Lookahead Adders
$7 \quad$ Variations in Fast Adders
8 Multioperand Addition
Part III Multiplication
9 Basic Multiplication Schemes
10 High-Radix Multipliers
11 Tree and Array Multipliers
12 Variations in Multipliers
Part IV Division
13 Basic Division Schemes
14 High-Radix Dividers
15 Variations in Dividers
16 Division by Convergence
Part V Real Arithmetic
17 Floating-Point Representations
18 Floating-Point Operations
19 Errors and Error Control
20 Precise and Certifiable Arithmetic
Part VI Function Evaluation
21 Square-Rooting Methods
22 The CORDIC Algorithms
23 Variations in Function Evaluation
24 Arithmetic by Table Lookup
Part VII Implementation Topics
25 High-Throughput Arithmetic
26 Low-Power Arithmetic
27 Fault-Tolerant Arithmetic
28 Past, Present, and Future

Part I Number Representation

Part Goals
Review fixed-point number systems (floating-point covered in Part V)
Learn how to handle signed numbers
Discuss some unconventional methods

Part Synopsis
Number representation is is a key element affecting hardware cost and speed Conventional, redundant, residue systems Intermediate vs endpoint representations Limits of fast arithmetic

Part Contents
Chapter 1 Numbers and Arithmetic
Chapter 2 Representing Signed Numbers
Chapter 3 Redundant Number Systems
Chapter 4 Residue Number Systems

1 Numbers and Arithmetic

Go to TOC

Chapter Goals
Define scope and provide motivation
Set the framework for the rest of the book
Review positional fixed-point numbers

Chapter Highlights
What goes on inside your calculator?
Ways of encoding numbers in k bits
Radix and digit set: conventional, exotic
Conversion from one system to another
Chapter Contents
1.1 What is Computer Arithmetic?
1.2A Motivating Example
1.3Numbers and Their Encodings
1.4Fixed-Radix Positional Number Systems
1.5Number Radix Conversion
1.6Classes of Number Representations

1.1 What Is Computer Arithmetic?

Pentium Division Bug (1994-95): Pentium's radix-4 SRT algorithm occasionally produced an incorrect quotient First noted in 1994 by T. Nicely who computed sums of reciprocals of twin primes:

$$
1 / 5+1 / 7+1 / 11+1 / 13+\ldots+1 / p+1 /(p+2)+\ldots
$$

Worst-case example of division error in Pentium:

$$
c=\frac{4195835}{3145727}=<\begin{array}{ll}
1.33382044 \ldots & \text { Correct quotient } \\
1.33373906 \ldots & \text { circa 1994 Pentium } \\
\text { double FLP value; } \\
& \text { accurate to only 14 bits } \\
\text { (worse than single!) }
\end{array}
$$

Humor, circa 1995

Top Ten New Intel Slogans for the Pentium:

9.999997325 It's a FLAW, dammit, not a bug
8.999916336 It's close enough, we say so
7.999941461 Nearly 300 correct opcodes
6.999983153 You don't need to know what's inside
5.999983513 Redefining the PC - and math as well
4.999999902 We fixed it, really
3.999824591 Division considered harmful
2.999152361 Why do you think it's called "floating" point?
1.999910351 We're looking for a few good flaws
0.999999999 The errata inside

Fig. 1.1 The scope of computer arithmetic.

1.2 A Motivating Example

Using a calculator with $\sqrt{ }, x^{2}$, and x^{y} functions, compute:
$u=\frac{\sqrt{\sqrt{\ldots \sqrt{2}}}}{10 \text { times }}=1.000677131$ "1024th root of 2 "
$v=2^{1 / 1024}=1.000677131$
Save u and v; If you can't, recompute when needed.
$x=\left(\left(\left(u^{2}\right)^{2}\right) \cdots\right)^{2}=1.999999963$
$x^{\prime}=u^{1024}=1.999999973$
10 times
$y=\left(\left(\left(v^{2}\right)^{2}\right) \cdots\right)^{2}=1.999999983$
$y^{\prime}=V_{1024}=1.999999994$
Perhaps v and u are not really the same value.
$w=v-u=1 \times 10^{-11} \quad$ Nonzero due to hidden digits
$(u-1) \times 1000=0.677130680$
$(v-1) \times 1000=0.677130690$
[Hidden ... (0) 68]
[Hidden ... (0) 69]

A simple analysis:

$$
\begin{aligned}
v^{1024}=\left(u+10^{-11}\right)^{1024} & \cong u^{1024}+1024 \times 10^{-11} u^{1023} \\
& \cong u^{1024}+2 \times 10^{-8}
\end{aligned}
$$

Finite Precision Can Lead to Disaster

Example: Failure of Patriot Missile (1991 Feb. 25)
Source http://www.math.psu.edu/dna/455.f96/disasters.html
American Patriot Missile battery in Dharan, Saudi Arabia, failed to intercept incoming Iraqi Scud missile
The Scud struck an American Army barracks, killing 28
Cause, per GAO/IMTEC-92-26 report: "software problem" (inaccurate calculation of the time since boot)

Specifics of the problem: time in tenths of second as measured by the system's internal clock was multiplied by $1 / 10$ to get the time in seconds Internal registers were 24 bits wide
$1 / 10=0.00011001100110011001100$ (chopped to 24 b)
Error $\cong 0.11001100 \times 2^{-23} \cong 9.5 \times 10^{-8}$
Error in 100-hr operation period

$$
\cong 9.5 \times 10^{-8} \times 100 \times 60 \times 60 \times 10=0.34 \mathrm{~s}
$$

Distance traveled by Scud $=(0.34 \mathrm{~s}) \times(1676 \mathrm{~m} / \mathrm{s}) \cong 570 \mathrm{~m}$ This put the Scud outside the Patriot's "range gate"

Ironically, the fact that the bad time calculation
had been improved in some (but not all) code parts contributed to the problem, since it meant that inaccuracies did not cancel out

Finite Range Can Lead to Disaster

Example: Explosion of Ariane Rocket (1996 June 4)
Source http://www.math.psu.edu/dna/455.f96/disasters.html
Unmanned Ariane 5 rocket launched by the European Space Agency veered off its flight path, broke up, and exploded only 30 seconds after lift-off (altitude of 3700 m)
The $\$ 500$ million rocket (with cargo) was on its 1 st voyage after a decade of development costing $\$ 7$ billion

Cause: "software error in the inertial reference system"
Specifics of the problem: a 64 bit floating point number relating to the horizontal velocity of the rocket was being converted to a 16 bit signed integer

An SRI* software exception arose during conversion because the 64-bit floating point number had a value greater than what could be represented by a 16-bit signed integer (max 32 767)
*SRI stands for Système de Référence Inertielle or Inertial Reference System

1.3 Numbers and Their Encodings

Numbers versus their representations (numerals)
The number "twenty-seven" can be represented in different ways using numerals or numeration systems:
||||| ||||| ||||| ||||| ||||| || sticks or unary code
27 radix-10 or decimal code (27) $)_{\text {ten }}$
11011 radix-2 or binary code (11011) two
XXVII Roman numerals

Encoding of digit sets as binary strings: BCD example

Digit	BCD representation
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Encoding of numbers in 4 bits:

Unsigned integer
Fixed point, 3+1
Signed fraction
Floating point

Radix
point

Fig. 1.2 Some of the possible ways of assigning 16 distinct codes to represent numbers.

1.4 Fixed-Radix Positional Number Systems

$$
\left(x_{k-1} x_{k-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-1}\right)_{r}=\sum_{i=-1}^{k-1} x_{i} r^{i}
$$

One can generalize to:
arbitrary radix (not necessarily integer, positive, constant) arbitrary digit set, usually $\{-\alpha,-\alpha+1, \cdots, \beta-1, \beta\}=[-\alpha, \beta]$

Example 1.1. Balanced ternary number system:
radix $r=3$, digit set $=[-1,1]$
Example 1.2. Negative-radix number systems: radix $-r, r \geq 2$, digit set $=[0, r-1]$

The special case with radix -2 and digit set [0, 1] is known as the negabinary number system

Example 1.3. \quad Digit set $[-4,5]$ for $r=10$:
$\left(\begin{array}{lll}-1 & 5\end{array}\right)_{\text {ten }}$ represents $295=300-10+5$
Example 1.4. \quad Digit set $[-7,7]$ for $r=10$:
$\left(\begin{array}{lll}3 & -1 & 5\end{array}\right)_{\text {ten }}=\left(\begin{array}{lll}3 & 0 & -5\end{array}\right)_{\text {ten }}=\left(\begin{array}{llll}1 & -7 & 0 & -5\end{array}\right)_{\text {ten }}$
Example 1.7. Quater-imaginary number system:
radix $r=2 j$, digit set $[0,3]$.

1.5 Number Radix Conversion

$$
\begin{aligned}
u & =w \cdot v \\
& =\left(x_{k-1} x_{k-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-1}\right)_{r} \quad \text { Old } \\
& =\left(X_{K-1} X_{k-2} \cdots x_{1} x_{0} \cdot X_{-1} X_{-2} \cdots x_{-L}\right)_{R} \quad \text { New }
\end{aligned}
$$

Radix conversion: arithmetic in the old radix r

Converting whole part w: Repeatedly divide by five

$21 \quad 1$
4
4
0

Therefore, $(105)_{\text {ten }}=(410)_{\text {five }}$
Converting fractional part v. Repeatedly multiply by five
$(105.486)_{\text {ten }}=(410 . ?)_{\text {five }}$ Whole Part Fraction . 486
2 . 430
2
0 . 750
3
3
.150
.750
. 750

Therefore, $(105.486)_{\text {ten }} \cong(410.22033)_{\text {five }}$

Radix conversion: arithmetic in the new radix R

Converting the whole part w

Fig. 1.A Horner's rule used to convert (22033) five to decimal.
Converting fractional part $v:(410.22033)_{\text {five }}=(105 . ?)_{\text {ten }}$

$$
(0.22033)_{\text {five }} \times 5^{5}=(22033)_{\text {five }}=(1518)_{\text {ten }}
$$

$1518 / 5^{5}=1518 / 3125=0.48576$
Therefore, $(410.22033)_{\text {five }}=(105.48576)_{\text {ten }}$

Fig. 1.3 Horner's rule used to convert (0.22033) five to decimal.

1.6 Classes of Number Representations

Integers (fixed-point), unsigned: Chapter 1
Integers (fixed-point), signed
signed-magnitude, biased, complement: Chapter 2
signed-digit: Chapter 3
(but the key point of Chapter 3 is use of redundancy for faster arithmetic, not how to represent signed values)
residue number system: Chapter 4
(again, the key to Chapter 4 is use of parallelism for faster arithmetic, not how to represent signed values)

Real numbers, floating-point: Chapter 17
covered in Part V, just before real-number arithmetic
Real numbers, exact: Chapter 20
continued-fraction, slash, ... (for error-free arithmetic)

2 Representing Signed Numbers

Go to TOC

Chapter Goals
Learn different encodings of the sign info
Discuss implications for arithmetic design

Chapter Highlights
Using sign bit, biasing, complementation
Properties of 2's-complement numbers
Signed vs unsigned arithmetic
Signed numbers, positions, or digits

Chapter Contents
2.1 Signed-Magnitude Representation
2.2Biased Representations
2.3Complement Representations
2.4Two's- and 1's-Complement Numbers
2.5Direct and Indirect Signed Arithmetic
2.6Using Signed Positions or Signed Digits

When Numbers Go into the Red!

"This can't be right ... It goes into the red."

2.1 Signed-Magnitude Representation

Fig. 2.1 Four-bit signed-magnitude number representation system for integers.

Fig. 2.2 Adding signed-magnitude numbers using precomplementation and postcomplementation.

2.2 Biased Representations

Fig. 2.3 Four-bit biased integer number representation system with a bias of 8 .

Addition/subtraction of biased numbers

$$
\begin{aligned}
& x+y+\text { bias }=(x+\text { bias })+(y+\text { bias })-\text { bias } \\
& x-y+\text { bias }=(x+\text { bias })-(y+\text { bias })+\text { bias }
\end{aligned}
$$

A power-of-2 (or $2^{a}-1$) bias simplifies the above
Comparison of biased numbers:
compare like ordinary unsigned numbers find true difference by ordinary subtraction

2.3 Complement Representations

Fig. 2.4 Complement representation of signed integers.

Table 2.1 Addition in a complement number system with complementation constant M and range $[-N,+P]$

Desired operation Computation to be performed mod M Correct result with no overflow	Overflow condition		
$(+x)+(+y)$	$x+y$	$x+y$	$x+y>P$
$(+x)+(-y)$	$x+(M-y)$	$x-y$ if $y \leq x$ $M-(y-x)$ if $y>x$	$\mathrm{~N} / \mathrm{A}$
$(-x)+(+y)$	$(M-x)+y$	$y-x$ if $x \leq y$ $M-(x-y)$ if $x>y$	$\mathrm{~N} / \mathrm{A}$
$(-x)+(-y)$	$(M-x)+(M-y)$	$M-(x+y)$	$x+y>N$

Example -- complement system for fixed-point numbers:
complementation constant $M=12.000$ fixed-point number range $[-6.000,+5.999]$ represent -3.258 as $12.000-3.258=8.742$

Auxiliary operations for complement representations complementation or change of sign (computing $M-x$) computations of residues mod M

Thus M must be selected to simplify these operations
Two choices allow just this for fixed-point radix-r arithmetic with k whole digits and / fractional digits

Radix complement
$M=r^{k}$
Digit complement
$M=r^{k}-u l p$
(diminished radix complement)
ulp (unit in least position) stands for r^{-1} it allows us to forget about / even for nonintegers

2.4 Two's- and 1's-Complement Numbers

Two's complement = radix complement system for $r=2$

$$
2^{k}-x=\left[\left(2^{k}-u l p\right)-x\right]+u l p=x^{c o m p l}+u l p
$$

Range of representable numbers in with k whole bits:

$$
\text { from }-2^{k-1} \text { to } 2^{k-1}-u l p
$$

Fig. 2.5 Four-bit 2's-complement number representation system for integers.

Range/precision extension for 2's-complement numbers

$$
\begin{array}{ll}
\cdots x_{k-1} x_{k-1} x_{k-1} x_{k-1} x_{k-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-1} 000 \cdots \\
\leftarrow \text { Sign extension } \rightarrow \underset{\text { bit }}{\text { Sign }} & \\
\text { Extension }
\end{array}
$$

One's complement = digit complement system for $r=2$

$$
\left(2^{k}-u l p\right)-x=x^{\mathrm{compl}}
$$

Mod-($\left.2^{k}-u l p\right)$ operation is done via end-around carry

$$
(x+y)-\left(2^{k}-u l p\right)=x-y-2^{k}+u l p
$$

Range of representable numbers with k whole bits:

$$
\text { from }-2^{k-1} \text { to } 2^{k-1}-u l p
$$

Fig. 2.6 Four-bit 1's-complement number representation system for integers.

Table 2.2 Comparing radix- and digit-complement number representation systems

Feature/Property	Radix complement	Digit complement
Symmetry $(P=N ?)$	Possible for odd r (radices of practical interest are even)	Possible for even r
Unique zero?	Yes	No
Complementation	Complement all digits and add ulp	Complement all digits
Mod-M addition	Drop the carry-out	End-around carry

Fig. 2.7 Adder/subtractor architecture for two's-complement numbers.

2.5 Direct and Indirect Signed Arithmetic

Fig. 2.8 Direct vs indirect operation on signed numbers.

Advantage of direct signed arithmetic usually faster (not always)

Advantages of indirect signed arithmetic can be simpler (not always) allows sharing of signed/unsigned hardware when both operation types are needed

2.6 Using Signed Positions or Signed Digits

A very important property of 2's-complement numbers that is used extensively in computer arithemetic:

$$
\begin{aligned}
& x=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)_{\text {two's-compl }} \\
& \begin{array}{llllllll}
-2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}
\end{array} \\
& -128+32+4+2=-90
\end{aligned}
$$

Check:

$$
\begin{aligned}
& x=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)_{\text {two's-compl }} \\
& -x=\left(\begin{array}{llllllll}
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)_{t w o} \\
& \begin{array}{llllllll}
-2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}
\end{array} \\
& 64+16+8+2=90
\end{aligned}
$$

Fig. 2.9 Interpreting a 2's-complement number as having a negatively weighted most-significant digit.

Generalization: associate a sign with each digit position

$$
\begin{aligned}
& \lambda=\left(\lambda_{k-1} \lambda_{k-2} \cdots \lambda_{1} \lambda_{0} \cdot \lambda_{-1} \lambda_{-2} \cdots \lambda_{-l}\right) \lambda_{i} \text { in }\{-1,1\} \\
& \left(x_{k-1} x_{k-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-1}\right)_{r, \lambda}=\sum_{i=-l}^{k-1} \lambda_{i} x_{i} r^{i} \\
& \lambda=\begin{array}{llllllll}
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1
\end{array} \text { positive-radix } \\
& \lambda=-1 \begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \text { two's-complement } \\
& \lambda=\quad \cdots \quad-1 \quad 1-1 \quad 1 \text { negative-radix }
\end{aligned}
$$

Signed digits: associate signs not with digit positions but with the digits themselves

Fig. 2.10 Converting a standard radix-4 integer to a radix-4 integer with the non-standard digit set [-1, 2].

Fig. 2.11 Converting a standard radix-4 integer to a radix-4 integer with the non-standard digit set [-2, 2].

3 Redundant Number Systems

Go to TOC

Chapter Goals
Explore the advantages and drawbacks
of using more than r digit values in radix r

Chapter Highlights
Redundancy eliminates long carry chains
Redundancy takes many forms: tradeoffs
Conversions between redundant and nonredundant representations
Redundancy used for end values too?
Chapter Contents
3.1 Coping with the Carry Problem
3.2Redundancy in Computer Arithmetic
3.3Digit Sets and Digit-Set Conversions
3.4Generalized Signed-Digit Numbers
3.5Carry-Free Addition Algorithms
3.6 Conversions and Support Functions

3.1 Coping with the Carry Problem

The carry problem can be dealt with in several ways:

1. Limit carry propagation to within a small number of bits
2. Detect end of propagation; don't wait for worst case
3. Speed up propagation via lookahead etc.
4. Ideal: Eliminate carry propagation altogether!

$$
\begin{array}{rrrrrrl}
5 & 7 & 8 & 2 & 4 & 9 \\
+ & 2 & 9 & 3 & 8 & 9 & \text { Operand digits in }[0,9] \\
\hline 11 & 9 & 17 & 5 & 12 & 18 & \text { Position sums in }[0,18]
\end{array}
$$

But how can we extend this beyond a single addition?

$$
\begin{array}{rrrrrrrl}
11 & 9 & 17 & 10 & 12 & 18 \\
+ & 6 & 12 & 9 & 10 & 8 & 18
\end{array} \text { Operand digits in [0, 18] }
$$

Fig. 3.1 Adding radix-10 numbers with digit set [0, 18].

Position sum decomposition $[0,36]=10 \times[0,2]+[0,16]$ Absorption of transfer digit $[0,16]+[0,2]=[0,18]$ So, redundancy helps us achieve carry-free addition But how much redundancy is actually needed?

```
            1110}711
+ 72910 9 8 Operand digits in [0, 11]
    181216211216 Position sums in [0, 22]
        8 2 6 1 2 6 Interim sums in [0, 9]
    1
    1
```

Fig. 3.3 Adding radix-10 numbers with digit set [0, 11].

Fig. 3.2 Ideal and practical carry-free addition schemes.

3.2 Redundancy in Computer Arithmetic

Oldest example of redundancy in computer arithmetic is the stored-carry representation (carry-save addition):

	0	0	1	0	0		First binary number Add 2nd binary number
+	0	1	1	1	1	0	
	0	1	2	1	1	1	Position sums in [0, 2]
+	0	1	1	1	0	1	Add 3rd binary number
	0	2	3	2	1	2	Position sums in [0, 3]
	1	I	1	I	I	1	
						0	Interim sums in [0, 1]
	1	1	1	0	1		Transfer digits in [0, 1]

1	1	2	0	2	0	Position sums in [0, 2]
+	0	0	1	0	1	1

Fig. 3.4 Addition of 4 binary numbers, with the sum obtained in stored-carry form.

Possible 2-bit encoding for binary stored-carry digits:

0 represented as
1 represented as
2 represented as

00
01 or 10
11

Fig. 3.5 Carry-save addition using an array of independent binary full adders.

3.3 Digit Sets and Digit-Set Conversions

Example 3.1: \quad Convert from digit set $[0,18]$ to the digit set [0, 9] in radix 10 .
$\begin{array}{lllllll}11 & 9 & 17 & 10 & 12 & 18 & \text { Rewrite } 18 \text { as } 10 \text { (carry 1) + } 8\end{array}$
$\begin{array}{lllllll}11 & 9 & 17 & 10 & 13 & 8 & 13=10(\text { carry } 1)+3\end{array}$
$\begin{array}{lllllll}11 & 9 & 17 & 11 & 3 & 8 & 11=10(\text { carry } 1)+1\end{array}$
$\begin{array}{lllllll}11 & 9 & 18 & 1 & 3 & 8 & 18=10(\text { carry } 1)+8\end{array}$
$\begin{array}{lllllll}11 & 10 & 8 & 1 & 3 & 8 & 10=10(\text { carry } 1)+0\end{array}$
$120 \begin{array}{llllll}12 & 1 & 3 & 8 & 12=10(\text { carry } 1)+2\end{array}$
$122083 \quad 1 \quad 3 \quad 8 \quad$ Answer; all digits in [0, 9]

Example 3.2: Convert from digit set [0, 2] to digit set [0, 1] in radix 2.

	1	1	2	0	2	0	Rewrite 2 as $2($ carry 1$)+0$
	1	1	2	1	0	0	$2=2($ carry 1$)+0$
	1	2	0	1	0	0	$2=2($ carry 1$)+0$
	2	0	0	1	0	0	$2=2($ carry 1$)+0$
1	0	0	0	1	0	0	Answer; all digits in $[0,1]$

Another way: Decompose the carry-save number into two numbers and add them:

$$
\begin{array}{llllllll}
& 1 & 1 & 1 & 0 & 1 & 0 & \begin{array}{l}
\text { First number: "Sum" bits } \\
\text { Second number: "Carry" bits }
\end{array} \\
+ & 0 & 0 & 1 & 0 & 1 & 0 &
\end{array}
$$

Example 3.3: Convert from digit set [0, 18] to the digit set $[-6,5]$ in radix 10 (same as Example 3.1, but with an asymmetric target digit set)
$\begin{array}{lllllll}11 & 9 & 17 & 10 & 12 & 18 & \text { Rewrite } 18 \text { as } 20 \text { (carry 2) }-2\end{array}$
$\left.11 \begin{array}{lllllll} & 9 & 17 & 10 & 14 & -2 & 14=10(c a r r y \\ 1\end{array}\right)+4 \quad$ [or $\left.20-6\right]$
$\begin{array}{lllllll}11 & 9 & 17 & 11 & 4 & -2 & 11=10(\text { carry } 1)+1\end{array}$
$\begin{array}{lllllll}11 & 9 & 18 & 1 & 4 & -2 & 18=20(\text { carry } 1)+-2\end{array}$
$\begin{array}{lllllll}11 & 11 & -2 & 1 & 4 & -2 & 11=10(\text { carry } 1)+1\end{array}$
$12 \begin{array}{llllll}1 & -2 & 1 & 4 & -2 & 12=10(\text { carry } 1)+2\end{array}$
$\begin{array}{llllllll}1 & 2 & 1 & -2 & 1 & 4 & -2 & \text { Answer; all digits in [0, 9] }\end{array}$

Example 3.4: Convert from digit set [0, 2] to digit set $[-1,1]$ in radix 2 (same as Example 3.2, but with the target digit set $[-1,1]$ instead of $[0,1])$

Carry-free conversion:

1	1	2	0	2	0	Given carry-save number
-1	-1	0	0	0	0	Interim digits in $[-1,0]$
1	1	1	0	1	0	Transfer digits in $[0,1]$

$\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & \text { Answer; all digits in }[0,1]\end{array}$

3.4 Generalized Signed-Digit Numbers

Radix r
Digit set $[-\alpha, \beta] \quad$ feasibility requirement $\alpha+\beta+1 \geq r$
Redundancy index
$\rho=\alpha+\beta+1-r$

Fig. 3.6 A taxonomy of redundant and non-redundant positional number systems.

Binary vs multivalue-logic encoding of GSD digit sets

x_{i}	1	-1	0	-1	0	BSD representation of +6
(s, v)	01	11	00	11	00	Sign \& value encoding
2's-compl	01	10	00	10	00	2-bit 2's-complement
(n, p)	01	10	00	10	00	Negative \& positive flags
(n, z, p)	001	100	010	100	010	1-out-of-3 encoding

Fig. 3.7 Four encodings for the BSD digit set [-1, 1].

The hybrid example in Fig. 3.8, with a regular pattern of binary (B) and BSD positions, can be viewed as an implementation of a GSD system with

$$
\begin{array}{ll}
r=8 & \text { Three positions form one digit } \\
\text { digit set }[-4,7] & -1
\end{array}
$$

Fig. 3.8 Example of addition for hybrid signed-digit numbers.

3.5 Carry-Free Addition Algorithms

Carry-free addition of GSD numbers

Compute the position sums $p_{i}=x_{i}+y_{i}$
Divide p_{i} into a transfer t_{i+1} and interim sum $w_{i}=p_{i}-r t_{i+1}$ Add incoming transfers to get the sum digits $s_{i}=w_{i}+t_{i}$

If the transfer digits t_{i} are in $[-\lambda, \mu]$, we must have:

Smallest interim sum
if a transfer of $-\lambda$
is to be absorbable

Largest interim sum
if a transfer of μ
is to be absorbable

These constraints lead to

$$
\lambda \geq \frac{\alpha}{r-1} \quad \mu \geq \frac{\beta}{r-1}
$$

Fig. 3.9 Choosing the transfer digit t_{i+1} based on comparing the interim sum p_{i} to the comparison constants C_{j}.

Example 3.5: $r=10$, digit set $[-5,9]$ lead to $\lambda \geq 5 / 9, \mu \geq 1$ Choose the minimal values:
$\lambda_{\text {min }}=\mu_{\text {min }}=1 \quad$ i.e., transfer digits are in $[-1,1]$
$-\infty=C_{-1} \quad-4 \leq C_{0} \leq-1 \quad 6 \leq C_{1} \leq 9 \quad C_{2}=+\infty$
Deriving range of C_{1} : The position sum p_{i} is in $[-10,18]$
We can set t_{i+1} to 1 for p_{i} values as low as 6
We must transfer 1 for p_{i} values of 9 or more
For $p_{i} \geq C_{1}$, where $6 \leq C_{1} \leq 9$, we choose $t_{i+1}=1$
For $p_{i}<C_{0}$, we choose $t_{i+1}=-1$, where $-4 \leq C_{0} \leq-1$
In all other cases, $t_{i+1}=0$
If p_{i} is given as a 6-bit 2's-complement number abcdef, good choices for the constants are $C_{0}=-4, C_{1}=8$ The logic expressions for the signals g_{1} and g_{-1} :

$$
\begin{array}{ll}
g_{-1}=a(\bar{c}+\bar{d}) & \text { generate a transfer of }-1 \\
g_{1}=\bar{a}(b+c) & \text { generate a transfer of } 1
\end{array}
$$

$$
\begin{aligned}
& \text { 3-4 } 9-2 \quad 8 \quad x_{i} \text { in }[-5,9] \\
& +8-4981 \quad y_{i} \text { in }[-5,9] \\
& \begin{array}{lllll}
11 & -8 & 18 & 6 & 9
\end{array} p_{i} \text { in }[-10,18] \\
& \begin{array}{ccccc}
\mid & \mid & \mid & \mid & \mid \\
1 & 2 & 8 & 6 & -1
\end{array} \quad w_{i} \text { in }[-4,8] \\
& \begin{array}{llllll}
1-1 & 1 & 0 & 1 & t_{i+1} & \text { in }[-1,1]
\end{array} \\
& \begin{array}{lllllll}
1 & 0 & 3 & 8 & 7-1 & s_{i} \text { in }[-5,9]
\end{array}
\end{aligned}
$$

Fig. 3.10 Adding radix-10 numbers with digit set [-5, 9].

The preceding carry-free addition algorithm is applicable if

$$
\begin{aligned}
& r>2, \rho \geq 3 \\
& r>2, \rho=2, \alpha \neq 1, \beta \neq 1
\end{aligned}
$$

In other words, it is inapplicable for

$$
\begin{aligned}
& r=2 \\
& \rho=1 \\
& \rho=2 \text { with } \alpha=1 \text { or } \beta=1
\end{aligned}
$$

Fortunately, in such cases, a limited-carry algorithm is always applicable

Fig. 3.11 Some implementations for limited-carry addition.

$$
\begin{array}{cccccl}
& \begin{array}{rrrrr}
1 & -1 & 0 & -1 & 0 \\
0 & & x_{i} \text { in }[-1,1] \\
+ & -1 & -1 & 0 & 1
\end{array} & y_{i} \text { in }[-1,1]
\end{array}
$$

Fig. 3.12 Limited-carry addition of radix-2 numbers with digit set $[-1,1]$ using carry estimates. A position sum -1 is kept intact when the incoming transfer is in [0, 1], whereas it is rewritten as 1 with a carry of -1 for incoming transfer in $[-1,0]$. This guarantees that $\boldsymbol{t}_{i} \neq$ w_{i} and thus $-1 \leq s_{i} \leq 1$.

$$
\begin{aligned}
& \begin{array}{llllll}
1 & 1 & 3 & 1 & 2 & x_{i} \text { in }[0,3]
\end{array} \\
& +00221 \quad y_{i} \text { in }[0,3] \\
& 1 / 1^{1 / 3} \\
& \text { low low high low low low } \\
& p_{i} \text { in }[0,6] \\
& e_{i} \text { in }\{l o w:[0,2] \text {, high:[1, 3]\} } \\
& w_{i} \text { in }[-1,1] \\
& \begin{array}{llllll}
0 & 1 & 2 & 1 & 1 & t_{i+1} \text { in }[0,3]
\end{array} \\
& \begin{array}{lllllll}
0 & 2 & 1 & 2 & 2 & 1 & s_{i} \text { in }[0,3]
\end{array}
\end{aligned}
$$

Fig. 3.13 Limited-carry addition of radix-2 numbers with the digit set $[0,3]$ using carry estimates. A position sum of 1 is kept intact when incoming transfer is in [0, 2], whereas it is rewritten as $\mathbf{- 1}$ with a carry of 1 if incoming transfer is in [1, 3].

3.6 Conversions and Support Functions

BSD-to-binary conversion example 1-1 $0-1 \quad 0 \quad$ BSD representation of +6 10000000 Positive part (1 digits) $\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & \text { Negative part (}-1 \text { digits) }\end{array}$ $\begin{array}{llllll}0 & 0 & 1 & 1 & 0 & \text { Difference }=\text { conversion result }\end{array}$

Zero test: zero has a unique code under some conditions
Sign test: needs carry propagation

Fig. 3.16. Overflow and its detection in GSD arithmetic.

4 Residue Number Systems

Go to TOC

Chapter Goals
Study a way of encoding large numbers
as a collection of smaller numbers
to simplify and speed up some operations

Chapter Highlights
RNS moduli, range, \& arithmetic ops
Many sets of moduli possible: tradeoffs
Conversions between RNS and binary
The Chinese remainder theorem
Why are RNS applications limited?
Chapter Contents
4.1 RNS Representation and Arithmetic
4.2Choosing the RNS Moduli
4.3Encoding and Decoding of Numbers
4.4 Difficult RNS Arithmetic Operations
4.5Redundant RNS Representations
4.6 Limits of Fast Arithmetic in RNS

4.1 RNS Representation and Arithmetic

Chinese puzzle, 1500 years ago:
What number has the remainders of 2,3 , and 2 when divided by the numbers 7,5 , and 3 , respectively?

Pairwise relatively prime moduli: $\quad m_{k-1}>\cdots>m_{1}>m_{0}$ The residue x_{i} of x wrt the th modulus m_{i} is akin to a digit:

$$
x_{i}=x \bmod m_{i}=\langle x\rangle_{m_{i}}
$$

RNS representation contains a list of k residues or digits:

$$
x=(2|3| 2)_{\mathrm{RNS}(7|5| 3)}
$$

Default RNS for this chapter $\operatorname{RNS}(8|7| 5 \mid 3)$
The product M of the k pairwise relatively prime moduli is the dynamic range

$$
M=m_{k-1} \times \cdots \times m_{1} \times m_{0}
$$

For RNS(8 | $7|5| 3$), $\quad M=8 \times 7 \times 5 \times 3=840$
Negative numbers: Complement representation with complementation constant M

$$
\langle-x\rangle_{m_{i}}=\langle M-x\rangle_{m_{i}}
$$

$$
21=(5|0| 1 \mid 0)_{\mathrm{RNS}}
$$

$$
-21=(8-5|0| 5-1 \mid 0)_{\mathrm{RNS}}=(3|0| 4 \mid 0)_{\mathrm{RNS}}
$$

Here are some example numbers in RNS(8 | 7 | 5 | 3):
$(0|0| 0 \mid 0)_{\text {RNS }}$
Represents 0 or 840 or ...
$(1|1| 1 \mid 1)_{\text {RNS }} \quad$ Represents 1 or 841 or ...
$(2|2| 2 \mid 2)_{\text {RNS }} \quad$ Represents 2 or 842 or ...
$(0|1| 3 \mid 2)_{\text {RNS }}$
$(5|0| 1 \mid 0)_{\text {RNS }}$
$(0|1| 4 \mid 1)_{\text {RNS }}$
$(2|0| 0 \mid 2)_{\text {RNS }}$
$(7|6| 4 \mid 2)_{\text {RNS }}$
Represents 8 or 848 or ...
Represents 21 or 861 or ...
Represents 64 or 904 or ...
Represents $\mathbf{- 7 0}$ or 770 or ...
Represents -1 or 839 or ...

Any RNS can be viewed as a weighted representation. For RNS (8|7|5|3), the weights of the 4 positions are:

105120336
Example: $(1|2| 4 \mid 0)_{\text {RNS }}$ represents the number

$$
\langle 105 \times 1+120 \times 2+336 \times 4+280 \times 0\rangle_{840}=\langle 1689\rangle_{840}=9
$$

Fig. 4.1 Binary-coded format for RNS(8 | 7 | 5 | 3).

