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Preface to the Instructor’s Manual 

This instructor’s manual consists of two volumes. Volume 1 presents solutions to selected 
problems and includes additional problems (many with solutions) that did not make the cut for 
inclusion in the text Computer Arithmetic: Algorithms and Hardware Designs (Oxford 
University Press, 2000) or that were designed after the book went to print. Volume 2 contains 
enlarged versions of the figures and tables in the text as well as additional material, presented in 
a format that is suitable for use as transparency masters.  

The fall 2001 edition Volume 1, which consists of the following parts, is available to qualified 
instructors through the publisher: 

Volume 1 Part I  Selected solutions and additional problems 

   Part II  Question bank, assignments, and projects 

The fall 2001 edition of Volume 2, which consists of the following parts, is available as a large 
file in postscript format through the book’s Web page: 

Volume 2 Parts I-VII Lecture slides and other presentation material 

The book’s Web page, given below, also contains an errata and a host of other material (please 
note the upper-case “F” and “P” and the underscore symbol after “text” and “comp”: 

http://www.ece.ucsb.edu/Faculty/Parhami/text_comp_arit.htm 

The author would appreciate the reporting of any error in the textbook or in this manual, 
suggestions for additional problems, alternate solutions to solved problems, solutions to other 
problems, and sharing of teaching experiences. Please e-mail your comments to  

 parhami@ece.ucsb.edu 

or send them by regular mail to the author’s postal address: 

 Department of Electrical and Computer Engineering 
 University of California 
 Santa Barbara, CA 93106-9560, USA 

Contributions will be acknowledged to the extent possible. 

 
      Behrooz Parhami 
      Santa Barbara, Fall 2001 
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Part I Number Representation 

Part Goals 
 Review fixed-point number systems 
  (floating-point covered in Part V) 
 Learn how to handle signed numbers 
 Discuss some unconventional methods 
 
Part Synopsis 
  Number representation is is a key element 
  affecting hardware cost and speed 
 Conventional, redundant, residue systems 
 Intermediate vs endpoint representations 
 Limits of fast arithmetic 
 
Part Contents 
Chapter 1 Numbers and Arithmetic 
Chapter 2 Representing Signed Numbers 
Chapter 3 Redundant Number Systems 
Chapter 4 Residue Number Systems 
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1 Numbers and Arithmetic 

   Go to TOC 
Chapter Goals 
 Define scope and provide motivation 
 Set the framework for the rest of the book 
 Review positional fixed-point numbers 
 
Chapter Highlights 
 What goes on inside your calculator? 
 Ways of encoding numbers in k bits 
 Radix and digit set: conventional, exotic 
 Conversion from one system to another 
 
Chapter Contents 
1.1 What is Computer Arithmetic? 
1.2 A Motivating Example 
1.3 Numbers and Their Encodings 
1.4 Fixed-Radix Positional Number Systems 
1.5 Number Radix Conversion 
1.6 Classes of Number Representations 
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1.1 What Is Computer Arithmetic? 

Pentium Division Bug (1994-95): Pentium’s radix-4 SRT 
algorithm occasionally produced an incorrect quotient  
First noted in 1994 by T. Nicely who computed sums of 
reciprocals of twin primes:  

1/5 + 1/7 + 1/11 + 1/13 + . . . + 1/p + 1/(p + 2) + . . . 
Worst-case example of division error in Pentium: 
 

4 195 835 

3 145 727 

1.333 820 44... 
1.333 739 06... 

c = = 
Correct quotient 

circa 1994 Pentium   
double FLP value;  

 accurate to only 14 bits  
(worse than single!) 

 
Humor, circa 1995 

Top Ten New Intel Slogans for the Pentium: 
 
9.999 997 325 It’s a FLAW, dammit, not a bug 
8.999 916 336 It’s close enough, we say so 
7.999 941 461 Nearly 300 correct opcodes 
6.999 983 153 You don’t need to know what’s inside 
5.999 983 513 Redefining the PC –– and math as well 
4.999 999 902 We fixed it, really 
3.999 824 591 Division considered harmful 
2.999 152 361 Why do you think it’s called “floating” point? 
1.999 910 351 We’re looking for a few good flaws 
0.999 999 999 The errata inside 
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 Hardware (our focus in this book) Software  ––––––––––––––––––––––––––––––––  –––––––––––––––––––––––––––  
 Design of efficient digital circuits for Numerical methods for solving 
 primitive and other arithmetic operations systems of linear equations, 
 such as +, –, ×, ÷, √, log, sin, and cos partial differential equations, etc. 
 
 Issues:  Algorithms Issues:  Algorithms 
  Error analysis  Error analysis 
  Speed/cost tradeoffs  Computational complexity 
  Hardware implementation  Programming 
  Testing, verification  Testing, verification 
 
     General-Purpose Special-Purpose      –––––––––––––– –––––––––––––––– 
     Flexible data paths  Tailored to application 
     Fast primitive     areas such as: 
     operations like  Digital filtering 
     +, –, ×, ÷, √ Image processing 
  Benchmarking Radar tracking 

 Fig. 1.1 The scope of computer arithmetic. 
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1.2 A Motivating Example 

Using a calculator with √, x2, and xy functions, compute: 

u =  ... 2   =  1.000 677 131   “1024th root of 2” 
 ----------- 
   10 times       
v  =  21/1024      =  1.000 677 131   

Save u and v; If you can’t, recompute when needed.    
       10 times     ----------- 
x  = (((u2)2)...)2  =  1.999 999 963 

x'  =  u1024     =  1.999 999 973  
       10 times     ----------- 
y = (((v2)2)...)2  =  1.999 999 983 

y' = v1024       =  1.999 999 994  

Perhaps v and u are not really the same value.  

w = v – u  = 1 × 10–11  Nonzero due to hidden digits     

(u – 1) × 1000   =  0.677 130 680   [Hidden  ... (0) 68] 
(v – 1) × 1000    =  0.677 130 690    [Hidden  ... (0) 69] 

A simple analysis: 

v1024 = (u + 10–11)1024 ≅  u1024 + 1024 × 10–11u1023  

            ≅  u1024 + 2 × 10–8   
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Finite Precision Can Lead to Disaster 
 

Example: Failure of Patriot Missile (1991 Feb. 25) 
 Source http://www.math.psu.edu/dna/455.f96/disasters.html 
 
American Patriot Missile battery in Dharan, Saudi Arabia,  
 failed to intercept incoming Iraqi Scud missile 
The Scud struck an American Army barracks, killing 28  
 
Cause, per GAO/IMTEC-92-26 report: “software problem” 
 (inaccurate calculation of the time since boot) 
 
Specifics of the problem: time in tenths of second  
 as measured by the system’s internal clock  
 was multiplied by 1/10 to get the time in seconds  
Internal registers were 24 bits wide 
1/10 = 0.0001 1001 1001 1001 1001 100 (chopped to 24 b) 
Error ≅  0.1100 1100 × 2–23 ≅  9.5 × 10–8 
Error in 100-hr operation period  
   ≅  9.5 × 10–8 × 100 × 60 × 60 × 10 = 0.34 s 
Distance traveled by Scud = (0.34 s) × (1676 m/s) ≅  570 m 
This put the Scud outside the Patriot’s “range gate” 
 
Ironically, the fact that the bad time calculation  
 had been improved in some (but not all) code parts 
 contributed to the problem,  
 since it meant that inaccuracies did not cancel out  
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Finite Range Can Lead to Disaster 
 
Example: Explosion of Ariane Rocket (1996 June 4) 
 Source http://www.math.psu.edu/dna/455.f96/disasters.html  
 
Unmanned Ariane 5 rocket  
 launched by the European Space Agency 
 veered off its flight path, broke up, and exploded 
 only 30 seconds after lift-off (altitude of 3700 m) 
 
The $500 million rocket (with cargo) was on its 1st voyage 
 after a decade of development costing $7 billion 
 
Cause: “software error in the inertial reference system” 
 
Specifics of the problem: a 64 bit floating point number  
 relating to the horizontal velocity of the rocket 
 was being converted to a 16 bit signed integer 
 
An SRI* software exception arose during conversion 
 because the 64-bit floating point number  
 had a value greater than what could be represented  
 by a 16-bit signed integer (max 32 767) 
 
*SRI stands for Système de Référence Inertielle  
 or Inertial Reference System 
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1.3 Numbers and Their Encodings 

Numbers versus their representations (numerals)  
 
The number “twenty-seven” can be represented in 
different ways using numerals or numeration systems: 
 
||||| ||||| ||||| ||||| ||||| || sticks or unary code 
 
27    radix-10 or decimal code (27)ten  
11011   radix-2 or binary code  (11011)two  
XXVII    Roman numerals  
 
 
 
Encoding of digit sets as binary strings: BCD example 
 
    Digit  BCD representation 

0   0 0 0 0   
1   0 0 0 1 
2   0 0 1 0 
3   0 0 1 1 
4   0 1 0 0 
5   0 1 0 1 
6   0 1 1 0 
7   0 1 1 1 
8   1 0 0 0 
9   1 0 0 1 
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Encoding of numbers in 4 bits: 

 
Unsigned integer ± Signed integer 

Signed fraction 2's-compl fraction 

Floating point Logarithmic 

Fixed point, 3+1 

± 

e s log x 

Radix  
point 

 
 
 

0 2 4 6 8 10 12 14 16 −2 −4 −6 −8 −10 −12 −14 −16 

Unsigned integers 

Signed-magnitude 

3 + 1 fixed-point, xxx.x 

Signed fractions, ±.xxx 

2’s-compl. fractions, x.xxx 

2 + 2 floating-point, s × 2^e 
      e in [−2, 1], s in [0, 3] 

2 + 2 logarithmic (log = xx.xx) 
  

Fig. 1.2 Some of the possible ways of assigning 16 distinct 
codes to represent numbers.  
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1.4 Fixed-Radix Positional Number Systems 

 ( xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l )r  = ∑
i=–l

k–1
 xi r

i  

One can generalize to:  
arbitrary radix (not necessarily integer, positive, constant)  
arbitrary digit set, usually  {–α, –α+1, ... , β–1, β} = [–α, β] 
 
Example 1.1. Balanced ternary number system:  
 radix r = 3,  digit set = [–1, 1] 
 
Example 1.2. Negative-radix number systems:  
 radix –r,  r ≥ 2, digit set = [0, r – 1] 
 
 The special case with radix –2 and digit set [0, 1]  
 is known as the negabinary number system 
 
Example 1.3. Digit set [–4, 5] for r = 10:   
 (3  -1   5)ten     represents    295 = 300 – 10 + 5  
 
Example 1.4. Digit set [–7, 7] for r = 10:   
 (3  -1   5)ten  =  (3   0  -5)ten  =   (1  -7   0  -5)ten   
 
Example 1.7. Quater-imaginary number system: 
 radix r = 2j, digit set [0, 3]. 
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1.5 Number Radix Conversion 

u  = w . v  

 = ( xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l )r    Old 

 = ( XK–1XK–2 . . . X1X0 . X–1X–2 . . . Xx–L )R New 

Radix conversion: arithmetic in the old radix r   

Converting whole part w:  (105)ten = (?)five 
Repeatedly divide by five  Quotient Remainder 
 105 0 
 21 1 
 4 4  
 0 
Therefore, (105)ten = (410)five   
 
Converting fractional part v: (105.486)ten = (410.?)five 
Repeatedly multiply by five  Whole Part Fraction    
             .486 
        2     .430 
        2     .150 
        0     .750 
        3     .750 
        3     .750               
Therefore, (105.486)ten ≅  (410.22033)five   
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Radix conversion: arithmetic in the new radix R   

Converting the whole part w 
  ((((2 × 5) + 2) × 5 + 0) × 5 + 3) × 5 + 3  
     |-----|    :        :        :        :     
        10      :        :        :        :     
    |-----------|        :        :        :     
          12             :        :        :     
   |---------------------|        :        :     
             60                   :        :     
  |-------------------------------|        :     
                303                        :     
 |-----------------------------------------|     
                    1518   

Fig. 1.A Horner’s rule used to convert (22033)five to decimal. 

Converting fractional part v: (410.22033)five = (105.?)ten 

 (0.22033)five × 55 = (22033)five = (1518)ten  

 1518 / 55 = 1518 / 3125 = 0.48576  
Therefore, (410.22033)five = (105.48576)ten     

 (((((3 / 5) + 3) / 5 + 0) / 5 + 2) / 5 + 2) / 5 
     |-----|    :        :        :        :     
       0.6      :        :        :        :     
    |-----------|        :        :        :     
         3.6             :        :        :     
   |---------------------|        :        :     
            0.72                  :        :     
  |-------------------------------|        :     
               2.144                       :     
 |-----------------------------------------|     
                  2.4288                        
|-----------------------------------------------| 
                     0.48576 

Fig. 1.3 Horner’s rule used to convert (0.22033)five to 
decimal. 
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1.6 Classes of Number Representations 

Integers (fixed-point), unsigned: Chapter 1 
 
Integers (fixed-point), signed  
 
 signed-magnitude, biased, complement: Chapter 2 
 
 signed-digit: Chapter 3 
  (but the key point of Chapter 3 is  
  use of redundancy for faster arithmetic, 
  not how to represent signed values) 
 
 residue number system: Chapter 4 
  (again, the key to Chapter 4 is  
  use of parallelism for faster arithmetic,  
  not how to represent signed values) 
 
Real numbers, floating-point: Chapter 17 
 covered in Part V, just before real-number arithmetic 
 
Real numbers, exact: Chapter 20 
 continued-fraction, slash, ... (for error-free arithmetic)  
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2 Representing Signed Numbers 

   Go to TOC 
Chapter Goals 
 Learn different encodings of the sign info 
 Discuss implications for arithmetic design 
 
Chapter Highlights 
 Using sign bit, biasing, complementation 
 Properties of 2’s-complement numbers 
 Signed vs unsigned arithmetic 
 Signed numbers, positions, or digits 
 
Chapter Contents 
2.1 Signed-Magnitude Representation 
2.2 Biased Representations 
2.3 Complement Representations 
2.4 Two’s- and 1’s-Complement Numbers 
2.5 Direct and Indirect Signed Arithmetic 
2.6 Using Signed Positions or Signed Digits 
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When Numbers Go into the Red! 
 
 
 

 
 

      “This can’t be right ... It goes into the red.”   
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2.1 Signed-Magnitude Representation 

 

0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 

1000 

0101 1011 

0110 1010 

0111 1001 

0 
+1 

+3 

+4 

+5 

+6 
+7 

-7 

-3 

-5 

-4 

-0 
-1 

+2
- 

+ _  

Bit pattern 
(representation) 

Signed values 
(signed magnitude) 

+2 -6 

Increment Decrement 

 

Fig. 2.1 Four-bit signed-magnitude number representation 
system for integers. 

Adder cc

s

x ySign x Sign y

Sign

Sign s

Selective          
Complement

Selective          
Complement

out in

Comp x

Control 

Comp s

Add/Sub
__

 

Fig. 2.2 Adding signed-magnitude numbers using 
precomplementation and postcomplementation. 
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2.2 Biased Representations 

 

0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 

1000 

0101 1011 

0110 1010 

0111 1001 

-8 
-7 

-5 

-4 

-3 

-2 
-1 

+7 

+3 

+5 

+4 

 0 
+1 

+2 

+ 
_  

Bit pattern 
(representation) 

Signed values 
(biased by 8) 

-6 +6 

Increment Increment 

 

Fig. 2.3 Four-bit biased integer number representation 
system with a bias of 8. 

 
Addition/subtraction of biased numbers 
 
 x + y + bias  =  (x + bias) + (y + bias) – bias 
 x – y + bias  =  (x + bias) – (y + bias) + bias 
 
A power-of-2 (or 2a – 1) bias simplifies the above 
 
Comparison of biased numbers: 
 compare like ordinary unsigned numbers 
 find true difference by ordinary subtraction 
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2.3 Complement Representations 

 

0 
1 

2 

3 

4 

M - N  

P 

+0 
+1 

+3 

+4 

-1 

+ 
_  

Unsigned 
representations 

Signed values 

+2 -2 

+ P 
- N 

M - 1 

M - 2 

Increment Decrement 

 

Fig. 2.4 Complement representation of signed integers. 

Table 2.1 Addition in a complement number system with 
complementation constant M and range [–N, +P] 

––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Desired   Computation to be   Correct result    Overflow 
operation  performed mod M   with no overflow   condition 
––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 (+x) + (+y)  x + y          x + y         x + y > P 

(+x) + (–y)  x + (M – y)      x – y if y ≤ x     N/A 
               M – (y – x) if y > x 

(–x) + (+y)  (M – x) + y     y – x if x ≤ y     N/A 
               M – (x – y) if x > y 

(–x) + (–y)  (M – x) + (M – y)    M – (x + y)     x + y > N 
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Example -- complement system for fixed-point numbers: 
 
 complementation constant M = 12.000 
 fixed-point number range [–6.000, +5.999] 
 represent –3.258 as 12.000 – 3.258 = 8.742 
 
Auxiliary operations for complement representations 
 complementation or change of sign (computing M – x)  
 computations of residues mod M  
 
Thus M must be selected to simplify these operations 
 
Two choices allow just this for fixed-point radix-r arithmetic  
 with k whole digits and l fractional digits 
 
 Radix complement    M = rk 
  

Digit complement     M = rk – ulp  
(diminished radix complement) 

 
ulp (unit in least position) stands for r−l  
 it allows us to forget about l even for nonintegers 
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2.4 Two’s- and 1’s-Complement Numbers 

Two’s complement = radix complement system for r = 2 

 2k – x = [(2k – ulp) – x] + ulp = xcompl + ulp 
 
Range of representable numbers in with k whole bits: 

    from –2k–1 to 2k–1 – ulp   

 

 

0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 

1000 

0101 1011 

0110 1010 

0111 1001 

+0 
+1 

+3 

+4 

+5 

+6 
+7 

-1 

-5 

-3 

-4 

-8 
-7 

-6 

+ _  

Unsigned 
representations 

Signed values 
(2’s complement) 

+2 -2 

 

Fig. 2.5 Four-bit 2’s-complement number representation 
system for integers. 

Range/precision extension for 2’s-complement numbers 

 ... xk–1xk–1xk–1xk–1xk–2 ... x1x0 . x–1x–2 ... x–l 0 0 0 ... 

 � Sign extension � Sign Extension 
  bit 
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One’s complement = digit complement system for r = 2 

 (2k – ulp) – x = xcompl  

 
Mod-(2k – ulp) operation is done via end-around carry 
 (x + y) – (2k – ulp) = x – y – 2k + ulp 
 
Range of representable numbers with k whole bits: 

       from –2k–1 to 2k–1 – ulp   

 

 

0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 

1000 

0101 1011 

0110 1010 

0111 1001 

+0 
+1 

+3 

+4 

+5 

+6 
+7 

-0 

-4 

-2 

-3 

-7 
-6 

-5 

+ _  

Unsigned 
representations 

Signed values 
(1’s complement) 

+2 -1 

 

Fig. 2.6 Four-bit 1’s-complement number representation 
system for integers. 
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Table 2.2 Comparing radix- and digit-complement number 
representation systems 

––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Feature/Property   Radix complement    Digit complement 
––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Symmetry (P = N?)  Possible for odd r    Possible for even r 
         (radices of practical 
    interest are even) 

Unique zero?     Yes           No 

Complementation   Complement all digits   Complement all digits 
    and add ulp 

Mod-M addition    Drop the carry-out     End-around carry 
––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 

Mux 

Adder 

0      1 

x y 

y or y 
_ 

s = x ± y 

add/sub 
___ 

c in 

Controlled 
complementation 

0 for addition,  
1 for subtraction 

c out 

 

Fig. 2.7 Adder/subtractor architecture for two’s-complement 
numbers. 
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2.5 Direct and Indirect Signed Arithmetic 

x y

f

x y

f(x, y)

Sign  
logic

Unsigned 
operation

Sign removal

f(x, y)

Adjustment

 

Fig. 2.8 Direct vs indirect operation on signed numbers. 