RNS Arithmetic

$(5|5| 0 \mid 2)_{\text {RNS }}$ Represents $x=+5$
$(7|6| 4 \mid 2)_{\text {RNS }}$ Represents $y=-1$
$(4|4| 4 \mid 1)_{\text {RNS }} \quad x+y:\langle 5+7\rangle_{8}=4,\langle 5+6\rangle_{7}=4$, etc.
$(6|6| 1 \mid 0)_{\text {RNS }} \quad x-y:\langle 5-7\rangle_{8}=6,\langle 5-6\rangle_{7}=6$, etc.
(alternatively, find $-y$ and add to x)
$(3|2| 0 \mid 1)_{\text {RNS }} \quad x \times y:\langle 5 \times 7\rangle_{8}=3,\langle 5 \times 6\rangle_{7}=2$, etc.

Fig. 4.2 The structure of an adder, subtractor, or multiplier for RNS(8 | 7 | 5 | 3).

4.2 Choosing the RNS moduli

Target range: Decimal values [0, 100 000]
Pick prime numbers in sequence:
$m_{0}=2, m_{1}=3, m_{2}=5$, etc. After adding $m_{5}=13$:
RNS(13|11|7|5|3|2) $\quad M=30030$ Inadequate
RNS (17|13|11|7|5|3|2) $\quad M=510510$ Too large
$\operatorname{RNS}(17|13| 11|7| 3 \mid 2) \quad M=102102$ Just right!

$$
5+4+4+3+2+1=19 \text { bits }
$$

Combine pairs of moduli 2 \& 13 and 3 \& 7 :
RNS(26 | $21|17| 11$) $\quad M=102102$
Include powers of smaller primes before moving to larger primes.
$\operatorname{RNS}\left(2^{2} \mid 3\right)$
$\operatorname{RNS}\left(3^{2}\left|2^{3}\right| 7 \mid 5\right)$
$M=12$
$\operatorname{RNS}\left(11\left|3^{2}\right| 2^{3}|7| 5\right)$
$M=2520$
$\operatorname{RNS}\left(13|11| 3^{2}\left|2^{3}\right| 7 \mid 5\right) \quad M=360360$ Too large
$\operatorname{RNS}\left(15|13| 11\left|2^{3}\right| 7\right) \quad M=120120$
$4+4+4+3+3=18$ bits

Maximize the size of the even modulus within the 4-bit residue limit:
$\operatorname{RNS}\left(2^{4}|13| 11\left|3^{2}\right| 7 \mid 5\right) \quad M=720720$ Too large
Can remove 5 or 7

Restrict the choice to moduli of the form 2^{a} or $2^{a}-1$:

$$
\operatorname{RNS}\left(2^{a_{k-2}}\left|2^{a_{k-2}}-1\right| \cdots\left|2^{a_{1}}-1\right| 2^{a_{0}}-1\right)
$$

Such "low-cost" moduli simplify both the complementation and modulo operations
$2^{a_{i}}$ and $2^{a_{j}}$ are relatively prime iff a_{i} and a_{j} are relatively prime.

RNS($\left.2^{3}\left\|2^{3}-1\right\| 2^{2}-1\right)$	basis: $3,2 \quad M=168$
RNS $\left(2^{4}\left\|2^{4}-1\right\| 2^{3}-1\right)$	basis: $4,3 \quad M=1680$
RNS $\left(2^{5}\left\|2^{5-1}\right\| 2^{3-1} \mid 2^{2}-1\right)$	basis: $5,3,2 M=20832$
RNS(2 $\left.\left\|2^{5}\right\| 2^{5-1}\left\|2^{4}-1\right\| 2^{4}-1\right)$	basis: $5,4,3 M=104160$

Comparison

$\operatorname{RNS}\left(15\|13\| 11\left\|2^{3}\right\| 7\right)$	18 bits	$M=120120$
$\operatorname{RNS}\left(2^{5}\left\|2^{5}-1\right\| 2^{4}-1 \mid 2^{3}-1\right)$	17 bits	$M=104160$

4.3 Encoding and Decoding of Numbers

Conversion from binary/decimal to RNS
$\left\langle\left(y_{k-1} \cdots y_{1} y_{0}\right)_{\mathrm{two}}\right\rangle_{m_{i}}=\left\langle\left\langle 2^{k-1} y_{k-1}\right\rangle_{m_{i}}+\cdots+\left\langle 2 y_{1}\right\rangle_{m_{i}}+\left\langle y_{0}\right\rangle_{m_{i}}\right\rangle_{m_{i}}$

Table 4.1 Residues of the first 10 powers of 2

i	2^{i}	$\left\langle 2^{i}\right\rangle_{7}$	$\left\langle 2^{i}\right\rangle_{5}$	$\left\langle 2^{i}\right\rangle_{3}$
0	1	1	1	1
1	2	2	2	2
2	4	4	4	1
3	8	1	3	2
4	16	2	1	1
5	32	4	2	2
6	64	1	4	1
7	128	2	3	2
8	256	4	1	1
9	512	1	2	2

High-radix version (processing 2 or more bits at a time) is also possible

Conversion from RNS to mixed-radix
$\operatorname{MRS}\left(m_{k-1}|\cdots| m_{2}\left|m_{1}\right| m_{0}\right)$ is a k-digit positional system with position weights
$m_{k-2} \cdots m_{2} m_{1} m_{0} \cdots m_{2} m_{1} m_{0} \quad m_{1} m_{0} \quad m_{0} \quad 1$ and digit sets
$\left[0, m_{k-1}-1\right] \quad \cdots\left[0, m_{3}-1\right]\left[0, m_{2}-1\right]\left[0, m_{1}-1\right]\left[0, m_{0}-1\right]$
$(0|3| 1 \mid 0)_{\operatorname{MRS}(8|7| 5 \mid 3)}=0 \times 105+3 \times 15+1 \times 3+0 \times 1=48$
RNS-to-MRS conversion problem:
$y=\left(x_{k-1}|\cdots| x_{2}\left|x_{1}\right| x_{0}\right)_{\text {RNS }}=\left(z_{k-1}|\cdots| z_{2}\left|z_{1}\right| z_{0}\right)_{\text {MRS }}$
Mixed-radix representation allows us to compare the magnitudes of two RNS numbers or to detect the sign of a number.

Example: 48 versus 45

RNS representations

$\begin{array}{ll}(0|6| 3 \mid 0)_{\text {RNS }} & \text { vs } \quad(5|3| 0 \mid 0)_{\text {RNS }} \\ (000|110| 011 \mid 00)_{\text {RNS }} & \text { vs }(101|011| 000 \mid 00)_{\text {RNS }}\end{array}$
Equivalent mixed-radix representations
(0|3|1|0) MRS
vs
(0|3|0|0) MRS
$(000|011| 001 \mid 00)_{\text {MRS }}$ vs $(000|011| 000 \mid 00)_{\text {MRS }}$

Theorem 4.1 (The Chinese remainder theorem)
The magnitude of an RNS number can be obtained from:

$$
x=\left(x_{k-1}|\cdots| x_{2}\left|x_{1}\right| x_{0}\right)_{\mathrm{RNS}}=\left\langle\sum_{i=0}^{k-1} M_{i}\left\langle\alpha_{i} x_{i}\right\rangle_{m_{i}}\right\rangle_{M}
$$ where, by definition, $M_{i}=M / m_{i}$ and $\alpha_{i}=\left\langle M_{i}^{-1}\right\rangle_{m_{i}}$ is the multiplicative inverse of M_{i} with respect to m_{i}

Table 4.2 Values needed in applying the Chinese remainder theorem to RNS(8 | 7 | 5 | 3)

i	m_{i}	x_{i}	$\left\langle M_{i}\left\langle\alpha_{i} x_{i}\right\rangle_{m i}\right\rangle_{M}$
3	8	0	0
		1	105
		3	210
		4	315
		5	420
		7	525
2	7	0	730
		1	120
		3	240
		3	360
		5	480
1	5	6	600
		0	720
		1	3
		3	676
		4	168
0	3	0	504
		1	280
		2	560

4.4 Difficult RNS Arithmetic Operations

Sign test and magnitude comparison are difficult
Example: of the following RNS(8|7|5|3) numbers
which, if any, are negative?
which is the largest?
which is the smallest?

Assume a range of [-420, 419]

$$
\begin{aligned}
a & =(0|1| 3 \mid 2)_{\mathrm{RNS}} \\
b & =(0|1| 4 \mid 1)_{\mathrm{RNS}} \\
c & =(0|6| 2 \mid 1)_{\mathrm{RNS}} \\
d & =(2|0| 0 \mid 2)_{\mathrm{RNS}} \\
e & =(5|0| 1 \mid 0)_{\mathrm{RNS}} \\
f & =(7|6| 4 \mid 2)_{\mathrm{RNS}}
\end{aligned}
$$

Answer:

Approximate CRT decoding: Divide both sides of the CRT equality by M, to get the scaled value of x in $[0,1)$: $x / M=\left(x_{k-1}|\cdots| x_{2}\left|x_{1}\right| x_{0}\right)_{\mathrm{RNS}} / M=\left\langle\sum_{i=0}^{k-1} m_{i}^{-1}\left\langle\alpha_{i} x_{j}\right\rangle_{m_{i}}\right\rangle_{1}$ Terms are added modulo 1, meaning that the whole part of each result is discarded and the fractional part is kept.

Table 4.3 Values needed in applying approximate CRT decoding to RNS(8|7|5|3)

i	m_{i}	x_{i}	$m_{i}^{-1}\left\langle\alpha_{i} x_{i}\right\rangle_{m_{i}}$
3	8	1	. 0000
		1	. 1250
		3	. 3750
		4	. 5000
		5	. 6250
		6	. 7500
		7	. 8750
2	7		. 0000
		1	. 1429
		2	. 2857
		3	. 4286
		4	. 5714
		5	. 7143
		6	. 8571
1	5	0	. 0000
		1	. 4000
		2	. 8000
		3	. 2000
		4	. 6000
0	3		
		1	. 3333
		2	. 6667

Example: Use approximate CRT decoding to determine the larger of the two numbers

$$
x=(0|6| 3 \mid 0)_{\mathrm{RNS}} \quad y=(5|3| 0 \mid 0)_{\mathrm{RNS}}
$$

Reading values from Table 4.3, we get:
$x / M \cong\langle .0000+.8571+.2000+.0000\rangle_{1} \cong .0571$
$y / M \cong\langle .6250+.4286+.0000+.0000\rangle_{1} \cong .0536$
Thus, $x>y$, subject to approximation errors.
Errors are no problem here because each entry has a maximum error of 0.00005 , for a total of at most 0.0002

RNS general division

Use an algorithm that has built-in tolerance to imprecision
Example - SRT algorithm (s is the partial remainder)

$$
s<0 \quad \text { quotient digit }=-1
$$

$s \cong 0$ quotient digit $=0$
$s>0 \quad$ quotient digit $=1$
The partial remainder is decoded approximately
The BSD quotient is converted to RNS on the fly

4.5 Redundant RNS Representations

The mod- m_{i} residue need not be restricted to [$0, m_{i}-1$] (just as radix- r digits need not be limited to $[0, r-1]$)

Figure 4.3 Adder design for 4-bit mod-13 pseudoresidues.

Figure 4.4 A modulo-m multiply-add cell that accumulates the sum into a double-length redundant pseudoresidue.

4.6 Limits of Fast Arithmetic in RNS

Theorem 4.2: The ith prime p_{i} is asymptotically $i \ln i$
Theorem 4.3: The number of primes in [1, n] is asymptotically $n / \ln n$
Theorem 4.4: The product of all primes in [1, n] is asymptotically e^{n}.

Table 4.4 The $\boldsymbol{\pi}$ h prime p_{i} and the number of primes in $[1, n]$ versus their asymptotic approximations

i	p_{i}	$i \ln i$	Error $(\%)$	n No of primes	$n / \mathrm{nn} n$	Error $(\%)$	
1	2	0.000	100	5	2	3.107	55
2	3	1.386	54	10	4	4.343	9
3	5	3.296	34	15	6	5.539	8
4	7	5.545	21	20	8	6.676	17
5	11	8.047	27	25	9	7.767	14
10	29	23.03	21	30	10	8.820	12
15	47	40.62	14	40	12	10.84	10
20	71	59.91	16	50	15	12.78	15
30	113	102.0	10	100	25	21.71	13
40	173	147.6	15	200	46	37.75	18
50	229	195.6	15	500	95	80.46	15
100	521	460.5	12	1000	170	144.8	15

Theorem 4.5: It is possible to represent all k-bit binary numbers in RNS with $\mathrm{O}(k / \log k)$ moduli such that the largest modulus has $\mathrm{O}(\log k)$ bits

Implication: a fast adder would need $\mathrm{O}(\log \log k)$ time

Theorem 4.6: The numbers $2^{a}-1$ and $2^{b}-1$ are relatively prime iff a and b are relatively prime

Theorem 4.7: The sum of the first i primes is asymptotically $\mathrm{O}\left(i^{2} \ln i\right)$.

Theorem 4.8: It is possible to represent all k-bit binary numbers in RNS with $O(\sqrt{k / \log k})$ low-cost moduli of the form $2^{a}-1$ such that the largest modulus has $\mathrm{O}(\sqrt{k \log k})$ bits.

Implication: a fast adder would need $\mathrm{O}(\log k)$ time, thus offering little advantage over standard binary

Part II Addition/Subtraction

Part Goals

Review basic adders \& the carry problem Learn how to speed up carry propagation Discuss speed/cost tradeoffs in adders

Part Synopsis

Addition is a fundamental operation (arithmetic and address calculations) Also a building block for other operations
Subtraction = negation + addition Carry speedup: lookahead, skip, select, ... Two-operand vs multioperand addition

Part Contents
Chapter 5 Basic Addition and Counting
Chapter 6 Carry-Lookahead Adders
Chapter 7 Variations in Fast Adders
Chapter 8 Multioperand Addition

5 Basic Addition and Counting

Go to TOC

Chapter Goals
Study the design of ripple-carry adders, discuss why their latency is unacceptable, and set the foundation for faster adders

Chapter Highlights
Full-adders are versatile building blocks
Worst-case carry chain in k-bit addition has an average length of $\log _{2} k$
Fast asynchronous adders are simple Counting is relatively easy to speed up

Chapter Contents
5.1 Bit-Serial and Ripple-Carry Adders
5.2Conditions and Exceptions
5.3 Analysis of Carry Propagation
5.4Carry Completion Detection
5.5 Addition of a Constant: Counters
5.6Manchester Carry Chains and Adders

5.1 Bit-serial and ripple-carry adders

Single-bit half-adder (HA)

Inputs		Outputs	
x	y	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Fig. 5.A Truth table and symbol for a binary half-adder.

Fig. 5.1 Three implementations of a half-adder.

Single-bit full-adder (FA)

Fig. 5.B Truth table and symbol for binary full-adder.

$$
\begin{array}{rlr}
s & =x \oplus y \oplus c_{\text {in }} \\
& =x y c_{\text {in }}+\bar{x} \bar{y} c_{\text {in }}+\bar{x} \bar{y} c_{\text {in }}+x \bar{y} c_{\mathrm{in}} \\
c_{\text {out }} & =x y+x c_{\mathrm{in}}+y c_{\mathrm{in}} \quad \text { (odd parity function) }
\end{array}
$$

Fig. 5.2
Possible designs for a full-adder in terms of halfadders, logic gates, and CMOS transmission gates.

(a) CMOS transmission gate: circuit and symbol

(b) Two-input mux built of two transmission gates

Fig. 5.C CMOS transmission gate and its use in a 2-to-1 mux.

Fig. 5.3 Using full-adders in building bit-serial and ripplecarry adders.

Fig. 5.4 The layout of a 4-bit ripple-carry adder in CMOS implementation [Puck94].

$$
T_{\text {ripple-add }}=T_{\text {FA }}\left(x, y \rightarrow c_{\text {out }}\right)+(k-2) \times T_{\text {FA }}\left(c_{\text {in }} \rightarrow c_{\text {out }}\right)+T_{\text {FA }}\left(c_{\text {in }} \rightarrow s\right)
$$

Fig. 5.5 Critical path in a \boldsymbol{k}-bit ripple-carry adder.

Fig. 5.6 Four-bit binary adder used to realize the logic function $f=\boldsymbol{w}+\boldsymbol{x y z}$ and its complement.

5.2 Conditions and exceptions

In an ALU, it is customary to provide information about certain outcomes during addition or other operations

Flag bits within a condition/exception register:
$c_{\text {out }} \quad$ a carry-out of 1 is produced
overflow the output is not the correct sum
negative Indicating that the addition result is negative zero

Indicating that the addition result is zero

$$
\begin{aligned}
\text { overflow }_{2 \text { 's-compl }} & =x_{k-1} y_{k-1} \bar{s}_{k-1}+\bar{x}_{k-1} \bar{y}_{k-1} s_{k-1} \\
\text { overflow }_{2 \text { 's-compl }} & =c_{k} \oplus c_{k-1}=c_{k} \bar{c}_{k-1}+\bar{c}_{k} c_{k-1}
\end{aligned}
$$

Fig. 5.7 Two's-complement adder with provisions for detecting conditions and exceptions.

5.3 Analysis of carry propagation

Bit \#	15	14	13	3	12	11	10		9	8	7	6	5	4	3	2	1	0
	1	0		1	1	0	1		1	0	0	1	1	0	1	1	1	0
Cout	0	1		0	1	1	0		0	1	1	1	0	0	0	0	1	1
Carry chains and their lengths																		

Fig. 5.8 Example addition and its carry propagation chains.

Fig. 5.C Positions with known incoming carries.

Given binary numbers with random bit values, for each position i we have:

Probability of carry generation $=1 / 4$
Probability of carry annihilation $=1 / 4$
Probability of carry propagation $=1 / 2$
Average length of the longest carry chain
The probability that carry generated at position i propagates to position $j-1$ and stops at position $j(j>i)$ $2^{-(j-1-i)} \times 1 / 2=2^{-(j-i)}$

Expected length of the carry chain that starts at position i $2-2^{-(k-i-1)}$

Average length of the longest carry chain in k-bit addition is less than $\log _{2} k$; it is $\log _{2}(1.25 k)$ per experimental results

Analogy (order statictics)

Roll a die: Outcome in [1, 6], expected outcome $=3.5$ Roll a pair of dice:

What is the expected value of the larger outcome?
$\begin{array}{lrrrrrr}\text { Number of cases } & 11 & 9 & 7 & 5 & 3 & 1 \\ \text { Larger outcome } & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
Expected outcome $=161 / 36=4.472$

5.4 Carry Completion Detection

$$
\begin{aligned}
\left(b_{i}, c_{i}\right)= & 00 \text { Carry not yet known } \\
& 01 \text { Carry known to be } 1 \\
& 10 \text { Carry known to be } 0
\end{aligned}
$$

Fig. 5.9 The carry network of an adder with two-rail carries and carry completion detection logic.

5.4 Addition of a Constant: Counters

Fig. 5.10 An up (down) counter built of a register, an incrementer (decrementer), and a multiplexer.

Fig. 5.11 Four-bit asynchronous up counter built only of negative-edge-triggered T flip-flops.

Fig. 5.12 Fast three-stage up counter.

5.6 Manchester Carry Chains and Adders

Sum digit in radix $r \quad s_{i}=\left(x_{i}+y_{i}+c_{i}\right) \bmod r$
Special case of radix $2 \quad s_{i}=x_{i} \oplus y_{i} \oplus c_{i}$
Computing the carries is thus our central problem For this, the actual operand digits are not important What matters is whether in a given position a carry is
generated, propagated, or annihilated (absorbed) For binary addition:

$$
g_{i}=x_{i} y_{i} \quad p_{i}=x_{i} \oplus y_{i} \quad a_{i}=\bar{x}_{i} \bar{y}_{i}=\overline{x_{i}+y_{i}}
$$

It is also helpful to define a transfer signal:

$$
t_{i}=g_{i}+p_{i}=\bar{a}_{i}=x_{i}+y_{i}
$$

Using these signals, the carry recurrence is written as

$$
c_{i+1}=g_{i}+c_{i} p_{i}=g_{i}+c_{i} g_{i}+c_{i} p_{i}=g_{i}+c_{i} t_{i}
$$

(a) Conceptual representation

(b) Possible CMOS realization.

Fig. 5.13 One stage in a Manchester carry chain.

Preview of fast adders

The g_{i} and $p_{i}\left(t_{j}\right)$ signals, along with the carry recurrence

$$
c_{i+1}=g_{i}+c_{i} p_{i}=g_{i}+c_{i} t_{i}
$$

allow us to decouple the problem of designing a fast carry network from details of the number system (radix, digit set)

It does not even matter whether we are adding or subtracting; any carry network can be used as a borrow network by defining the signals to represent borrow generation, borrow propagation, etc.

Fig. 5.D The main part of an adder is the carry network. The rest is just a set of gates to produce the g and p signals and the sum bits.

Carry-ripple adder (already discussed)
 Worst-case allowance or self-timed

Fast adders to be studied in the next two chapters differ in the way they generate the carries:

Carry lookahead (Chapter 6)
and a variant known as Ling adder
Other fast adders (Chapter 7)
Carry-skip (single- or multilevel) Carry-select and its limiting case known as conditional sum Hybrid (e.g., lookahead and select)

6 Carry-Lookahead Adders

Go to TOC

Chapter Goals
Understand the carry-lookahead method
and its many variations
used in the design of fast adders
Chapter Highlights
Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem
to parallel prefix computation
Implementing fast adders in VLSI

Chapter Contents

6.1. Unrolling the Carry Recurrence
6.2. Carry-Lookahead Adder Design
6.3. Ling Adder and Related Designs
6.4. Carry Determination as Prefix Computation
6.5. Alternative Parallel Prefix Networks
6.6. VLSI Implementation Aspects

6.1 Unrolling the Carry Recurrence

Recall g_{i} (generate), p_{i} (propagate), a_{i} (annihilate/absorb), and t_{i} (transfer)

$$
\begin{array}{rlrl}
& g_{i}=1 & \text { iff } x_{i}+y_{i} \geq r & \\
p_{i}=1 \text { iff } x_{i}+y_{i}=r-1 & & \text { Carry is generated } \\
t_{i}=\bar{a}_{i}=g_{i}+p_{i} & \text { Carry is propagated } \\
c_{i} & =g_{i-1}+c_{i-1} p_{i-1} & \text { Carry is not annihilated } \\
& =g_{i-1}+\left(g_{i-2}+c_{i-2} p_{i-2}\right) p_{i-1} \\
& =g_{i-1}+g_{i-2} p_{i-1}+c_{i-2} p_{i-2} p_{i-1} & \\
& =g_{i-1}+g_{i-2} p_{i-1}+g_{i-3} p_{i-2} p_{i-1}+c_{i-3} p_{i-3} p_{i-2} p_{i-1} \\
& =g_{i-1}+g_{i-2} p_{i-1}+g_{i-3} p_{i-2} p_{i-1}+g_{i-4} p_{i-3} p_{i-2} p_{i-1} \\
& =\ldots & +c_{i-4} p_{i-4} p_{i-3} p_{i-2} p_{i-1}
\end{array}
$$

Theoretically, we can unroll as far as we want but the number of terms, and literals in each term, increase to the point of being impractical for two-level circuit realization

Four-bit CLA adder:

$$
\begin{aligned}
& c_{4}=g_{3}+g_{2} p_{3}+g_{1} p_{2} p_{3}+g_{0} p_{1} p_{2} p_{3}+c_{0} p_{0} p_{1} p_{2} p_{3} \\
& c_{3}=g_{2}+g_{1} p_{2}+g_{0} p_{1} p_{2}+c_{0} p_{0} p_{1} p_{2} \\
& c_{2}=g_{1}+g_{0} p_{1}+c_{0} p_{0} p_{1} \\
& c_{1}=g_{0}+c_{0} p_{0}
\end{aligned}
$$

Note the use of $c_{4}=g_{3}+c_{3} p_{3}$ in the following diagram

Fig. 6.1 Four-bit carry network with full lookahead.

Full carry lookahead is impractical for wide words
The fully unrolled carry equation for c_{31} consists of 32 product terms, the largest of which has 32 literals

Thus, the required ANDs and ORs must be realized by tree networks, leading to increased latency and cost

Two schemes for managing this complexity:
High-radix addition (i.e., radix 2^{g})
increases the latency for generating the auxiliary signals and sum digits but simplifies the carry network (optimal radix?) Multilevel lookahead

Example: 16-bit addition Radix-16 (four digits)
Two-level carry lookahead (four 4-bit blocks)
Either way, the carries c_{4}, c_{8}, and c_{12} are determined first
 $\mathrm{C}_{\text {out }}$? ? ? $\quad \mathrm{C}_{\text {in }}$

6.2 Carry-Lookahead Adder Design

$g_{[i, i+3]}=g_{i+3}+g_{i+2} p_{i+3}+g_{i+1} p_{i+2} p_{i+3}+g_{i} p_{i+1} p_{i+2} p_{i+3}$
$p_{[i, i+3]}=p_{i} p_{i+1} p_{i+2} p_{i+3}$

Fig. 6.2 Four-bit lookahead carry generator.

Fig. 6.3 Schematic diagram of a 4-bit lookahead carry generator.

Fig. 6.4 Combining of g and p signals of four (contiguous or overlapping) blocks of arbitrary widths into the g and p signals for the overall block $\left[i_{0}, j_{3}\right]$.

Fig. 6.5 Building a 64-bit carry-lookahead adder from 16 4-bit adders and 5 lookahead carry generators.

Latency through the 16-bit CLA adder consists of finding:
g and p for individual bit positions (1 gate level) g and p signals for 4 -bit blocks (2 gate levels) block carry-in signals c_{4}, c_{8}, and c_{12} (2 gate levels) internal carries within 4-bit blocks (2 gate levels) sum bits (2 gate levels)

Total latency for the 16-bit adder $=9$ gate levels (compare to 32 gate levels for a 16-bit ripple-carry adder)

$$
\begin{aligned}
& T_{\text {lookahead-add }}=4 \log _{4} k+1 \text { gate levels } \\
& c_{\text {out }}=x_{k-1} y_{k-1}+\bar{s}_{k-1}\left(x_{k-1}+y_{k-1}\right)
\end{aligned}
$$

6.3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:

$$
\begin{aligned}
c_{i}=g_{i-1}+g_{i-2} t_{i-1}+g_{i-3} t_{i-2} t_{i-1}+ & g_{i-4} t_{i-3} t_{i-2} t_{i-1} \\
& +c_{i-4} t_{i-4} t_{i-3} t_{i-2} t_{i-1}
\end{aligned}
$$

Ling's modification:
 propagate $h_{i}=c_{i}+c_{i-1}$ instead of c_{i}

$h_{i}=g_{i-1}+g_{i-2}+g_{i-3} t_{i-2}+g_{i-4} t_{i-3} t_{i-2}+h_{i-4} t_{i-4} t_{i-3} t_{i-2}$
CLA: 5 gates $\quad \max 5$ inputs 19 gate inputs
Ling: 4 gates \quad max 5 inputs 14 gate inputs
The advantage of h_{i} over c_{i} is even greater with wired-OR:
CLA: 4 gates $\quad \max 5$ inputs 14 gate inputs Ling: 3 gates \quad max 4 inputs 9 gate inputs

Once h_{i} is known, however, the sum is obtained by a slightly more complex expression compared to $s_{i}=p_{i} \oplus c_{i}$

$$
s_{i}=\left(t_{i} \oplus h_{i+1}\right)+h_{i} g_{i} t_{i-1}
$$

Other designs similar to Ling's are possible [Dora88]

6.4 Carry Determination as Prefix Computation

Fig. 6.6 Combining of g and p signals of two (contiguous or overlapping) blocks B^{\prime} and $\mathrm{B}^{\prime \prime}$ of arbitrary widths into the g and p signals for block B.

The problem of carry determination can be formulated as:
Given $\left(g_{0}, p_{0}\right) \quad\left(g_{1}, p_{1}\right) \quad \cdots \quad\left(g_{k-2}, p_{k-2}\right) \quad\left(g_{k-1}, p_{k-1}\right)$
Find $\left(g_{[0,0]}, p_{[0,0]}\right)\left(g_{[0,1]}, p_{[0,1]}\right) \cdots\left(g_{[0, k-2]}, p_{[0, k-2]}\right)\left(g_{[0, k-1]}, p_{[0, k-1]}\right)$
The desired pairs are found by evaluating all prefixes of

$$
\left(g_{0}, p_{0}\right) \oplus\left(g_{1}, p_{1}\right) \propto \cdots \propto\left(g_{k-2}, p_{k-2}\right) \oplus\left(g_{k-1}, p_{k-1}\right)
$$

Prefix sums analogy:
Given $\begin{array}{lllll}x_{0} & x_{1} & x_{2} & \cdots & x_{k-1}\end{array}$
Find $\quad \begin{array}{lllll}x_{0} & x_{0}+x_{1} & x_{0}+x_{1}+x_{2} & \cdots & x_{0}+x_{1}+\cdots+x_{k-1}\end{array}$

6.5 Alternative Parallel Prefix Networks

Fig. 6.7 Parallel prefix sums network built of two k/2-input networks and $\boldsymbol{k} / \mathbf{2}$ adders.

Delay recurrence $D(k)=D(k / 2)+1=\log _{2} k$
Cost recurrence $C(k)=2 C(k / 2)+k / 2=(k / 2) \log _{2} k$

Fig. 6.8 Parallel prefix sums network built of one k/2-input network and \boldsymbol{k} - 1 adders.

Delay $\quad D(k)=D(k / 2)+2=2 \log _{2} k-1 \quad$ (-2 really)
Cost $\quad C(k)=C(k / 2)+k-1=2 k-2-\log _{2} k$

Fig. 6.A Brent-Kung lookahead carry network (8-digit adder).

Fig. 6.10 Kogge-Stone parallel prefix graph for 16 inputs.
Delay $\quad D(k)=\log _{2} k$
Cost $C(k)=(k-1)+(k-2)+(k-4)+\ldots+(k-k / 2)$

$$
=k \log _{2} k-k+1
$$

Method	Delay	Cost
Simple Div\&Conq	$\log _{2} k$	$(k / 2) \log _{2} k$
Kogge-Stone	$\log _{2} k$	$k \log _{2} k-k+1$
Brent-Kung	$2 \log _{2} k-2$	$2 k-2-\log _{2} k$

B-K: Six levels, 26 cells K-S: Four levels, 49 cells
Hybrid: Five levels, 32 cells

Fig. 6.11 A Hybrid Brent-Kung/Kogge-Stone parallel prefix graph for 16 inputs.

6.6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers as implemented in the AMD Am29050 CMOS micro The following description is based on the 64-bit version In radix-256 addition of 64-bit numbers, only the carries $c_{8}, c_{16}, c_{24}, c_{32}, c_{40}, c_{48}$, and c_{56} are needed First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are used to derive g and p signals for 4-bit blocks

(a)

(b)

Fig. 6.12 Example four-bit Manchester carry chain designs in CMOS technology [Lync92].

These signal pairs, denoted [0, 3], [4, 7], ... at the left edge of Fig. 6.13, form the inputs to one 5-bit and three 4-bit MCCs that in turn feed two more MCCs in the third level

The MCCs in Fig. 6.13 are of the type shown in Fig. 6.12b

Fig. 6.13 Spanning-tree carry-lookahead network [Lync92]. The 16 MCCs at level 1, that produce generate and propagate signals for 4-bit blocks, are not shown.

7 Variations in Fast Adders

Go to TOC

Chapter Goals
Study alternatives to the CLA method for designing fast adders

Chapter Highlights
Many methods besides CLA are available (both competing and complementary)
Best design is technology-dependent (often hybrid rather than pure)
Knowledge of timing allows optimizations

Chapter Contents
7.1 Simple Carry-Skip Adders
7.2 Multilevel Carry-Skip Adders
7.3Carry-Select Adders
7.4Conditional-Sum Adder
7.5Hybrid Adder Designs
7.6 Optimizations in Fast Adders

7.1 Simple Carry-Skip Adders

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple carry-skip adder with 4-bit skip blocks.

Fig. 7.A Road analogy for carry-skip addition.

Assume driving time the same for one city block or one freeway "block" (between two exits)

Skip with fixed-width blocks of bits

$T_{\text {fixed-skip-add }}=(b-1)+0.5+(k / b-2)+(b-1)$

$$
\begin{aligned}
& \text { in block } 0 \text { OR gate skips in last block } \\
\cong & 2 b+k / b-3.5 \text { stages }
\end{aligned}
$$

$\frac{d T_{\text {fixed-skip-add }}}{d b}=2-k / b^{2}=0 \quad \Rightarrow \quad b^{\text {opt }}=\sqrt{k / 2}$
$T_{\text {fixed-skip-add }}^{\mathrm{opt}} \cong 2 \sqrt{2 k}-3.5$

Example: $k=32, b^{\text {opt }}=4, T_{\text {fixed-skip-add }}^{\mathrm{opt}}=12.5$ stages (contrast with 32 stages for a ripple-carry adder)

Skip with variable-width blocks

Fig. 7.2 Carry-skip adder with variable-size blocks and three sample carry paths.

Optimal variable-width blocks

$$
b \quad b+1 \quad \cdots \quad b+t / 2-1 \quad b+t / 2-1 \quad \cdots \quad b+1 \quad b
$$

The total number of bits in the t blocks is k :

$$
\begin{aligned}
& 2[b+(b+1)+\cdots+(b+t / 2-1)]=t(b+t / 4-1 / 2)=k \\
& b=k / t-t / 4+1 / 2
\end{aligned}
$$

$T_{\text {var-skip-add }}=2(b-1)+0.5+t-2=2 k / t+t / 2-2.5$
$\frac{d T_{\text {var-skip-add }}}{d t}=-2 k / t^{2}+1 / 2=0 \quad \Rightarrow \quad t^{\mathrm{opt}}=2 \sqrt{k}$
Optimal number of blocks $\sqrt{2}$ times that of fixed blocks $T_{\text {var-skip-add }}^{\mathrm{opt}} \cong 2 \sqrt{k}-2.5$

Roughly a factor of $\sqrt{2}$ smaller than for fixed blocks

7.2 Multilevel carry-skip adders

Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

Fig. 7.4 Example of a two-level carry-skip adder.

Fig. 7.5 Two-level carry-skip adder optimized by removing the short-block skip circuits.

Example 7.1

Each of the following operations takes one unit of time: generation of g_{i} and p_{i}, generation of level- i skip signal from level-(i-1) skip signals, ripple, skip, and computation of sum bit once the incoming carry is known Build the widest possible single-level carry-skip adder with a total delay not exceeding 8 time units

Fig. 7.6 Timing constraints of a single-level carry-skip adder with a delay of 8 units.

Max adder width $=1+2+3+4+4+3+1=18$ bits
Generalization of Example 7.1:
For a single-level carry-skip adder with total latency of T, where T is even, the block widths are:

$$
\begin{array}{llllllllll}
1 & 2 & 3 & \ldots & T / 2 & T / 2 & \ldots & 4 & 3 & 1
\end{array}
$$

This yields a total width of $T^{2} / 4+T / 2-2$ bits When T is odd, the block widths become:

$$
\begin{array}{lllllllll}
1 & 2 & 3 & \ldots & (T+1) / 2 & \ldots & 4 & 3 & 1
\end{array}
$$

This yields a total width of $(T+1)^{2} / 4-2$
Thus, for any T, the total width is $\left\lfloor(T+1)^{2} / 4\right\rfloor-2$

Example 7.2

Each of the following operations takes one unit of time: generation of g_{i} and p_{i}, generation of level- i skip signal from level-(i-1) skip signals, ripple, skip, and computation of sum bit once the incoming carry is known Build the widest possible two-level carry-skip adder with a total delay not exceeding 8 time units

First determine the number of blocks and timing constraints at the second level

The remaining problem is to build single-level carry-skip adders with $T_{\text {produce }}=\beta$ and $T_{\text {assimilate }}=\alpha$

Fig. 7.7 Two-level carry-skip adder with a delay of 8 units: (a) Initial timing constraints, (b) Final design.

Table 7.1 Second-level constraints Tproduce and Tassimilate, with associated subblock and block widths, in a two-level carry-skip adder with a total delay of 8 time units (Fig. 7.7)

Block	$T_{\text {produce }}$	$T_{\text {assimilate }}$	Number of subblocks min $(\beta-1, \alpha)$	Subblock widths (bits)	Block width (bits)
A	3	α	8	2	1,3
B	4	5	3	$2,3,3$	4
C	5	4	4	$2,3,2,1$	8
D	6	3	3	$3,2,1$	6
E	7	2	2	2,1	3
F	8	1	1	1	1

Total width: 30 bits

Fig. 7.8 Generalized delay model for carry-skip adders.

Elaboration on Example 7.2

Given the delay pair $\{\beta, \alpha\}$ for a level-2 block in Fig. 7.7a, the number of level-1 blocks in the corresponding single-level carry-skip adder will be $\gamma=\min (\beta-1, \alpha)$ This is easily verified from the following two diagrams.

Single-level carry-skip adder with $T_{\text {assimilate }}=\alpha$

Single-level carry-skip adder with $T_{\text {produce }}=\beta$
The width of the th level-1 block
in the level- 2 block characterized by $\{\beta, \alpha\}$
is $b_{i}=\min (\beta-\gamma+i+1, \alpha-i)$
So, the total width of such a block is:

$$
\sum_{i=0}^{\gamma-1} \min (\beta-\gamma+i+1, \alpha-i)
$$

The only exception occurs in the rightmost level-2 block A for which b_{0} is one unit less than the value given above in order to accommodate the carry-in signal

7.3 Carry-Select Adders

Fig. 7.9 Carry-select adder for \boldsymbol{k}-bit numbers built from three k/2-bit adders.

$$
\begin{aligned}
& C_{\text {select-add }}(k)=3 C_{\text {add }}(k / 2)+k / 2+1 \\
& T_{\text {select-add }}(k)=T_{\text {add }}(k / 2)+1
\end{aligned}
$$

Fig. 7.10 Two-level carry-select adder built of $\boldsymbol{k} / 4$-bit adders.

7.4 Conditional-Sum Adder

Multilevel carry-select idea carried out to the extreme, until we arrive at single-bit blocks.

$$
\begin{aligned}
& C(k) \cong 2 C(k / 2)+k+2 \cong k\left(\log _{2} k+2\right)+k C(1) \\
& T(k)=T(k / 2)+1=\log _{2} k+T(1)
\end{aligned}
$$

where $C(1)$ and $T(1)$ are the cost and delay of the circuit of Fig. 7.11 used at the top to derive the sum and carry bits with a carry-in of 0 and 1

The term $k+2$ in the first recurrence represents an upper bound on the number of single-bit 2-to-1 multiplexers needed for combining two k/2-bit adders into a k-bit adder

Fig. 7.11 Top-level block for one bit position of a conditionalsum adder.

Table 7.2 Conditional-sum addition of two 16-bit numbers. The width of the block for which the sum and carry bits are known doubles with each additional level, leading to an addition time that grows as the logarithm of the word width k.

7.5 Hybrid Adder Designs

Fig. 7.12 A hybrid carry-lookahead/carry-select adder.

Fig. 7.13 Example 48-bit adder with hybrid ripple-carry/carrylookahead design.

Other possibilities: hybrid carry-select/ripple-carry hybrid ripple-carry/carry-select

7.6 Optimizations in Fast Adders

What looks best at the block diagram or gate level may not be best when a circuit-level design is generated (effects of wire length, signal loading, ...)

Modern practice: optimization at the transistor level

Variable-block carry-lookahead adder

Optimization based on knowledge of given input timing or required output timing

Fig. 7.14 Example arrival times for operand bits in the final fast adder of a tree multiplier [Oklo96].

8 Multi-Operand Addition

Go to TOC

Chapter Goals
 Learn methods for speeding up the
 Addition of several numbers (needed for multiplication or inner-product)

Chapter Highlights
Running total kept in redundant form
Current total + Next number \rightarrow New total
Deferred carry assimilation
Wallace/Dadda trees and parallel counters

Chapter Contents
8.1 Using Two-Operand Adders
8.2Carry-Save Adders
8.3Wallace and Dadda Trees
8.4Parallel Counters
8.5Generalized Parallel Counters
8.6 Adding Multiple Signed Numbers

8.1 Using Two-Operand Adders

Fig. 8.1 Multioperand addition problems for multiplication or inner-product computation in dot notation.

Fig. 8.2 Serial implementation of multi-operand addition with a single 2-operand adder.

$$
T_{\text {serial-multi-add }}=\mathrm{O}(n \log (k+\log n))
$$

Because $\max (k, \log n)<k+\log n \cdot \max (2 k, 2 \log n)$ we have $\log (k+\log n)=\mathrm{O}(\log k+\log \log n)$ and:

$$
T_{\text {serial-multi-add }}=\mathrm{O}(n \log k+n \log \log n)
$$

Therefore, addition time grows superlinearly with n when k is fixed and logarithmically with k for a given n

One can pipeline the serial solution to get somewhat better performance.

Fig. 8.3 Serial multi-operand addition when each adder is a 4 -stage pipeline.

Fig. 8.4 Adding 7 numbers in a binary tree of adders.

Fig. 8.5 Ripple-carry adders at levels i and $i+1$ in the tree of adders used for multi-operand addition.

8.2 Carry-Save Adders

Fig. 8.6 A ripple-carry adder turns into a carry-save adder if the carries are saved (stored) rather than propagated.

Fig. 8.7 Carry-propagate adder (CPA) and carry-save adder (CSA) functions in dot notation.

Half-adder
Fig. 8.8 Specifying full- and half-adder blocks, with their inputs and outputs, in dot notation.

A full-adder compacts 3 dots into 2 dots
A half-adder rearranges 2 dots

Fig. 8.9 Tree of carry-save adders reducing seven numbers to two.

$$
\begin{aligned}
T_{\text {carry-save-multi-add }} & =\mathrm{O}\left(\text { tree height }+T_{\mathrm{CPA}}\right) \\
& =\mathrm{O}(\log n+\log k) \\
C_{\text {carry-save-multi-add }} & =(n-2) C_{\mathrm{CSA}}+C_{\mathrm{CPA}}
\end{aligned}
$$

Fig. 8.10 Addition of seven 6-bit numbers in dot notation.

8	7	6	5	4	3	2	1	0	Bit position	
			7	7	7	7	7	7		$6 \times 2=12$ FAs
		2	5	5	5	5	5	3	6 FAs	

Fig. 8.11 Representing a seven-operand addition in tabular form.

Fig. 8.12 Adding seven k-bit numbers and the CSA/CPA widths required.

Fig. 8.13 Serial carry-save addition using a single CSA.

8.3 Wallace and Dadda Trees

Table 8.1 The maximum number $n(h)$ of inputs for an h-level carry-save-adder tree

h	$n(h)$	h	$n(h)$	h	$n(h)$
0	2	7	28	14	474
1	3	8	42	15	711
2	4	9	63	16	1066
3	6	10	94	17	1599
4	9	11	141	18	2398
5	13	12	211	19	3597
6	19	13	316	20	5395

In a Wallace tree, we reduce the number of operands at the earliest possible opportunity

In a Dadda tree, we reduce the number of operands at the latest possible opportunity that leads to no added delay (target the next smaller number in Table 8.1)

Fig. 8.14 Adding seven 6-bit numbers using Dadda's strategy.

Fig. 8.15 Adding seven 6-bit numbers by taking advantage of the final adder's carry-in.

8.4 Parallel Counters

Single-bit full-adder = (3; 2)-counter
Circuit reducing 7 bits to their 3 -bit sum $=(7 ; 3)$-counter Circuit reducing n bits to their $\left\lceil\log _{2}(n+1)\right\rceil$-bit sum

$$
=\left(n ;\left\lceil\log _{2}(n+1)\right\rceil\right) \text {-counter }
$$

Fig. 8.16 A 10-input parallel counter also known as a (10; 4)counter.

8.5 Generalized Parallel Counters

Fig. 8.17 Dot notation for a (5, 5; 4)-counter and the use of such counters for reducing five numbers to two numbers.

(\boldsymbol{n}; 2)-counters

8.6 Adding Multiple Signed Numbers

$$
\left. \cdots\right] .
$$

(a)

Extended positions

11110

Sign Magnitude positions

$$
\begin{array}{llll}
\bar{x}_{k-1} x_{k-2} & x_{k-3} & x_{k-4} & \cdots \\
\bar{y}_{k-1} & y_{k-2} & y_{k-3} & y_{k-4}
\end{array} \cdots .
$$

$$
1
$$

(b)

Fig. 8.18 Adding three 2's-complement numbers using sign extension (a) or by the method based on negatively weighted sign bits (b).

Part III Multiplication

Part Goals
Review shift-add multiplication schemes
Learn about faster multipliers
Discuss speed/cost tradeoffs in multipliers

Part Synopsis
 Multiplication is an often-used operation (arithmetic \& array index calculations)
 Division $=$ reciprocation + multiplication
 Multiplication speedup: high-radix, tree, ...
 Bit-serial, modular, and array multipliers

Part Contents
Chapter 9 Basic Multiplication Schemes
Chapter 10 High-Radix Multipliers
Chapter 11 Tree and Array Multipliers
Chapter 12 Variations in Multipliers

9 Basic Multiplication Schemes

Go to TOC

Chapter Goals
Study shift/add or bit-at-a-time multipliers and set the stage for faster methods and variations to be covered in Chapters 10-12

Chapter Highlights
Multiplication = multioperand addition
Hardware, firmware, software algorithms
Multiplying 2's-complement numbers
The special case of one constant operand
Chapter Contents
9.1. Shift/Add Multiplication Algorithms
9.2. Programmed Multiplication
9.3. Basic Hardware Multipliers
9.4. Multiplication of Signed Numbers
9.5. Multiplication by Constants
9.6. Preview of Fast Multipliers

${ }^{66}$ At least one good reason

for studying multiplication and division is that there is an infinite number of ways
of performing these operations
and hence there is an infinite number of PhDs (or expenses-paid visits to conferences in the USA)
to be won from inventing new forms of multiplier. ${ }^{99}$
Alan Clements
The Principles of Computer Hardware, 1986

9.1 Shift/Add Multiplication Algorithms

Notation for our discussion of multiplication algorithms:
a Multiplicand
$a_{k-1} a_{k-2} \cdots a_{1} a_{0}$
x Multiplier
$x_{k-1} x_{k-2} \cdots x_{1} x_{0}$
$p \quad$ Product $(a \times x) \quad p_{2 k-1} p_{2 k-2} \cdots p_{1} p_{0}$
Initially, we assume unsigned operands

Fig. 9.1 Multiplication of two 4-bit unsigned binary numbers in dot notation.

Multiplication with right shifts: top-to-bottom accumulation $p^{(j+1)}=\left(p^{(j)}+x_{j} a 2^{k}\right) 2^{-1} \quad$ with $p^{(0)}=0$ and

$p^{(k)}=p=a x+p^{(0)} 2^{-k}$

Multiplication with left shifts: bottom-to-top accumulation $\begin{aligned} & p^{(j+1)}=2 p^{()}+x_{k-j-1} a \text { with } \quad \\ & \mid \text { shift } \mid p^{(0)}=0 \text { and } \\ & p^{(k)}=p=a x+p^{(0) 2^{k}}\end{aligned}$

Right-shift algorithm
Left-shift algorithm

a	1010	a	1010
X	1011	X	1011
$p^{(0)}$	0000	$p^{(0)}$	0000
$+x_{0} a$	1010	$2 p^{(0)} \quad 0$	0000
$\begin{aligned} & 2 p^{(1)} \\ & p^{(1)} \\ & +x_{1} a \end{aligned}$		$+x_{3} a$	1010
	$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & \\ & 0 & 1 & 0 & 1 & 0\end{array}$	$p^{(1)}$	1010
	1010	$2 p^{(1)} \quad 01$	0100
		$+x_{2} a$	0000
$\begin{aligned} & 2 p^{(2)} \\ & p^{(2)} \\ & +x_{2} a \end{aligned}$	$\begin{array}{lllllll}0 & 1 & 1 & 1 & 1 & 0 & \\ & 0 & 1 & 1 & 1 & 1 & 0\end{array}$		
	$\begin{array}{lllllll}0 & 1 & 1 & 1 & 1 & 0\end{array}$	$p^{(2)} \quad 0 \quad 1$	0100
	0000	$2 p^{(2)} \quad 010$	1000
$\begin{aligned} & 2 p^{(3)} \\ & p^{(3)} \\ & +x_{3} a \end{aligned}$		$+x_{1} a$	1010
		$p^{(3)} \quad 0 \quad 0 \quad 1 \quad 1$	0010
	1010	$2 p^{(3)} 01110$	0100
$2 p^{(4)}$$p^{(4)}$	11010110	$+x_{0} a$	1010
	011101110	$p^{(4)} 00110$	1110

Fig. 9.2 Examples of sequential multiplication with right and left shifts.

Programmed multiplication of \boldsymbol{k}-bit numbers

$6 k+3$ to $7 k+3$ machine instructions, ignoring operand loads and result store
$k=32$ implies 200^{+}instructions on average
This is too slow for many modern applications!
Microprogrammed multiply would be somewhat better

9.2 Programmed Multiplication

R0	O
Rc	Counter
Ra Multiplicand	$R x$ Multiplier
Rp Product, high	Rq Product, low

```
{Using right shifts, multiply unsigned m_cand and m_ier,
storing the resultant 2k-bit product in p_high and p_low.
Registers: R0 holds 0 Rc for counter
    Ra for m_cand Rx for m_ier
    Rp for p_high Rq for p_low}
{Load operands into registers Ra and Rx}
    mult: load Ra with m_cand
    load Rx with m_ier
{Initialize partial product and counter}
    copy R0 into Rp
    copy R0 into Rq
    load k into Rc
{Begin multiplication loop}
    m_loop: shift Rx right 1 {LSB moves to carry flag}
    branch no_add if carry = 0
    add Ra to Rp {carry flag is set to cout}
    no_add: rotate Rp right 1 {carry to MSB, LSB to carry}
        rotate Rq right 1 {carry to MSB, LSB to carry}
        decr Rc {decrement counter by 1}
        branch m_loop if Rc f= 0
{Store the product}
    store Rp into p_high
    store Rq into p_low
    m_done: ...
```

Fig. 9.3 Programmed multiplication (right-shift algorithm).

9.3 Basic Hardware Multipliers

Fig. 9.4 Hardware realization of the sequential multiplication algorithm with additions and right shifts.

Fig. 9.5 Combining the loading and shifting of the doublewidth register holding the partial product and the partially used multiplier.

Fig. 9.6 Hardware realization of the sequential multiplication algorithm with left shifts and additions.

9.4 Multiplication of Signed Numbers

Fig.9.8 Sequential multiplication of 2's-complement numbers with right shifts (negative multiplier).

Table 9.1 Radix-2 Booth's recoding

$\begin{array}{llll}x_{i} & x_{i-1} & y_{i} & \text { Explanation }\end{array}$

$0 \quad 0 \quad 0 \quad$ No string of 1 s in sight
$0 \quad 1 \quad 1$ End of string of 1 s in x
$\begin{array}{llll}1 & 0 & -1 & \text { Beginning of string of } 1 \mathrm{~s} \text { in } x\end{array}$
110 Continuation of string of 1 s in x

Example

Justification

$$
2^{j}+2^{j-1}+\cdots+2^{i+1}+2^{i}=2^{j+1}-2^{i}
$$

a	10110 10101 Multiplier $\begin{array}{lllll}-1 & 1 & -1 & 1 & -1 \\ \text { Booth-recoded }\end{array}$											
x												
y												
$p^{(0)}$	00000											
$+y_{0} a$			1	01	10							
$2 p^{(1)}$	001010					0						
$p^{(1)}$			01	10	1							
$+y_{1} a$			01	11								
$2 p^{(2)}$	111011					0						
$p^{(2)}$	$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0\end{array}$					10						
$+y_{2} a$												
$2 p^{(3)}$	000111								10			
$p^{(3)}$	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{array}$					110						
$+y_{3} a$												
$2 p^{(4)}$			110	00	01					11		
$p^{(4)}$			11		10	00	-	11	1			
$+y_{4} a$	01010					-						
$2 p^{(5)}$		000		11	10	1110						
$p^{(5)}$				01	11	0	01	1	1			

Fig. 9.9 Sequential multiplication of 2's-complement numbers with right shifts using Booth's recoding.

9.5 Multiplication by Constants

Explicit multiplications, e.g. $y:=12 * x+1$ Implicit multiplications, e.g. $A[i, j]:=A[i, j]+B[i, j]$ Address of $A[i, j]=$ base $+n * i+j$

Aspects of multiplication by integer constants:

Produce efficient code using as few registers as possible
Find the best code by a time/space-efficient algorithm

Use binary expansion

Example: multiply R_{1} by $113=(1110001)_{\text {two }}$
$R_{2} \leftarrow R_{1}$ shift-left 1
$\mathrm{R}_{3} \leftarrow \mathrm{R}_{2}+\mathrm{R}_{1}$
$R_{6} \leftarrow R_{3}$ shift-left 1
$\mathrm{R}_{7} \leftarrow \mathrm{R}_{6}+\mathrm{R}_{1}$
$\mathrm{R}_{112} \leftarrow \mathrm{R}_{7}$ shift-left 4
$\mathrm{R}_{113} \leftarrow \mathrm{R}_{112}+\mathrm{R}_{1}$
Only two registers are required; R_{1} and another
Shorter sequence using shift-and-add instructions
$R_{3} \leftarrow R_{1}$ shift-left $1+R_{1}$
$R_{7} \leftarrow R_{3}$ shift-left $1+R_{1}$
$R_{113} \leftarrow R_{7}$ shift-left $4+R_{1}$

Use of subtraction (Booth's recoding) may help

Example:
multiply R_{1} by $113=(1110001)_{\text {two }}=(100-10001)_{\text {two }}$
$R_{8} \leftarrow R_{1}$ shift-left 3
$R_{7} \leftarrow R_{8}-R_{1}$
$R_{112} \leftarrow R_{7}$ shift-left 4
$R_{113} \leftarrow R_{112}+R_{1}$

Use of factoring may help

Example: multiply R_{1} by $119=7 \times 17=(8-1) \times(16+1)$
$\mathrm{R}_{8} \leftarrow \mathrm{R}_{1}$ shift-left 3
$R_{7} \leftarrow R_{8}-R_{1}$
$R_{112} \leftarrow R_{7}$ shift-left 4
$\mathrm{R}_{119} \leftarrow \mathrm{R}_{112}+\mathrm{R}_{7}$
Shorter sequence using shift-and-add/subtract instructions
$R_{7} \leftarrow R_{1}$ shift-left $3-R_{1}$
$R_{119} \leftarrow R_{7}$ shift-left $4+R_{7}$
Factors of the form $2^{b} \pm 1$ translate directly into a shift followed by an add or subtract

Program execution time improvement by an optimizing compiler using the preceding methods: 20-60\% [Bern86]

9.6 Preview of Fast Multipliers

Viewing multiplication as a multioperand addition problem, there are but two ways to speed it up
a. Reducing the number of operands to be added: handling more than one multiplier bit at a time (high-radix multipliers, Chapter 10)
b. Adding the operands faster: parallel/pipelined multioperand addition (tree and array multipliers, Chapter 11)

In Chapter 12, we cover all remaining multiplication topics, including bit-serial multipliers, multiply-add units, and the special case of squaring

10 High-Radix Multipliers

Go to TOC

Chapter Goals
Study techniques that allow us to handle more than one multiplier bit in each cycle (two bits in radix 4, three in radix $8, \ldots$.

Chapter Highlights
High radix gives rise to "difficult" multiples
Recoding (change of digit-set) as remedy
Carry-save addition reduces cycle time Implementation and optimization methods

Chapter Contents
10.1 Radix-4 Multiplication
10.2 Modified Booth's Recoding
10.3 Using Carry-Save Adders
10.4 Radix-8 and Radix-16 Multipliers
10.5 Multibeat Multipliers
10.6 VLSI Complexity Issues

10.1 Radix-4 Multiplication

Radix-r versions of multiplication recurrences

Multiplication with right shifts: top-to-bottom accumulation

$$
\begin{array}{rlrl}
p^{(j+1)}= & \left(p^{(0)}+x_{j} a r^{k}\right) r^{-1} \quad \text { with } \quad p^{(0)}=0 \text { and } \\
& \mid- \text { add- } \mid & & p^{(k)}=p=a x+p^{(0)} r^{-k}
\end{array}
$$

Multiplication with left shifts: bottom-to-top accumulation

$$
\begin{aligned}
p^{(j+1)}= & r p^{(l)}+x_{k-j-1} a \quad \text { with } \quad \begin{array}{l}
p^{(0)}=0 \text { and } \\
\\
\\
\mid \text { shift } \mid
\end{array} \quad p^{(k)}=p=a x+p^{(0)} r^{k}
\end{aligned}
$$

Fig. 10.1 Radix-4, or two-bit-at-a-time, multiplication in dot notation.

Fig. 10.2 The multiple generation part of a radix-4 multiplier with precomputation of 3a.

Fig. 10.3 Example of radix-4 multiplication using the 3 a multiple.

Fig. 10.4 The multiple generation part of a radix-4 multiplier based on replacing $3 a$ with $4 a$ (carry into next higher radix-4 multiplier digit) and -a.

χ_{i+1}	x_{i}	c	Mux control		Set carry
---	---	---			
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	0	0	1

10.2 Modified Booth's Recoding

Table 10.1 Radix-4 Booth's recoding yielding $\left(z_{k / 2} \cdots z_{1} z_{0}\right)_{\text {four }}$

x_{i+1}	x_{i}	x_{i-1}	y_{i+1}	y_{i}	$z_{i / 2}$	Explanation

$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad$ No string of 1 s in sight
$0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1$ End of string of 1 s
$\begin{array}{lllllll}0 & 1 & 0 & 0 & 1 & 1 & \text { Isolated } 1\end{array}$
$\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 2 & \text { End of string of } 1 \mathrm{~s}\end{array}$
$\begin{array}{lllllll}1 & 0 & 0 & -1 & 0 & -2 & \text { Beginning of string of } 1 \mathrm{~s}\end{array}$
$\begin{array}{lllllll}1 & 0 & 1 & -1 & 1 & -1 & \text { End a string, begin new one }\end{array}$
$\begin{array}{lllllll}1 & 1 & 0 & 0 & -1 & -1 & \text { Beginning of string of } 1 \mathrm{~s}\end{array}$
1110000 Continuation of string of 1 s

Example: (21 3122 32) four
1001110110101110 Operand x
(1) $\begin{array}{cccccccccc}-2 & 2 & -1 & 2 & -1 & -1 & 0 & -2 & \text { Recoded }\end{array}$ version z

Fig. 10.5 Example radix-4 multiplication with modified Booth's recoding of the 2's-complement multiplier.

Fig. 10.6 The multiple generation part of a radix-4 multiplier based on Booth's recoding.

10.3 Using Carry-Save Adders

Fig. 10.7 Radix-4 multiplication with a carry-save adder used to combine the cumulative partial product, $x_{i} a$, and $2 x_{i+1} a$ into two numbers.

Fig. 10.8 Radix-2 multiplication with the upper half of the cumulative partial product in stored-carry form.

Fig. 10.9 Radix-4 multiplication with a carry-save adder used to combine the stored-carry cumulative partial product and $z_{i / 2} a$ into two numbers.

Fig. 10.10 Booth recoding and multiple selection logic for high-radix or parallel multiplication.

Fig. 10.11 Radix-4 multiplication with two carry-save adders.

10.4 Radix-8 and Radix-16 Multipliers

Fig. 10.12 Radix-16 multiplication with the upper half of the cumulative partial product in carry-save form.

Remove the mux corresponding to x_{i+3} and the CSA right below it to get a radix-8 multiplier (the cycle time will remain the same, though)
Must also modify the small adder at the lower right

Radix-16 multiplier design can become a radix-32 design if modified Booth's recoding is applied first

Fig. 10.13 High-radix multipliers as intermediate between sequential radix-2 and full-tree multipliers.

10.5 Multibeat Multipliers

Fig. 10.14 Twin-beat multiplier with radix-8 Booth's recoding.

(a) Sequential machine with FFs

(b) Sequential machine with latches and 2-phase clock

Fig. 10.? Conceptual view of a twin-beat multiplier.

Fig. 10.15 Conceptual view of a three-beat multiplier.

10.6 VLSI Complexity Issues

Radix- 2^{b} multiplication
bk two-input AND gates
O(bk) area for the CSA tree
Total area: $A=\mathrm{O}(b k)$
Latency: $\quad T=\mathrm{O}((k / b) \log b+\log k)$

Any VLSI circuit computing the product of two k-bit integers must satisfy the following constraints
$A T$ grows at least as fast as $k \sqrt{k}$.
$A T^{2}$ is at least proportional to k^{2}

For the preceding implementations, we have:

$$
\begin{aligned}
& A T=\mathrm{O}\left(k^{2} \log b+b k \log k\right) \\
& A T^{2}=\mathrm{O}\left(\left(k^{3} / b\right) \log ^{2} b\right)
\end{aligned}
$$

Suboptimality of radix- b multipliers
Low cost
b constant
$A T=\mathrm{O}\left(k^{2}\right)$
$A T^{2}=\mathrm{O}\left(k^{3}\right)$
High speed
Optimal wrt
$b=\mathrm{O}(k)$
$A T=\mathrm{O}\left(k^{2} \log k\right)$
$A T=\mathrm{O}(k \sqrt{k})$
$A T^{2}=O\left(k^{2} \log ^{2} k\right)$
$A T^{2}=\mathrm{O}\left(k^{2}\right)$

Intermediate designs do not yield better $A T$ and $A T^{2}$
The multipliers remain asymptotically suboptimal for any b
By the $A T$ measure (indicator of cost-effectiveness) slower radix-2 multipliers are better than high-radix or tree multipliers

When many independent multiplications are required, it may be appropriate to use the available chip area for a large number of slow multipliers as opposed to a small number of faster units

Latency of high-radix multipliers can actually be reduced from $O((k / b) \log b+\log k)$ to $O(k / b+\log k)$ through more effective pipelining (Chapter 11)

11 Tree and Array Multipliers

Go to TOC

Chapter Goals
Study the design of multipliers for highest possible performance (speed, throughput)

Chapter Highlights
Tree multiplier = reduction tree

+ redundant-to-binary converter
Avoiding full sign extension in multiplying
signed numbers
Array multiplier = one-sided reduction tree
+ ripple-carry adder

Chapter Contents

11.1 Full-Tree Multipliers
11.2 Alternative Reduction Trees
11.3 Tree Multipliers for Signed Numbers
11.4 Partial-Tree Multipliers
11.5 Array Multipliers
11.6 Pipelined Tree and Array Multipliers

11.1 Full-Tree Multipliers

Fig. 10.13 High-radix multipliers as intermediate between sequential radix-2 and full-tree multipliers.

Fig. 11.1 General structure of a full-tree multiplier.

Fig. $x \quad$ Schematic diagrams for full-tree and partial-tree multipliers.

Variations in tree multipliers are distinguished by the designs of the following three elements:
 multiple-forming circuits
 partial products reduction tree redundant-to-binary converter

Fig. 11.2 Two different binary 4×4 tree multipliers.

Fig. 11.3 Possible CSA tree for a 7×7 tree multiplier.

CSA trees are generally quite irregular, thus causing problems in VLSI implementation

11.2 Alternative Reduction Trees

Fig. 11.4 A slice of a balanced-delay tree for 11 inputs.

Fig. 11.5 Tree multiplier with a more regular structure based on 4-to-2 reduction modules.

Fig. 11.6 Layout of a partial-products reduction tree composed of 4-to-2 reduction modules. Each solid arrow represents two numbers.

If 4-to-2 reduction is done by using two CSAs, the binary tree will often have more CSA levels, but regularity will improve

Use of Booth's recoding reduces the gate complexity but may not prove worthwhile due to irregularity

11.3 Tree Multipliers for Signed Numbers

Sign extension in multioperand addition (from Fig. 8.18)

$$
\cdots .
$$

The difference in multiplication is the shifting sign positions

Fig. 11.7 Sharing of full adders to reduce the CSA width in a signed tree multiplier.

Fig. 11.8 Baugh-Wooley 2's-complement multiplication.

$$
-a_{4} x_{0}=a_{4}\left(1-x_{0}\right)-a_{4}=a_{4} \bar{x}_{0}-a_{4}
$$

11.4 Partial-Tree Multipliers

Fig. 11.9 General structure of a partial-tree multiplier.

High-radix versus partial-tree multipliers difference is quantitative rather than qualitative for small h, say < 8 bits, the multiplier of Fig. 11.9 is viewed as a high-radix multiplier when h is a significant fraction of k, say $k / 2$ or $k / 4$, then we view it as a partial-tree multiplier

11.4 Array Multipliers

Fig. 11.10 A basic array multiplier uses a one-sided CSA tree and a ripple-carry adder.

Fig. 11.11 Details of a 5×5 array multiplier using FA blocks.

Fig. 11.12 Modifications in a 5×5 array multiplier to deal with 2's-complement inputs using the Baugh-Wooley method or to shorten the critical path.

Nearly half of the hardware in array/tree multipliers is there to get the last bit right (1 dot $=$ one FPGA cell)

```
                ulp
× ○ ○ ○ ○ ○ ○ ○ ○ multiplication
    ------------------------------------
    . O O O O O O O O|OOOOOOO
```

Max error $=8 / 2+7 / 4+6 / 8+5 / 16+4 / 32+3 / 64+2 / 128+$ $1 / 256=7.004$ ulp

Mean error $=1.751 \mathrm{ulp}$

Constant compensation

Variable compensation

Fig. 11.13 Design of a 5×5 array multiplier with two additive inputs and full-adder blocks that include AND gates.

Fig. 11.14 Conceptual view of a modified array multiplier that does not need a final carry-propagate adder.
i Conditional bits B_{i}

Fig. 11.15 Carry-save addition, performed in level i, extends the conditionally computed bits of the final product.

11.6 Pipelined Tree and Array Multipliers

Fig. 11.9 General structure of a partial-tree multiplier.

Fig. 11.16 Efficiently pipelined partial-tree multiplier.

Fig. 11.17 Pipelined 5×5 array multiplier using latched FA blocks. The small shaded boxes are latches.

12 Variations in Multipliers

Go to TOC

Chapter Goals
Learn additional methods for synthesizing
fast multipliers as well as other types
of multipliers (bit-serial, modular, etc.)
Chapter Highlights
Building a multiplier from smaller units
Performing multiply-add as one operation
Bit-serial and (semi)systolic multipliers
Using a multiplier for squaring is wasteful

Chapter Contents
12.1 Divide-and-Conquer Designs
12.2 Additive Multiply Modules
12.3 Bit-Serial Multipliers
12.4 Modular Multipliers
12.5 The Special Case of Squaring
12.6 Combined Multiply-Add Units

12.1 Divide-and-Conquer Designs

Fig. 12.1 Divide-and-conquer (recursive) strategy for synthesizing a $2 b \times 2 b$ multiplier from $b \times b$ multipliers.

Fig. 12.2 Using $b \times b$ multipliers to synthesize $2 b \times 2 b$, $3 b \times 3 b$, and $4 b \times 4 b$ multipliers.
$2 b \times 2 b \quad$ use $(3 ; 2)$-counters
$3 b \times 3 b \quad$ use $(5 ; 2)$-counters
$4 b \times 4 b \quad$ use $(7 ; 2)$-counters

Fig. 12.3 Using 4×4 multipliers and 4-bit adders to synthesize an 8×8 multiplier.

Generalization

$2 b \times 2 c$ use $b \times c$ multipliers and (3;2)-counters $2 b \times 4 c$ use $b \times c$ multipliers and (5; 2)-counters $g b \times h c \quad$ use $b \times c$ multipliers and (?; 2)-counters

12.2 Additive Multiply Modules

(a) Block diagram

(b) Dot notation

Fig. 12.4 Additive multiply module with 2×4 multiplier (ax) plus 4 -bit and 2 -bit additive inputs (y and z).
$b \times c$ AMM
b-bit and c-bit multiplicative inputs b-bit additive input c-bit additive input $(b+c)$-bit output

$$
\left(2^{b}-1\right) \times\left(2^{c}-1\right)+\left(2^{b}-1\right)+\left(2^{c}-1\right)=2^{b+c}-1
$$

Fig. 12.5 An 8×8 multiplier built of 4×2 AMMs. Inputs marked with an asterisk carry 0 s .

Fig. 12.6 Alternate 8×8 multiplier design based on 4×2 AMMs. Inputs marked with an asterisk carry 0 s .

12.3 Bit-Serial Multipliers

Fig. 12.7 Semi-systolic circuit for 4×4 multiplication in 8 clock cycles.

Fig. 12.8 Example of retiming by delaying the inputs to C_{L} and advancing the outputs from C_{L} by d units.

Fig. 12.9 A retimed version of our semi-systolic multiplier.

Fig. 12.10 Systolic circuit for $\mathbf{4} \times \mathbf{4}$ multiplication in 15 cycles.