 
Advantage of direct signed arithmetic 
 usually faster (not always) 
 
Advantages of indirect signed arithmetic 
 can be simpler (not always) 
 allows sharing of signed/unsigned hardware  
  when both operation types are needed 
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2.6 Using Signed Positions or Signed Digits 

A very important property of 2’s-complement numbers that 
is used extensively in computer arithemetic: 

 x = ( 1  0  1  0  0  1  1  0 )two's-compl    

         –27  26  25  24 23  22  21  20 

       –128  + 32          + 4 + 2         =  –90 

 Check: 

  x  = ( 1  0  1  0  0  1  1  0 )two's-compl    

 –x = ( 0  1  0  1  1  0  1  0 )two   

         –27 26  25  24 23  22  21  20 

              64    + 16 +  8     + 2          =    90    

Fig. 2.9 Interpreting a 2’s-complement number as having a 
negatively weighted most-significant digit. 

 

Generalization: associate a sign with each digit position 

 λ = (λk–1λk–2 ... λ1λ0 . λ–1λ–2 ... λ–l )  λi  in {–1, 1} 

 (xk–1xk–2 ... x1x0 . x–1x–2 ... x–l )r, λ = ∑
i=–l

k–1
  λi xi r

i 

 λ =   1  1 1 ...   1  1 1   1  positive-radix 
 λ = –1  1 1 ...   1  1 1   1  two’s-complement 
 λ =      ... –1  1 –1   1  negative-radix 
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Signed digits: associate signs not with digit positions but 
with the digits themselves 
 

       3   1   2   0   2   3  Original digits in [0, 3] 
      |    |    |    |    |    | 

   –1   1   2   0   2 –1  Rewritten digits in [–1, 2] 
���������� ��� ��� ���� ��� ���� ��

   1   0   0   0   0   1       Transfer digits in [0, 1] 
   –––––––––––––––––– 
   1 –1   1   2   0   3 –1  Sum digits in [–1, 3] 
  |    |    |    |    |    |    | 

   1 –1   1   2   0 –1 –1  Rewritten digits in [–1, 2] 
���������� ��� ��� ���� ��� ���� ��

   0   0   0   0   1   0       Transfer digits in [0, 1] 
   –––––––––––––––––– 
   1 –1   1   2   1 –1 –1  Sum digits in [–1, 3] 

Fig. 2.10 Converting a standard radix-4 integer to a radix-4 
integer with the non-standard digit set [–1, 2]. 

       3   1   2   0   2   3  Original digits in [0, 3] 
      |    |    |    |    |    | 

   –1   1 –2   0 –2 –1  Interim digits in [–2, 1] 
���������� ��� ��� ���� ��� ���� ��

   1   0   1   0   1   1       Transfer digits in [0, 1] 
   –––––––––––––––––– 
   1 –1   2 –2   1 –1 –1  Sum digits in [–2, 2] 

Fig. 2.11 Converting a standard radix-4 integer to a radix-4 
integer with the non-standard digit set [–2, 2]. 
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3 Redundant Number Systems 

   Go to TOC 
Chapter Goals 
 Explore the advantages and drawbacks  
 of using more than r digit values in radix r 
 
Chapter Highlights 
 Redundancy eliminates long carry chains 
 Redundancy takes many forms: tradeoffs 
 Conversions between redundant  
  and nonredundant representations 
 Redundancy used for end values too? 
 
Chapter Contents 
3.1 Coping with the Carry Problem 
3.2 Redundancy in Computer Arithmetic 
3.3 Digit Sets and Digit-Set Conversions 
3.4 Generalized Signed-Digit Numbers 
3.5 Carry-Free Addition Algorithms 
3.6 Conversions and Support Functions 
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3.1 Coping with the Carry Problem 

The carry problem can be dealt with in several ways: 
1.  Limit carry propagation to within a small number of bits 
2.  Detect end of propagation; don’t wait for worst case 
3.  Speed up propagation via lookahead etc. 
4.  Ideal: Eliminate carry propagation altogether! 
 

        5   7   8   2   4   9   
  +      6   2   9   3   8   9  Operand digits in [0, 9] 
     ––––––––––––––––– 
      11   9 17   5 12 18    Position sums in [0, 18]  

 But how can we extend this beyond a single addition? 

      11   9 17 10 12 18   
  +    6 12   9 10   8 18  Operand digits in [0, 18] 
     ––––––––––––––––– 
      17 21 26 20 20 36  Position sums in [0, 36] 
         |     |    |    |    |    | 

          7 11 16   0 10 16  Interim sums in [0, 16] 
����������� ���� ���� ���� ���� ��������

      1   1   1   2   1   2       Transfer digits in [0, 2] 
   ––––––––––––––––––– 
    1   8 12 18   1 12 16  Sum digits in [0, 18] 

Fig. 3.1 Adding radix-10 numbers with digit set [0, 18]. 
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Position sum decomposition [0, 36]  = 10 × [0, 2] + [0, 16] 

Absorption of transfer digit  [0, 16]  +  [0, 2]  =  [0, 18] 

So, redundancy helps us achieve carry-free addition 

But how much redundancy is actually needed? 

 

      11 10   7 11   3   8   
  +     7   2   9 10   9   8  Operand digits in [0, 11] 
     –––––––––––––––––– 
      18 12 16 21 12 16  Position sums in [0, 22] 
         |     |    |    |    |    | 

        8   2   6   1   2   6  Interim sums in [0, 9] 
���������� �����������������������������

    1   1   1   2   1   1       Transfer digits in [0, 2] 
   –––––––––––––––––––– 
    1   9   3   8   2   3   6  Sum digits in [0, 11] 

Fig. 3.3 Adding radix-10 numbers with digit set [0, 11]. 

s i+1 s i–1s i

+1 i+1 xi–1,yi–1,xixi+1,yi+1 yi

(b) Two-stage carry-free.

s i+1 s i–1s i

ti

(c) Single-stage with lookahead.

s i+1 s i–1s i

xi–1,yi–1,xixi+1,yi+1 yi

(a) Ideal single-stage carry-free. 
   

(Impossible for positional 
system with fixed digit set)

 

Fig. 3.2 Ideal and practical carry-free addition schemes. 
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3.2 Redundancy in Computer Arithmetic 

Oldest example of redundancy in computer arithmetic is 
the stored-carry representation (carry-save addition): 

        0   0   1   0   0   1  First binary number   
  +    0   1   1   1   1   0  Add 2nd binary number 
     –––––––––––––––––– 
        0   1   2   1   1   1  Position sums in [0, 2] 
  +    0   1   1   1   0   1  Add 3rd binary number 
     –––––––––––––––––– 
        0   2   3   2   1   2  Position sums in [0, 3] 
         |     |    |    |    |    | 

        0   0   1   0   1   0  Interim sums in [0, 1] 
���������� �����������������������������

    0   1   1   1   0   1       Transfer digits in [0, 1] 
     –––––––––––––––––– 
        1   1   2   0   2   0  Position sums in [0, 2] 
  +     0   0   1   0   1   1  Add 4th binary number 
     –––––––––––––––––– 
        1   1   3   0   3   1  Position sums in [0, 3] 
         |     |    |    |    |    | 

        1   1   1   0   1   1  Interim sums in [0, 1] 
���������� �����������������������������

    0   0   1   0   1   0       Transfer digits in [0, 1] 
     –––––––––––––––––– 
        1   2   1   1   1   1  Sum digits in [0, 2] 

Fig. 3.4 Addition of 4 binary numbers, with the sum obtained 
in stored-carry form. 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 34 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

Possible 2-bit encoding for binary stored-carry digits: 
 
 0 represented as 0  0 
 1 represented as 0  1    or    1  0 
 2 represented as 1  1 
 

Binary 
Full 
Adder 
(Stage i)

c incout

Digit in [0, 2] Binary digit

Digit in [0, 2]

To  
Stage  
i+1

From 
Stage 
i – 1

x y

s

 

Fig. 3.5 Carry-save addition using an array of independent 
binary full adders. 
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3.3 Digit Sets and Digit-Set Conversions 

Example 3.1:  Convert from digit set [0, 18]  
    to the digit set [0, 9] in radix 10. 

   11   9 17 10 12 18     Rewrite 18 as 10 (carry 1) + 8 
   11   9 17 10 13   8     13 = 10 (carry 1) + 3 
   11   9 17 11   3   8     11 = 10 (carry 1) + 1 
   11   9 18   1   3   8  18 = 10 (carry 1) + 8 
   11 10   8   1   3   8  10 = 10 (carry 1) + 0 
   12   0   8   1   3   8  12 = 10 (carry 1) + 2 
   1   2   0   8   1   3   8  Answer; all digits in [0, 9] 

 
Example 3.2:  Convert from digit set [0, 2]  
    to digit set [0, 1] in radix 2. 