Fig. 12.11 Building block for a latency-free bit-serial multiplier.

Fig. 12.12 The cellular structure of the bit-serial multiplier based on the cell in Fig. 12.11.

(a) Structure of the bit-matrix

(b) Reduction after each input bit

Fig. 12.13 Bit-serial multiplier design in dot notation.

12.4 Modular Multipliers

Fig. 12.14 Modulo-(2b-1) carry-save adder.

Fig. 12.15 Design of a 4×4 modulo-15 multiplier.

Fig. 12.16 One way to design of a 4×4 modulo-13 multiplier.

Fig. 12.17 A method for modular multioperand addition.

12.5 The Special Case of Squaring

Fig. 12.18 Design of a 5-bit squarer.

12.6 Combined Multiply-Add Units

Fig. 12.19 Dot-notation representations of various methods for performing a multiply-add operation in hardware.

Multiply-add versus multiply-accumulate
Multiply-accumulate units often have wider additive inputs

Part IV Division

Part Goals

Review shift-subtract division schemes
Learn about faster dividers
Discuss speed/cost tradeoffs in dividers

Part Synopsis

Division is the hardest basic operation Fortunately, it is also the least common
Division speedup: high-radix, array, ...
Combined multiplication/division hardware
Digit-recurrence vs convergence division

Part Contents
Chapter 13 Basic Division Schemes
Chapter 14 High-Radix Dividers
Chapter 15 Variations in Dividers
Chapter 16 Division by Convergence

13 Basic Division Schemes

Go to TOC

Chapter Goals
Study shift/subtract (bit-at-a-time) dividers
and set the stage for faster methods and
variations to be covered in Chapters 14-16

Chapter Highlights
Shift/sub divide vs shift/add multiply
Hardware, firmware, software algorithms
Dividing 2's-complement numbers
The special case of a constant divisor
Chapter Contents
13.1 Shift/Subtract Division Algorithms
13.2 Programmed Division
13.3 Restoring Hardware Dividers
13.4 Nonrestoring and Signed Division
13.5 Division by Constants
13.6 Preview of Fast Dividers

13.1 Shift/Subtract Division Algorithms

Notation for our discussion of division algorithms:
z Dividend
$z_{2 k-1} z_{2 k-2} \cdots z_{1} z_{0}$
d Divisor
$d_{k-1} d_{k-2} \cdots d_{1} d_{0}$
q Quotient
$q_{k-1} q_{k-2} \cdots q_{1} q_{0}$
$s \quad$ Remainder $(z-d \times q) \quad s_{k-1} s_{k-2} \cdots s_{1} s_{0}$

Fig. 13.1 Division of an 8 -bit number by a 4-bit number in dot notation.

Division is more complex than multiplication:
Need for quotient digit selection or estimation
Possibility of overflow: the high-order k bits of z must be strictly less than d; this overflow check also detects the divide-by-zero condition.

Fractional division can be reformulated as integer division
Integer division is characterized by $z=d \times q+s$ multiply both sides by $2^{-2 k}$ to get
$2^{-2 k^{2}}=\left(2^{-k} d\right) \times\left(2^{-k} q\right)+2^{-2 k_{s}}$
$z_{\text {frac }}=d_{\text {frac }} \times q_{\text {frac }}+2^{-k} s_{\text {frac }}$
Divide fractions like integers; adjust the final remainder No-overflow condition in this case is $z_{\text {frac }}<d_{\text {frac }}$

Sequential division with left shifts

$$
\begin{aligned}
s^{(0)}= & 2 s^{(j-1)}-a_{k-j}\left(2^{k} d\right) & \text { with } s^{(0)} & =z \text { and } \\
& \mid \text { shift } \mid & s^{(k)} & =2^{k} s \\
& \mid- \text { subtract - } & &
\end{aligned}
$$

There is no division algorithm with right shifts

Integer division

$\begin{aligned} & z \\ & 2^{4} d \end{aligned}$	$\begin{array}{llllll} 0 & 1 & 1 & 1 & 0101 \\ 1 & 0 & 1 & 0 & & \end{array}$	$z_{\text {frac }}$ $d_{\text {frac }}$	$\begin{array}{lllll} 0111 & 0101 \\ 1010 \end{array}$
$s^{(0)}$	01110101	$s^{(0)}$. 01110101
$2 s^{(0)}$	01110101	$2 s^{(0)}$	0.1110101
$-q_{3} 2^{4} d$	$1010\left\{q_{3}=1\right\}$	$-q_{-1} d$. $1010\left\{q_{-1}=1\right\}$
$s^{(1)}$	0100101	$s^{(1)}$.0100101
$2 s^{(1)}$	0100101	$2 s^{(1)}$	0.100101
$-q_{2} 2^{4} d$	$0000\left\{q_{2}=0\right\}$	$-q_{-2} d$. $0000\left\{q_{-2}=0\right\}$
$s^{(2)}$	100101	$s^{(2)}$. 100101
$2 s^{(2)}$	100101	$2 s^{(2)}$	1.00101
$-q_{1} 2^{4} d$	$1010\left\{q_{1}=1\right\}$	$-q_{-3} d$. $1010\left\{q_{-3}=1\right\}$
$s^{(3)}$	10001	$s^{(3)}$. 10001
$2 s^{(3)}$	10001	$2 s^{(3)}$	1.0001
$-q_{0} 2^{4} d$	$1010\left\{q_{0}=1\right\}$	$-q_{-1} d$. $1010\left\{q_{-4}=1\right\}$
$s^{(4)}$	0111	$s^{(4)}$. 0111
s	0111	$S_{\text {frac }}$	0.00000111
q	1011	$q_{\text {frac }}$	1011

Fig. 13.2 Examples of sequential division with integer and fractional operands.

13.2 Programmed Division

Fig. 13.3 Register usage for programmed division.

```
{Using left shifts, divide unsigned 2k-bit dividend,
z_high|z_low, storing the k-bit quotient and remainder.
Registers: R0 holds 0 Rc for counter
    Rd for divisor Rs for z_high & remainder
    Rq for z_low & quotient}
{Load operands into registers Rd, Rs, and Rq}
    div: load Rd with divisor
        load Rs with z_high
        load Rq with z_low
{Check for exceptions}
    branch d_by_0 if Rd = R0
    branch d_ovfl if Rs > Rd
{Initialize counter}
    load k into Rc
{Begin division loop}
    d_loop: shift Rq left 1 {zero to LSB, MSB to carry}
    rotate Rs left 1 {carry to LSB, MSB to carry}
    skip if carry = 1
    branch no_sub if Rs < Rd
    sub Rd from Rs
    incr Rq {set quotient digit to 1}
    no_sub: decr Rc {decrement counter by 1}
    branch d_loop if Rc f= 0
{Store the quotient and remainder}
    store Rq into quotient
    store Rs into remainder
    d_by_0: ...
    d_ovfl: ...
    d_done: ...
```

Fig. 13.4 Programmed division using left shifts.

13.3 Restoring Hardware Dividers

Division with signed operands: q and s are defined by

$$
z=d \times q+s \quad \operatorname{sign}(s)=\operatorname{sign}(z) \quad|s|<|d|
$$

Examples of division with signed operands

$$
\begin{array}{lllll}
z=5 & d=3 & \Rightarrow & q=1 & s=2 \\
z=5 & d=-3 & \Rightarrow & q=-1 & s=2 \\
z=-5 & d=3 & \Rightarrow & q=-1 & s=-2 \\
z=-5 & d=-3 & \Rightarrow & q=1 & s=-2
\end{array}
$$

Magnitudes of q and s are unaffected by input signs
Signs of q and s are derivable from signs of z and d
Will discuss direct signed division later

Fig. 13.5 Shift/subtract sequential restoring divider.

Fig. 13.6 Example of restoring unsigned division.

13.4 Nonrestoring and Signed Division

The cycle time in restoring division must accommodate shifting the registers allowing signals to propagate through the adder determining and storing the next quotient digit storing the trial difference, if required
Later events depend on earlier ones in the same cycle Such dependencies tend to lengthen the clock cycle

Nonrestoring division algorithm to the rescue! assume $q_{k-j}=1$ and perform a subtraction store the difference as the new partial remainder (the partial remainder can become incorrect, hence the name "nonrestoring")

Why it is acceptable to store an incorrect value in the partial-remainder register?

Shifted partial remainder at start of the cycle is u Subtraction yields the negative result $u-2^{k} d$

Option 1: restore the partial remainder to correct value u, shift, and subtract to get $2 u-2^{k} d$
Option 2: keep the incorrect partial remainder $u-2^{k} d$, shift, and add to get $2\left(u-2^{k} d\right)+2^{k} d=2 u-2^{k} d$

Fig. 13.7 Example of nonrestoring unsigned division.

Example

(0111 0101$)_{\text {two }} /\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)_{\text {two }}$
 $(117)_{\text {ten }} /(10)_{\text {ten }}$

(a) Restoring

(b) Nonrestoring

Fig. 13.8 Partial remainder variations for restoring and nonrestoring division.

Restoring division

$q_{k-j}=0$ means no subtraction (or subtraction of 0)
$q_{k-j}=1$ means subtraction of d
Nonrestoring division
We always subtract or add
As if quotient digits are selected from the set $\{1,-1\}$ 1 corresponds to subtraction
-1 corresponds to addition
Our goal is to end up with a remainder that matches the sign of the dividend

This idea of trying to match the sign of s with the sign z, leads to a direct signed division algorithm

$$
\text { If } \operatorname{sign}(s)=\operatorname{sign}(d) \text { then } q_{k-j}=1 \text { else } q_{k-j}=-1
$$

Two problems must be dealt with at the end:

1. Converting the quotient with digits 1 and -1 to binary
2. Adjusting the results if final remainder has wrong sign (correction step involves addition of $\pm d$ to remainder and subtraction of ± 1 from quotient)

Correction might be required even in unsigned division (when the final remainder is negative)

Fig. 13.9 Example of nonrestoring signed division.

Fig. 13.10 Shift-subtract sequential nonrestoring divider.

13.5 Division by Constants

Method 1: find the reciprocal of the constant and multiply
Method 2: use the property that for each odd integer d
there exists an odd integer m such that $d \times m=2^{n}-1$

$$
\begin{aligned}
\frac{1}{d} & =\frac{m}{2^{n}-1}=\frac{m}{2^{n}\left(1-2^{-n}\right)} \\
& =\frac{m}{2^{n}}\left(1+2^{-n}\right)\left(1+2^{-2 n}\right)\left(1+2^{-4 n}\right) \cdots
\end{aligned}
$$

Number of shift-adds required is proportional to $\log k$
Example: division by $d=5$ with 24 bits of precision

$$
m=3, n=4 \text { by inspection }
$$

$\frac{z}{5}=\frac{3 z}{2^{4}-1}=\frac{3 z}{16\left(1-2^{-4}\right)}=\frac{3 z}{16}\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right)$
$q \leftarrow z+z$ shift-left $1 \quad\{3 z$ computed $\}$
$q \leftarrow q+q$ shift-right $4 \quad\left\{3 z\left(1+2^{-4}\right)\right\}$
$q \leftarrow q+q$ shift-right $8 \quad\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\right\}$
$q \leftarrow q+q$ shift-right $16\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right)\right\}$
$q \leftarrow q$ shift-right 4
$\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right) / 16\right\}$
This divide-by-5 algorithm uses 5 shifts and 4 adds

13.6 Preview of Fast Dividers

Fig. 13.11 (a) Multiplication and (b) division as multioperand addition problems.

Like multiplication, division is multioperand addition
Thus, there are but two ways to speed it up:
a. Reducing the number of operands (high-radix dividers)
b. Adding them faster (use carry-save partial remainder)

There is one complication making division more difficult:
terms to be subtracted from (added to) the dividend are not known a priori but become known as the quotient digits are computed; quotient digits in turn depend on partial remainders

14 High-Radix Dividers

Go to TOC

Chapter Goals
Study techniques that allow us to obtain more than one quotient bit in each cycle (two bits in radix 4, three in radix $8, \ldots$.

Chapter Highlights
Radix $>2 \Rightarrow$ quotient digit selection harder
Cure: redundant quotient representation
Carry-save addition reduces cycle time Implementation methods and tradeoffs

Chapter Contents
14.1 Basics of High-Radix Division
14.2 Radix-2 SRT Division
14.3 Using Carry-Save Adders
14.4 Choosing the Quotient Digits
14.5 Radix-4 SRT Division
14.6 General High-Radix Dividers

14.1 Basics of High-Radix Division

Radix-r version of division recurrence of Section 13.1

$$
s^{(1)}=r s^{(j-1)}-q_{k-j}\left(r^{k} d\right) \text { with } s^{(0)}=z \text { and } s^{(k)}=r^{k} s
$$

High-radix dividers of practical interest have $r=2^{b}$ (and, occasionally, $r=10$)

Fig. 14.1 Radix-4 division in dot notation.

Radix-4 integer division

${ }^{Z} 4^{4} d$	$\begin{aligned} & 01231123 \\ & 1003 \end{aligned}$
$s^{(0)}$	01231123
$4 s^{(0)}$	01231123
$-q_{3} 4^{4} d$	$01203\left\{q_{3}=1\right\}$
$s^{(1)}$	0022123
$4 s^{(1)}$	0022123
$-q_{2} 4^{4} d$	$00000 \quad\left\{q_{2}=0\right\}$
$s^{(2)}$	022123
$4 s^{(2)}$	022123
$-q_{1} 4^{4} d$	$01203\left\{q_{1}=1\right\}$
$s^{(3)}$	10033
$4 s^{(3)}$	10033
$-q_{0} 4^{4} d$	03012 \{ $\left.q_{0}=2\right\}$
$s^{(4)}$	1021
s	1021
q	1012

Radix-10 fractional division
=================

| $Z_{\text {frac }}$ | .7003 | |
| :--- | :--- | :--- | :--- |
| $d_{\text {frac }}$ | .99 | |

$$
=================
$$

$$
s^{(0)} \quad .7003
$$

$$
10 s^{(0)} \quad 7.003
$$

$$
-q_{-1} d \quad 6.93\left\{q_{-1}=7\right\}
$$

$$
\begin{array}{lrl}
s^{(1)} & .073 \\
10 s^{(1)} & 0.73
\end{array}
$$

$$
\begin{equation*}
-q_{-2} d \quad 0.00\left\{q_{-2}=0\right\} \tag{2}
\end{equation*}
$$

.73
$S_{\text {frac }}$
.0073
$q_{\text {frac }}$
.70
==================

Fig. 14.2 Examples of high-radix division with integer and fractional operands.

14.2 Radix-2 SRT Division

Radix-2 nonrestoring division, fractional operands

$$
s^{(j)}=2 s^{(j-1)}-q_{-j} d \text { with } s^{(0)}=z \text { and } s^{(k)}=2^{k} s
$$

Fig. 14.3 The new partial remainder, $\boldsymbol{s}^{(n)}$, as a function of the shifted old partial remainder, $2 s^{(j-1)}$, in radix- 2 nonrestoring division.

Fig. 14.4 The new partial remainder $s^{(n)}$ as a function of $2 s^{(j-1)}$, with q_{-j} in $\{-1,0,1\}$.

Fig. 14.5 The relationship between new and old partial remainders in radix-2 SRT division.

SRT algorithm (Sweeney, Robertson, Tocher)
$2 s^{(j-1)} \geq+1 / 2=(0.1)_{2}$'s-compl

$$
\Rightarrow 2 s^{(j-1)}=\left(0.1 u_{-2} u_{-3} \cdots\right)_{2 ' s-c o m p l}
$$

$2 s^{(j-1)}<-1 / 2=(1.1)_{2}$'s-compl

$$
\Rightarrow 2 s^{(j-1)}=\left(1.0 u_{-2} u_{-3} \cdots\right)_{2 ' s-c o m p l}
$$

Skipping over identical leading bits by shifting
$s^{(j-1)}=0.0000110 \cdots$ Shift left by 4 bits and subtract; append q with 0001
$s^{(j-1)}=1.1110100 \ldots$ Shift left by 3 bits and add; append q with $00-1$

Average skipping distance (statistically): 2.67 bits

z	0100	0101	$\begin{aligned} & \text { In }[-1 / 2,1 / 2) \text {, so OK } \\ & \text { In }[1 / 2,1) \text {, so OK } \end{aligned}$
d	1010		
-d	1.0110		
$s^{(0)}$	0.0100	0101	
$2 s^{(0)}$	0.1000	101	$\geq 1 / 2, \text { so set } q_{-1}=1$and subtract
+(-d)	1.0110		
$s^{(1)}$	1.1110	101	
$2 s^{(1)}$	1.1101	01	$\ln [-1 / 2,1 / 2)$, so $q_{-2}=0$
$s^{(2)}=2 s^{(1)}$	1.1101	01	
$2 s^{(2)}$	1.1010	1	$\ln [-1 / 2,0)$, so $q_{-3}=0$
$s^{(3)}=2 s^{(2)}$	1.1010	1	
$2 s^{(3)}$	1.0101		$\begin{aligned} & <-1 / 2 \text {, so } q_{-4}=-1 \\ & \text { and add } \end{aligned}$
+d	0.1010		
$s^{(4)}$	1.1111		Negative, so add to correct
+d	0.1010		
$s^{(4)}$	0.1001		
s	0.0000	1001	
q	0.1 0-0-1		Ucorrected BSD form
q	0.0110		Convert, subtract ulp

Fig. 14.6 Example of unsigned radix-2 SRT division.

14.3 Using Carry-Save Adders

Fig. 14.7 Constant thresholds used for quotient digit selection in radix-2 division with q_{k-j} in $\{-1,0,1\}$.

Sum part of $2 s^{(j-1)}: \quad u=\left(u_{1} u_{0} \cdot u_{-1} u_{-2} \cdots\right)_{2 \text { 's-compl }}$
Carry part of $2 s^{(j-1)}: \quad v=\left(v_{1} v_{0} \cdot v_{-1} v_{-2} \cdots\right)_{2 \text { 's-compl }}$
$t=u_{[-2,1]}+v_{[-2,1]} \quad\{$ Add the 4 MSBs of u and $v\}$
if $t<-1 / 2$
then $q_{-j}=-1$
else if $t \cdot 0$
then $q_{-j}=1$
else $q_{-j}=0$
endif
endif

Fig. 14.8 Block diagram of a radix-2 divider with partial remainder in stored-carry form.

Fig. 14.9 Overlap regions in radix-2 SRT division.

14.4 Choosing the Quotient Digits

Fig. 14.10 A p-d plot for radix-2 division with $d \in[1 / 2,1$), partial remainder in $[-d, d)$, and quotient digits in $[-1,1]$.

Approx. shifted partial remainder $t=\left(t_{1} t_{0} \cdot t_{-1} t_{-2}\right)_{2}$'s-compl
Non0 $=I_{1}+I_{0}+I_{-1}=t_{1} t_{0} t_{-1}$
Sign $=t_{1}\left(t_{0}+t_{-1}\right)$

14.5 Radix-4 SRT division

Fig. 14.11 New versus shifted old partial remainder in radix-4 division with q_{-j} in $[-3,3]$.

Fig. $14.12 \quad p$-d plot for radix-4 SRT division with quotient digit set [-3, 3].

Fig. 14.13 New versus shifted old partial remainder in radix-4 division with q_{-j} in $[-2,2]$.

Fig. 14.14 A p-d plot for radix-4 SRT division with quotient digit set [-2, 2].

14.6 General High-Radix Dividers

Fig. 14.15 Block diagram of radix-r divider with partial remainder in stored-carry form.

Design process to determine details of the above divider:

Radix r
Digit set $[-\alpha, \alpha]$ for q_{-j}
Number of bits of $p(v$ and $u)$ and d to be inspected
Quotient digit selection table or logic
Multiple generation/selection scheme
Conversion of redundant q to 2's complement

15 Variations in Dividers

Go to TOC

Chapter Goals
Discuss practical aspects of designing
high-radix dividers and cover
other types of fast hardware dividers

Chapter Highlights
Building and using p - d plots in practice
Prescaling simplifies q digit selection
Parallel hardware (array) dividers
Shared hardware in multipliers/dividers
Square-rooting not special case of division

Chapter Contents

15.1 Quotient-Digit Selection Revisited
15.2 Using p-d Plots in Practice
15.3 Division with Prescaling
15.4 Modular Dividers and Reducers
15.5 Array Dividers
15.6 Combined Multiply/Divide Units

15.1 Quotient-Digit Selection Revisited

Fig. 15.1 The relationship between new and shifted old partial remainders in radix- r division with quotient digits in $[-\alpha,+\alpha]$.

Radix- r division with quotient digit set $[-\alpha, \alpha], \alpha<r-1$
Restrict the partial remainder range, say to [-hd, hd)
From the solid rectangle in Fig. 15.1, we get

$$
r h d-\alpha d \leq h d \quad \text { or } \quad h \leq \alpha /(r-1)
$$

To minimize the range restriction, we choose $h=\alpha /(r-1)$

Fig. 15.2 A part of p-d plot showing the overlap region for choosing the quotient digit value β or $\beta+1$ in radix- r division with quotient digit set $[-\alpha, \alpha]$.

Fig. 15.3 A part of p - d plot showing an overlap region and its staircase-like selection boundary.

15.2 Using p-d Plots in Practice

Fig. 15.4 Establishing upper bounds on the dimensions of uncertainty rectangles.

Smallest $\Delta \mathrm{d}$ occurs for the overlap region of α and $\alpha-1$

$$
\Delta d=d^{\min } \frac{2 h-1}{-h+\alpha} \quad \Delta p=d^{\min }(2 h-1)
$$

Example: For $r=4$, divisor range [0.5, 1), digit set [-2, 2], we have $\alpha=2, d^{\text {min }}=1 / 2, h=\alpha /(r-1)=2 / 3$

$$
\Delta d=(1 / 2) \frac{4 / 3-1}{-2 / 3+2}=1 / 8 \quad \Delta p=(1 / 2)(4 / 3-1)=1 / 6
$$

Because $1 / 8=2^{-3}$ and $2^{-3} \leq 1 / 6<2^{-2}$, we must inspect at least 3 bits of d (2, given its leading 1) and 3 bits of p These are lower bounds and may prove inadequate In fact, 3 bits of p and 4 (3) bits of d are required With p in carry-save form, 4 bits of each component must be inspected (or added to give the high-order 3 bits)

Theorem: Once lower bounds on precision are determined based on Δd and Δp, one more bit of precision in each direction is always adequate [Parh01] (Asilomar 2001)

Proof: Let w be the vertical spacing of grid lines

$$
w \leq \Delta d / 2 \quad \Rightarrow \quad v \leq \Delta p / 2 \quad \Rightarrow \quad u \geq \Delta p / 2
$$

Fig. 15.5 The asymmetry of quotient digit selection process.

Fig. 15.6 Example of p-d plot allowing larger uncertainty rectangles, if the 4 cases marked with asterisks are handled as exceptions.

15.3 Division with Prescaling

Overlap regions of a p - d plot are wider toward the high end of the divisor range

If we can restrict the magnitude of the divisor to an interval close to $d^{\max }$ (say $1-\varepsilon<d<1+\delta$, when $d^{\max }=1$), quotient digit selection may become simpler

This restriction can be achieved by performing the division $(z m) /(d m)$ for a suitably chosen scale factor $m(m>1)$

Of course, prescaling (multiplying z and d by the scale factor m) should be done without real multiplications

15.4 Modular Dividers and Reducers

Given a dividend z and divisor d, with $d \geq 0$, a modular divider computes

$$
q=\lfloor z / d\rfloor \quad \text { and } \quad s=z \bmod d=\langle z\rangle_{d}
$$

The quotient q is, by definition, an integer but the inputs z and d do not have to be integers

Example:

$$
\lfloor-3.76 / 1.23\rfloor=-4 \quad \text { and } \quad\langle-3.76\rangle_{1.23}=1.16
$$

The modular remainder is always positive
A modular reducer computes only the modular remainder

15.5 Array Dividers

Fig. 15.7 Restoring array divider composed of controlled subtractor cells.

The similarity of the array divider of Fig. 15.7 to an array multiplier is somewhat deceiving
The same number of cells are involved in both designs, and the cells have comparable complexities However, the critical path in a $k \times k$ array multiplier contains $\mathrm{O}(k)$ cells, whereas in Fig. 15.7, the critical path passes through all k^{2} cells (borrow ripples in each row) Thus, an array divider is quite slow, and, given its high cost, not very cost-effective

Fig. 15.8 Nonrestoring array divider built of controlled add/subtract cells.

Speedup method:
Pass the partial remainder downward in carry-save form However, we still need to know the carry-out or borrow-out from each row to determine the action in the following row: subtract/no-change (Fig. 15.7) or subtract/add (Fig. 15.8) This can be done by using a carry- (borrow-) lookahead circuit laid out between successive rows Not used in practice

15.6 Combined Multiply/Divide Units

Fig. 15.9 Sequential radix-2 multiply/divide unit.

Fig. $15.10 \quad$ I/O specification of a universal circuit that can act as an array multiplier or array divider.

16 Division by Convergence

Go to TOC

Chapter Goals
Show how by using multiplication as the basic operation in each division step, the number of iterations can be reduced

Chapter Highlights
Digit-recurrence as convergence method
Convergence by Newton-Raphson iteration
Computing the reciprocal of a number
Hardware implementation and fine tuning

Chapter Contents
16.1 General Convergence Methods
16.2 Division by Repeated Multiplications
16.3 Division by Reciprocation
16.4 Speedup of Convergence Division
16.5 Hardware Implementation
16.6 Analysis of Lookup Table Size

16.1 General Convergence Methods

$$
\begin{array}{ll}
u^{(i+1)}=f\left(u^{(i)}, v^{(i)}\right) & u^{(i+1)}=f\left(u^{(i)}, v^{(i)}, w^{(i)}\right. \\
v^{(i+1)}=g\left(u^{(i)}, v^{(i)}\right) & v^{(i+1)}=g\left(u^{(i)}, v^{(i)}, w^{(i)}\right) \\
& w^{(i+1)}=h\left(u^{(i)}, v^{(i)}, w^{(i)}\right)
\end{array}
$$

We direct the iterations such that one value, say u, converges to some constant.

The value of v (and/or w) then converges to the desired function(s)

The complexity of this method depends on two factors:
a. Ease of evaluating f and g (and h)
b. Rate of convergence (no. of iterations needed)

16.2 Division by Repeated Multiplications

$q=\frac{z}{d}=\frac{z x^{(0)} x^{(1)} \cdots x^{(m-1)}}{d x^{(0)} x^{(1)} \cdots x^{(m-1)}}$ Converges to q Made to converge to 1
To turn the above into a division algorithm, we face three questions:

1. How to select the multipliers $x^{(i)}$?
2. How many iterations (pairs of multiplications)?
3. How to implement in hardware?

Formulate as convergence computation, for d in $[1 / 2,1)$ $d^{(i+1)}=d^{(i)} x^{(1)} \quad$ Set $d^{(0)}=d$; make $d^{(m)}$ converge to 1
$z^{(i+1)}=z^{(i)} x^{(i)} \quad$ Set $z^{(0)}=z ;$ obtain $z / d=q \cong z^{(m)}$

Q1: How to select the multipliers $x^{(1)}$?

$$
x^{(1)}=2-d^{(1)}
$$

This choice transforms the recurrence equations into: $d^{(i+1)}=d^{(i)}\left(2-d^{(i)}\right) \quad$ Set $d^{(0)}=d^{\prime}$; iterate until $d^{(m)} \cong 1$ $z^{(i+1)}=z^{(1)}\left(2-d^{(i)}\right) \quad$ Set $z^{(0)}=z$; obtain $z / d=q \cong z^{(m)}$

Q2: How quickly does $d^{(1)}$ converge to 1 ?

$$
\begin{aligned}
& d^{(i+1)}=d^{(i)}\left(2-d^{(i)}\right)=1-\left(1-d^{(i)}\right)^{2} \\
& 1-d^{(i+1)}=\left(1-d^{(i)}\right)^{2}
\end{aligned}
$$

Thus, $1-d^{(i)} \leq \varepsilon$ leads to $1-d^{(i+1)} \leq \varepsilon^{2}$:
quadratic convergence
In general, for k-bit operands, we need
2m-1 multiplications and m 2's complementations where $m=\left\lceil\log _{2} k\right\rceil$

Table 16.1 Quadratic convergence in computing z / d by repeated multiplications, where $1 / 2 \leq d=1-y<1$

$$
\begin{array}{lll}
i & d^{(1)}=d^{(i-1)} x^{(i-1)}, \text { with } d^{(0)}=d & x^{(1)}=2-d^{(1)} \\
\hline 0 & 1-y=(.1 \times x \times x \times x \times x \times x \times x)_{\mathrm{two}} \geq 1 / 2 & 1+y \\
1 & 1-y^{2}=(.11 \times x \times x \times x \times x \times x x x)_{\mathrm{two}} \geq 3 / 4 & 1+y^{2} \\
2 & 1-y^{4}=(.1111 \times x \times x \times x \times x x x)_{\mathrm{two}} \geq 15 / 16 & 1+y^{4} \\
3 & 1-y^{8}=(.11111111 \times x x x \times x x)_{\mathrm{two}} \geq 255 / 256 & 1+y^{8} \\
4 & 1-y^{16}=(.1111111111111111)_{\mathrm{two}}=1-u l p &
\end{array}
$$

Fig. 16.1. Graphical representation of convergence in division by repeated multiplications.

Q3: How implemented in hardware?

... to be discussed later

16.3 Division by Reciprocation

To find $q=z / d$, compute $1 / d$ and multiply it by z
Particularly efficient if several divisions byd are required
Newton-Raphson iteration to determine a root of $f(x)=0$ Start with some initial estimate $x^{(0)}$ for the root Iteratively refine the estimate using the recurrence $x^{(i+1)}=x^{(i)}-f\left(x^{(i)}\right) / f^{\prime}\left(x^{(i)}\right)$

Justification: $\tan \alpha^{(1)}=f^{\prime}\left(x^{(i)}\right)=f\left(x^{(i)}\right) /\left(x^{(1)}-x^{(i+1)}\right)$

Fig. 16.2 Convergence to a root of $f(x)=0$ in the NewtonRaphson method.

To compute $1 / d$, find the root of $f(x)=1 / x-d$
$f^{\prime}(x)=-1 / x^{2}$, leading to the recurrence:

$$
x^{(i+1)}=x^{(1)}\left(2-x^{(i)} d\right)
$$

One iteration = 2 multiplications + a 2 's complementation

Let $\delta^{(1)}=1 / d-x^{(1)}$ be the error at the th iteration. Then:

$$
\begin{aligned}
\delta^{(i+1)}=1 / d-x^{(i+1)} & =1 / d-x^{(i)}\left(2-x^{(i)} d\right) \\
& =d\left(1 / d-x^{(i)}\right)^{2} \\
& =d\left(\delta^{(i)}\right)^{2}
\end{aligned}
$$

Because $d<1$, we have $\delta^{(i+1)}<\left(\delta^{(i)}\right)^{2}$
Choosing the initial value $x^{(0)}$
$0<x^{(0)}<2 / d \Rightarrow\left|\delta^{(0)}\right|<1 / d \Rightarrow$ guaranteed convergence
For d in [1/2, 1):
simple choice

$$
\begin{aligned}
& x^{(0)}=1.5 \Rightarrow\left|\delta^{(0)}\right| \cdot 0.5 \\
& x^{(0)}=4(\sqrt{3}-1)-2 d=2.9282-2 d \\
& \max \text { error } \cong 0.1
\end{aligned}
$$

16.4 Speedup of Convergence Division

Division can be done via $2\left\lceil\log _{2} k\right\rceil-1$ multiplications
This is not yet very impressive
64-bit numbers, 5 -ns multiplier $\Rightarrow 55$-ns division
Three types of speedup are possible:

> Reducing the number of multiplications Using narrower multiplications Performing the multiplications faster

Convergence is slow in the beginning
It takes 6 multiplications to get 8 bits of convergence and another 5 to go from 8 bits to 64 bits

$$
d x^{(0)} x^{(1)} x^{(2)}=(0.11111111 \cdots)_{\mathrm{two}}
$$

$$
x^{(0+)} \text { read from table }
$$

A $2^{w} \times w$ lookup table is necessary and sufficient for w bits of convergence after the first pair of multiplications

Fig. 16.3 Convergence in division by repeated multiplications with initial table lookup.

Fig. 16.4 Convergence in division by repeated multiplications with initial table lookup and the use of truncated multiplicative factors.

Fig. 16.5 One step in convergence division with truncated multiplicative factors.

Example (64-bit multiplication)

Table of size $256 \times 8=2 \mathrm{~K}$ bits for the lookup step Then we need multiplication pairs, with the multiplier being 9 bits, 17 bits, and 33 bits wide
The final step involves a single 64×64 multiplication

16.5 Hardware Implementation

Repeated multiplications:

Fig. 16.6 Two multiplications fully overlapped in a 2 -stage pipelined multiplier.

Reciprocation:

Can begin with a good approximation to the reciprocal by consulting a large table

Table lookup, along with interpolation
Augmenting the multiplier tree

16.6 Analysis of Lookup Table Size

Table 16.2 Sample entries in the lookup table replacing the first four multiplications in division by repeated multiplications

Address	$d=0.1$ xxxx xxxx	$x^{(0+)}=1 . \operatorname{xxxx} \operatorname{xxxx}$
55	00110111	10100101
64	01000000	10011001

Example: derivation of the table entry for 55

$$
\frac{311}{512} \leq d<\frac{312}{512}
$$

For 8 bits of convergence, the table entry f must satisfy

$$
\frac{311}{512}(1+. f) \geq 1-2^{-8} \quad \frac{312}{512}(1+. f) \leq 1+2^{-8}
$$

Thus
$\frac{199}{311} \leq . f \leq \frac{101}{156} \quad$ or for the integer $f=256 \times . f$
$163.81 \cdot f \cdot 165.74$
Two choices: $\quad 164=(10100100)_{\text {two }}$ or $165=(10100101)_{\text {two }}$

Part V Real Arithmetic

Part Goals

Review floating-point representations
Learn about floating-point arithmetic
Discuss error sources and error bounds

Part Synopsis
Combining wide range and high precision
Floating-point formats and operations
The ANSI/IEEE standard
Errors: causes and consequences
When can we trust computation results?

Part Contents
Chapter 17 Floating-Point Representations
Chapter 18 Floating-Point Operations
Chapter 19 Errors and Error Control
Chapter 20 Precise and Certifiable Arithmetic

17 Floating-Point Representations

Go to TOC

Chapter Goals

Study representation method offering both
wide range (e.g., astronomical distances)
and high precision (e.g., atomic distances)

Chapter Highlights
Floating-point formats and tradeoffs
Why a floating-point standard?
Finiteness of precision and range
The two extreme special cases:
fixed-point and logarithmic numbers

Chapter Contents

17.1 Floating-Point Numbers
17.2 The ANSI/IEEE Floating-Point Standard
17.3 Basic Floating-Point Algorithms
17.4 Conversions and Exceptions
17.5 Rounding Schemes
17.6 Logarithmic Number Systems

17.1 Floating-Point Numbers

No finite number system can represent all real numbers Various systems can be used for a subset of real numbers

Fixed-point $\pm w . f \quad$ low precision and/or range
Rational $\pm p / q$ difficult arithmetic
Floating-point $\pm s \times b^{e}$ most common scheme Logarithmic $\quad \pm \log _{b} x \quad$ limiting case of floating-point

Fixed-point numbers

$$
\begin{array}{ll}
x=(00000000.00001001)_{\mathrm{two}} & \text { Small number } \\
y=(10010000.00000000)_{\mathrm{two}} & \text { Large number }
\end{array}
$$

Floating-point numbers

$$
x= \pm s \times b^{e} \quad \text { or } \quad \pm \text { significand } \times \text { base }^{\text {exponent }}
$$

Two signs are involved in a floating-point number.

1. The significand or number sign, usually represented by a separate sign bit
2. The exponent sign, usually embedded in the biased exponent (when the bias is a power of 2 , the exponent sign is the complement of its MSB)

Fig. 17.1 Typical floating-point number format.

Fig. 17.2 Subranges and special values in floating-point number representations.

17.2 The ANSI/IEEE Floating-Point Standard

Fig. 17.3 The ANSI/IEEE standard floating-point number representation formats.

Table 17.1 Some features of the ANSI/IEEE standard floatingpoint number representation formats

Feature	Single/Short	Double/Long
Word width (bits)	32	64
Significand bits	$23+1$ hidden	$52+1$ hidden
Significand range	$\left[1,2-2^{-23}\right]$	$\left[1,2-2^{-52}\right]$
Exponent bits	8	11
Exponent bias	127	1023
Zero (± 0)	$e+$ bias $=0, f=0$	$e+$ bias $=0, f=0$
Denormal	$e+$ bias $=0, f \neq 0$	$e+$ bias $=0, f \neq 0$
	represents $\pm 0 . f \times 2^{-126}$	represents $\pm 0 . f \times 2^{-1022}$
Infinity $(\pm \infty)$	$e+$ bias $=255, f=0$	$e+$ bias $=2047, f=0$
Not-a-number (NaN)	$e+$ bias $=255, f \neq 0$	$e+$ bias $=2047, f \neq 0$
Ordinary number	$e+$ bias $\in[1,254]$	$e+$ bias $\in[1,2046]$
	$e \in[-126,127]$	$e \in[-1022,1023]$
min	represents $1 . f \times 2^{e}$	represents $1 . f \times 2^{e}$
max	$2^{-126} \cong 1.2 \times 10^{-38}$	$2^{-1022} \cong 2.2 \times 10^{-308}$
	$\cong 2^{128} \cong 3.4 \times 10^{38}$	$\cong 2^{1024} \cong 1.8 \times 10^{308}$

Operations on special operands:
Ordinary number $\div(+\infty)= \pm 0$
$(+\infty) \times$ Ordinary number $= \pm \infty$
$\mathrm{NaN}+$ Ordinary number $=\mathrm{NaN}$

Fig. 17.4 Denormals in the IEEE single-precision format.

The IEEE floating-point standard also defines
The four basic arithmetic op's (,,$+- \times, \div$) and \sqrt{x} must match the results that would be obtained if intermediate computations were infinitely precise

Extended formats for greater internal precision Single-extended: ≥ 11 bits for exponent ≥ 32 bits for significand bias unspecified, but exp range $\supseteq[-1022,1023]$
Double-extended: ≥ 15 bits for exponent
≥ 64 bits for significand
exp range $\supseteq[-16382,16383]$

17.3 Basic Floating-Point Algorithms

Addition/Subtraction

Assume e1 $\geq e 2$; need alignment shift (preshift) if e1>e2:

$$
\begin{aligned}
\left(\pm s 1 \times b^{e 1}\right)+\left(\pm s 2 \times b^{e 2}\right) & =\left(\pm s 1 \times b^{e 1}\right)+\left(\pm s 2 / b^{e 1-e 2}\right) \times b^{e 1} \\
& =\left(\pm s 1 \pm s 2 / b^{e 1-e 1}\right) \times b^{e 1}= \pm s \times b^{e}
\end{aligned}
$$

Like signs: 1-digit normalizing right shift may be needed Different signs: shifting by many positions may be needed Overflow/underflow during addition or normalization

Multiplication

$\left(\pm s 1 \times b^{e 1}\right) \times\left(\pm s 2 \times b^{e 2}\right)= \pm(s 1 \times s 2) \times b^{e 1+e 2}$
Postshifting for normalization, exponent adjustment Overflow/underflow during multiplication or normalization

Division

$\left(\pm s 1 \times b^{e 1}\right) /\left(\pm s 2 \times b^{e 2}\right)= \pm(s 1 / s 2) \times b^{e 1-e 2}$

Square-rooting

First make the exponent even, if necessary

$$
\sqrt{ }\left(s \times b^{e}\right)=\sqrt{s} \times b^{e / 2}
$$

In all algorithms, rounding complications are ignored here

17.4 Conversions and Exceptions

Conversions from fixed- to floating-point Conversions between floating-point formats Conversion from high to lower precision: Rounding

ANSI/IEEE standard includes four rounding modes:
Round to nearest even [default rounding mode]
Round toward zero (inward)
Round toward $+\infty$ (upward)
Round toward $-\infty$ (downward)

Exceptions

divide by zero
overflow
underflow
inexact result: rounded value not same as original invalid operation: examples include
addition
multiplication
$(+\infty)+(-\infty)$
division $0 / 0$ or ∞ / ∞
square-root operand < 0

17.5 Rounding Schemes

$$
\begin{aligned}
& \text { Round } \\
& x_{k-1} x_{k-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-1} \quad \Rightarrow \quad y_{k-1} y_{k-2} \cdots y_{1} y_{0} .
\end{aligned}
$$

Special case: truncation or chopping

Chop
$x_{k-1} x_{k-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-1} \Rightarrow x_{k-1} x_{k-2} \cdots x_{1} x_{0}$.

Fig. 17.5 Truncation or chopping of a signed-magnitude number (same as round toward 0).

Fig. 17.6 Truncation or chopping of a 2's-complement number (same as downward-directed rounding).

Fig. 17.7 Rounding of a signed-magnitude value to the nearest number.

Ordinary rounding has a slight upward bias
Assume that $\left(x_{k-1} x_{k-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2}\right)_{\text {two }}$ is to be rounded to an integer $\left(y_{k-1} y_{k-2} \cdots y_{1} y_{0} .\right)_{\text {two }}$

The four possible cases, and their representation errors:

$$
\begin{array}{lll}
x_{-1} x_{-2}=00 & \text { round down } & \text { error }=0 \\
x_{-1} x_{-2}=01 & \text { round down } & \text { error }=-0.25 \\
x_{-1} x_{-2}=10 & \text { round up } & \text { error }=0.5 \\
x_{-1} x_{-2}=11 & \text { round up } & \text { error }=0.25
\end{array}
$$

Assume 4 cases are equiprobable \Rightarrow mean error $=0.125$
For certain calculations, the probability of getting a midpoint value can be much higher than 2^{-1}

Fig. 17.8 Rounding to the nearest even number.

Fig. 17.9 $\quad R^{*}$ rounding or rounding to the nearest odd number.

Fig. 17.10 Jamming or von Neumann rounding.

ROM rounding
$32 \times 4-$ ROM - Round
$x_{k-1} \cdots x_{4} x_{x_{3} x_{2} x_{1} x_{0} \cdot x_{-1}}^{\text {ROM Address }} \left\lvert\, \cdots x_{-1} \Rightarrow x_{k-1} \cdots x_{4} y_{\left|\frac{3}{y_{3} y_{2} y_{1} y_{0}}\right|_{\text {ROM Data }}}\right.$.
The rounding result is the same as that of the round to nearest scheme in 15 of the 16 possible cases, but a larger error is introduced when $x_{3}=x_{2}=x_{1}=x_{0}=1$

Fig. 17.11 ROM rounding with an 8×2 table.

We may need result errors to be in a known direction
Example: in computing upper bounds, larger results are acceptable, but results that are smaller than correct values could invalidate the upper bound

This leads to the definition of directed rounding modes upward-directed rounding (round toward $+\infty$) and downward-directed rounding (round toward $-\infty$) (required features of the IEEE floating-point standard)

Fig. 17.12 Upward-directed rounding or rounding toward $+\infty$ (see Fig. 17.6 for downward-directed rounding, or rounding toward $-\infty$).

Fig. 17.6 Truncation or chopping of a 2's-complement number (same as downward-directed rounding).

17.6 Logarithmic Number Systems

sign-and-logarithm number system:
limiting case of floating-point representation

$$
x= \pm b^{e} \times 1 \quad e=\log _{b}|x|
$$

b usually called the logarithm base, not exponent base

Fig. 17.13 Logarithmic number representation with sign and fixed-point exponent.

The log is often represented as a 2's-complement number

$$
(\mathrm{S} x, \mathrm{~L} x)=\left(\operatorname{sign}(x), \log _{2}|x|\right)
$$

Simple multiply and divide; harder add and subtract
Example: 12-bit, base-2, logarithmic number system

Sign
Radix point
The above represents $-2^{-9.828125} \cong-(0.0011)_{\text {ten }}$
number range $\cong\left[-2^{16}, 2^{16}\right]$, with $\min =2^{-16}$

18 Floating-Point Operations

Go to TOC

Chapter Goals
See how adders, multipliers, and dividers
are designed for floating-point operands
(square-rooting postponed to Chapter 21)
Chapter Highlights
Floating-point operation $=$ preprocessing + exponent arith + significand arith + postprocessing (+ exception handling)
Adders need preshift, postshift, rounding
Multipliers and dividers are easy to design

Chapter Contents
18.1 Floating-Point Adders/Subtractors
18.2 Pre- and Postshifting
18.3 Rounding and Exceptions
18.4 Floating-Point Multipliers
18.5 Floating-Point Dividers
18.6 Logarithmic Arithmetic Unit

18.1 Floating-Point Adders/Subtractors

Floating-point add/subtract algorithm
Assume e1 $\geq e 2$; need alignment shift (preshift) if e1 >e2:

$$
\begin{aligned}
\left(\pm s 1 \times b^{e 1}\right)+\left(\pm s 2 \times b^{e 2}\right) & =\left(\pm s 1 \times b^{e 1}\right)+\left(\pm s 2 / b^{e 1-e 2}\right) \times b^{e 1} \\
& =\left(\pm s 1 \pm s 2 / b^{\mathrm{e} 1-e 1}\right) \times b^{\mathrm{e} 1} \\
& = \pm s \times b^{e}
\end{aligned}
$$

Like signs: 1-digit normalizing right shift may be needed Different signs: shifting by many positions may be needed Overflow/underflow during addition or normalization

Example floating-point addition with rounding

Numbers to be added:

$$
\begin{array}{ll}
x=2^{5} \times 1.00101101 \\
y=2^{1} \times 1.11101101 & \begin{array}{l}
\text { Operand with } \\
\text { smaller exponent } \\
\text { to be preshifted }
\end{array}
\end{array}
$$

Operands after alignment shift:

$$
\begin{aligned}
& x=2^{5} \times 1.00101101 \\
& y=2^{5} \times 0.000111101101
\end{aligned}
$$

	Extra bits to be
Result of addition:	rounded off
$s=2^{5} \times 1.010010111101$	
$s=2^{5} \times 1.01001100$	Rounded sum

Block diagram of a floating-point adder/subtractor

 (simple version from the encyclopedia article).

Fig. 18.1 Block diagram of a floating-point adder/subtractor.

Unpacking of the operands involves:
Separating sign, exponent, and significand Reinstating the hidden 1
Converting the operands to the internal format Testing for special operands and exceptions

Packing of the result involves:
Combining sign, exponent, and significand Hiding (removing) the leading 1 Testing for special outcomes and exceptions
[Converting internal to external representation, if required, must be done at the rounding stage]

Other key parts of a floating-point adder:
significand aligner or preshifter: Section 18.2 result normalizer or postshifter, including
leading 0s detector/predictor: Section 18.2
rounding unit: Section 18.3
sign logic: Problem 18.2

18.2 Pre- and Postshifting

Fig. 18.2 One bit-slice of a single-stage pre-shifter.

Fig. 18.3 Four-stage combinational shifter for preshifting an operand by 0 to 15 bits.

Fig. 18.4 Leading zeros/ones counting versus prediction.

Leading zeros prediction

Adder inputs: $\left(0 x_{0} \cdot x_{-1} x_{-2} \cdots\right)_{2 ' s-c o m p l},\left(1 y_{0} \cdot y_{-1} y_{-2} \cdots\right)_{2 ' s-c o m p l}$ How leading $0 \mathrm{~s} / 1 \mathrm{~s}$ can be generated

p	p	\ldots	p	p	g	a	a	\ldots	a	a
g	\ldots									
p	p	\ldots	p	p	g	a	a	\ldots	a	a
p	\ldots									
p	p	\ldots	p	p	a	g	$g \ldots$	g	g	a

18.3 Rounding and Exceptions

Adder result $=\left(c_{\text {out }} z_{1} z_{0} \cdot z_{-1} z_{-2} \cdots z_{-/} G R S\right)_{2^{\prime} \text { s-compl }}$
G Guard bit
R Round bit
S Sticky bit
Why only three extra bits at the right are adequate Amount of alignment right-shift
1 bit: G holds the bit that is shifted out, no precision is lost 2 bits or more:
shifted significand has a magnitude in $[0,1 / 2$) unshifted significand has a magnitude in $[1,2)$
difference of aligned significands
has a magnitude in [1/2, 2)
normalization left-shift will be by at most one bit
If a normalization left-shift actually takes place:
$R=0$, round down, discarded part <ulp/2
$R=1$, round up, discarded part $\geq u l p / 2$
The only remaining question is establishing if the discarded part is exactly equal to ulp/2, as this information is needed in some rounding schemes
Providing this information is the role of S which is set to the logical OR of all the bits that are right-shifted through it

The effect of 1-bit normalization shifts on the rightmost few bits of the significand adder output is as follows

Before postshifting (z) $\quad \cdots z_{-l+1} z_{-l} \left\lvert\, \begin{array}{llll} & G & S\end{array}\right.$ 1-bit normalizing right-shift $\cdots z_{-l+2} z_{-l+1} \mid z_{-l} \quad G R \vee S$ 1-bit normalizing left-shift $\cdots z_{-I} G \left\lvert\, \begin{array}{lllll} & G & S & 0\end{array}\right.$ After normalization (Z) $\quad \cdots Z_{-l+1} Z_{-l} \mid Z_{-l-1} Z_{-l-2} Z_{-l-3}$ Round to nearest even:

Do nothing if $\quad Z_{-l-1}=0$ or $Z_{-I}=Z_{-l-2}=Z_{-l-3}=0$
Add $u l p=2^{-l}$ otherwise
No rounding needed in case of multibit left-shift, because full precision is preserved in this case

Overflow and underflow exceptions are detected by the exponent adjustment blocks in Fig. 18.1

Overflow can occur only for normalizing right-shift Underflow is possible only with normalizing left shifts

Exceptions involving NaNs and invalid operations are handled by the unpacking and packing blocks in Fig. 18.1

Zero detection is a special case of leading 0s detection
Determining when the "inexact" exception must be signalled is left as an exercise

Dual-datapath floating-point adders

18.4 Floating-Point Multipliers

Floating-point multiplication algorithm

$$
\left(\pm s 1 \times b^{e 1}\right) \times\left(\pm s 2 \times b^{e 2}\right)= \pm(s 1 \times s 2) \times b^{e 1+e 2}
$$

Postshifting for normalization, exponent adjustment Overflow/underflow during multiplication or normalization

Fig. 18.5 Block diagram of a floating-point multiplier.

Many multipliers produce the lower half of the product (rounding info) early

Need for normalizing right-shift is known at or near the end
Hence, rounding can be integrated in the generation of the upper half, by producing two versions of these bits

18.5 Floating-Point Dividers

Floating-point division algorithm
$\left(\pm s 1 \times b^{e 1}\right) /\left(\pm s 2 \times b^{e 2}\right)= \pm(s 1 / s 2) \times b^{e 1-e 2}$
Postshifting for normalization, exponent adjustment Overflow/underflow during division or normalization

Fig. 18.6 Block diagram of a floating-point divider.

Quotient must be produced with two extra bits (G and R), in case of the need for a normalizing left shift

The remainder does the job of the sticky bit

Floating-point square-rooting algorithm
Make the exponent even, if necessary, by decrementing it and doubling the significand; significand is now in $[1,4)$

$$
\sqrt{ }\left(s \times b^{e}\right)=\sqrt{s} \times b^{e / 2}
$$

Never overflow or underflow

18.6 Logarithmic Arithmetic Unit

Add/subtract: $(\mathrm{S} x, \mathrm{~L} x) \pm(\mathrm{Sy}, \mathrm{Ly})=(\mathrm{Sz}, \mathrm{Lz})$
Assume $x>y>0$ (other cases are similar)

$$
\begin{aligned}
\llcorner z=\log z=\log (x \pm y) & =\log (x(1 \pm y / x)) \\
& =\log x+\log (1 \pm y / x)
\end{aligned}
$$

Given $\Delta=-(\log x-\log y)$, the term

$$
\log (1 \pm y / x)=\log \left(1 \pm \log ^{-1} \Delta\right)
$$

is obtained from a table (two tables ϕ^{+}and ϕ^{-}needed)

$$
\begin{aligned}
& \log (x+y)=\log x+\phi^{+}(\Delta) \\
& \log (x-y)=\log x+\phi^{-}(\Delta)
\end{aligned}
$$

Fig. 18.7 Arithmetic unit for a logarithmic number system.

19 Errors and Error Control

Go to TOC

Chapter Goals
Learn about sources of computation errors consequences of inexact arithmetic and methods for avoiding or limiting errors

Chapter Highlights
Representation and computation errors
Absolute versus relative error
Worst-case versus average error
Why $3 \times(1 / 3)$ is not necessarily 1 ?
Error analysis and bounding

Chapter Contents

19.1 Sources of Computational Errors
19.2 Invalidated Laws of Algebra
19.3 Worst-Case Error Accumulation
19.4 Error Distribution and Expected Errors
19.5 Forward Error Analysis
19.6 Backward Error Analysis

19.1 Sources of Computational Errors

FLP approximates exact computation with real numbers
Two sources of errors to understand and counteract:
Representation errors
e.g., no machine representation for $1 / 3, \sqrt{2}$, or π Arithmetic errors
e.g., $\left(1+2^{-12}\right)^{2}=1+2^{-11}+2^{-24}$
not representable in IEEE format
We saw early in the course that errors due to finite precision can lead to disasters in life-critical applications

Example 19.1: Compute 1/99-1/100 (decimal floating-point format, 4-digit significand in [1, 10), single-digit signed exponent)
precise result $=1 / 9900 \cong 1.010 \times 10^{-4}$ (error $\cong 10^{-8}$ or 0.01%)
$x=1 / 99 \cong 1.010 \times 10^{-2} \quad$ Error $\cong 10^{-6}$ or 0.01%
$y=1 / 100=1.000 \times 10^{-2} \quad$ Error $=0$
$z=x-_{\text {fp }} y=1.010 \times 10^{-2}-1.000 \times 10^{-2}=1.000 \times 10^{-4}$
Error $\cong 10^{-6}$ or 1%

Notation for floating-point system $\quad \mathrm{FLP}(r, p, A)$

Radix r (assume to be the same as the exponent base b) Precision p in terms of radix- r digits
Approximation scheme $A \in\{c h o p$, round, rtne, $\operatorname{chop}(g), \ldots\}$
Let $x=r^{e} s$ be an unsigned real number, normalized such that $1 / r \leq s<1$, and x_{fp} be its representation in $\operatorname{FLP}(r, p, \mathrm{~A})$
$x_{\mathrm{fp}}=r^{e} S_{\mathrm{fp}}=(1+\eta) x$
$\mathrm{A}=\mathrm{chop} \quad-u l p<s_{\mathrm{fp}}-s \leq 0 \quad-r \times u l p<\eta \leq 0$
$A=$ round $\quad-u l p / 2<s_{f p}-s \leq u l p / 2 \quad|\eta| \leq r \times u l p / 2$

Arithmetic in $\operatorname{FLP}(r, p, A)$

Obtain an infinite-precision result, then chop, round, . . .
Real machines approximate this process by keeping $g>0$ guard digits, thus doing arithmetic in FLP $(r, p, \operatorname{chop}(g))$

Error analysis for $\operatorname{FLP}(r, p, A)$

Consider multiplication, division, addition, and subtraction for positive operands x_{fp} and y_{tp} in $\operatorname{FLP}(r, p, \mathrm{~A})$
Due to representation errors, $x_{\mathrm{fp}}=(1+\sigma) x, y_{\mathrm{fp}}=(1+\tau) y$

$$
\begin{aligned}
x_{\mathrm{fp}} x_{\mathrm{fp}} y_{\mathrm{fp}} & =(1+\eta) x_{\mathrm{fp}} y_{\mathrm{fp}}=(1+\eta)(1+\sigma)(1+\tau) x y \\
& =(1+\eta+\sigma+\tau+\eta \sigma+\eta \tau+\sigma \tau+\eta \sigma \tau) x y \\
& \cong(1+\eta+\sigma+\tau) x y \\
x_{\mathrm{fp}} I_{\mathrm{fp}} y_{\mathrm{fp}} & =(1+\eta) x_{\mathrm{fp}} / y_{\mathrm{fp}}=(1+\eta)(1+\sigma) x[(1+\tau) y] \\
& =(1+\eta)(1+\sigma)(1-\tau)\left(1+\tau^{2}\right)\left(1+\tau^{4}\right)(\cdots) x l y \\
& \cong(1+\eta+\sigma-\tau) x / y \\
x_{\mathrm{fp}} y_{\mathrm{fp}} y_{\mathrm{fp}} & =(1+\eta)\left(x_{\mathrm{fp}}+y_{\mathrm{fp}}\right)=(1+\eta)(x+\sigma x+y+\tau y) \\
& =(1+\eta)\left(1+\frac{\sigma x+\tau y}{x+y}\right)(x+y)
\end{aligned}
$$

Since $|\sigma x+\tau y| \leq \max (|\sigma|,|\tau|)(x+y)$, the magnitude of the worst-case relative error in the computed sum is roughly bounded by $|\eta|+\max (|\sigma|,|\tau|)$
$x_{\mathrm{fp}}-\mathrm{ffp}_{\mathrm{fp}}=(1+\eta)\left(x_{\mathrm{fp}}-y_{\mathrm{fp}}\right)=(1+\eta)(x+\sigma x-y-\tau y)$

$$
=(1+\eta)\left(1+\frac{\sigma x-\tau y}{x-y}\right)(x-y)
$$

The term $(\sigma x-\tau y) /(x-y)$ can be very large if x and y are both large but $x-y$ is relatively small
This is known as cancellation or loss of significance

Fixing the problem

The part of the problem that is due to η being large can be fixed by using guard digits

Theorem 19.1: In floating-point system $\operatorname{FLP}(r, p$, chop $(g))$ with $g \geq 1$ and $-x<y<0<x$, we have:

$$
x+_{f p} y=(1+\eta)(x+y) \text { with } \quad-r^{-p+1}<\eta<r^{-p-g+2}
$$

Corollary: In FLP(r, p, chop(1))

$$
x+_{\mathrm{fp}} y=(1+\eta)(x+y) \quad \text { with }|\eta|<r^{p+1}
$$

So, a single guard digit is sufficient to make the relative arithmetic error in floating-point addition/subtraction comparable to the representation error with truncation

Example 19.2: Decimal floating-point system ($r=10$) with $p=6$ and no guard digit

$$
\begin{array}{ll}
x=0.100000000 \times 10^{3} & y=-0.999999456 \times 10^{2} \\
x_{\mathrm{fp}}=.100000 \times 10^{3} & y_{\mathrm{fp}}=-.999999 \times 10^{2}
\end{array}
$$

$$
x+y=0.544 \times 10^{-4} \quad \text { and } \quad x_{\mathrm{fp}}+y_{\mathrm{fp}}=10^{-4}, \quad \text { but: }
$$

$$
\begin{aligned}
x_{\mathrm{fp}}+{ }_{\mathrm{fp}} y_{\mathrm{fp}} & =.100000 \times 10^{3}-\mathrm{fp} .099999 \times 10^{3} \\
& =.100000 \times 10^{-2}
\end{aligned}
$$

Relative error $=\left(10^{-3}-0.544 \times 10^{-4}\right) /\left(0.544 \times 10^{-4}\right) \cong 17.38$
(i.e., the result is 1738% larger than the correct sum!)

With 1 guard digit, we get:

$$
\begin{aligned}
x_{\mathrm{fp}}+_{\mathrm{fp}} y_{\mathrm{fp}} & =0.1000000 \times 10^{3}-{ }_{\mathrm{fp}} 0.0999999 \times 10^{3} \\
& =0.100000 \times 10^{-3}
\end{aligned}
$$

Relative error $=80.5 \%$ relative to the exact sum $x+y$ but the error is 0% with respect to $x_{\mathrm{fp}}+y_{\mathrm{fp}}$

19.2 Invalidated Laws of Algebra

Many laws of algebra do not hold for floating-point arithmetic (some don't even hold approximately)

This can be a source of confusion and incompatibility
Associative law of addition: $\quad a+(b+c)=(a+b)+c$ $a=0.12341 \times 10^{5} \quad b=-0.12340 \times 10^{5} \quad c=0.14321 \times 10^{1}$ $a+_{\mathrm{fp}}\left(b+_{\mathrm{fp}} c\right)$

$$
=0.12341 \times 10^{5}+_{f p}\left(-0.12340 \times 10^{5}+_{f p} 0.14321 \times 10^{1}\right)
$$

$$
=0.12341 \times 10^{5}-{ }_{f p} 0.12339 \times 10^{5}
$$

$$
=0.20000 \times 10^{1}
$$

$\left(a+_{\mathrm{fp}} b\right)+_{\mathrm{fp}} C$
$=\left(0.12341 \times 10^{5}-_{\mathrm{fp}} 0.12340 \times 10^{5}\right)+_{\mathrm{fp}} 0.14321 \times 10^{1}$
$=0.10000 \times 10^{1}+{ }_{f p} 0.14321 \times 10^{1}$
$=0.24321 \times 10^{1}$
The two results differ by about 20\%!

A possible remedy: unnormalized arithmetic

$$
\begin{aligned}
& a+_{\mathrm{fp}}\left(b{ }_{\mathrm{f}_{\mathrm{fp}}} c\right) \\
& =0.12341 \times 10^{5}+_{\text {fp }}\left(-0.12340 \times 10^{5}+_{\text {fp }} 0.14321 \times 10^{1}\right) \\
& =0.12341 \times 10^{5}-_{\text {fp }} 0.12339 \times 10^{5}=0.00002 \times 10^{5} \\
& \left(a+_{\mathrm{fp}} b\right)+_{\mathrm{fp}} c \\
& =\left(0.12341 \times 10^{5}-_{\text {fp }} 0.12340 \times 10^{5}\right)+_{\text {fp }} 0.14321 \times 10^{1} \\
& =0.00001 \times 10^{5}{ }_{\text {ftp }} 0.14321 \times 10^{1}=0.00002 \times 10^{5} \\
& \text { Not only are the two results the same but they carry with } \\
& \text { them a kind of warning about the extent of potential error }
\end{aligned}
$$

Let's see if using 2 guard digits helps:

$$
\begin{aligned}
& a+_{\mathrm{fp}}\left(b{ }_{\mathrm{ffp} c)}\right. \\
& =0.12341 \times 10^{5}+_{\text {fp }}\left(-0.12340 \times 10^{5}+_{\text {fp }} 0.14321 \times 10^{1}\right) \\
& =0.12341 \times 10^{5}-{ }_{\text {fp }} 0.1233857 \times 10^{5}=0.24300 \times 10^{1} \\
& \left(a+_{\mathrm{fp}} b\right)+_{\mathrm{fp}} c \\
& =\left(0.12341 \times 10^{5}-_{\text {fp }} 0.12340 \times 10^{5}\right)+_{\text {fp }} 0.14321 \times 10^{1} \\
& =0.10000 \times 10^{1}+\mathrm{fp} 0.14321 \times 10^{1}=0.24321 \times 10^{1}
\end{aligned}
$$

The difference is now about 0.1%; still too high
Using more guard digits will improve the situation but does not change the fact that laws of algebra cannot be assumed to hold in floating-point arithmetic

Examples of other laws of algebra that do not hold:
Associative law of multiplication

$$
a \times(b \times c)=(a \times b) \times c
$$

Cancellation law (for $a>0$)

$$
a \times b=a \times c \text { implies } b=c
$$

Distributive law

$$
a \times(b+c)=(a \times b)+(a \times c)
$$

Multiplication canceling division

$$
a \times(b / a)=b
$$

Before the ANSI-IEEE floating-point standard became available and widely adopted, these problems were exacerbated by the use of many incompatible formats

Example 19.3: The formula $x=-b \pm d$, with $d=\sqrt{b^{2}-c}$, yielding the roots of the quadratic equation $x^{2}+2 b x+c=0$, can be rewritten as $x=-c /(b \pm d)$

Example 19.4: The area of a triangle with sides a, b, and c (assume $a \geq b \geq c$) is given by the formula

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where $s=(a+b+c) / 2$. When the triangle is very flat, such that $a \cong b+c$, Kahan's version returns accurate results:

$$
A=\frac{1}{4} \sqrt{(a+(b+c))(c-(a-b))(c+(a-b))(a+(b-c))}
$$

19.3 Worst-Case Error Accumulation

In a sequence of operations, round-off errors might add up
The larger the number of cascaded computation steps (that depend on results from previous steps), the greater the chance for, and the magnitude of, accumulated errors

With rounding, errors of opposite signs tend to cancel each other out in the long run, but one cannot count on such cancellations

Example:inner-product calculation $\quad z=\sum_{i=0}^{1023} x^{(i)} y^{(i)}$
Max error per multiply-add step $=u / p / 2+u l p / 2=u l p$
Total worst-case absolute error = 1024 ulp
(equivalent to losing 10 bits of precision)
A possible cure: keep the double-width products in their entirety and add them to compute a double-width result which is rounded to single-width at the very last step

Multiplications do not introduce any round-off error
Max error per addition $=u / p^{2} / 2$
Total worst-case error $=1024 \times u l p^{2} / 2$
Therefore, provided that overflow is not a problem, a highly accurate result is obtained

Moral of the preceding examples:
Perform intermediate computations with a higher precision than what is required in the final result

Implement multiply-accumulate in hardware (DSP chips)
Reduce the number of cascaded arithmetic operations; So, using computationally more efficient algorithms has the double benefit of reducing the execution time as well as accumulated errors

Kahan's summation algorithm or formula
To compute $s=\sum_{i=0}^{n-1} x^{(1)}$, proceed as follows

$$
\begin{array}{lll}
s & \leftarrow x^{(0)} & \\
c & \leftarrow 0 & \\
\text { for } i & =1 \text { to } n-1 \text { do a correction term }\} \\
y & \leftarrow x^{(i)}-c & \\
z & \leftarrow s+y & \\
c & \leftarrow(z-s)-y & \text { \{subtract correction term }\} \\
s & \leftarrow z &
\end{array}
$$

19.4 Error Distribution and Expected Errors

MRRE = maximum relative representation error
$\operatorname{MRRE}(\operatorname{FLP}(r, p$, chop $))=r^{-p+1}$
$\operatorname{MRRE}(\operatorname{FLP}(r, p$, round $))=r^{-p+1} / 2$
From a practical standpoint, however, the distribution of errors and their expected values may be more important

Limiting ourselves to positive significands, we define:

$$
\operatorname{ARRE}(\operatorname{FLP}(r, p, \mathrm{~A}))=\int_{1 / r}^{1} \frac{\left|x_{\mathrm{fp}}-x\right|}{x} \frac{\mathrm{~d} x}{x \ln r}
$$

$1 /(x \ln r)$ is a probability density function

Fig. 19.1 Probability density function for the distribution of normalized significands in $\operatorname{FLP}(r=2, p, A)$.

19.5 Forward Error Analysis

Consider the computation $y=a x+b$ and its floating-point version:

$$
y_{\mathrm{fp}}=\left(a_{\mathrm{fp}} x_{\mathrm{fp}} x_{\mathrm{fp}}\right)+_{\mathrm{fp}} b_{\mathrm{fp}}=(1+\eta) y
$$

Can we establish any useful bound on the magnitude of the relative error η, given the relative errors in the input operands $a_{\mathrm{fp}}, b_{\mathrm{fp}}$, and x_{fp} ?