          1   1   2   0   2   0  Rewrite 2 as 2 (carry 1) + 0 
          1   1   2   1   0   0  2 = 2 (carry 1) + 0  
          1   2   0   1   0   0  2 = 2 (carry 1) + 0 
          2   0   0   1   0   0  2 = 2 (carry 1) + 0 
   1   0   0   0   1   0   0  Answer; all digits in [0, 1] 

 
 Another way: Decompose the carry-save number  
 into two numbers and add them: 

          1   1   1   0   1   0   First number: “Sum” bits 
  +      0   0   1   0   1   0  Second number: “Carry” bits 
   –––––––––––––––––––– 
   1   0   0   0   1   0   0     Sum of the two numbers 
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Example 3.3:  Convert from digit set [0, 18]  
    to the digit set [–6, 5] in radix 10  
    (same as Example 3.1, but with an  
    asymmetric target digit set) 

   11   9 17 10 12 18     Rewrite 18 as 20 (carry 2) – 2 
   11   9 17 10 14 –2     14 = 10 (carry 1) + 4   [or 20 – 6] 
   11   9 17 11   4 –2     11 = 10 (carry 1) + 1 
   11   9 18   1   4 –2  18 = 20 (carry 1) + –2 
   11 11 –2   1   4 –2  11 = 10 (carry 1) + 1 
   12   1 –2   1   4 –2  12 = 10 (carry 1) + 2 
   1   2   1 –2   1   4 –2  Answer; all digits in [0, 9] 

 
Example 3.4:  Convert from digit set [0, 2]  
    to digit set [–1, 1] in radix 2  
    (same as Example 3.2, but with the  
    target digit set [–1, 1] instead of [0, 1])  

 Carry-free conversion: 

       1   1   2   0   2   0  Given carry-save number 
     –1 –1   0   0   0   0  Interim digits in [–1, 0]  
    1    1   1   0   1   0     Transfer digits in [0, 1] 
   –––––––––––––––––––– 
 1   0   0   0   1   0   0  Answer; all digits in [0, 1] 
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3.4 Generalized Signed-Digit Numbers 

Radix r 
Digit set [–α, β]  feasibility requirement  α + β + 1 ≥ r 
Redundancy index ρ = α + β + 1 – r 
 

Radix-r Positional
ρ = 0 ρ ≥ 1

Non-redundant

α = 0 α ≥ 1

Conventional Non-redundant 
signed-digit

Generalized 
signed-digit (GSD)

ρ = 1 ρ ≥ 2

Minimal 
GSD

Non-minimal 
GSD

α = β
(even r)

α ≠ β

Symmetric 
minimal GSD

r = 2

BSD or 
BSB

Asymmetric 
minimal GSD

α = 0 α = 1
(r ° 2)

Stored- 
carry (SC)

Non-binary 
SB

Symmetric non- 
minimal GSD

α = β α ≠ β

Asymmetric non- 
minimal GSD

α < r

Ordinary 
signed-digit

Minimally 
redundant OSD

Maximally 
redundant OSD BSCB

SCB

r = 2

α = 1
β = rα = 0

Unsigned-digit 
redundant (UDR)

r = 2

BSC

α = r – 1α =    r/2 + 1

 

Fig. 3.6 A taxonomy of redundant and non-redundant 
positional number systems. 
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Binary vs multivalue-logic encoding of GSD digit sets 
 

xi              1  –1    0  –1    0   BSD representation of +6 

(s,v)          01   11   00   11   00    Sign & value encoding 
2’s-compl    01   10   00   10   00   2-bit 2’s-complement  
(n,p)          01   10   00   10   00    Negative & positive flags    
(n,z,p)      001  100  010  100  010   1-out-of-3 encoding 

Fig. 3.7 Four encodings for the BSD digit set [–1, 1]. 

 
The hybrid example in Fig. 3.8, with a regular pattern of 
binary (B) and BSD positions, can be viewed as an 
implementation of a GSD system with  
 r = 8    Three positions form one digit 
 digit set [–4, 7]  –1  0  0   to  1  1  1 

      BSD  B   B BSD  B   B BSD  B   B   Type 

        1   0   1 –1   0   1 –1   0   1   xi  
  +      0   1   1 –1   1   0   0   1   0   yi       –––––––––––––––––––––––––––––––––––––– 
        1   1   2 –2   1   1 –1   1   1   pi  
          |        |        |  

      –1           0       –1       wi  
���������� ������ � � � ������ � � � �������

    1          –1         0          0   ti+1      –––––––––––––––––––––––––––––––––––––– 
      1 –1   1   1   0   1   1 –1   1   1  si    

Fig. 3.8 Example of addition for hybrid signed-digit 
numbers. 
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3.5 Carry-Free Addition Algorithms 

xi–1,yi–1,xixi+1,yi+1 yi

s i+1 s i–1s i

ti

 
Carry-free addition of GSD numbers             
Compute the position sums pi = xi  + yi  
Divide pi into a transfer ti+1 and interim sum wi = pi – rti+1  
Add incoming transfers to get the sum digits si  = wi  + ti  
 
 
If the transfer digits ti are in [–λ, µ], we must have: 

 –α + λ      ≤  pi – rti+1      ≤  β – µ           
        |             interim sum                |                          
        |                                                |   
Smallest interim sum            Largest interim sum 
if a transfer of –λ             if a transfer of µ 
is to be absorbable              is to be absorbable 
 
These constraints lead to 

   λ ≥ 
α

r – 1   µ ≥ 
β

r – 1  
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Constants C–λ   C–λ+1 C–λ+2 ... C0   C1  ...   Cµ–1  Cµ  Cµ+1  
      –∞     |       |     |    |       |    | +∞ 
pi  range   [---) [----)[---)... [---)[---)...[---)[----) 

ti+1 chosen  –λ  –λ+1  –λ+2     0    1    µ–1  µ  

Fig. 3.9 Choosing the transfer digit ti+1 based on comparing 
the interim sum pi to the comparison constants Cj. 

 
Example 3.5: r = 10, digit set [–5, 9] lead to λ ≥ 5/9, µ ≥ 1  
Choose the minimal values: 
λmin = µmin = 1       i.e., transfer digits are in [–1, 1] 

–∞ = C–1  –4 ≤ C0 ≤ –1   6 ≤ C1 ≤ 9  C2  = +∞ 
Deriving range of C1: The position sum pi is in [–10, 18]  
 We can set ti+1 to 1 for pi values as low as 6 
 We must transfer 1 for pi values of 9 or more  

For pi ≥ C1, where 6 ≤ C1 ≤ 9, we choose ti+1 = 1  

For pi < C0, we choose ti+1 = –1, where –4 ≤ C0 ≤ –1  
In all other cases, ti+1 = 0 
If pi is given as a 6-bit 2’s-complement number abcdef, 
good choices for the constants are C0 = –4, C1 = 8 
The logic expressions for the signals g1 and g–1: 
 g–1  = a (c +d  )  generate a transfer of –1 
 g1    =a ( b + c )  generate a transfer of 1 
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        3 –4   9 –2   8    xi  in  [–5, 9]   

  +     8 –4   9   8   1   yi  in  [–5, 9] 
     ––––––––––––––– 
      11 –8 18   6   9   pi  in [–10, 18] 
           |     |     |     |     |   

         1   2   8   6 –1   wi  in  [–4, 8] 
���������� ���������������������������

    1 –1   1   0   1          ti+1  in  [–1, 1] 
   ––––––––––––––––– 
    1   0   3   8   7 –1   si  in  [–5, 9] 

Fig. 3.10 Adding radix-10 numbers with digit set [–5, 9]. 

 
The preceding carry-free addition algorithm is applicable if 
 r > 2, ρ ≥ 3 
 r > 2, ρ = 2, α ≠ 1, β ≠ 1 
 
In other words, it is inapplicable for 
 r = 2 
 ρ = 1 
 ρ = 2 with α = 1 or β = 1  
 
Fortunately, in such cases, a limited-carry algorithm is 
always applicable 
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(a) Three-stage carry estimate. (b) Three-stage repeated-carry.

s i+1 s i–1s i

ei

ti

i+1 i+

s i+1 s i–1s i

ti

t'i

xi–1,yi–1,xixi+1,yi+1 yi

(c) Two-stage parallel-carries.

s i+1 s i–1s i

ti
(2)

ti
(1)

xi–1,yi–1,xixi+1,yi+1 yi

 

Fig. 3.11 Some implementations for limited-carry addition. 

        1 –1   0 –1   0    xi  in  [–1, 1]   

  +      0 –1 –1   0   1   yi  in  [–1, 1] 
     ––––––––––––––– 
        1 –2 –1 –1   1   pi  in [–2, 2] 
���������� ���������������������������
  high low high low high high  ei in {low:[–1, 0], high:[0, 1]} 
           |     |     |     |     |     

        1   0   1 –1 –1   wi  in  [–1, 1] 
���������� ���������������������������

    0 –1 –1   0   1          ti+1  in  [–1, 1] 
     ––––––––––––––– 
    0   0 –1   1   0 –1   si  in  [–1, 1] 

Fig. 3.12 Limited-carry addition of radix-2 numbers with digit 
set [–1, 1] using carry estimates. A position sum –1 
is kept intact when the incoming transfer is in [0, 1], 
whereas it is rewritten as 1 with a carry of –1 for 
incoming transfer in [–1, 0]. This guarantees that ti ≠ 
wi and thus –1 ≤ si ≤ 1. 
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        1   1   3   1   2    xi  in  [0, 3]   
  +      0   0   2   2   1   yi  in  [0, 3] 
     ––––––––––––––– 
        1   1   5   3   3   pi  in [0, 6] 
���������� ���������������������������

    low low high low low low   ei in {low:[0, 2], high:[1, 3]} 
            |     |     |     |     |   

        1 –1   1   1   1   wi  in  [–1, 1] 
���������� ����������������������������

    0   1   2   1   1          ti+1  in  [0, 3] 
   ––––––––––––––––– 
    0   2   1   2   2   1   si  in  [0, 3] 

Fig. 3.13 Limited-carry addition of radix-2 numbers with the 
digit set [0, 3] using carry estimates. A position sum 
of 1 is kept intact when incoming transfer is in [0, 2], 
whereas it is rewritten as –1 with a carry of 1 if 
incoming transfer is in [1, 3]. 
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3.6 Conversions and Support Functions 

BSD-to-binary conversion example 
   1 –1   0 –1   0  BSD representation of +6 
   1   0   0   0   0  Positive part (1 digits) 
   0   1   0   1   0  Negative part (–1 digits) 
   0   0   1   1   0   Difference = conversion result 

 
Zero test: zero has a unique code under some conditions 
 
Sign test: needs carry propagation 
 

      xk–1 xk–2  . . .  x1   x0    k-digit GSD operands 

  +  yk–1 yk–2  . . .  y1   y0    
     –––––––––––––––––––– 
      pk–1 pk–2  . . .  p1   p0   Position sums 
           |      |            |     |   

      wk–1 wk–2  . . . w1  w0   Interim sum digits 
���������� ���� � ���� � � � ������ ��������

  tk  tk–1  . . .   t2   t1           Transfer digits 
   –––––––––––––––––––––– 
      sk–1 sk–2  . . .  s1   s0   k-digit apparent sum 

Fig. 3.16.  Overflow and its detection in GSD arithmetic. 
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4 Residue Number Systems 

   Go to TOC 
Chapter Goals 
 Study a way of encoding large numbers  
 as a collection of smaller numbers 
 to simplify and speed up some operations 
 
Chapter Highlights 
 RNS moduli, range, & arithmetic ops 
 Many sets of moduli possible: tradeoffs 
 Conversions between RNS and binary  
 The Chinese remainder theorem 
 Why are RNS applications limited? 
 