The answer is "no"
Forward error analysis =
Finding out how far $y_{f p}$ can be from $a x+b$,
or at least from $a_{f p} x_{\mathrm{fp}}+b_{\mathrm{fp}}$, in the worst case

a. Automatic error analysis

Run selected test cases with higher precision and observe the differences between the new, more precise, results and the original ones

b. Significance arithmetic

Roughly speaking, same as unnormalized arithmetic, although there are some fine distinctions
The result of the unnormalized decimal addition

$$
.1234 \times 10^{5}+{ }_{\mathrm{fp}} .0000 \times 10^{10}=.0000 \times 10^{10}
$$

warns us that precision has been lost
c. Noisy-mode computation

Random digits, rather than 0s, are inserted during normalizing left shifts If several runs of the computation in noisy mode yield comparable results, then we are probably safe

d. Interval arithmetic

An interval $\left[x_{10}, x_{\text {hi }}\right]$ represents $x, x_{l 0} \leq x \leq x_{\text {hi }}$ With $x_{\mathrm{lo}}, x_{\mathrm{hi}}, y_{\mathrm{lo}}, y_{\mathrm{hi}}>0$, to find $z=x / y$, we compute
$\left[z_{\mathrm{lo}}, z_{\mathrm{hi}}\right]=\left[x_{\mathrm{lo}} / /_{\nabla \mathrm{fp}} y_{\mathrm{hi}}, x_{\mathrm{hi}} /_{\Delta \mathrm{fp}} y_{\mathrm{lo}}\right]$
Intervals tend to widen after many computation steps

19.6 Backward Error Analysis

Backward error analysis replaces the original question How much does y_{fp} deviate from the correct result y ? with another question:

What input changes produce the same deviation?
In other words, if the exact identity

$$
y_{\mathrm{fp}}=a_{\mathrm{alt}} x_{\mathrm{alt}}+b_{\mathrm{alt}}
$$

holds for alternate parameter values $a_{\mathrm{alt}}, b_{\mathrm{alt}}$, and x_{alt}, we ask how far $a_{\mathrm{alt}}, b_{\mathrm{alt}}, x_{\mathrm{alt}}$ can be from $a_{\mathrm{fp}}, b_{\mathrm{fp}}, x_{\mathrm{fp}}$
Thus, computation errors are converted or compared to additional input errors

Example of backward error analysis

$$
\begin{array}{rlr}
y_{\mathrm{fp}} & =a_{\mathrm{fp}} x_{\mathrm{fp}} x_{\mathrm{fp}}+_{\mathrm{fp}} b_{\mathrm{fp}} & \\
& =(1+\mu)\left[a_{\mathrm{fp}} x_{\mathrm{fp}} x_{\mathrm{fp}}+b_{\mathrm{fp}}\right] \quad \text { with }|\mu|<r^{-p+1}=r \times u l p \\
& =(1+\mu)\left[(1+v) a_{\mathrm{fp}} x_{\mathrm{fp}}+b_{\mathrm{fp}}\right] \quad \text { with }|v|<r^{-p+1}=r \times u l p \\
& =(1+\mu) a_{\mathrm{fp}}(1+v) x_{\mathrm{fp}}+(1+\mu) b_{\mathrm{fp}} \\
& =(1+\mu)(1+\sigma) a(1+v)(1+\delta) x+(1+\mu)(1+\gamma) b \\
& \cong(1+\sigma+\mu) a(1+\delta+v) x+(1+\gamma+\mu) b
\end{array}
$$

So the approximate solution of the original problem is the exact solution of a problem close to the original one

We are, thus, assured that the effect of arithmetic errors on the result y_{fp} is no more severe than that of $r \times u l p$ additional error in each of the inputs a, b, and x

20 Precise and Certifiable Arithmetic

Go to TOC

Chapter Goals
Discuss methods for doing arithmetic
when results of high accuracy
or guranteed correctness are required

Chapter Highlights
More precise computation via
multi- or variable-precision arithmetic
Result certification via
exact or error-bounded arithmetic
Precise/exact arithmetic with low overhead

Chapter Contents
20.1 High Precision and Certifiability
20.2 Exact Arithmetic
20.3 Multiprecision Arithmetic
20.4 Variable-Precision Arithmetic
20.5 Error-Bounding via Interval Arithmetic
20.6 Adaptive and Lazy Arithmetic

20.1 High Precision and Certifiability

There are two aspects of precision to discuss:
Results possessing adequate precision
Being able to provide assurance of the same
We consider three distinct approaches for coping with precision issues:

1. Obtaining completely trustworthy results via exact arithmetic
2. Making the arithmetic highly precise in order to raise our confidence in the validity of the results: multi- or variable-precision arithmetic
3. Doing ordinary or high-precision calculations while tracking potential error accumulation (can lead to fail-safe operation)

We take the hardware to be completely trustworthy Hardware reliability issues to be dealt with in Chapter 27

20.2 Exact Arithmetic

Continued fractions

Any unsigned rational number $x=p / q$ has a unique continued-fraction expansion

$$
x=\frac{p}{q}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots} \frac{1}{a_{m-1}+\frac{1}{a_{m}}}}}
$$

with $a_{0} \geq 0, a_{m} \geq 2$, and $a_{i} \geq 1$ for $1 \leq i \leq m-1$
Example: continued-fraction representation for 277/642

$$
\frac{277}{642}=0+\frac{1}{2+\frac{1}{3+\frac{1}{6+\frac{1}{1+\frac{1}{3+\frac{1}{3}}}}}=\frac{\underbrace{\frac{0}{0 / 2}}}{\frac{1 / 2 / 3 / 6 / 1 / 3 / 3}{\frac{19 / 44}{0}}}}
$$

Can get approximations for finite representation by limiting number of "digits" in the continued-fraction representation

Fixed-slash number systems

Numbers are represented by the ratio p / q of two integers

Rational number "rounded" to nearest value	if $p>0$	$q>0$
± 0	if $p=0$	q odd
$\pm \infty$	if p odd	$q=0$
NaN (not a number)	otherwise	

Fig. 20.1 Example fixed-slash number representation format.

The space waste due to multiple representations such as $3 / 5=6 / 10=9 / 15=\cdots$ is no more than one bit, because:

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \mid\{p / q \mid 1 \leq p, q \leq n, \operatorname{gcd}(p, q)=1\} / / n^{2} \\
=6 / \pi^{2}=0.608
\end{array}
$$

Floating-slash number systems

Fig. 20.2 Example floating-slash representation format.

Set of numbers represented:

$$
\left\{ \pm p / q \mid p, q \geq 1, \operatorname{gcd}(p, q)=1,\left\lfloor\log _{2} p\right\rfloor+\left\lfloor\log _{2} q\right\rfloor \leq k-2\right\}
$$

Again the following mathematical result, due to Dirichlet, shows that the space waste is no more than one bit:

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}|\{p / q \mid p q \leq n, \operatorname{gcd}(p, q)=1\}| /|\{p / q \mid p q \leq n, p, q \geq 1\}| \\
=6 / \pi^{2}=0.608
\end{array}
$$

20.3 Multiprecision Arithmetic

Sign	\pm	MSB		$f^{x^{(3)}} \begin{aligned} & x^{(2)} \end{aligned}$
				$\mathrm{X}^{(1)}$
			LSB	$\mathrm{X}^{(0)}$

Fig. 20.3 Example quadruple-precision integer format.

Fig. 20.4 Example quadruple-precision floating-point format.

Fig. 20.5 Quadruple-precision significands aligned for the floating-point addition $z=\boldsymbol{x} \boldsymbol{t}_{\mathrm{fp}} \boldsymbol{y}$.

20.4 Variable-Precision Arithmetic

Same as multiprecision, but with dynamic adjustments

Fig. 20.6 Example variable-precision integer format.

Fig. 20.7 Example variable-precision floating-point format.

Fig. 20.8 Variable-precision floating-point addition.

20.5 Error-Bounding via Interval Arithmetic

$[a, b], a \leq b$, is an interval enclosing a number $x, a \leq x \leq b$ [a, a] represents the real number $x=a$

The interval $[a, b], a>b$, represents the empty interval Φ Intervals can be combined and compared in a natural way

$$
\begin{aligned}
& {\left[x_{10}, x_{\mathrm{hi}}\right] \cap\left[y_{10}, y_{\mathrm{hi}}\right]=\left[\max \left(x_{10}, y_{10}\right), \min \left(x_{\mathrm{hi}}, y_{\mathrm{hi}}\right)\right]} \\
& {\left[x_{10}, x_{\mathrm{hi}}\right] \cup\left[y_{10}, y_{\mathrm{hi}}\right]=\left[\min \left(x_{10}, y_{10}\right), \max \left(x_{\mathrm{hi}}, y_{\mathrm{hi}}\right)\right]} \\
& {\left[x_{10}, x_{\mathrm{hi}}\right] \supseteq\left[y_{10}, y_{\mathrm{hi}}\right] \text { iff } x_{\mathrm{lo}} \leq y_{10} \text { and } x_{\mathrm{hi}} \geq y_{\mathrm{hi}}} \\
& {\left[x_{10}, x_{\mathrm{hi}}\right]=\left[y_{10}, y_{\mathrm{hi}}\right] \text { iff } x_{10}=y_{10} \text { and } x_{\mathrm{hi}}=y_{\mathrm{hi}}} \\
& {\left[x_{10}, x_{\mathrm{hi}}\right]<\left[y_{10}, y_{\mathrm{hi}}\right] \text { iff } x_{\mathrm{hi}}<y_{\mathrm{lo}}}
\end{aligned}
$$

Interval arithmetic operations are intuitive and efficient
Additive inverse $-x$ of an interval $x=\left[x_{10}, x_{\mathrm{hi}}\right]$

$$
-\left[x_{l 0}, x_{\mathrm{hi}}\right]=\left[-x_{\mathrm{hi}},-x_{\mathrm{lo}}\right]
$$

Multiplicative inverse of an interval $x=\left[x_{10}, x_{\mathrm{hi}}\right]$
$1 /\left[x_{10}, x_{\mathrm{hi}}\right]=\left[1 / x_{\mathrm{hi}}, 1 / x_{\mathrm{lo}}\right]$ provided that $0 \notin\left[x_{\mathrm{lo}}, x_{\mathrm{hi}}\right]$
when $0 \in\left[x_{10}, x_{\text {hi }}\right]$, the multiplicative inverse is $[-\infty,+\infty]$

$$
\begin{aligned}
{\left[x_{10}, x_{\mathrm{hi}}\right]+\left[y_{10}, y_{\mathrm{hi}}\right]=} & {\left[x_{10}+y_{10}, x_{\mathrm{hi}}+y_{\mathrm{hi}}\right] } \\
{\left[x_{10}, x_{\mathrm{hi}}\right]-\left[y_{10}, y_{\mathrm{hi}}\right]=} & {\left[x_{10}-y_{\mathrm{hi}}, x_{\mathrm{hi}}-y_{10}\right] } \\
{\left[x_{10}, x_{\mathrm{hi}}\right] \times\left[y_{10}, y_{\mathrm{hi}}\right]=} & {\left[\min \left(x_{10} y_{10}, x_{10} y_{\mathrm{hi}}, x_{\mathrm{hi}} y_{10}, x_{\mathrm{hi}} y_{\mathrm{hi}}\right),\right.} \\
& \left.\max \left(x_{10} y_{10}, x_{10} y_{\mathrm{hi}}, x_{\mathrm{hi}} y_{10}, x_{\mathrm{hi}} y_{\mathrm{hi}}\right)\right] \\
{\left[x_{10}, x_{\mathrm{hi}}\right] /\left[y_{10}, y_{\mathrm{hi}}\right]=} & {\left[x_{10}, x_{\mathrm{hi}}\right] \times\left[1 / y_{\mathrm{hi}}, 1 / y_{\mathrm{lo}}\right] }
\end{aligned}
$$

From the viewpoint of arithmetic calculations, a very important property of interval arithmetic is:

Theorem 20.1: If $f\left(x^{(1)}, x^{(2)}, \cdots, x^{(n)}\right)$ is a rational expression in the interval variables $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$, that is, f is a finite combination of $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ and a finite number of constant intervals by means of interval arithmetic operations, then $x^{(i)} \supset y^{(i)}, i=1,2, \cdots, n$, implies:

$$
f\left(x^{(1)}, x^{(2)}, \cdots, x^{(n)}\right) \supset f\left(y^{(1)}, y^{(2)}, \cdots, y^{(n)}\right)
$$

Thus, arbitrarily narrow result intervals can be obtained by simply performing arithmetic with sufficiently high precision

In particular, with reasonable assumptions about machine arithmetic, the following theorem holds

Theorem 20.2: Consider the execution of an algorithm on real numbers using machine interval arithmetic with precision p in radix r; i.e., in $\operatorname{FLP}(r, p, \nabla \mid \Delta)$. If the same algorithm is executed using the precision q, with $q>p$, the bounds for both the absolute error and relative error are reduced by the factor r^{q-p}
(the absolute or relative error itself may not be reduced by this factor; the guarantee applies only to the upper bound)

Strategy for obtaining results with a desired error bound ε :
Let $w_{\text {max }}$ be the maximum width of a result interval when interval arithmetic is used with p radix- r digits of precision. If $w_{\max } \leq \varepsilon$, then we are done. Otherwise, interval calculations with the higher precision

$$
q=p+\left\lceil\log _{r} w_{\max }-\log _{r} \varepsilon\right\rceil
$$

is guaranteed to yield the desired accuracy.

20.6 Adaptive and Lazy Arithmetic

Need-based incremental precision adjustment to avoid high-precision calculations dictated by worst-case errors Interestingly, the opposite of multi-precision arithmetic, which we may call fractional-precision arithmetic, is also of some interest. Example: Intel's MMX

Lazy evaluation is a powerful paradigm that has been and is being used in many different contexts. For example, in evaluating composite conditionals such as
if cond1 and cond 2 then action
evaluation of cond2 may be skipped if cond1 yields "false"
More generally, lazy evaluation means

postponing all computations or actions until they become irrelevant or unavoidable

Opposite of lazy evaluation (speculative or aggressive execution) has been applied extensively
Redundant number representations offer some advantages for lazy arithmetic
Because redundant representations support MSD-first arithmetic, it is possible to produce a small number of result digits by using correspondingly less computational effort, until more precision is needed

Part VI Function Evaluation

Part Goals
Learn algorithms
and implementation methods
for evaluating useful functions

Part Synopsis

Divisionlike square-rooting algorithms
Evaluating $\sqrt{x}, \sin x, \tanh x, \ln x, e^{x}, \ldots$ via series expansion, using,,$+- \times, /$ convergence computation
Tables: the ultimate in simplicity/flexibility

Part Contents

Chapter 21 Square-Rooting Methods
Chapter 22 The CORDIC Algorithms
Chapter 23 Variations in Function Evaluation
Chapter 24 Arithmetic by Table Lookup

21 Square-Rooting Methods

Go to TOC

Chapter Goals
Learning algorithms and implementations
for both digit-at-a-time and convergence
square-rooting
Chapter Highlights
Square-root part of ANSI/IEEE standard
Digit-recurrence (divisionlike) algorithms
Convergence square-rooting
Square-root not special case of division
Chapter Contents
21.1 The Pencil-and-Paper Algorithm
21.2 Restoring Shift/Subtract Algorithm
21.3 Binary Nonrestoring Algorithm
21.4 High-Radix Square-Rooting
21.5 Square-Rooting by Convergence
21.6 Parallel Hardware Square-Rooters

21.1 The Pencil-and-Paper Algorithm

Notation for our discussion of square-rooting algorithms:
$z \quad$ Radicand
$z_{2 k-1} z_{2 k-2} \cdots z_{1} z_{0}$
q Square root
$q_{k-1} q_{k-2} \cdots q_{1} q_{0}$
$s \quad$ Remainder $\left(z-q^{2}\right)$
$s_{k} s_{k-1} s_{k-2} \cdots s_{1} s_{0}$
Remainder range: $0 \leq s \leq 2 q \quad k+1$ digits Justification: $s \geq 2 q+1$ leads to $z=q^{2}+s \geq(q+1)^{2}$ so q cannot be the correct square-root of z

$$
\begin{aligned}
& q_{2} \quad q_{1} \quad q_{0} \leftarrow q \\
& \sqrt{95241} \leftarrow z \\
& q_{2}=3 \quad q^{(1)}=3 \\
& 9
\end{aligned}
$$

Fig. 21.1 Extracting the square root of a decimal integer using the pencil-and-paper algorithm.

Root digit selection

The root thus far is denoted by $q^{(i)}=\left(q_{k-1} q_{k-2} \ldots q_{k-i}\right)_{\text {ten }}$
Attach next digit q_{k-i-1}; root becomes $q^{(i+1)}=10 q^{(1)}+q_{k-i-1}$
The square of $q^{(i+1)}$ is $100\left(q^{(i)}\right)^{2}+20 q^{(i)} q_{k-i-1}+\left(q_{k-i-1}\right)^{2}$
$100\left(q^{(1)}\right)^{2}=\left(10 q^{(i)}\right)^{2}$ subtracted from PR in previous steps
Must subtract $\left(10\left(2 q^{(i)}\right)+q_{k-i-1}\right) \times q_{k-i-1}$ to get the new PR

In radix r, must subtract

$$
\left(r\left(2 q^{(i)}\right)+q_{k-i-1}\right) \times q_{k-i-1}
$$

In radix 2, must subtract

$$
\begin{aligned}
& \left(4 q^{(i)}+q_{k-i-1}\right) \times q_{k-i-1} \\
& \quad 4 q^{(i)}+1 \text { if } q_{k-i-1}=1,0 \text { otherwise }
\end{aligned}
$$

As a trial, subtract $\left(q_{k-1} q_{k-2} \ldots q_{k-i} 01\right)_{\text {two }}$

Fig. 21.2 Extracting the square root of a binary integer using the pencil-and-paper algorithm.

Fig. 21.3 Binary square-rooting in dot notation.

21.2 Restoring Shift/Subtract Algorithm

Consistent with the ANSI/IEEE floating-point standard, we formulate our algorithms for a radicand satisfying $1 \leq z<4$ (after possible 1-bit left shift to make the exponent even)

Notation:
$z \quad$ Radicand in [1, 4) $\quad z_{1} z_{0} \cdot z_{-1} z_{-2} \cdots z_{-1}$
q Square root in $[1,2) \quad 1 \cdot q_{-1} q_{-2} \cdots q_{-1}$
$s \quad$ Scaled remainder $\quad s_{1} s_{0} \cdot s_{-1} s_{-2} \cdots s_{-1}$
Binary square-rooting is defined by the recurrence

$$
\begin{aligned}
s^{(0)}=2 s^{(j-1)}- & q_{-j}\left(2 q^{(j-1)}+2^{-j} q_{-j}\right) \\
& \text { with } s^{(0)}=z-1, q^{(0)}=1, s^{(j)}=s
\end{aligned}
$$

where $q^{()}$is the root up to its $(-j)$ th digit; thus $q=q^{(n)}$
To choose the next root digit $q_{-j} \in\{0,1\}$, subtract from $2 s^{(j-1)}$ the value

$$
2 q^{(j-1)}+2^{-j}=\left(1 q_{-1}^{(j-1)} \cdot q_{-2}^{(j-1)} \cdots q_{-j+1}^{(j-1)} 01\right)_{\mathrm{two}}
$$

A negative trial difference means $q_{-j}=0$

$s^{(0)}=z-1 \quad 0 \quad 0 \quad 0.11101110 \quad q_{0}=11$.
$2 s^{(0)}$

$-\left[2 \times(1)+.2^{-1}\right]$	1	0.1					
$s^{(1)}$	1	1	1.0	0	1	1	0

$s^{(1)}=2 s^{(0)}$	0	0	1.	1	0	1	1	0	0	Restore
$2 s^{(1)}$	0	1	1.0	1	1	0	0	0		
$-\left[2 \times(1.0)+2^{-2}\right]$		1	0.0	1						
$s^{(2)}$	0	0	1.0	0	1	0	0	0		$q_{-2}=11.01$
$2 s^{(2)}$	0	1	0.0	1	0	0	0	0		

$-\left[2 \times(1.01)+2^{-3}\right]$	1	0.1	0	1		
$s^{(3)}$	1	1	1.1	0	1	0

| $s^{(3)}=2 s^{(2)}$ | 0 | 1 | 0.0 | 1 | 0 | 0 | 0 | 0 | Restore |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 s^{(3)}$ | 1 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | |

$-\left[2 \times(1.010)+2^{-4}\right]$	1	0.1	0	0	1				
$s^{(4)}$	0	0	1.1	1	1	1	1	0	0

$2 s^{(5)}$

q (root $=86 / 64$) $\quad 1.010110$
$==============================$

Fig. 21.4 Example of sequential binary square-rooting using the restoring algorithm.

Fig. 21.5 Sequential shift/subtract restoring square-rooter.

In fractional square-rooting, the remainder is not needed
To round the result, we can produce an extra digit q_{-1-1}
truncate for $q_{-1-1}=0$, round up for $q_{-1-1}=1$
The midway case ($q_{-1-1}=1$ followed by 0 s), is impossible
Example: in Fig. 21.4, an extra iteration produces $q_{-7}=1$; So the root is rounded up to $q=(1.010111)_{\text {two }}=87 / 64$

The rounded-up value is closer to the root than the truncated version

$$
\begin{array}{ll}
\text { Original: } & 118 / 64=(86 / 64)^{2}+156 / 64^{2} \\
\text { Rounded: } & 118 / 64=(87 / 64)^{2}-17 / 64^{2}
\end{array}
$$

21.3 Binary Nonrestoring Algorithm

z	01.1100110		(118/64)
$s^{(0)}=z-1$	000.110110	$q_{0}=1$	1.
$2 s^{(0)}$	001.101100	$q_{-1}=1$	1.1
$\underline{-\left[2 \times(1 .)+2^{-1}\right]}$	10.1		
$s^{(1)}$	111.001100	$q_{-2}=-1$	1.01
$2 s^{(1)}$	110.011000		
$+\left[2 \times(1.1)-2^{-2}\right]$	10.11		
$s^{(2)}$	001.001000	$q_{-3}=1$	1.011
$2 s^{(2)}$	010.010000		
$\underline{-\left[2 \times(1.01)+2^{-3}\right]}$	10.101		
$s^{(3)}$	111.101000	$q_{-4}=-1$	1.0101
$2 s^{(3)}$	111.010000		
$\underline{+\left[2 \times(1.011)-2^{-4}\right]}$	10.1011		
$s^{(4)}$	001.111100	$q_{-5}=1$	1.01011
$2 s^{(4)}$	011.111000		
$-\left[2 \times(1.0101)+2^{-5}\right]$	10.10101		
$s^{(5)}$	001.0011110	$q_{-6}=1$	1.010111
$2 s^{(5)}$	010.011100		
$-\left[2 \times(1.01011)+2^{-6}\right]$	10.101101		
$s^{(6)}$	111.101111	Negativ	e (-17/64)
$+\left[2 \times(1.01011)+2^{-6}\right]$	10.101101	Correct	
$s^{(6)}$ (corrected)	010.011100		(156/64)
s (true remainder)	0.0000010	011	100
q (signed-digit)	1. $1.1111-1111$		(87/64)
$\underline{\underline{0}}=$ (corrected bin)	$1.00========$		(86/64)

Fig. 21.6 Example of nonrestoring binary square-rooting.

Details of binary nonrestoring square-rooting

Root digits in $\{-1,1\}$; on-the-fly conversion to binary Possible final correction

The case $q_{-j}=1$ (nonnegative PR), is handled as in the restoring algorithm; i.e., it leads to the trial subtraction of

$$
q_{-j}\left[2 q^{(j-1)}+2^{-j} q_{-j}\right]=2 q^{(j-1)}+2^{-j}
$$

from the PR. For $q_{-j}=-1$, we must subtract

$$
q_{-j}\left[2 q^{(j-1)}+2^{-j} q_{-j}\right]=-\left[2 q^{(j-1)}-2^{-j}\right]
$$

which is equivalent to adding $2 q^{(j-1)}-2^{-j}$
$2 q^{(j-1)}+2^{-j}=2\left[q^{(j-1)}+2^{-j-1}\right]$ is formed by appending 01 to the right end of $q^{(j-1)}$ and shifting
But computing the term $2 q^{(j-1)}-2^{-j}$ is problematic
We keep $q^{(j-1)}$ and $q^{(j-1)}-2^{-j+1}$ in registers Q (partial root) and Q* (diminished partial root), respectively. Then:

$$
\begin{aligned}
& q_{-j}=1 \text { Subtract } 2 q^{(j-1)}+2^{-j} \text { formed by shifting } Q 01 \\
& q_{-j}=-1 \text { Add } \quad 2 q^{(j-1)}-2^{-j} \text { formed by shifting } Q^{*} 11
\end{aligned}
$$

Updating rules for Q and Q^{*} registers:

$$
\begin{array}{lll}
q_{-j}=1 \Rightarrow Q:=Q 1 & Q^{*}:=\mathrm{Q} 0 \\
q_{-j}=-1 \Rightarrow Q^{*} & \Rightarrow Q^{*} 1 & Q^{*}:=Q^{*} 0
\end{array}
$$

Additional rule for SRT-like algorithm

$$
q_{-j}=0 \Rightarrow \mathrm{Q}:=\mathrm{Q} 0 \quad \mathrm{Q}^{*}:=\mathrm{Q}^{*} 1
$$

21.4 High-Radix Square-Rooting

Basic recurrence for fractional radix- r square-rooting:

$$
s^{(l)}=r s^{(j-1)}-q_{-j}\left(2 q^{(j-1)}+r^{-j} q_{-j}\right)
$$

As in radix-2 nonrestoring algorithm, we can use two registers Q and Q^{*} to hold $q^{(j-1)}$ and $q^{(j-1)}-r^{-j+1}$, suitably updating them in each step.

Example: $r=4$, root digit set $[-2,2]$
Q^{*} holds $q^{(j-1)}-4^{-j+1}=q^{(j-1)}-2^{-2 j+2}$. Then, one of the following values must be subtracted from, or added to, the shifted partial remainder rs (-1)

$$
\begin{array}{llll}
q_{-j}=2 \text { Subtract } & 4 q^{(j-1)}+2^{-2 j+2} & \text { double-shift } & \text { Q } 010 \\
q_{-j}=1 \text { Subtract } & 2 q^{(j-1)}+2^{-2 j} & \text { shift } & \text { Q } 001 \\
q_{-j}=-1 \text { Add } & 2 q^{(j-1)}-2^{-2 j} & \text { shift } & Q^{*} 111 \\
q_{-j}=-2 \text { Add } & 4 q^{(j-1)}-2^{-2 j+2} & \text { double-shift } & Q^{*} 110
\end{array}
$$

Updating rules for Q and Q^{*} registers:

$$
\begin{array}{lll}
q_{-j}=2 \Rightarrow \mathrm{Q} & \Rightarrow=\mathrm{Q} 10 & \mathrm{Q}^{*}:=\mathrm{Q} 01 \\
q_{-j}=1 \Rightarrow \mathrm{Q} & \Rightarrow=\mathrm{Q} 01 & \mathrm{Q}^{*}:=\mathrm{Q} 00 \\
q_{-j}=0 \Rightarrow \mathrm{Q} & \Rightarrow=\mathrm{Q} 00 & \mathrm{Q}^{*}:=\mathrm{Q}^{*} 11 \\
q_{-j}=-1 \Rightarrow \mathrm{Q}^{*}:=\mathrm{Q}^{*} 11 & \mathrm{Q}^{*}:=\mathrm{Q}^{*} 10 \\
q_{-j}=-2 \Rightarrow \mathrm{Q}^{*}:=\mathrm{Q}^{*} 10 & \mathrm{Q}^{*}:=\mathrm{Q}^{*} 01
\end{array}
$$

Note that the root is obtained in standard binary (no conversion needed!)

Using carry-save addition

As in division, root digit selection can be based on a few bits of the partial remainder and of the partial root
This would allow us to keep s in carry-save form
One extra bit of each component of s (sum and carry) must be examined for root digit estimation
With proper care, the same lookup table can be used for quotient digit selection in division and root digit selection in square-rooting
To see how, compare the recurrences for radix-4 division and square-rooting:

Division:

$$
s^{(J)}=4 s^{(j-1)}-q_{-j} d
$$

Square-rooting: $\quad s^{(j)}=4 s^{(j-1)}-q_{-j}\left(2 q^{(j-1)}+4^{-j} q_{-j}\right)$
To keep the magnitudes of the partial remainders for division and square-rooting comparable, thus allowing the use of the same tables, we can perform radix-4 squarerooting using the digit set

$$
\left\{-1, \frac{-1}{2}, 0, \frac{1}{2}, 1\right\}
$$

Conversion from the digit set above to the digit set [-2, 2], or directly to binary, is possible with no extra computation

21.5 Square-Rooting by Convergence

Newton-Raphson method

Choose $f(x)=x^{2}-z$ which has a root at $x=\sqrt{z}$

$$
\begin{aligned}
& x^{(i+1)}=x^{(i)}-f\left(x^{(i)}\right) / f^{\prime}\left(x^{(i)}\right) \\
& x^{(i+1)}=0.5\left(x^{(i)}+z / x^{(i)}\right)
\end{aligned}
$$

Each iteration needs division, addition, and a one-bit shift Convergence is quadratic

For $0.5 \leq z<1$, a good starting approximation is $(1+z) / 2$
This approximation needs no arithmetic
The error is 0 at $z=1$ and has a max of 6.07% at $z=0.5$
Table-lookup can yield a better starting estimate for \sqrt{z}
For example, if the initial estimate is accurate to within 2^{-8}, then 3 iterations would be sufficient to increase the accuracy of the root to 64 bits.

Example 21.1: Compute the square root of $z=(2.4)_{\text {ten }}$ $x^{(0)}$ read out from table $=1.5 \quad$ accurate to 10^{-1}
$x^{(1)}=0.5\left(x^{(0)}+2.4 / x^{(0)}\right)=1.550000000$ accurate to 10^{-2}
$x^{(2)}=0.5\left(x^{(1)}+2.4 / x^{(1)}\right)=1.549193548$ accurate to 10^{-4}
$x^{(3)}=0.5\left(x^{(2)}+2.4 / x^{(2)}\right)=1.549193338$ accurate to 10^{-8}

Convergence square-rooting without division

Rewrite the square-root recurrence as:

$$
x^{(i+1)}=x^{(i)}+0.5\left(1 / x^{(i)}\right)\left(z-\left(x^{(i)}\right)^{2}\right)=x^{(i)}+0.5 \gamma\left(x^{(i)}\right)\left(z-\left(x^{(i)}\right)^{2}\right)
$$

where $\gamma\left(x^{(1)}\right)$ is an approximation to $1 / x^{(1)}$ obtained by a simple circuit or read out from a table
Because of the approximation used in lieu of the exact value of $1 / x^{(1)}$, convergence rate will be less than quadratic Alternative: the recurrence above, but with the reciprocal found iteratively; thus interlacing the two computations Using the function $f(y)=1 / y-x$ to compute $1 / x$, we get:

$$
\begin{aligned}
x^{(i+1)} & =0.5\left(x^{(i)}+z y^{(i)}\right) \\
y^{(i+1)} & =y^{(i)}\left(2-x^{(i)} y^{(i)}\right)
\end{aligned}
$$

Convergence is less than quadratic but better than linear

Example 21.2: Compute the square root of $z=(1.4)_{\text {ten }}$

$$
\begin{aligned}
& x^{(0)}=y^{(0)}=1.0 \\
& x^{(1)}=0.5\left(x^{(0)}+1.4 y^{(0)}\right)=1.200000000 \\
& y^{(1)}=y^{(0)}\left(2-x^{(0)} y^{(0)}\right)=1.000000000 \\
& x^{(2)}=0.5\left(x^{(1)}+1.4 y^{(1)}\right)=1.300000000 \\
& y^{(2)}=y^{(1)}\left(2-x^{(1)} y^{(1)}\right)=0.800000000 \\
& x^{(3)}=0.5\left(x^{(2)}+1.4 y^{(2)}\right)=1.210000000 \\
& y^{(3)}=y^{(2)}\left(2-x^{(2)} y^{(2)}\right)=0.768000000 \\
& x^{(4)}=0.5\left(x^{(3)}+1.4 y^{(3)}\right)=1.142600000 \\
& y^{(4)}=y^{(3)}\left(2-x^{(3)} y^{(3)}\right)=0.822312960 \\
& x^{(5)}=0.5\left(x^{(4)}+1.4 y^{(4)}\right)=1.146919072 \\
& y^{(5)}=y^{(4)}\left(2-x^{(4)} y^{(4)}\right)=0.872001394 \\
& x^{(6)}=0.5\left(x^{(5)}+1.4 y^{(5)}\right)=1.183860512 \cong \sqrt{1.4}
\end{aligned}
$$

Convergence square-rooting without division (cont.)

A variant is based on computing $1 / \sqrt{z}$ and then multiplying the result by z
Use the $f(x)=1 / x^{2}-z$ that has a root at $x=1 / \sqrt{z}$ to get

$$
x^{(i+1)}=0.5 x^{(i)}\left(3-z\left(x^{(i)}\right)^{2}\right)
$$

Each iteration requires 3 multiplications and 1 addition, but quadratic convergence leads to only a few iterations
The Cray-2 supercomputer uses this method An initial estimate $x^{(0)}$ for $1 / \sqrt{z}$ is used to get $x^{(1)}$ $1.5 x^{(0)}$ and $0.5\left(x^{(0)}\right)^{3}$ are read out from a table $x^{(1)}$ is accurate to within half the machine precision, so, a second iteration and a multiplication by z complete the process

Example 21.3: Compute the square root of $z=(.5678)_{\text {ten }}$ Table lookup provides the starting value $x^{(0)}=1.3$ for $1 / \sqrt{z}$ Two iterations, plus a multiplication by z, yield a fairly accurate result

$$
\begin{array}{ll}
x^{(0)} \text { read out from table } & =1.3 \\
x^{(1)}=0.5 x^{(0)}\left(3-0.5678\left(x^{(0)}\right)^{2}\right) & =1.326271700 \\
x^{(2)}=0.5 x^{(1)}\left(3-0.5678\left(x^{(1)}\right)^{2}\right) & =1.327095128 \\
\sqrt{z} \cong z \times x^{(2)} & =0.753524613
\end{array}
$$

21.6 Parallel Hardware Square Rooters

Array square-rooters can be derived from the dot-notation representation in much the same way as array dividers

Fig. 21.7 Nonrestoring array square-rooter built of controlled add/subtract cells.

22 The CORDIC Algorithms

Go to TOC

Chapter Goals
Learning a useful convergence method
for evaluating trig and other functions
Chapter Highlights
Basic CORDIC idea: rotate a vector with
end point at $(x, y)=(1,0)$ by the angle z
to put its end point at $(\cos z, \sin z)$
Other functions evaluated similarly
Complexity comparable to division
Chapter Contents
22.1 Rotations and Pseudorotations
22.2 Basic CORDIC Iterations
22.3 CORDIC Hardware
22.4 Generalized CORDIC
22.5 Using the CORDIC Method
22.6 An Algebraic Formulation

22.1 Rotations and Pseudorotations

start at $(1,0)$
rotate by z get $\cos z, \sin z$ Key ideas behind CORDIC

If we have a computationally efficient way of rotating a vector, we can evaluate cos, sin, and tan ${ }^{-1}$ functions

Rotation by an arbitrary angle is difficult, so we:

Perform psuedorotations

Use special angles to synthesize a desired angle z
$z=\alpha^{(1)}+\alpha^{(2)}+\ldots+\alpha^{(m)}$

Rotate the vector $O E^{(1)}$ with end point at $\left(x^{(1)}, y^{(1)}\right)$ by $\alpha^{(1)}$

$$
\begin{aligned}
x^{(i+1)} & =x^{(i)} \cos \alpha^{(i)}-y^{(i)} \sin \alpha^{(i)} \\
& =\left(x^{(i)}-y^{(i)} \tan \alpha^{(i)}\right) /\left(1+\tan ^{2} \alpha^{(i)}\right)^{1 / 2} \\
y^{(i+1)} & =y^{(i)} \cos \alpha^{(i)}+x^{(i)} \sin \alpha^{(i)} \quad[\text { Real rotation }] \\
& =\left(y^{(i)}+x^{(i)} \tan \alpha^{(i)}\right) /\left(1+\tan ^{2} \alpha^{(i)}\right)^{1 / 2} \\
z^{(i+1)} & =z^{(1)}-\alpha^{(i)}
\end{aligned}
$$

Goal: eliminate the divisions by $\left(1+\tan ^{2} \alpha^{(\lambda)}\right)^{1 / 2}$ and choose $\alpha^{(1)}$ so that $\tan \alpha^{(1)}$ is a power of 2

Elimination of the divisions by $\left(1+\tan ^{2} \alpha^{(\lambda)}\right)^{1 / 2}$

Fig. 22.1 A pseudorotation step in CORDIC.