Chapter Contents 
4.1 RNS Representation and Arithmetic 
4.2 Choosing the RNS Moduli 
4.3 Encoding and Decoding of Numbers 
4.4 Difficult RNS Arithmetic Operations 
4.5 Redundant RNS Representations 
4.6 Limits of Fast Arithmetic in RNS 
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4.1 RNS Representation and Arithmetic 

Chinese puzzle, 1500 years ago:  
What number has the remainders of 2, 3, and 2 when 
divided by the numbers 7, 5, and 3, respectively?  
 
Pairwise relatively prime moduli:    mk–1 > ... > m1 > m0 

The residue xi of x wrt the ith modulus mi is akin to a digit: 

 xi   = x mod mi  = 〈x〉mi 

RNS representation contains a list of k residues or digits: 
  x   = (2 | 3 | 2)RNS(7|5|3)   
 
Default RNS for this chapter   RNS(8 | 7 | 5 | 3)   
 
The product M of the k pairwise relatively prime moduli is 
the dynamic range   
 M = mk–1 × ... × m1 × m0    

For RNS(8 | 7 | 5 | 3),   M = 8 × 7 × 5 × 3 = 840  
 
Negative numbers: Complement representation with 
complementation constant M 
 〈–x〉mi

   =  〈M – x〉mi
   

   21  = (5 | 0 | 1 | 0)RNS  
 –21  = (8 – 5 | 0 | 5 – 1 | 0)RNS = (3 | 0 | 4 | 0)RNS  
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Here are some example numbers in RNS(8 | 7 | 5 | 3): 

 (0 | 0 | 0 | 0)RNS  Represents 0 or 840 or  ... 

 (1 | 1 | 1 | 1)RNS  Represents 1 or 841 or  ... 

 (2 | 2 | 2 | 2)RNS  Represents 2 or 842 or  ... 

 (0 | 1 | 3 | 2)RNS  Represents 8 or 848 or  ... 

 (5 | 0 | 1 | 0)RNS  Represents 21 or 861 or  ... 

 (0 | 1 | 4 | 1)RNS  Represents 64 or 904 or  ... 

 (2 | 0 | 0 | 2)RNS  Represents –70 or 770 or  ... 

 (7 | 6 | 4 | 2)RNS  Represents –1 or 839 or  ... 
 
Any RNS can be viewed as a weighted representation.  
For RNS(8 | 7 | 5 | 3), the weights of the 4 positions are: 
 
 105  120  336  280 
 
Example: (1 | 2 | 4 | 0)RNS represents the number 

 〈105×1 + 120×2 + 336×4 + 280×0〉840  =  〈1689〉840  =  9 
 

mod 8    mod 7    mod 5   mod 3
 

Fig. 4.1 Binary-coded format for RNS(8 | 7 | 5 | 3). 
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RNS Arithmetic 

 (5 | 5 | 0 | 2)RNS  Represents x = +5 

 (7 | 6 | 4 | 2)RNS  Represents y = –1 

 (4 | 4 | 4 | 1)RNS  x + y : 〈5 + 7〉8 = 4, 〈5 + 6〉7 = 4, etc. 

 (6 | 6 | 1 | 0)RNS  x – y : 〈5 – 7〉8 = 6, 〈5 – 6〉7 = 6, etc. 
            (alternatively, find –y and add to x) 

 (3 | 2 | 0 | 1)RNS  x × y : 〈5 × 7〉8 = 3, 〈5 × 6〉7 = 2, etc. 

 

mod 8    mod 7    mod 5   mod 3

Mod-8 
  Unit

Mod-7 
  Unit

Mod-5 
  Unit

Mod-3 
  Unit

3 3 3 2

Operand 1 Operand 2

Result

 

Fig. 4.2 The structure of an adder, subtractor, or multiplier 
for RNS(8 | 7 | 5 | 3). 
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4.2 Choosing the RNS moduli  

Target range: Decimal values [0, 100 000] 
 
Pick prime numbers in sequence:  
 
m0 = 2, m1 = 3, m2 = 5, etc. After adding m5 = 13: 
RNS(13 | 11 | 7 | 5 | 3 | 2)  M = 30 030  Inadequate 
RNS(17 | 13 | 11 | 7 | 5 | 3 | 2) M = 510 510 Too large 
RNS(17 | 13 | 11 | 7 | 3 | 2)  M = 102 102 Just right! 
 
    5 + 4 + 4 + 3 + 2 + 1   =  19  bits 
 
Combine pairs of moduli 2 & 13 and 3 & 7: 
RNS(26 | 21 | 17 | 11)   M = 102 102 
 
Include powers of smaller primes before moving to 
larger primes.  
 

RNS(22 | 3)     M = 12 

RNS(32 | 23 | 7 | 5)   M = 2520 

RNS(11 | 32 | 23 | 7 | 5)  M = 27 720 

RNS(13 | 11 | 32 | 23 | 7 | 5) M = 360 360 Too large 

RNS(15 | 13 | 11 | 23 | 7)  M = 120 120 

 

    4 + 4 + 4 + 3 + 3      =    18  bits 
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Maximize the size of the even modulus within the 4-bit 
residue limit: 

 

RNS(24 | 13 | 11 | 32 | 7 | 5) M = 720 720 Too large 

       Can remove 5 or 7 

 

Restrict the choice to moduli of the form 2a or 2a – 1: 
 
 RNS(2ak–2 | 2ak–2 – 1 | . . . | 2a1 – 1 | 2a0 – 1) 
 
Such “low-cost” moduli simplify both the complementation 
and modulo operations 
 
2ai and 2aj are relatively prime iff ai and aj are relatively 
prime. 
 
RNS(23 | 23–1 | 22–1)   basis: 3, 2 M = 168  
RNS(24 | 24–1 | 23–1)   basis: 4, 3 M = 1680 
RNS(25 | 25–1 | 23–1 | 22–1) basis: 5, 3, 2 M = 20 832 
RNS(25 | 25–1 | 24–1 | 24–1) basis: 5, 4, 3 M = 104 160 
 
Comparison 
 
RNS(15 | 13 | 11 | 23 | 7)  18 bits  M = 120 120 
RNS(25 | 25–1 | 24–1 | 23–1) 17 bits  M = 104 160 
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4.3 Encoding and Decoding of Numbers 

Conversion from binary/decimal to RNS 

〈(yk–1 ... y1y0)two〉mi  = 〈 〈2k–1yk–1〉mi 
+ ... + 〈2y1〉mi 

+ 〈y0〉mi 
〉mi 

 

Table 4.1 Residues of the first 10 powers of 2 

            ––––––––––––––––––––––––––– 

 i 2i 〈2i〉7 〈2i〉5 〈2i〉3 

            ––––––––––––––––––––––––––– 
 0 1 1 1 1 
 1 2 2 2 2 
 2 4 4 4 1 
 3 8 1 3 2 
 4 16 2 1 1 
 5 32 4 2 2 
 6 64 1 4 1 
 7 128 2 3 2 
 8 256 4 1 1 
 9 512 1 2 2 
            ––––––––––––––––––––––––––– 

 
High-radix version (processing 2 or more bits at a time) is 
also possible 
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Conversion from RNS to mixed-radix 
 
MRS(mk–1 | ... | m2 | m1 | m0)is a k-digit positional system 
with position weights 
mk–2...m2m1m0  . . .  m2m1m0   m1m0   m0  1  
and digit sets  
   [0, mk–1–1]     . . .  [0,m3–1]  [0,m2–1] [0,m1–1] [0,m0–1]  
 
(0 | 3 | 1 | 0)MRS(8|7|5|3) =  0×105 + 3×15 + 1×3 + 0×1 = 48 
 
RNS-to-MRS conversion problem: 
y  =  (xk–1 | ... | x2 | x1 | x0)RNS  =  (zk–1 | ... | z2 | z1 | z0)MRS 
 
Mixed-radix representation allows us to compare the 
magnitudes of two RNS numbers or to detect the sign of a 
number.  
 
Example: 48 versus 45 
 
RNS representations 
(0 | 6 | 3 | 0)RNS    vs  (5 | 3 | 0 | 0)RNS  
(000 | 110 | 011 | 00)RNS vs (101 | 011 | 000 | 00)RNS 
 
Equivalent mixed-radix representations  
(0 | 3 | 1 | 0)MRS    vs  (0 | 3 | 0 | 0)MRS 
(000 | 011 | 001 | 00)MRS  vs  (000 | 011 | 000 | 00)MRS  
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Theorem 4.1 (The Chinese remainder theorem) 
The magnitude of an RNS number can be obtained from: 

 x  =  (xk–1 | ... | x2 | x1 | x0)RNS  =  〈 ∑k–1
i=0   Mi 〈α ixi〉mi 〉M     

where, by definition, Mi = M/mi and α i = 〈Mi–1〉mi is the 
multiplicative inverse of Mi with respect to mi 

Table 4.2 Values needed in applying the Chinese remainder 
theorem to RNS(8 | 7 | 5 | 3) 

 –––––––––––––––––––––––––––––––––––– 
 i mi xi 〈Mi 〈α ixi〉mi〉M 
 –––––––––––––––––––––––––––––––––––– 
 3 8 0   0  
    1  105  
    2  210  
    3  315  
    4  420  
    5  525  
    6  630  
     7  735 
 
 2 7 0   0  
    1   120  
    2   240  
    3   360  
    4   480  
    5   600  
    6   720  
 
 1 5 0   0  
    1   336  
    2   672  
    3   168  
    4   504  
 
 0 3 0   0  
    1   280  
    2   560  
 –––––––––––––––––––––––––––––––––––– 
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4.4 Difficult RNS Arithmetic Operations 

Sign test and magnitude comparison are difficult 
 
Example: of the following RNS(8 | 7 | 5 | 3) numbers 
 
 which, if any, are negative? 
 which is the largest? 
 which is the smallest? 
 
Assume a range of [–420, 419] 
 
 a = (0 | 1 | 3 | 2)RNS   
 b = (0 | 1 | 4 | 1)RNS   
 c = (0 | 6 | 2 | 1)RNS 
 d = (2 | 0 | 0 | 2)RNS   
 e = (5 | 0 | 1 | 0)RNS   
 f = (7 | 6 | 4 | 2)RNS   
 
 
 
 
 
Answer:  

  d  <  c   <  f  < a <  e  <  b    
–70  < –8  < –1 < 8 < 21  < 64   
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Approximate CRT decoding: Divide both sides of the 
CRT equality by M, to get the scaled value of x in [0, 1): 

x/M =  (xk–1 | ... | x2 | x1 | x0)RNS/M  =  〈 ∑k–1
i=0  mi–1〈α ixi〉mi 〉1     

Terms are added modulo 1, meaning that the whole part of 
each result is discarded and the fractional part is kept. 

Table 4.3 Values needed in applying approximate CRT 
decoding to RNS(8 | 7 | 5 | 3) 

 –––––––––––––––––––––––––––––––––––– 
 i mi xi mi–1〈α ixi〉mi             –––––––––––––––––––––––––––––––––––– 
 3 8 0   .0000  
    1  .1250  
    2  .2500  
    3  .3750  
    4  .5000  
    5  .6250  
    6  .7500  
     7  .8750 
 
 2 7 0   .0000  
    1   .1429  
    2   .2857  
    3   .4286  
    4   .5714  
    5   .7143  
    6   .8571  
 
 1 5 0   .0000  
    1   .4000  
    2   .8000  
    3   .2000  
    4   .6000  
 
 0 3 0   .0000  
    1   .3333  
    2   .6667              –––––––––––––––––––––––––––––––––––– 
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Example: Use approximate CRT decoding to determine 
the larger of the two numbers  

 x = (0 | 6 | 3 | 0)RNS    y = (5 | 3 | 0 | 0)RNS 
 
Reading values from Table 4.3, we get: 

x/M ≅   〈 .0000 + .8571 + .2000 + .0000〉1 ≅    .0571    

y/M ≅   〈 .6250 + .4286 + .0000 + .0000〉1 ≅    .0536    

Thus, x > y, subject to approximation errors. 
Errors are no problem here because each entry has a 
maximum error of 0.00005, for a total of at most 0.0002 
 
RNS general division 

Use an algorithm that has built-in tolerance to imprecision 

Example –– SRT algorithm (s is the partial remainder) 

 s < 0 quotient digit = –1 

 s ≅  0 quotient digit =   0 

 s > 0 quotient digit =   1 

The partial remainder is decoded approximately 
The BSD quotient is converted to RNS on the fly 
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4.5 Redundant RNS Representations 

The mod-mi residue need not be restricted to [0, mi – 1] 

 (just as radix-r digits need not be limited to [0, r – 1]) 

Adder

Adder

x y

z

cout
0 0

Drop

 

Figure 4.3 Adder design for 4-bit mod-13 pseudoresidues. 

sum in sum o

Mux

0

2h

operand residue

coefficient 
residue

h

2h+1

h

–m

LSBs

 h

2h
 h

 h
2h

MSB

×

+ +

0 
1

 

Figure 4.4 A modulo-m multiply-add cell that accumulates the 
sum into a double-length redundant pseudoresidue. 
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4.6 Limits of Fast Arithmetic in RNS 

 
Theorem 4.2: The ith prime pi is asymptotically i ln i 
 
Theorem 4.3: The number of primes in [1, n]   
is asymptotically n/ln n 
 
Theorem 4.4: The product of all primes in [1, n]   
is asymptotically en. 
 

Table 4.4 The ith prime pi and the number of primes in [1, n] 
versus their asymptotic approximations 

     ––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 i pi i ln i Error n No of  n/ln n Error 
    ( % )  primes  ( % ) 
     ––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 1 2 0.000 100 5 2 3.107 55 
 2 3 1.386 54 10 4 4.343 9 
 3 5 3.296 34 15 6 5.539 8 
 4 7 5.545 21 20 8 6.676 17 
 5 11 8.047 27 25 9 7.767 14 
 10 29 23.03 21 30 10 8.820 12 
 15 47 40.62 14 40 12 10.84 10 
 20 71 59.91 16 50 15 12.78 15 
 30 113 102.0 10 100 25 21.71 13 
 40 173 147.6 15 200 46 37.75 18 
 50 229 195.6 15 500 95 80.46 15 
 100 521 460.5 12 1000 170 144.8 15 
     ––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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Theorem 4.5: It is possible to represent  

all k-bit binary numbers in RNS with O(k / log k) moduli  

such that the largest modulus has O(log k) bits 
 

 Implication: a fast adder would need O(log log k) time 

 

Theorem 4.6: The numbers 2a – 1 and 2b – 1  

are relatively prime iff a and b are relatively prime 
 

Theorem 4.7: The sum of the first i primes  

is asymptotically O(i2 ln i). 
 

Theorem 4.8: It is possible to represent  

all k-bit binary numbers in RNS  

with O( k / log k ) low-cost moduli of the form 2a – 1  

such that the largest modulus has O( k log k ) bits. 
 

 Implication: a fast adder would need O(log k) time, 

 thus offering little advantage over standard binary 

 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 60 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

Part II Addition/Subtraction 

Part Goals 
 Review basic adders & the carry problem 
 Learn how to speed up carry propagation 
 Discuss speed/cost tradeoffs in adders 
 
Part Synopsis 
  Addition is a fundamental operation 
  (arithmetic and address calculations) 
 Also a building block for other operations 
 Subtraction = negation + addition 
 Carry speedup: lookahead, skip, select, ... 
 Two-operand vs multioperand addition 
 
Part Contents 
Chapter 5 Basic Addition and Counting 
Chapter 6 Carry-Lookahead Adders 
Chapter 7 Variations in Fast Adders 
Chapter 8 Multioperand Addition 
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5 Basic Addition and Counting 

   Go to TOC 
Chapter Goals 
 Study the design of ripple-carry adders,  
 discuss why their latency is unacceptable, 
 and set the foundation for faster adders 
 
Chapter Highlights 
 Full-adders are versatile building blocks 
 Worst-case carry chain in k-bit addition 
  has an average length of log2k  
 Fast asynchronous adders are simple 
 Counting is relatively easy to speed up  
 
Chapter Contents 
5.1 Bit-Serial and Ripple-Carry Adders 
5.2 Conditions and Exceptions 
5.3 Analysis of Carry Propagation 
5.4 Carry Completion Detection 
5.5 Addition of a Constant: Counters 
5.6 Manchester Carry Chains and Adders 
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5.1 Bit-serial and ripple-carry adders 

Single-bit half-adder (HA) 
 

x    y    c     s 
---------------- 
0    0    0     0 
0    1    0     1 
1    0    0     1 
1    1    1     0 

Inputs          Outputs 

HA 

x y 

c 

s 
 

Fig. 5.A Truth table and symbol for a binary half-adder. 

 
c

s

(b) NOR-gate half-adder.

x

y

x

y

(c) NAND-gate half-adder with complemented carry.

x

y

c

s

s

c
x

y

x

y

(a) AND/XOR half-adder.
_

_
_

 

Fig. 5.1 Three implementations of a half-adder. 
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Single-bit full-adder (FA) 
 

x    y    c     c    s 
---------------------- 
0    0    0     0    0 
0    0    1     0    1 
0    1    0     0    1 
0    1    1     1    0 
1    0    0     0    1 
1    0    1     1    0 
1    1    0     1    0 
1    1    1     1    1 

      Inputs               Outputs 

c out c in 

out in x 
 

y 
 

 s 
 

FA 

 

Fig. 5.B Truth table and symbol for binary full-adder. 

 
 s =  x ⊕  y ⊕  cin    (odd parity function) 

  =  x y cin + x y cin + x y cin + x y cin 
 
 cout =  x y + x cin + y cin  (majority function) 
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HA

HA

xy

cin

cout

(a) Built of half-adders.

s

(b) Built as an AND-OR circuit.

(c) Suitable for CMOS realization.

cout

s

cin

xy

0 
1 
2 
3

0 
1 
2 
3

xy

cin

cout

s

0

1

Mux

 

Fig. 5.2 Possible designs for a full-adder in terms of half-
adders, logic gates, and CMOS transmission gates. 

z 
 

x 
 

x 
 

0 
 

1 
 

(a) CMOS transmission gate:  
circuit and symbol 

(b) Two-input mux built of two 
transmission gates  

TG 

TG 
TG 

y 
 P 

 

N 
 

 
Fig. 5.C CMOS transmission gate and its use in a 2-to-1 mux. 
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(a) Bit-serial adder.

FA

xiyi

cici+1

s i

Carry 
Latch

FAFA

xy 11 x0y0

c0c1

s 0s 1

FAFA

xy 33 x2y2

c2c3

s 2s 3

c4

cout cin

(b) Four-bit ripple-carry adder.