Whereas a real rotation does not change the length $R^{(l)}$ of the vector, a pseudorotation step increases its length to:

$$
R^{(i+1)}=R^{(i)}\left(1+\tan ^{2} \alpha^{(i)}\right)^{1 / 2}
$$

The coordinates of the new end point $E^{\prime(i+1)}$ after pseudorotation is derived by multiplying the coordinates of $\mathrm{E}^{(i+1)}$ by the expansion factor

$$
\begin{aligned}
& x^{(i+1)}=x^{(1)}-y^{(1)} \tan \alpha^{(1)} \\
& y^{(i+1)}=y^{(1)}+x^{(1)} \tan \alpha^{(1)} \\
& z^{(i+1)}=z^{(1)}-\alpha^{(1)}
\end{aligned}
$$

Assuming $x^{(0)}=x, y^{(0)}=y$, and $z^{(0)}=z$, after m real rotations by the angles $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(m)}$, we have:

$$
\begin{aligned}
& x^{(m)}=x \cos \left(\sum \alpha^{(\eta)}-y \sin \left(\sum \alpha^{(\eta)}\right)\right. \\
& y^{(m)}=y \cos \left(\sum \alpha^{(\lambda)}\right)+x \sin \left(\sum \alpha^{(\eta)}\right) \\
& z^{(m)}=z-\left(\sum \alpha^{(\eta)}\right)
\end{aligned}
$$

After m pseudorotations by the angles $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(m)}$:

$$
\begin{aligned}
& x^{(m)}=K\left(x \cos \left(\sum \alpha^{(1)}\right)-y \sin \left(\sum \alpha^{(\lambda)}\right)\right. \\
& y^{(m)}=K\left(y \cos \left(\sum \alpha^{(\lambda)}+x \sin \left(\sum \alpha^{(}\right)\right)\right) \\
& \left.z^{(m)}=z-\left(\sum \alpha^{(\lambda)}\right) \quad \text { where } K=\Pi\left(1+\tan ^{2} \alpha^{(}\right)\right)^{1 / 2}
\end{aligned}
$$

22.2 Basic CORDIC Iterations

Pick $\alpha^{(I)}$ such that $\tan \alpha^{(I)}=d_{i} 2^{-i}, d_{i} \in\{-1,1\}$

$$
\begin{array}{ll}
x^{(i+1)}=x^{(1)}-d_{i} y^{(i)} 2^{-i} \\
y^{(i+1)}=y^{(i)}+d_{i} x^{(i)} 2^{-i} \\
z^{(i+1)}=z^{(i)}-d_{i} \tan ^{-1} 2^{-i} & \text { [CORDIC iteration] }
\end{array}
$$

If we always pseudorotate by the same set of angles (with + or - signs), then the expansion factor K is a constant that can be precomputed

$$
\begin{aligned}
30.0 \cong 45.0-26.6+14.0-7.1 & +3.6+1.8-0.9 \\
& +0.4-0.2+0.1=30.1
\end{aligned}
$$

Table 22.1 Approximate value of the function $e^{(n)}=\boldsymbol{t a n}^{-1} \mathbf{2}^{-i}$, in degrees, for $0 \leq i \leq 9$

i	$e^{(i)}$
0	45.0
1	26.6
2	14.0
3	7.1
4	3.6
5	1.8
6	0.9
7	0.4
8	0.2
9	0.1

Table 22.2 Choosing the signs of the rotation angles in order to force z to 0

i	$z^{(1)}-\alpha^{(1)}$	$=z^{(i+1)}$
0	+30.0-45.0	$=-15.0$
1	$-15.0+26.6$	$=+11.6$
2	+11.6-14.0	$=-2.4$
3	$-2.4+7.1$	$=\quad+4.7$
4	+4.7-3.6	$=\quad+1.1$
5	+1.1-1.8	$=-0.7$
6	$-0.7+0.9$	$=\quad+0.2$
7	+0.2-0.4	$=-0.2$
8	$-0.2+0.2$	$=\quad+0.0$
9	+0.0-0.1	$=-0.1$

Fig. 22.2 The first three of 10 pseudo-rotations leading from $\left(x^{(0)}, y^{(0)}\right)$ to $\left(x^{(10)}, 0\right)$ in rotating by $+30^{\circ}$.

CORDIC Rotation Mode

In CORDIC terminology, the preceding selection rule for d_{i}, which makes z converge to 0 , is known as "rotation mode".

$$
\begin{aligned}
& x^{(i+1)}=x^{(i)}-d_{i}\left(2^{-i} y^{(i)}\right) \\
& y^{(i+1)}=y^{(i)}+d_{i}\left(2^{-i} x^{(i)}\right) \\
& z^{(i+1)}=z^{(i)}-d_{i} e^{(i) \quad \text { where } e^{(i)}=\tan ^{-1} 2^{-i}}
\end{aligned}
$$

After m iterations in rotation mode, when $z^{(m)} \cong 0$, we have $\sum \alpha^{(\prime)}=z$, and the CORDIC equations [*] become:

$$
\begin{array}{ll}
x^{(m)}=K(x \cos z-y \sin z) \\
y^{(m)}=K(y \cos z+x \sin z) & \quad \text { [Rotation mode] } \\
z^{(m)}=0 &
\end{array}
$$

Rule: Choose $d_{i} \in\{-1,1\}$ such that $z \rightarrow 0$
The constant K is $K=1.646760258121$...
Start with $x=1 / K=0.607252935 \cdots$ and $y=0$;
as $z^{(m)}$ tends to 0 with CORDIC in rotation mode, $x^{(m)}$ and $y^{(m)}$ converge to $\cos z$ and $\sin z$
For k bits of precision in the results, k CORDIC iterations are needed, because $\tan ^{-1} 2^{-i} \cong 2^{-i}$
Convergence of z to 0 is possible since each of our angles is more than half of the previous angle or, equivalently, each is less than the sum of all the angles following it Domain of convergence is -99.7••z•99.7•, where 99.7• is the sum of all the angles (contains $[-\pi / 2, \pi / 2]$ radians)

CORDIC Vectoring Mode

Let us now make y tend to 0 by choosing $d_{i}=-\operatorname{sign}\left(x^{(1)} y^{(i)}\right)$
After m steps in "vectoring mode," $\tan \left(\sum \alpha^{(1)}\right)=-y / x$

$$
\begin{aligned}
x^{(m)} & =K\left(x \cos \left(\sum \alpha^{(\lambda)}\right)-y \sin \left(\sum \alpha^{(\lambda)}\right)\right) \\
& =K\left(x-y \tan \left(\sum \alpha^{(\lambda)}\right)\right) /\left(1+\tan ^{2}\left(\sum \alpha^{(i)}\right)\right)^{1 / 2} \\
& =K\left(x+y^{2} / x\right) /\left(1+y^{2} / x^{2}\right)^{1 / 2} \\
& =K\left(x^{2}+y^{2}\right)^{1 / 2}
\end{aligned}
$$

The CORDIC equations [*] thus become:
$x^{(m)}=K\left(x^{2}+y^{2}\right)^{1 / 2}$
$y^{(m)}=0 \quad$ [Vectoring mode]
$z^{(m)}=\quad z+\tan ^{-1}(y / x)$
Rule: \quad Choose $d_{i} \in\{-1,1\}$ such that $y \rightarrow 0$
Compute tan- $1 y$ by starting with $x=1$ and $z=0$
This computation always converges. However, one can take advantage of

$$
\tan ^{-1}(1 / y)=\pi / 2-\tan ^{-1} y
$$

to limit the range of fixed-point numbers encountered
Other trigonometric functions:
tan obtained from sin and cos via division
$\sin ^{-1}$ and $\cos ^{-1}$: later

22.3 CORDIC Hardware

Fig. 22.3 Hardware elements needed for the CORDIC method.

22.4 Generalized CORDIC

The basic CORDIC method of Section 22.2 can be generalized to provide a more powerful tool for function evaluation. Generalized CORDIC is defined as follows:

$$
\begin{aligned}
& x^{(i+1)}=x^{(1)}-\mu d_{i} y^{(i)} 2^{-i} \\
& y^{(i+1)}=y^{(1)}+d_{i} x^{(i)} 2^{-i} \quad \text { [Gen. CORDIC iteration] } \\
& z^{(i+1)}=z^{(i)}-d_{i} e^{(i)}
\end{aligned}
$$

$\mu=1$ Circular rotations (basic CORDIC) $e^{(i)}=\tan ^{-1} 2^{-i}$
$\mu=0$ Linear rotations
$e^{(i)}=2^{-i}$
$\mu=-1$ Hyperbolic rotations
$e^{(i)}=\tanh ^{-1} 2^{-i}$

Fig. 24.4 Circular, linear, and hyperbolic CORDIC.

22.5 Using the CORDIC Method

Mode \rightarrow	Rotation: $d_{i}=\operatorname{sign}\left(z^{(i)}\right), z^{(i)} \rightarrow 0$	Vectoring: $d_{i}=-\operatorname{sign}\left(x^{(i)} y^{(i)}\right), y^{(i)} \rightarrow 0$
$\mu=1$ Circular $\begin{gathered} e^{(i)}= \\ \tan ^{-1} 2^{-i} \end{gathered}$	For $\cos \& \sin$, set $x=1 / K, y=0$ $\tan z=\sin z / \cos z$	For $\tan ^{-1}$, set $x=1, z=0$ $\begin{aligned} \cos ^{-1} w & =\tan ^{-1}\left[\sqrt{1-w^{2}} / w\right] \\ \sin ^{-1} w & =\tan ^{-1}\left[w / \sqrt{1-w^{2}}\right] \end{aligned}$
$\mu=0$ Linear $e^{(i)}=2^{-i}$	For multiplication, set $y=0$	For division, set $z=0$
$\mu=-1$ Hyperbolic $\begin{gathered} e^{(i)}= \\ \tanh ^{-1} 2^{-i} \end{gathered}$	For $\cosh \& \sinh$, set $x=1 / K^{\prime}, y=0$ $\tanh z=\sinh z / \cosh z$ $\exp (z)=\sinh z+\cosh z$ $w^{t}=\exp (t \ln w)$	For $\tanh ^{-1}$, set $x=1, z=0$ $\begin{aligned} & \ln w=2 \tanh ^{-1}\|(w-1) /(w+1)\| \\ & \sqrt{w}=\sqrt{(w+1 / 4)^{2}-(w-1 / 4)^{2}} \\ & \cosh ^{-1} w=\ln \left(w+\sqrt{1-w^{2}}\right) \\ & \sinh ^{-1} w=\ln \left(w+\sqrt{1+w^{2}}\right) \end{aligned}$
Note \rightarrow	In executing the iterations for $\mu=-1$, steps $4,13,40,121, \ldots, j, 3 j+1, \ldots$ must be repeated. These repetitions are incorporated in the constant K^{\prime} below.	

$$
\begin{array}{ll}
x^{(i+1)}=x^{(i)}-\mu d_{i}\left(2^{-i} y^{(i)}\right) & \mu \in\{-1,0,1\}, d_{i} \in\{-1,1\} \\
y^{(i+1)}=y^{(i)}+d_{i}\left(2^{-i} x^{(i)}\right) & K=1.646760258121 \ldots \\
z^{(i+1)}=z^{(i)}-d_{i} e^{(i)} & K^{\prime}=0.8281593609602 \ldots
\end{array}
$$

Fig. 22.5 Summary of generalized CORDIC algorithms.

Speedup Methods for CORDIC

Skipping some rotations

Must keep track of the expansion factor via the recurrence:

$$
\left(K^{(i+1)}\right)^{2}=\left(K^{(i)}\right)^{2}\left(1 \pm 2^{-2 i}\right)
$$

Given the additional work, variable-factor CORDIC is often not cost-effective compared to constant-factor CORDIC

Early termination

Do k/2 iterations as usual, then combine the remaining $k / 2$ iterations into a single step, involving multiplication:

$$
\begin{aligned}
x^{(k / 2+1)} & =x^{(k / 2)}-y^{(k / 2)} z^{(k / 2)} \\
y^{(k / 2+1)} & =y^{(k / 2)}+x^{(k / 2)} z^{(k / 2)} \\
z^{(k / 2+1)} & =z^{(k / 2)}-z^{(k / 2)}=0
\end{aligned}
$$

Possible because for very small $z, \tan ^{-1} z \cong z \cong \tan z$
The expansion factor K presents no problem because for $e^{(l)}<2^{-k / 2}$, the contribution of the ignored terms that would have been multiplied by K is provably less than ulp

High-radix CORDIC

In a radix-4 CORDIC, d_{i} assumes values in $\{-2,-1,1,2\}$ (perhaps with 0 also included) rather than in $\{-1,1\}$
The hardware required for the radix-4 version of CORDIC is quite similar to Fig. 22.3

22.6 An Algebraic Formulation

Because

$\cos z+j \sin z=e^{j z} \quad$ where $j=\sqrt{-1}$
$\cos z$ and $\sin z$ can be computed via evaluating the complex exponential function $e^{j z}$

This leads to an alternate derivation of CORDIC iterations Details in the text

23 Variations in Function Evaluation

Go to TOC

Chapter Goals
Learning alternate computation methods (convergence and otherwise) for some functions computable through CORDIC

Chapter Highlights
Reasons for needing alternate methods:
Achieve higher performance or precision
Allow speed/cost tradeoffs
Optimizations, fit to diverse technologies
Chapter Contents
23.1 Additive/Multiplicative Normalization
23.2 Computing Logarithms
23.3 Exponentiation
23.4 Division and Square-Rooting, Again
23.5 Use of Approximating Functions
23.6 Merged Arithmetic

23.1 Additive/Multiplicative Normalization

Convergence methods characterized by recurrences

$$
\begin{array}{ll}
u^{(i+1)}=f\left(u^{(i)}, v^{(i)}\right) & u^{(i+1)}=f\left(u^{(i)}, v^{(i)}, w^{(i)}\right) \\
v^{(i+1)}=g\left(u^{(i)}, v^{(i)}\right) & v^{(i+1)}=g\left(u^{(i)}, v^{(i)}, w^{(i)}\right) \\
& w^{(i+1)}=h\left(u^{(i)}, v^{(i)}, w^{(i)}\right)
\end{array}
$$

Making u converge to a constant = "normalization"
Additive normalization $=u$ normalized by adding values
Multiplicative normalization $=u$ multiplied by values
Availability of cost-effective fast adders and multipliers make these two classes of methods useful

Multipliers are slower and more costly than adders, so we avoid multiplicative normalization when additive normalization would do

Multiplicative methods often offer faster convergence, thus making up for the slower steps

Multiplicative terms 1 ± 2^{a} are desirable (shift-add)
Examples we have seen before:
Additive normalization: CORDIC Multiplicative normalization: convergence division

23.2 Computing Logarithms

A multiplicative normalization method using shift-add

$$
\begin{aligned}
& x^{(i+1)}=x^{(i)} c^{(1)}=x^{(i)}\left(1+d_{i} 2^{-i}\right) \quad d_{i} \in\{-1,0,1\} \\
& y^{(i+1)}=y^{(1)}-\ln c^{(1)}=y^{(i)}-\ln \left(1+d_{i} 2^{-i}\right)
\end{aligned}
$$

where $\ln \left(1+d_{i} 2^{-i}\right)$ is read out from a table
Begin with $x^{(0)}=x, y^{(0)}=y$; Choose d_{i} such that $x^{(m)} \rightarrow 1$

$$
\begin{aligned}
& x^{(m)}=x \Pi c^{(1)} \cong 1 \quad \Rightarrow \quad \Pi c^{(1)} \cong 1 / x \\
& y^{(m)}=y-\sum \ln c^{(1)}=y-\ln \Pi c^{(1)} \cong y+\ln x
\end{aligned}
$$

To find $\ln x$, start with $y=0$
The algorithm's domain of convergence is easily obtained:

$$
1 / \Pi\left(1+2^{-i}\right) \leq x \leq 1 / \Pi\left(1-2^{-i}\right) \text { or } 0.21 \leq x \leq 3.45
$$

For large i, we have $\ln (1 \pm 2-i) \cong \pm 2^{-i}$
So, we need k iterations to find $\ln x$ with k bits of precision
This method can be used directly for x in $[1,2)$
Any x outside $[1,2)$ can be written as $x=2 q_{s}, 1 \leq s<2$

$$
\ln x=\ln \left(22^{2} s\right)=q \ln 2+\ln s=0.693147180 q+\ln s
$$

A radix-4 version of this algorithm can be easily developed

A clever method based on squaring

Let $y=\log _{2} x$ be a fractional number $\left.\left(. y_{-1} y_{-2} \cdots y_{-1}\right)\right)_{\text {two }}$

$$
\begin{aligned}
& x=2^{y}=2^{\left.\left(\cdot y_{-1} y_{-2} y_{-3} \cdots y_{-}\right)\right)_{\text {two }}} \\
& x^{2}=2^{2 y}=2^{\left(y_{-1} \cdot y_{-2} y_{-3} \cdots y_{-}\right) \text {two }} \Rightarrow y_{-1}=1 \text { iff } x^{2} \geq 2
\end{aligned}
$$

If $y_{-1}=0$, we are back to the original situation
If $y_{-1}=1$, we divide both sides of the equation by 2 to get

$$
x^{2} / 2=2^{\left(1 \cdot y_{-2} y_{-3} \cdots y_{-}\right)_{\mathrm{two}} / 2}=2^{\left(\cdot y_{-2} y_{-3} \cdots y_{-1}\right)_{\mathrm{two}}}
$$

Subsequent bits of y can be determined in a similar way.

Fig. 23.1 Hardware elements needed for computing $\log _{2} x$.
Generalization to base- b logarithms: $y=\log _{b} x$ implies

$$
\begin{aligned}
& x=b^{y}=b^{\left(\cdot y_{-1} y_{-2} y_{-3} \cdots y_{-}\right) \text {two }} \\
& x^{2}=b^{2 y}=b^{\left(y_{-1} \cdot y_{-2} y_{-3} \cdots y_{-}\right) \text {two } \Rightarrow y_{-1}=1 \text { iff } x^{2} \geq b}
\end{aligned}
$$

23.3 Exponentiation

An additive normalization method for computing e^{x}

$$
\begin{aligned}
& x^{(i+1)}=x^{(i)}-\ln c^{(i)}=x^{(i)}-\ln \left(1+d_{i} 2^{-i}\right) \\
& y^{(i+1)}=y^{(i)} c^{(i)}=y^{(i)}\left(1+d_{i} 2^{-i}\right) \quad d_{i} \in\{-1,0,1\}
\end{aligned}
$$

As before, $\ln \left(1+d_{i} 2^{-j}\right)$ is read out from a table
Begin with $x^{(0)}=x, y^{(0)}=y$; Choose d_{i} such that $x^{(m)} \rightarrow 0$

$$
\begin{aligned}
& x^{(m)}=x-\sum \ln c^{(1)} \cong 0 \quad \Rightarrow \quad \sum \ln c^{(1)} \cong x \\
& y^{(m)}=y \Pi c^{(1)}=y e^{\ln \Pi c^{(1)}}=y e^{\Sigma \ln c^{(1)}} \cong y e^{x}
\end{aligned}
$$

The algorithm's domain of convergence is easily obtained:

$$
\sum \ln \left(1-2^{-i}\right) \leq x \leq \sum \ln \left(1+2^{-i}\right) \quad \text { or } \quad-1.24 \leq x \leq 1.56
$$

Half of the k iterations can be eliminated by noting:

$$
\ln (1+\varepsilon)=\varepsilon-\varepsilon^{2} / 2+\varepsilon^{3} / 3-\cdots \cong \varepsilon \quad \text { for } \varepsilon^{2}<u / p
$$

So when $x()=0.00 \cdots 00 x x \cdots x x$, with $k / 2$ leading zeros, we have $\ln \left(1+x^{(j)}\right) \cong x^{()}$, allowing us to terminate by

$$
\begin{aligned}
& x^{(j+1)}=x^{(j)}-x^{(j)}=0 \\
& y^{(j+1)}=y^{(j)}\left(1+x^{(j)}\right)
\end{aligned}
$$

A radix-4 version of this e^{x} algorithm can be developed

General exponentiation function x^{y}
Can be computed by combining the logarithm and exponential functions and a single multiplication:

$$
x^{y}=\left(e^{\ln x}\right)^{y}=e^{y \ln x}
$$

When y is a positive integer, exponentiation can be done by repeated multiplication
In particular, when y is a constant, the methods used are reminiscent of multiplication by constants (Section 9.5)

Example:

$$
x^{25}=\left(\left(\left((x)^{2} x\right)^{2}\right)^{2}\right)^{2} x
$$

which implies 4 squarings and 2 multiplications.
Noting that
$25=\left(\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right)_{\text {two }}$
leads us to a general procedure
To raise x to the power y, where y is a positive integer:
Initialize the partial result to 1
Scan the binary representation of y starting at its MSB If the current bit is 1 , multiply the partial result by x If the current bit is 0 , do not change the partial result Square the partial result before the next step (if any)

23.5 Use of Approximating Functions

Convert the problem of evaluating the function f to that of evaluating a different function g that approximates f, perhaps with a few pre- and postprocessing operations

Approximating polynomials attractive because they need only additions and multiplications

Polynomial approximations can be obtained based on various schemes; e.g., Taylor-Maclaurin series expansion The Taylor-series expansion of $f(x)$ about $x=a$ is

$$
f(x)=\sum_{j=0 \text { to } \infty} f^{(\lambda)}(a)(x-a)^{j} / j!
$$

The error due to omitting terms of degree $>m$ is:

$$
f^{(m+1)}(a+\mu(x-a))(x-a)^{m+1} /(m+1)!\quad 0<\mu<1
$$

Setting a = 0 yields the Maclaurin-series expansion

$$
f(x)=\sum_{j=0 \text { to } \infty} f^{()}(0) x^{j} / j!
$$

and its corresponding error bound:

$$
f^{(m+1)}(\mu x) x^{m+1} /(m+1)!\quad 0<\mu<1
$$

Efficiency can be gained via Horner's method and incremental evaluation

Table 23.1 Polynomial approximations for some useful functions

Function Polynomial approximation
Conditions
$1 / x \quad 1+y+y^{2}+y^{3}+\cdots+y^{i}+\cdots \quad 0<x<2$ and $y=1-x$
$e^{x} \quad 1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{i!} x^{i}+\cdots$
$\ln x$

$$
-y-\frac{1}{2} y^{2}-\frac{1}{3} y^{3}-\frac{1}{4} y^{4}-\cdots-\frac{1}{i} y^{i}-\cdots \quad 0<x \leq 2 \text { and } y=1-x
$$

$\ln x$

$$
2\left[z+\frac{1}{3} z^{3}+\frac{1}{5} z^{5}+\cdots+\frac{1}{2 i+1} z^{2 i+1}+\cdots\right] \quad x>0 \text { and } z=\frac{x-1}{x+1}
$$

$\sin x$

$$
x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\cdots+(-1)^{i} \frac{1}{(2 i+1)!} x^{2 i+1}+\cdots
$$

$\cos x \quad 1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots+(-1)^{i} \frac{1}{(2)!} x^{2 i}+\cdots$
$\tan ^{-1} x \quad x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots+(-1)^{i} \frac{1}{2 i+1} x^{2 i+1}+\cdots \quad-1<x<1$
$\sinh x$
$x+\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\frac{1}{7!} x^{7}+\cdots+\frac{1}{(2 i+1)!} x^{2 i+1}+\cdots$
$\cosh x \quad 1+\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\frac{1}{6!} x^{6}+\cdots+\frac{1}{(21)!} x^{2 i}+\cdots$
$\tanh ^{-1} x \quad x+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\frac{1}{7} x^{7}+\cdots+\frac{1}{2 i+1} x^{2 i+1}+\cdots \quad-1<x<1$

A divide-and-conquer strategy for function evaluation

Let x in $[0,4)$ be the $(I+2)$-bit significand of a FLP number or its shifted version. Divide x into two chunks x_{H} and x_{L} :

$$
\begin{array}{ccc}
x=x_{\mathrm{H}}+2^{-t} x_{\mathrm{L}} & 0 \leq x_{\mathrm{H}}<4 & 0 \leq x_{\mathrm{L}}<1 \\
t+2 \text { bits } & 1-t \text { bits }
\end{array}
$$

The Taylor-series expansion of $f(x)$ about $x=x_{H}$ is

$$
f(x)=\sum_{j=00_{0} \infty} f^{(t)}\left(x_{\mathrm{H}}\right)\left(2^{-t} x_{\mathrm{L}}\right)^{j} / j!
$$

where $f()(x)$ is the fth derivative of $f(x)$. If one takes just the first two terms, a linear approximation is obtained

$$
f(x) \cong f\left(x_{\mathrm{H}}\right)+2^{-t} x_{\mathrm{L}} f^{\prime}\left(x_{\mathrm{H}}\right)
$$

If t is not too large, f and/or f^{\prime} (and other derivatives of f, if needed) can be evaluated by table lookup

Approximation by the ratio of two polynomials

 Example, yielding good results for many elementary functions:$$
f(x) \cong \frac{a^{(5)} x^{5}+a^{(4)} x^{4}+a^{(3)} x^{3}+a^{(2)} x^{2}+a^{(1)} x+a^{(0)}}{b^{(5)} x^{5}+b^{(4)} x^{4}+b^{(3)} x^{3}+b^{(2)} x^{2}+b^{(1)} x+b^{(0)}}
$$

Using Horner's method, such a "rational approximation" needs 10 multiplications, 10 additions, and 1 division

23.6 Merged Arithmetic

Our methods thus far rely on word-level building-block operations such as addition, multiplication, shifting, . . .
Can compute a function of interest directly without breaking it down into conventional operations

Example: merged arithmetic for inner product computation

$$
\begin{aligned}
& z=z^{(0)}+x^{(1)} y^{(1)}+x^{(2)} y^{(2)}+x^{(3)} y^{(3)}
\end{aligned}
$$

$$
\begin{aligned}
& z^{(0)} \\
& x^{(1)} y^{(1)} \\
& x^{(2)} y^{(2)} \\
& x^{(3)} y^{(3)}
\end{aligned}
$$

Fig. 23.2 Merged-arithmetic computation of an inner product followed by accumulation.

| | 1 | 4 | 7 | 10 | 13 | 10 | 7 | 4 | 16 FAs |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| | 2 | 4 | 6 | 8 | 8 | 6 | 4 | 2 | 10 FAs +1 HA |
| | 3 | 4 | 4 | 6 | 6 | 3 | 3 | 1 | 9 FAs |
| 1 | 2 | 3 | 4 | 4 | 3 | 2 | 1 | 1 | 4 FAs +1 HA |
| 1 | 3 | 2 | 3 | 3 | 2 | 1 | 1 | 1 | 3 FAs +2 HAs |
| 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | $5-$ bit CPA |

Fig. 23.3 Tabular representation of the dot matrix for innerproduct computation and its reduction.

24 Arithmetic by Table Lookup

Go to TOC

Chapter Goals
Learning table lookup techniques
for flexible and dense VLSI realization
of arithmetic functions

Chapter Highlights
We have used tables to simplify or speedup q digit selection, convergence methods, . . .
Now come tables as primary computational mechanisms (as stars, not supporting cast)

Chapter Contents
24.1. Direct and Indirect Table Lookup
24.2. Binary-to-Unary Reduction
24.3. Tables in Bit-Serial Arithmetic
24.4. Interpolating Memory
24.5. Tradeoffs in Cost, Speed, and Accuracy
24.6. Piecewise Lookup Tables

24.1 Direct and Indirect Table Lookup

Fig. 24.1 Direct table lookup versus table-lookup with preand post-processing.

Tables are used in two ways:
In supporting role, as in initial estimate for division
As main computing mechanism
Boundary between two uses is fuzzy
Pure logic ------ Hybrid solutions ----- Pure tabular
Previously, we started with the goal of designing logic circuits for particular arithmetic computations and ended up using tables to facilitate or speed up certain steps Here, we aim for a tabular implementation and end up using peripheral logic circuits to reduce the table size Some solutions can be derived starting at either endpoint

24.2 Binary-to-Unary Reduction

Can reduce the table size by using an auxiliary unary function to evaluate a desired binary function

Example 1: Addition in a logarithmic number system

$$
\begin{aligned}
\mathrm{L} z & =\log (x \pm y)=\log (x(1 \pm y / x)) \\
& =\log x+\log (1 \pm y / x) \\
& =\mathrm{L} x+\log \left(1 \pm \log ^{-1} \Delta\right) \quad(\Delta=\mathrm{L} y-\mathrm{L} x)
\end{aligned}
$$

Example 2: Multiplication via squaring

$$
x y=(x+y)^{2} / 4-(x-y)^{2} / 4
$$

Simplification

$$
\begin{aligned}
&(x \pm y) / 2=\lfloor(x \pm y) / 2\rfloor+\varepsilon / 2 \quad \varepsilon \in\{0,1\} \text { is the LSB } \\
&(x+y)^{2} / 4-(x-y)^{2} / 4 \\
&=[\lfloor(x+y) / 2\rfloor+\varepsilon / 2]^{2}-[\lfloor(x-y) / 2\rfloor+\varepsilon / 2]^{2} \\
&=\lfloor(x+y) / 2\rfloor^{2}-\lfloor(x-y) / 2\rfloor^{2}+\varepsilon y
\end{aligned}
$$

Compute $x+y$ and $x-y$ in the preprocessing stage, Drop the least significant bit of each result, Consult squaring table(s) of size $2 k \times(2 k-1)$

Post-processing requires a carry-save adder (to reduce the 3 values to 2) followed by a carry-propagate adder

24.3 Tables in Bit-Serial Arithmetic

Fig. 24.2 Bit-serial ALU with two tables implemented as multiplexers.

In the bit-serial ALU of Fig. 24.2:
a, b come from a 64 K -bit memory (16-bit addresses) c comes from a 4-bit "flags" register (2-bit address)
f output is stored as a flag bit (2-bit address) g output replaces the a operand in a third clock cycle
Three additional bits are used to specify a flag bit and a value (0 or 1) for conditionalizing the operation
To perform integer addition with the CM-2 ALU a and b : numbers to be added
c : flag bit holding the carry from one position into next f op code: "00010111" (majority or $a b+b c+c a$) g op-code: "01010101" (3-input XOR)

Second-order digital filter example

$y^{(1)}=a^{(0)} x^{(i)}+a^{(1)} x^{(i-1)}+a^{(2)} x^{(i-2)}-b^{(1)} y^{(i-1)}-b^{(2)} y^{(i-2)}$
Expand the equation for $y^{(1)}$ in terms of the bits in operands $x=\left(x_{0} \cdot x_{-1} x_{-2} \cdots x_{-1}\right)_{\text {two }}$ and $y=\left(y_{0} \cdot y_{-1} y_{-2} \cdots y_{-1}\right)_{\text {two }}$ $y^{(1)}=a^{(0)}\left(-x_{0}{ }^{(1)}+\sum_{j=-1}^{-1} 2^{j} x_{j}{ }^{(1)}\right)$
$+a^{(1)}\left(-x_{0}{ }^{(j-1)}+\sum_{j=-1}^{-1} 2^{j} x_{j}^{(i-1)}\right)+a^{(2)}\left(-x_{0}{ }^{(i-2)}+\sum_{j=-\prime}^{-1} 2^{j} x_{j}^{(i-2)}\right)$
$-b^{(1)}\left(-y_{0}^{(i-1)}+\sum_{j=-1}^{-1} 2^{j} x_{j}^{(i-1)}\right)-b^{(2)}\left(-y_{0}{ }^{(i-2)}+\sum_{j=-1}^{-1} 2^{j} x_{j}^{(i-2)}\right)$
Define $f(s, t, u, v, w)=a^{(0)} s+a^{(1)} t+a^{(2)} u-b^{(1)} v-b^{(2)} w$

$$
\begin{aligned}
y^{(i)}=\sum_{j=-l}^{-1} 2^{j} f\left(x_{j}^{(l)}\right. & \left., x_{j}^{(i-1)}, x_{j}^{(i-2)}, y_{j}^{(i-1)}, y_{j}^{(i-2)}\right) \\
& -f\left(x_{0}^{(i)}, x_{0}^{(i-1)}, x_{0}^{(i-2)}, y_{0}^{(i-1)}, y_{0}^{(i-2)}\right)
\end{aligned}
$$

Fig. 24.3 Bit-serial tabular realization of a second-order filter.

24.4 Interpolating Memory

Computing $f(x), x \in\left[x_{10}, x_{\mathrm{hi}}\right]$, from $f\left(x_{10}\right)$ and $f\left(x_{\mathrm{hi}}\right)$:

$$
f(x)=f\left(x_{\mathrm{lo}}\right)+\frac{\left(x-x_{\mathrm{lo}}\right)\left[f\left(x_{\mathrm{hi}}\right)-f\left(x_{\mathrm{lo}}\right)\right]}{x_{\mathrm{hi}}-x_{\mathrm{lo}}}
$$

If the endpoints are consecutive multiples of a power of 2 , the division and two of the additions trivial

Example: evaluating $\log _{2} x$ for x in $[1,2)$
$f\left(x_{10}\right)=\log _{2} 1=0, f\left(x_{\mathrm{hi}}\right)=\log _{2} 2=1$; thus:

$$
\log _{2} x \cong x-1=\text { the fractional part of } x
$$

An improved linear interpolation formula

$$
\log _{2} x \cong \frac{\ln 2-\ln (\ln 2)-1}{2 \ln 2}+(x-1)=0.043036+\Delta x
$$

Fig. 24.4 Linear interpolation for computing $f(x)$ and its hardware realization.

Fig. 24.5 Linear interpolation for computing $f(x)$ using 4 subintervals.

Table 24.1 Approximating $\log _{2} x$ for x in $[1,2)$ using linear interpolation within 4 subintervals

i	x_{lo}	$x_{\text {hi }}$	$a^{(j)}$	$b^{(j) / 4}$	Max error
0	1.00	1.25	0.004487	0.321928	± 0.004487
1	1.25	1.50	0.324924	0.263034	± 0.002996
2	1.50	1.75	0.587105	0.222392	± 0.002142
3	1.75	2.00	0.808962	0.192645	± 0.001607

Interpolating memory with linear interpolation

24.5 Trade-offs in Cost, Speed, and Accuracy

Fig. 24.6 Maximum absolute error in computing $\log _{2} x$ as a function of number h of address bits for the tables with linear, quadratic (second-degree), and cubic (third-degree) interpolations [Noet89].

24.6 Piecewise Lookup Tables

Function of a short (single) IEEE floating-point number Divide the 26 -bit significand x (with 2 whole and 24 fractional bits) into four sections:

$$
x=t+\lambda u+\lambda^{2} v+\lambda^{3} w=t+2^{-6} u+2^{-12} v+2^{-18} w
$$

where u, v, and w are 6 -bit fractions in $[0,1)$ and t, with up to 8 bits, depending on the function, is in $[0,4)$
Taylor polynomial for $f(x)$:

$$
f(x)=\sum_{i=0 \text { to } \infty} f^{(i)}(t+\lambda u)\left(\lambda^{2} v+\lambda^{3} w\right)^{i} / i!
$$

Ignore terms smaller than $\lambda^{5}=2^{-30}$

$$
\begin{aligned}
& f(x) \cong f(t+\lambda u)+\frac{\lambda}{2}[f(t+\lambda u+\lambda v)-f(t+\lambda u-\lambda v)] \\
& \quad+\frac{\lambda^{2}}{2}[f(t+\lambda u+\lambda w)-f(t+\lambda u-\lambda w)]+\lambda^{4}\left[\frac{v^{2}}{2} f^{(2)}(t)-\frac{v^{3}}{6} f^{(3)}(t)\right]
\end{aligned}
$$

With this method, computing $f(x)$ reduces to:
a. Derive the 14 -bit values $t+\lambda u+\lambda v, t+\lambda u-\lambda v, t+\lambda u+\lambda w$, $t+\lambda u-\lambda w$ (4 additions; $t+\lambda u$ needs no computation)
b. Read the five values of f from table(s)
c. Read the last term $\lambda^{4}\left[\frac{v^{2}}{2} f(2)(t)-\frac{v^{3}}{6} f(3)(t)\right]$ from a table
d. Perform a 6-operand addition

Error in this computation is provably less than $u / p / 2=2^{-24}$

Computing z mod p (modular reduction)

Fig. 24.7 Two-table modular reduction scheme based on divide-and-conquer.

Fig. 24.8 Modular reduction based on successive refinement.

Part VII Implementation Topics

Part Goals

Sample more advanced implementation methods and ponder some of the practical aspects of computer arithmetic

Part Synopsis
 Speed/latency is often not the only concern
 Other attributes of interest include throughput, size, power, reliability Case studies: arithmetic in micros to supers Lessons from the past, future outlook

Part Contents

Chapter 25 High-Throughput Arithmetic
Chapter 26 Low-Power Arithmetic
Chapter 27 Fault-Tolerant Arithmetic
Chapter 28 Past, Present, and Future

25 High-Throughput Arithmetic

Go to TOC

Chapter Goals
Learn how to improve the performance of an arithmetic unit via higher throughput rather than reduced latency

Chapter Highlights
To improve overall performance, one has to

- look beyond individual operations
- trade off latency for throughput
E.g., a multiply may take 20 clock cycles, but a new one can begin every cycle
Data availability and hazards limit the depth

Chapter Contents

25.1. Pipelining of Arithmetic Functions
25.2. Clock Rate and Throughput
25.3. The Earle Latch
25.4. Parallel and Digit-Serial Pipelines
25.5. On-Line or Digit-Pipelined Arithmetic
25.6. Systolic Arithmetic Units

25.1 Pipelining of Arithmetic Functions

Throughput = number of operations per unit time
Pipelining period = time interval between the application of successive input data
Latency, though secondary, is still important because:
a. Occasional need for doing single operations
b. Dependencies may lead to bubbles or even drainage At times, a pipelined implementation may improve the latency of a multistep computation and also reduce its cost In such a case, pipelining is obviously preferred

Fig. 26.1 An arithmetic function unit and its σ-stage pipelined version.

Analysis of pipelining

Consider an arithmetic circuit with cost g and latency t. Simplifying assumptions for our analysis:

1. Time overhead per stage is τ (latching delay)
2. Cost overhead per stage is γ (latching cost)
3. Function is divisible into σ equal stages for any σ Then, for the pipelined implementation:

$$
\begin{array}{ll}
\text { Latency } & T=t+\sigma \tau \\
\text { Throughput } & R=\frac{1}{T / \sigma}=\frac{1}{t / \sigma+\tau} \\
\text { Cost } & G=g+\sigma \gamma
\end{array}
$$

Throughput approaches its maximum of $1 / \tau$ for large σ
In practice, however, it does not pay to reduce t / σ below a certain threshold; typically 4 logic gate levels
Assuming a stage delay of 4δ, we have $\sigma=t /(4 \delta)$ and:
Latency $\quad T=t\left(1+\frac{\tau}{4 \delta}\right)$
Throughput $R=\frac{1}{T / \sigma}=\frac{1}{4 \delta+\tau}$
Cost $\quad G=g\left(1+\frac{t \gamma}{4 g \delta}\right)$

Cost-effectiveness

If throughput isn't the single most important factor, then one might try to maximize a composite figure of merit Throughput per unit cost represents cost-effectiveness:

$$
E=\frac{R}{G}=\frac{\sigma}{(t+\sigma \tau)(g+\sigma \gamma)}
$$

To maximize E, we compute $\mathrm{d} E / \mathrm{d} \sigma$:

$$
\frac{d E}{d \sigma}=\frac{t g-\sigma^{2} \tau \gamma}{(t+\sigma \tau)^{2}(g+\sigma \gamma)^{2}}
$$

Equating $d E / d \sigma$ with 0 yields:

$$
\sigma^{\mathrm{opt}}=\sqrt{\frac{t g}{\tau \gamma}}
$$

We see that the optimal number of pipeline stages for maximal cost-effectiveness is
directly related to the latency and cost of the function (it pays to have many pipeline stages if the function implemented is very slow or complex)
inversely related to pipelining delay \& cost overheads (few pipeline stages are in order if the time and/or cost overhead of pipelining is too high)

All in all, not a surprising result!

25.2 Clock Rate and Throughput

Consider a σ-stage pipeline with stage delay $t_{\text {stage }}$
One set of inputs are applied to the pipeline at time t_{1}
At $t_{1}+t_{\text {stage }}+\tau$, results are safely stored in latches
Apply the next set of inputs at time t_{2} satisfying

$$
t_{2} \geq t_{1}+t_{\text {stage }}+\tau
$$

Clock period $=\Delta t=t_{2}-t_{1} \geq t_{\text {stage }}+\tau$
Pipeline throughput is the inverse of the clock period:

$$
\text { Throughput }=\frac{1}{\text { Clock period }} \leq \frac{1}{t_{\text {stage }}+\tau}
$$

Implicit assumptions:
one clock signal is distributed to all circuit elements all latches are clocked at precisely the same time
Uncontrolled or random clock skew causes the clock signal to arrive at point B before/after its arrival at point A
With proper design of the clock distribution network, we can place an upper bound $\pm \varepsilon$ on the uncontrolled clock skew at the input and output latches of a pipeline stage
Then, the clock period is lower bounded as:
clock period $=\Delta t=t_{2}-t_{1} \geq t_{\text {stage }}+\tau+2 \varepsilon$

Wave Pipelining

Note that the stage delay $t_{\text {stage }}$ is really not a constant but varies from $t_{\text {min }}$ to $t_{\text {max }}$
$t_{\text {min }}$ represents fast paths (with fewer or faster gates) $t_{\text {max }}$ represents slow paths

Suppose that one set of inputs is applied at time t_{1}
At $t_{1}+t_{\max }+\tau$, the results are safely stored in latches
If that the next inputs are applied at time t_{2}, we must have:

$$
t_{2}+t_{\min } \geq t_{1}+t_{\max }+\tau
$$

This places a lower bound on the clock period:
clock period $=\Delta t=t_{2}-t_{1} \geq t_{\max }-t_{\min }+\tau$
Thus, we can approach the maximum possible throughput of $1 / \tau$ without necessarily requiring very small stage delay
All we need is a very small delay variance $t_{\max }-t_{\text {min }}$
Hence, there are two distinct strategies for increasing the throughput of a pipelined function unit:
(1) the traditional method of reducing $t_{\text {max }}$, and
(2) the counterintuitive method of increasing $t_{\text {min }}$

Fig. 25.2 Wave pipelining allows multiple computational wavefronts to coexist in a single pipeline stage.

(a)

Fig. 25.3 An alternate view of the throughput advantage of wave pipelining (b) over ordinary pipelining (a).

Wave pipelining is routinely used in high-speed LANs Data adapted (rounded figures) from Myrinet [Bode95]
 30 m
Gb / s throughput \rightarrow Clock rate $=10^{8} \rightarrow$ clock cycle $=10 \mathrm{~ns}$ In 10 ns , signals travel $1-1.5 \mathrm{~m}$ (speed of light $=0.3 \mathrm{~m} / \mathrm{ns}$)

For a 30 m cable, 20-30 characters will be in flight
At the circuit and logic level ($\mu \mathrm{m}-\mathrm{mm}$ distances, not m), there are still problems that are being worked out

For example, delay equalization to reduce $t_{\max }-t_{\text {min }}$ is nearly impossible in CMOS

2-input NAND delay varies by factor of 2 based on inputs Biased CMOS (pseudo-CMOS) can solve this problem but has power consumption penalties

Controlled clock skew

$$
\begin{aligned}
& \text { clock period }=\Delta t=t_{2}-t_{1} \geq t_{\max }-t_{\min }+\tau \\
& t_{\max }-t_{\min }=0 \rightarrow \Delta t \geq \tau
\end{aligned}
$$

A new input enters the pipeline stage every Δt time units and the stage latency is $t_{\max }+\tau$
Clock application at the output latch must be skewed by $\left(t_{\max }+\tau\right) \bmod \Delta t$ to ensure proper sampling of the results

Example: $t_{\text {max }}+\tau=12 \mathrm{~ns}$ and $\Delta t=5 \mathrm{~ns}$
A clock skew of +2 ns is required at the stage output latches relative to the input latches

Generally $t_{\max }-t_{\min }>0$; perhaps different for each stage

$$
\Delta t \geq \max _{i=1}^{\sigma}\left[t_{\max }^{(1)}-t_{\max }^{(1)}+\tau\right]
$$

The controlled clock skew at the output of stage i will be:

$$
S^{(1)}=\sum_{j=1}^{i}\left[t_{\max }^{(1)}-t_{\min }^{(1)}+\tau\right] \bmod \Delta t
$$

Random clock skew in wave pipelining

clock period $=\Delta t=t_{2}-t_{1} \geq t_{\text {max }}-t_{\text {min }}+\tau+4 \varepsilon$
Reason for including the term 4ε :
The clocking of the first input set may lag by ε, while that of the second set leads by ε (net difference $=2 \varepsilon$) The reverse condition may exist at the output

Uncontrolled skew has a larger effect on wave pipelining than on standard pipelining, especially in relative terms

Graphical justification of the term 4ε

25.3 The Earle Latch

Fig. 25.4 Two-level AND-OR realization of the Earl latch.
We derived constraints on the maximum clock rate $1 / \Delta t$ Clock period Δt has two parts: clock high, and clock low

$$
\Delta t=C_{\text {high }}+C_{\text {low }}
$$

Consider a pipeline stage between Earle latches

$C_{\text {high }}$, must satisfy the inequalities

$$
3 \delta_{\max }-\delta_{\min }+S_{\max }(C \uparrow, \bar{C} \downarrow) \leq C_{\text {high }} \leq 2 \delta_{\min }+t_{\min }
$$

The clock pulse must be wide enough to ensure that valid data is stored in the output latch and to avoid logic hazard should $\mathrm{C} _$slightly lead $C \backsim$

Clock must go low before the fastest signals from the next input data set can affect the input z of the latch
$\delta_{\text {max }}$ and $\delta_{\text {min }}$ are maximum and minimum gate delays; $S_{\max }(C \uparrow, \bar{C} \downarrow) \geq 0$ is max skew between $C \uparrow$ and $\bar{C} \downarrow$

Merged logic and latch

A key property of the Earle latch is that it can be merged with the 2-level AND-OR logic that precedes it
Example: to latch

$$
d=v w+x y
$$

we substitute for d in the equation for the Earle latch

$$
z=d C+d z+\bar{C} z
$$

to get a "logic+latch" circuit implementing $z=v w+x y$

$$
\begin{aligned}
z & =(v w+x y) C+(v w+x y) z+\bar{C} z \\
& =v w C+x y C+v w z+x y z+\bar{C} z
\end{aligned}
$$

Fig. 25.5 Two-level AND-OR latched realization of the function $z=v w+x y$.

25.4 Parallel and Digit-Serial Pipelines

Fig. 25.6 Flow-graph representation of an arithmetic expression and timing diagram for its evaluation with digit-parallel computation.

Bit-serial addition and multiplication can be done LSB-first, but division and square-rooting are MSB-first operations Besides, division can't be done in pipelined bit-serial fashion, because the MSB of the quotient q in general depends on all the bits of the dividend and divisor
Example: consider the decimal division .1234/.2469

$$
\frac{.1 x x x}{.2 x x x}=. ? x x x \quad \frac{.12 x x}{.24 x x}=. ? x x x \quad \frac{.123 x}{.246 x}=. ? x x x
$$

Solution: redundant number representation!

25.5 On-Line or Digit-Pipelined Arithmetic

Fig. 25.7 Digit-parallel versus digit-pipelined computation.

Fig. 25.8 Digit-pipelined MSD-first carry-free addition.

Fig. 25.9 Digit-pipelined MSD-first limited-carry addition.

Fig. 25.10 Digit-pipelined MSD-first multiplication process.

Fig. 25.11 Digit-pipelined MSD-first BSD multiplier.

Table 25.1 Example of digit-pipelined division showing that three cycles of delay are necessary before quotient digits can be output (radix $=4$, digit set $=[-2,2]$)
Cycle Dividend Divisor $\quad q$ Range q_{-1} Range

1	$(.0 \cdots)_{\text {four }}$	$(.1 \ldots)_{\text {four }}$	(-2/3, 2/3)	[-2, 2]
2	$(.00 \ldots)_{\text {four }}$	$(.1-2 \cdots)_{\text {four }}$	(-2/4, 2/4)	[-2, 2]
3	$(.001 \ldots)_{\text {four }}$	$(.1-2-2 \cdots)_{\text {four }}$	(1/16, 5/16)	[0, 1]
4	$(.0010 \ldots)_{\text {four }}$	$(.1-2-2-2 \cdots)_{\text {fou }}$	(10/64, 14/64)	1

Table 25.2 Examples of digit-pipelined square-root computation showing that 1-2 cycles of delay are necessary before root digits can be output (radix $=10$, digit set $=[-6,6]$, and radix = 2 , digit set $=[-1,1]$).
Cycle Radicand $\quad q$ Range q_{-1} Range

1	$(.3 \cdots)_{\operatorname{ten}}$	$(\sqrt{7 / 30}, \sqrt{11 / 30})$	$[5,6]$
2	$(.34 \cdots)_{\operatorname{ten}}$	$(\sqrt{1 / 3}, \sqrt{26 / 75})$	6

1	$(.0$	$\cdots)_{\mathrm{two}}$	$(0, \sqrt{1 / 2})$
2	$(.01$	$\cdots)_{\mathrm{two}}$	$(0, \sqrt{1 / 2})$
3	$(.011$	$1 \cdots)_{\mathrm{two}}$	$(1 / 2, \sqrt{1 / 2})$

Fig. 25.12 High-level design of a systolic radix-4 digitpipelined multiplier.

26 Low-Power Arithmetic

Go to TOC

Chapter Goals
Learn how to improve the power efficiency
of arithmetic circuits by means of
algorithmic and logic design strategies

Chapter Highlights
Reduced power dissipation needed due to

- limited source (portable, embedded)
- difficulty of heat disposal

Algorithm \& logic-level methods: discussed
Technology \& circuit methods: ignored here

Chapter Contents
26.1. The Need for Low-Power Design
26.2. Sources of Power Consumption
26.3. Reduction of Power Waste
26.4. Reduction of Activity
26.5. Transformations and Tradeoffs
26.6. Some Emerging Methods

26.1 The Need for Low-Power Design

Portable and wearable electronic devices
Nickel-cadmium batteries: 40-50 W-hr per kg of weight
Practical battery weight $<1 \mathrm{~kg}$ ($<0.1 \mathrm{~kg}$ if wearable device)
Total power $\cong 3-5 \mathrm{~W}$ for a day's work between recharges Modern high-performance mircoprocessors use 10s Watts

Power is proportional to die area \times clock frequency Cooling of micros not yet a problem; but for MPPs . . . New battery technologies cannot keep pace with demand Demand for more speed \& functionality (multimedia, etc.)

Fig. 26.1 Power consumption trend in DSPs [Raba98].

26.2 Sources of Power Consumption

Both average and peak power are important
Peak power impacts power distribution and signal integrity
Typically, low-power design aims at reducing both
Power dissipation in CMOS digital circuits
Static: leakage current in imperfect switches (< 10\%)
Dynamic: due to (dis)charging of parasitic capacitance
$P_{\mathrm{avg}} \cong \alpha f C V^{2}$
f : data rate (clock frequency) α : "activity"
Example: A 32-bit off-chip bus operates at 5 V \& 100 MHz and drives a capacitance of 30 pF per bit. If random values were put on the bus in every cycle, we would have $\alpha=0.5$. To account for data correlation and idle bus cycles, assume $\alpha=0.2$. Then:

$$
P_{\mathrm{avg}} \cong \alpha f C V^{2}=0.2 \times 10^{8} \times\left(32 \times 30 \times 10^{-12}\right) \times 5^{2}=0.48 \mathrm{~W}
$$

Once we fix the data rate f, there are but three ways to reduce the power requirements:

1. Using a lower supply voltage V
2. Reducing the parasitic capacitance C
3. Lowering the switching activity α

26.3 Reduction of Power Waste

Fig. 26.2 Saving power through clock gating.

Fig. 26.3 Saving power via guarded evaluation.

Fig. 26.4 Example of glitching in a ripple-carry adder.

Fig. 26.5 An array multiplier with gated FA cells.

26.4 Reduction of Activity

Fig. 26.6 Reduction of activity by precomputation.

Fig. 26.7 Reduction of activity via Shannon expansion.

26.5 Transformations and Tradeoffs

Fig. 26.8 Reduction of power via parallelism or pipelining.

Fig. 26.9 Direct realization of a first-order IIR filter.
Fig. 26.10 Realization of a first-order filter, unrolled once.

Fig. 26.11 Possible realization of a fourth-order FIR filter.
Fig. 26.12 Realization of the retimed fourth-order FIR filter.

26.6 Some Emerging Methods

Fig. 26.13 Part of an asynchronous chain of computations.

Fig. for problem 26.5

27 Fault-Tolerant Arithmetic

Go to TOC

Chapter Goals
 Learn about errors due to hardware faults
 or hostile environmental conditions, and how to deal with or circumvent them

Chapter Highlights
Modern components are very robust, but ...
put millions/billions of them together
and something is bound to go wrong
Can arithmetic be protected via encoding?
Reliable circuits and robust algorithms

Chapter Contents
27.1 Faults, Errors, and Error Codes
27.2 Arithmetic Error-Detecting Codes
27.3 Arithmetic Error-Correcting Codes
27.4 Self-Checking Function Units
27.5 Algorithm-Based Fault Tolerance
27.6 Fault-Tolerant RNS Arithmetic

27.1 Faults, Errors, and Error Codes

Fig. 27.1 A common way of applying information coding techniques.

Fig. 27.2 Arithmetic fault detection or fault tolerance (masking) with replicated units.

Unsigned addition

Correct sum
Erroneous sum

0010011100100001
+0101100011010011
0111111111110100
$100000000000 \underset{\uparrow}{0100}$
Stage generating an erroneous carry of 1

Fig. 27.3 How a single carry error can produce an arbitrary number of bit-errors (inversions).

The arithmetic weight of an error
Minimum number of signed powers of 2 that must be added to the correct value in order to produce the erroneous result (or vice versa).

Examples:

Correct 01111111111101001101111111110100
Erroneous 10000000000001000110000000000100
Difference $\quad 16=2^{4} \quad-32752=-2^{15}+2^{4}$ (error)

Error 0000000000010000 -1000 000000010000 (min-weight
BSD)

Arithmetic
weight of error
Error type Single, positive Double, negative

27.2 Arithmetic Error-Detecting Codes

Arithmetic error-detecting codes:

1. Are characterized by arithmetic weights of detectable errors
2. Allow direct arithmetic on coded operands

a. Product codes or AN codes

Represent N by the product $A N \quad(A=$ check modulus)
For odd A, all weight-1 arithmetic errors are detected
Arithmetic errors of weight ≥ 2 may go undetected e.g., the error $32736=2^{15}-2^{5}$ undetectable with $A=3,11$, or 31

Error detection: check divisibility by A
Encoding/decoding: multiply/divide by A
Arithmetic also requires multiplication and division by A

Low-cost product codes: $A=2^{a}-1$
Multiplication by $A=2^{a}-1$: done by shift-subtract
Division by $A=2^{a}-1$: done a bits at a time as follows
Given $y=\left(2^{a}-1\right) x$, find x by computing $2^{a} x-y$
$\ldots x x x x 0000-\ldots x x x x$ xxxx $=\ldots x x x x$ xxxx
Unknown $2^{a} x \quad$ Known $\left(2^{a}-1\right) x \quad$ Unknown x
Theorem 27.1: Any unidirectional error with arithmetic weight not exceeding $a-1$ is detectable by a low-cost product code using the check modulus $A=2^{a}-1$

Product codes are nonseparate (nonseparable) codes Data and redundant check info are intermixed

Arithmetic on AN-coded operands

Add/subtract is done directly: $A x \pm A y=A(x \pm y)$
Direct multiplication results in: $A a \times A x=A^{2} a x$
The result must be corrected through division by A
For division, if $z=q d+s$, we have: $A z=q(A d)+A s$
Thus, q is unprotected
Possible cure: premultiply the dividend $A z$ by A
The result will need correction
Square rooting leads to a problem similar to division
$\left\lfloor\sqrt{A^{2} x}\right\rfloor=\lfloor A \sqrt{x}\rfloor$ which is not the same as $A\lfloor\sqrt{x}\rfloor$

b. Residue codes

Represent N by the pair $(N, C(N)$, where $C(N)=N \bmod A$
Residue codes are separate (separable) codes Separate data and check parts make decoding trivial

Encoding: given N, compute $C(N)=N \bmod A$
Low-cost residue codes use $A=2 a-1$

Arithmetic on residue-coded operands

Add/subtract: data and check parts are handled separately

$$
(x, C(x)) \pm(y, C(y))=(x \pm y,(C(x) \pm C(y)) \bmod A)
$$

Multiply

$$
(a, C(a)) \times(x, C(x))=(a \times x,(C(a) \times C(x)) \bmod A)
$$

Divide/square-root: difficult

Fig. 27.4 Arithmetic processor with residue checking.

Example: residue-checked adder

27.3 Arithmetic Error-Correcting Codes

Table 27.1 Error syndromes for weight-1 arithmetic errors in the $(7,15)$ biresidue code

Positive error	Error syndrome		Negative error	Error syndrome	
	mod 7	$\bmod 15$		mod 7	mod 15
1	1	1	-1	6	14
2	2	2	-2	5	13
4	4	4	-4	3	11
8	1	8	-8	6	7
16	2	1	-16	5	14
32	4	2	-32	3	13
64	1	4	-64	6	11
128	2	8	-128	5	7
256	4	1	-256	3	14
512	1	2	-512	6	13
1024	2	4	-1024	5	11
2048	4	8	-2048	3	7
4096	1	1	-4096	6	14
8192	2	2	-8192	5	13
16384	4	4	-16384	3	11
32768	1	8	-32768	6	7

Properties of biresidue codes

Biresidue code with relatively prime low-cost check moduli $A=2^{a}-1$ and $B=2^{b}-1$ supports $a \times b$ bits of data for weight-1 error correction

Representational redundancy $=(a+b) /(a b)=1 / a+1 / b$

27.4 Self-Checking Function Units

Self-checking (SC) unit: any fault from a prescribed set does not affect the correct output (masked) or leads to a noncodeword output (detected)
An invalid result is
detected immediately by a code checker or propagated downstream by the next self-checking unit
To build SC units, we need SC code checkers that never validate a noncodeword, even when they are faulty
Example: SC checker for inverse residue code ($N, C^{\prime}(N)$)
N mod A should be the bitwise complement of $C^{\prime}(N)$
Verifying that signal pairs $\left(x_{i}, y_{i}\right)$ are all $(1,0)$ or $(0,1)$
$=$ finding the AND of Boolean values encoded as
$1:(1,0)$ or $(0,1) \quad 0:(0,0)$ or $(1,1)$

Fig. 27.5 Two-input AND circuit, with 2-bit inputs (x_{i}, y_{i}) and ($\boldsymbol{x}_{j}, \boldsymbol{y}_{j}$), for use in a self-checking code checker.

27.5 Algorithm-Based Fault Tolerance

Alternative to error detection at each basic operation: Accept that operations may yield incorrect results Detect/correct errors at data-structure or application level

Example: multiplication of matrices X and Y yielding P Row, column, and full checksum matrices (mod 8)

$$
\begin{array}{ll}
M=\left[\begin{array}{lll}
2 & 1 & 6 \\
5 & 3 & 4 \\
3 & 2 & 7
\end{array}\right] & M_{\mathrm{r}}=\left[\begin{array}{llll}
2 & 1 & 6 & 1 \\
5 & 3 & 4 & 4 \\
3 & 2 & 7 & 4
\end{array}\right] \\
M_{\mathrm{c}}=\left[\begin{array}{lll}
2 & 1 & 6 \\
5 & 3 & 4 \\
3 & 2 & 7 \\
2 & 6 & 1
\end{array}\right] & M_{\mathrm{f}}=\left[\begin{array}{llll}
2 & 1 & 6 & 1 \\
5 & 3 & 4 & 4 \\
3 & 2 & 7 & 4 \\
2 & 6 & 1 & 1
\end{array}\right]
\end{array}
$$

Fig. 27.6 A 3×3 matrix M with its row, column, and full checksum matrices $M_{\mathrm{r}}, M_{\mathrm{c}}$, and M_{i}.

Theorem 27.3: If $P=X \times Y$, we have $P_{\mathrm{f}}=X_{\mathrm{c}} \times Y_{\mathrm{r}}$ With floating-point values, the equalities are approximate Theorem 27.4: In a full-checksum matrix, any single erroneous element can be corrected and any three errors can be detected

27.6 Fault-Tolerant RNS Arithmetic

Residue number systems allow very elegant and effective error detection and correction schemes by means of redundant residues (extra moduli)

Example: RNS(8|7|5|3), Dynamic range $M=8 \times 7 \times 5 \times 3$ = 840; redundant modulus: 11. Any error confined to a single residue is detectable
The redundant modulus must be the largest one, say m
Error detection scheme:
(1) Use other residues to compute the residue of the number mod m (this process is known as base extension)
(2) Compare the computed and actual mod- m residues

The beauty of this method is that arithmetic algorithms are totally unaffected; error detection is made possible by simply extending the dynamic range of the RNS

Example: $\operatorname{RNS}(8|7| 5 \mid 3)$, redundant moduli: 13, 11 $25=(12,3,1,4,0,1)$, erroneous version $=(12,3,1,6,0,1)$
Transform (-,-, $1,6,0,1$) to $(5,1,1,6,0,1)$ via base extension The difference between the first two components of the corrupted and reconstructed numbers is $(+7,+2)$ which is the error syndrome

28 Past, Present, and Future

Go to TOC

Chapter Goals
 Wrap things up, provide perspective, and
 examine arithmetic in a few key systems

Chapter Highlights
One must look at arithmetic in context of

- computational requirements
- technological constraints
- overall system design goals
- past and future developments

Current trends and research directions?

Chapter Contents

28.1 Historical Perspective
28.2 An Early High-Performance Machine
28.3 A Modern Vector Supercomputer
28.4 Digital Signal Processors
28.5 A Widely Used Microprocessor
28.6 Trends and Future Outlook

28.1 Historical Perspective

1940s

Machine arithmetic was crucial in proving the feasibility of computing with stored-program electronic devices
Hardware for addition, use of complement representation, and shift-add multiplication and division algorithms were developed and fine-tuned
A seminal report by A.W. Burkes, H.H. Goldstein, and J. von Neumann contained ideas on choice of number radix, carry propagation chains, fast multiplication via carry-save addition, and restoring division
State of computer arithmetic circa 1950: overview paper by R.F. Shaw [Shaw50]

1950s

The focus shifted from feasibility to algorithmic speedup methods and cost-effective hardware realizations
By the end of the decade, virtually all important fast-adder designs had already been published or were in the final phases of development
Rresidue arithmetic, SRT division, CORDIC algorithms were proposed and implemented
Snapshot of the field circa 1960: overview paper by O.L. MacSorley [MacS61]

1960s

Tree multipliers, array multipliers, high-radix dividers, convergence division, redundant signed-digit arithmetic were introduced
Implementation of floating-point arithmetic operations in hardware or firmware (in microprogram) became prevalent Many innovative ideas originated from the design of early supercomputers, when the demand for high performance, along with the still high cost of hardware, led designers to novel and cost-effective solutions.
Examples: IBM System/360 Model 91 [Ande67] CDC 6600 [Thor70]

1970s

Advent of microprocessors and vector supercomputers Early LSI chips were quite limited in the number of transistors or logic gates that they could accommodate Microprogrammed control (with just a hardware adder) was a natural choice for single-chip processors which were not yet expected to offer high performance
For high end machines, pipelining methods were perfected to allow the throughput of arithmetic units to keep up with computational demand in vector supercomputers
Example: Cray 1 supercomputer and its successors

1980s

Spread of VLSI triggered a reconsideration of all arithmetic designs in light of interconnection cost and pin limitations
For example, carry-lookahead adders, that appeared to be ill-suited to VLSI, were shown to be efficiently realizable after suitable modifications. Similar ideas were applied to more efficient VLSI tree and array multipliers
Bit-serial and on-line arithmetic were advanced to deal with severe pin limitations in VLSI packages
Arithmetic-intensive signal processing functions became driving forces for low-cost and/or high-performance embedded hardware: DSP chips

1990s

No breakthrough design concept
Demand for performance led to fine-tuning of arithmetic algorithms and implementations (many hybrid designs) Increasing use of table lookup and tight integration of arithmetic unit and other parts of the processor for maximum performance

Clock speeds reached and surpassed 100, 200, 300, 400, and 500 MHz in rapid succession; pipelining used to ensure smooth flow of data through the system
Example: Intel's Pentium Pro (P6) \rightarrow Pentium II

28.2 An Early High-Performance Machine

Fig. 28.1 Overall structure of the IBM System/360 Model 91 floating-point execution unit.

28.3 A Modern Vector Supercomputer

Fig. 28.2 The vector section of one of the processors in the Cray X-MP/Model 24 supercomputer.

Pipeline setup and shutdown overheads

Vector unit not efficient for short vectors (break-even point) Pipeline chaining

28.4 Digital Signal Processors

Fig. 28.3 Block diagram of the data ALU in Motorola's DSP56002 (fixed-point) processor.

Example DSP instructions

ADD A, B
SUB X, A
MPY $\pm X 1, X 0, B$
MAC $\pm \mathrm{Y} 1, \mathrm{X} 1, \mathrm{~A}$
AND $\mathrm{X} 1, \mathrm{~A}$
$\{A-X \rightarrow A\}$
$\{ \pm \mathrm{X} 1 \times \mathrm{X} 0 \rightarrow \mathrm{~B}\}$
$\{A+B \rightarrow B\}$
$\{\mathrm{A} \pm \mathrm{Y} 1 \times \mathrm{X} 1 \rightarrow \mathrm{~A}\}$
$\{\mathrm{A}$ AND $\mathrm{X} 1 \rightarrow \mathrm{~A}\}$

Fig. 28.4 Block diagram of the data ALU in Motorola's DSP96002 (floating-point) processor.

28.5 A Widely Used Microprocessor

Performance trends in Intel micros

Fig. 28.5 Key parts of the CPU in the Intel Pentium Pro (P6) microprocessor.

28.6 Trends and Future Outlook

Present focus areas

Design: Shift of attention from algorithms to optimizations at the level of transistors and wires

This explains the proliferation of hybrid designs
Technology: Predominantly CMOS, with a phenomenol rate of improvement in size/speed

New technologies cannot compete
Applications: Shift from high-speed or high-throughput designs in mainframes to embedded systems requiring

low cost

low power

Trends and ongoing debates

Renewed interest in bit- and digit-serial arithmetic as mechanisms to reduce the VLSI area and to improve packageability and testability

Synchronous versus asynchronous design (asynchrony has some overhead, but an equivalent overhead is being paid for clock distribution and/or systolization)

New design paradigms may alter the way in which we view or design arithmetic circuits

Neuronlike computational elements
Optical computing (redundant representations)
Multivalued logic (match to high-radix arithmetic)
Configurable logic
Arithmetic complexity theory

THE END!

"You're up to date. Take my advice and try to keep it that way. It'll be tough to do; make no mistake about it. The phone will ring and it'll be the administrator - talking about budgets. The doctors will come in, and they'll want this bit of information and that. Then you'll get the salesman. Until at the end of the day you'll wonder what happened to it and what you've accomplished; what you've achieved.
"That's the way the next day can go, and the next, and the one after that. Until you find a year has slipped by, and another, and another. And then suddenly, one day, you'll find everything you knew is out of date. That's when it's too late to change.
"Listen to an old man who's been through it all, who made the mistake of falling behind. Don't let it happen to you! Lock yourself in a closet if you have to! Get away from the phone and the files and paper, and read and learn and listen and keep up to date. Then they can never touch you, never say, 'He's finished, all washed up; he belongs to yesterday.'

Arthur Hailey, The Final Diagnosis

How to keep up to date:

IEEE Trans. Computers
Symp. Computer Arithmetic, aka ARITH-n, in odd years

Go to TOC