Clock

s 4

x

y

Shift

s
Shift

 

Fig. 5.3 Using full-adders in building bit-serial and ripple-
carry adders. 

xy 11 x0y0

c1c2cout cinc3

x2y2x3y3

Clock

s 1 s 0s 2s 3

150

760λ

λ

7 inverters

 Two 
4-to-1 
Mux's

VDD

V SS

 
Fig. 5.4 The layout of a 4-bit ripple-carry adder in CMOS 

implementation [Puck94]. 
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Tripple-add = TFA(x,y→cout) + (k – 2)×TFA(cin→cout) + TFA(cin→s) 

x 

s 

y 

c 

x 

s 

y 

c 

x 

s 

y 

c 

x 

s 

y 

c 

c out c in 

0 0 

0 

c 0 

1 1 

1 

1 

k-2 k–2 

k–2 

2 k 

k–1 

k–1 

k–1 

k–1 

FA FA FA FA .   .   . 
c k–2 

s k  

Fig. 5.5 Critical path in a k-bit ripple-carry adder. 

 

0

xy0z1w10

xyxyzw+xyzw+xyz

w+xyz

Bit 3 Bit 2 Bit 1 Bit 0

c1 cin
cout c2c3

 

Fig. 5.6 Four-bit binary adder used to realize the logic 
function f = w + xyz and its complement. 
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5.2 Conditions and exceptions 

In an ALU, it is customary to provide information about 
certain outcomes during addition or other operations  
 
Flag bits within a condition/exception register: 
cout   a carry-out of 1 is produced 
overflow  the output is not the correct sum 
negative  Indicating that the addition result is negative 
zero   Indicating that the addition result is zero 
 
 overflow2’s-compl  =  xk–1 yk–1sk–1 +xk–1yk–1 sk–1  

 overflow2’s-compl  =  ck ⊕  ck–1 =  ckck–1 +ck ck–1  
 

FAFA

xy 11 x0y0

c0c1

s 0s 1

FA
c2

s k–1

cout cin
...

ck–1
ck–2

s k–2

ck

xk–2yk–2xk–1yk–1

FA

Overflow

Negative

Zero

 

Fig. 5.7 Two’s-complement adder with provisions for 
detecting conditions and exceptions. 
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5.3 Analysis of carry propagation  

 Bit # 15 14 13 12  11 10  9  8   7  6  5  4   3  2  1  0 
           -----------  -----------  -----------  -----------  
        1  0  1  1   0  1  1  0   0  1  1  0   1  1  1  0   
 cout  0  1  0  1   1  0  0  1   1  1  0  0   0  0  1  1  cin 
          \__________/\__________________/      \________/\____/ 
      4                6                    3       2 
        Carry chains and their lengths 
Fig. 5.8 Example addition and its carry propagation chains. 

 

Fig. 5.C Positions with known incoming carries. 
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Given binary numbers with random bit values, for each 
position i we have:  
 Probability of carry generation =  1/4 
 Probability of carry annihilation =  1/4 
 Probability of carry propagation =  1/2 
 
Average length of the longest carry chain 
 
The probability that carry generated at position i 
propagates to position j – 1 and stops at position j (j > i)  
 2–(j–1–i) × 1/2 = 2–(j–i) 
 
Expected length of the carry chain that starts at position i    
 2 – 2–(k–i–1)     
 
Average length of the longest carry chain in k-bit addition 
is less than log2k; it is log2(1.25k) per experimental results 
 
Analogy (order statictics) 
 
Roll a die: Outcome in [1, 6], expected outcome = 3.5 
Roll a pair of dice:  

What is the expected value of the larger outcome? 
Number of cases  11   9   7   5   3   1 
Larger outcome    6   5   4   3   2   1 
Expected outcome = 161 / 36 = 4.472 
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5.4 Carry Completion Detection  

 (bi, ci) =  00 Carry not yet known 

       01 Carry known to be 1 

       10 Carry known to be 0 

. . .

. . .

. . .

. . .

x  y  = x +y 

alldone
From other bit positions

i+1

c   = c 

b   = c

b  = 1:  No carry 
c  = 1:  Carry

b

i+1c
0

i i i i

ib

ic

x  + yi i

x  y   i i

x  y   i i

0

in

in

}

di+1 i
i

c   = c k out

b    k

 

Fig. 5.9 The carry network of an adder with two-rail carries 
and carry completion detection logic. 
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5.4 Addition of a Constant: Counters  

Count register 

Mux 

Incrementer 
(Decrementer) 

+1  (−1) 

Data in 

Load 

Count / Initialize 
_____ 

x + 1 

x  

0      1 

Data out 

Reset  Clear 

Enable Clock 

Counter 
overflow 

(x − 1) 

c out 

 

Fig. 5.10 An up (down) counter built of a register, an 
incrementer (decrementer), and a multiplexer. 
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Q

Q T

Q

Q
Increment

0
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2

2

3

3

Count Output

 

Fig. 5.11 Four-bit asynchronous up counter built only of 
negative-edge-triggered T flip-flops. 

Load

Load Increment

Control 
    1

Control 
    2

Incrementer

1

Incrementer
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Count register divided into three stages

 

Fig. 5.12 Fast three-stage up counter. 
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5.6 Manchester Carry Chains and Adders  

Sum digit in radix r  si = (xi + yi + ci) mod r 

Special case of radix 2 si = xi ⊕  yi ⊕  ci 
 
Computing the carries is thus our central problem  
For this, the actual operand digits are not important  
What matters is whether in a given position a carry is  
 
 generated,   propagated,   or   annihilated (absorbed)  
 
For binary addition:       _____  

 gi  = xi  yi  pi  = xi ⊕  yi      ai  =xi yi   = xi  + yi       
 
It is also helpful to define a transfer signal: 
 ti = gi + pi = ai = xi + yi   
 
Using these signals, the carry recurrence is written as 
 ci+1 = gi + ci pi   =  gi + ci gi + ci pi   =  gi + ci ti  

p 
 

g 
 

a 
 

Logic 1 
 

Logic 0 
 

c 
 

c  
 

i+1 
 

i 
 

i 
 

i 
 

i 
 

0 
 

1 
 

0 
 

1 
 

0 
 
1 
 

(a) Conceptual representation 
     

c'i+1 ic'

Clock

ip

VDD

VSS

ig

(b) Possible CMOS realization.
 

Fig. 5.13 One stage in a Manchester carry chain. 
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Preview of fast adders 
 
The gi and pi (ti) signals, along with the carry recurrence 
 
 ci+1 = gi + ci pi   =  gi + ci ti  

allow us to decouple the problem of designing a fast carry 
network from details of the number system (radix, digit set)  
 
It does not even matter whether we are adding or 
subtracting; any carry network can be used as a borrow 
network by defining the signals to represent borrow 
generation, borrow propagation, etc. 
 

Carry network 

. . . . . . 

x i y i 

g p 

s 

i i 

i 

c i 

c i+1 

c k−1 

c k 

c k−2 c 1 

c 0 

g p 1 1 g p 0 0 

g p k−2 k−2 g p i+1 i+1 
g p k−1 k−1 

c 0 

 

Fig. 5.D The main part of an adder is the carry network. The 
rest is just a set of gates to produce the g and p 
signals and the sum bits. 
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Carry-ripple adder (already discussed) 
 Worst-case allowance or self-timed 
 
Fast adders to be studied in the next two chapters differ in 
the way they generate the carries: 
 
Carry lookahead (Chapter 6) 
 and a variant known as Ling adder  
 
Other fast adders (Chapter 7) 
 Carry-skip (single- or multilevel) 
 Carry-select 
  and its limiting case known as conditional sum 
 Hybrid (e.g., lookahead and select) 
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6 Carry-Lookahead Adders 

   Go to TOC 
Chapter Goals 
 Understand the carry-lookahead method  
 and its many variations 
 used in the design of fast adders 
 
Chapter Highlights 
 Single- and multilevel carry lookahead 
 Various designs for log-time adders 
 Relating the carry determination problem   
  to parallel prefix computation 
 Implementing fast adders in VLSI 
 
Chapter Contents 
6.1. Unrolling the Carry Recurrence 
6.2. Carry-Lookahead Adder Design 
6.3. Ling Adder and Related Designs 
6.4. Carry Determination as Prefix Computation 
6.5. Alternative Parallel Prefix Networks 
6.6. VLSI Implementation Aspects 
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6.1 Unrolling the Carry Recurrence  

Recall gi (generate), pi (propagate), ai (annihilate/absorb), 
and ti (transfer) 

 gi  = 1   iff  xi  + yi  ≥ r  Carry is generated 
 pi   = 1  iff  xi  + yi  = r – 1 Carry is propagated 
 ti   =ai    =  gi + pi     Carry is not annihilated  

  ci = gi–1 + ci–1pi–1 

 = gi–1 + (gi–2 + ci–2pi–2)pi–1   

 = gi–1 + gi–2pi–1 + ci–2pi–2pi–1 

 = gi–1 + gi–2pi–1 + gi–3pi–2pi–1 + ci–3pi–3pi–2pi–1 

 = gi–1 + gi–2pi–1 + gi–3pi–2pi–1 + gi–4pi–3pi–2pi–1  

            + ci–4pi–4pi–3pi–2pi–1 

 = . . . 
 
Theoretically, we can unroll as far as we want 
but the number of terms, and literals in each term, 
increase to the point of being impractical  
for two-level circuit realization



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 77 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

Four-bit CLA adder: 
 
  c4 = g3 + g2p3 + g1p2p3 + g0p1p2p3 + c0p0p1p2p3 
  c3 = g2 + g1p2 + g0p1p2 + c0p0p1p2 
  c2 = g1 + g0p1 + c0p0p1 
  c1 = g0 + c0p0 

 
Note the use of c4 = g3 + c3p3 in the following diagram 
 

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

 

Fig. 6.1 Four-bit carry network with full lookahead. 
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Full carry lookahead is impractical for wide words  
 
The fully unrolled carry equation for c31 consists of 32  
 product terms, the largest of which has 32 literals  
 
Thus, the required ANDs and ORs must be realized by 
 tree networks, leading to increased latency and cost  
 
Two schemes for managing this complexity: 
 High-radix addition (i.e., radix 2g) 
  increases the latency for generating   
  the auxiliary signals and sum digits 
  but simplifies the carry network (optimal radix?)  
 Multilevel lookahead 
 
Example: 16-bit addition 
 Radix-16 (four digits)  
 Two-level carry lookahead (four 4-bit blocks) 
 
Either way, the carries c4, c8, and c12 are determined first 
c16 c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
cout   ?   ?   ?        cin  
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6.2 Carry-Lookahead Adder Design  

g[i,i+3] = gi+3 + gi+2pi+3 + gi+1pi+2pi+3 + gipi+1pi+2pi+3 
p[i,i+3] = pi  pi+1 pi+2 pi+3 

 

gi

gi+1

g
i+2

gi+3

ci

ci+1

ci+2

ci+3

pi+3

pi+2

pi+1

pi

g

p[i,i+3]

Block Signal Generation
Intermediate Carries

[i,i+3]

 

Fig. 6.2 Four-bit lookahead carry generator. 
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ic
4-bit lookahead carry generator

g p g p g p g p

 [i,i+3]
p

 i+1
c

 i+2
c

 i+3
c

g

iii+1i+1i+2 i+2 i+3  i+3

 [i,i+3]

 

Fig. 6.3 Schematic diagram of a 4-bit lookahead carry 
generator. 

 

j   +1j   +1 c
0

ic
4-bit lookahead carry generator

g p

0

i 0
i 1

i 2
i 3

j 0
j 1

j 2
j 3

j   +1c
1

c
2

g pg p g p

g p

 

Fig. 6.4 Combining of g and p signals of four (contiguous or 
overlapping) blocks of arbitrary widths into the g 
and p signals for the overall block [i0, j3]. 
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Carry-Lookahead 
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[12,15] g 
p [8,11]

[8,11] g 
p [4,7]

[4,7] g 
p [0,3]
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Fig. 6.5 Building a 64-bit carry-lookahead adder from 16          
4-bit adders and 5 lookahead carry generators. 

 
Latency through the 16-bit CLA adder consists of finding: 

 
g and p for individual bit positions (1 gate level) 
g and p signals for 4-bit blocks (2 gate levels) 
block carry-in signals c4, c8, and c12 (2 gate levels) 
internal carries within 4-bit blocks (2 gate levels) 
sum bits (2 gate levels) 
 

Total latency for the 16-bit adder = 9 gate levels  
(compare to 32 gate levels for a 16-bit ripple-carry adder) 

 

 Tlookahead-add = 4 log4k + 1  gate levels   

 cout = xk–1yk–1 +sk–1(xk–1 + yk–1)  
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6.3 Ling Adder and Related Designs  

Consider the carry recurrence and its unrolling by 4 steps: 
 
ci  = gi–1 + gi–2ti–1 + gi–3ti–2ti–1 + gi–4ti–3ti–2ti–1  

        + ci–4ti–4ti–3ti–2ti–1 
 
Ling’s modification: 
 propagate hi = ci + ci–1 instead of ci   
 
hi = gi–1 + gi–2 + gi–3 ti–2 + gi–4 ti–3 ti–2 + hi–4 ti–4 ti–3 ti–2 
 
CLA: 5 gates  max 5 inputs  19 gate inputs 
Ling: 4 gates  max 5 inputs  14 gate inputs 
 
The advantage of hi over ci is even greater with wired-OR:  
 
CLA: 4 gates  max 5 inputs  14 gate inputs 
Ling: 3 gates  max 4 inputs     9 gate inputs 
 
Once hi is known, however, the sum is obtained by a 

slightly more complex expression compared to si = pi ⊕  ci 

  si = (ti ⊕  hi+1) +  hi  gi  ti–1 
 
Other designs similar to Ling’s are possible [Dora88] 
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6.4 Carry Determination as Prefix Computation  

g" p"

i 0
i 1

j 0
j 1

g p

g' p'

Block B'

Block B"

Block B
(g, p)

(g", p")    (g', p')

¢

g = g" + g'p" 
p = p'p"

 

Fig. 6.6 Combining of g and p signals of two (contiguous or 
overlapping) blocks B' and B" of arbitrary widths 
into the g and p signals for block B. 

The problem of carry determination can be formulated as: 

Given (g0, p0)     (g1, p1)      . . .  (gk–2, pk–2)   (gk–1, pk–1)                             

Find   (g[0,0],p[0,0]) (g[0,1],p[0,1]) . . . (g[0,k–2],p[0,k–2]) (g[0,k–1],p[0,k–1])                    
 
The desired pairs are found by evaluating all prefixes of 
 (g0, p0)  ¢  (g1, p1)  ¢  ...  ¢  (gk–2, pk–2)  ¢  (gk–1, pk–1)   
 
Prefix sums analogy: 
Given x0   x1  x2   . . .     xk–1                               

Find  x0   x0+x1 x0+x1+x2  . . .     x0+x1+...+xk–1               
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6.5 Alternative Parallel Prefix Networks  

.   .   .

Prefix Sums k/2 Prefix Sums k/2

. . .

xk–1 xk/2 xk/2–1 x0

s k–1 s k/2

s k/2–1 s 0+ +
. . .

. . .

. . . . . .

.   .   .

.   .   ..   .   .

 

Fig. 6.7 Parallel prefix sums network built of two k/2-input 
networks and k/2 adders. 

Delay recurrence D(k) = D(k/2) + 1 = log2k 
Cost recurrence C(k) = 2C(k/2) + k/2 = (k/2) log2k 

Prefix Sums k/2

xk–1 xk–2 x3 x2 x1 x0

s k–1 s k–2 s 3 s 2 s 1 s 0

++

+

+

+

.   .   .

.   .   .

.   .   .

.   .   .

 

Fig. 6.8 Parallel prefix sums network built of one k/2-input 
network and k – 1 adders. 

Delay D(k) = D(k/2) + 2 = 2 log2k – 1  (–2 really)   
Cost  C(k) = C(k/2) + k – 1 = 2k – 2 – log2k                                
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Fig. 6.A Brent-Kung lookahead carry network (8-digit adder). 

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

1 
 
 
2 
 
 
3 
 
 
 
4 
 
 
 
5 
 
 
6

Level

 
Fig. 6.9 Brent-Kung parallel prefix graph for 16 inputs. 
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Fig. 6.10 Kogge-Stone parallel prefix graph for 16 inputs. 

 
Delay D(k) = log2k 
Cost  C(k) = (k – 1) + (k – 2) + (k – 4) + ... + (k – k/2)  

 = k log2k – k + 1 
 

Method Delay Cost 
Simple Div&Conq log2k (k/2) log2k 
Kogge-Stone log2k k log2k – k + 1 
Brent-Kung 2 log2k – 2  2k – 2 – log2k 
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Fig. 6.11 A Hybrid Brent-Kung/Kogge-Stone parallel prefix 
graph for 16 inputs. 
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6.6 VLSI Implementation Aspects  

Example: Radix-256 addition of 56-bit numbers  
 as implemented in the AMD Am29050 CMOS micro  
The following description is based on the 64-bit version 
In radix-256 addition of 64-bit numbers, only the carries  
 c8, c16, c24, c32, c40, c48, and c56 are needed  
First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a 
are used to derive g and p signals for 4-bit blocks   
  

PH2
g2

PH2
g3

PH2
g1

PH2
g0

p3

p2

p1

p0

g[0,3]

PH2
p[0,3]

(a)

PH2

PH2

         

g2

g3

g1

g0

p3

p2

p1

p0

g[0,3]

p[0,3]

g[0,2]

p[0,2]

g[0,1]

p[0,1]

PH2PH2

(b)

PH2 PH2

PH2 PH2

PH2 PH2

PH2PH2

 
Fig. 6.12 Example four-bit Manchester carry chain designs in 

CMOS technology [Lync92]. 
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These signal pairs,  
 denoted [0, 3], [4, 7], ... at the left edge of Fig. 6.13,  
 form the inputs to one 5-bit and three 4-bit MCCs  
 that in turn feed two more MCCs in the third level  
 
The MCCs in Fig. 6.13 are of the type shown in Fig. 6.12b 
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Fig. 6.13 Spanning-tree carry-lookahead network [Lync92]. 
The 16 MCCs at level 1, that produce generate and 
propagate signals for 4-bit blocks, are not shown. 
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7 Variations in Fast Adders 

   Go to TOC 
Chapter Goals 
 Study alternatives to the CLA method  
 for designing fast adders 
 
Chapter Highlights 
 Many methods besides CLA are available 
  (both competing and complementary) 
 Best design is technology-dependent 
  (often hybrid rather than pure) 
 Knowledge of timing allows optimizations 
 
Chapter Contents 
7.1 Simple Carry-Skip Adders 
7.2 Multilevel Carry-Skip Adders 
7.3 Carry-Select Adders 
7.4 Conditional-Sum Adder 
7.5 Hybrid Adder Designs 
7.6 Optimizations in Fast Adders 
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7.1 Simple Carry-Skip Adders  

cc ccc

cc ccc

pppp

SkipSkipSkip

4-Bit 
Block

Skip logic (2 gates)

16
12

8

4

0

0

4

8

12
16

[12,15] [8,11] [4,7]
[0,3]

(a) Ripple-carry adder.

(b) Simple carry-skip adder.             

3  2  1  0

Ripple-carry stages

4-Bit 
Block

4-Bit 
Block

4-Bit 
Block

4-Bit 
Block

4-Bit 
Block

3  2  1  0

 

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple 
carry-skip adder with 4-bit skip blocks. 

One-way street  

Freeway 
 

Fig. 7.A Road analogy for carry-skip addition. 

 
Assume driving time the same for one city block or one 
freeway “block” (between two exits) 
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Skip with fixed-width blocks of b bits 
 
Tfixed-skip-add  =  (b – 1)  +  0.5  +  (k/b – 2)  +  (b – 1)  
    in block 0 OR gate      skips     in last block 

    ≅  2b + k/b – 3.5  stages 
 

dTfixed-skip-add
db    =  2 – k/b2   =  0     ⇒  b opt   = k/2  

T
opt
fixed-skip-add      ≅  2 2k  – 3.5 

 

Example: k = 32, b opt = 4, T
opt
fixed-skip-add   = 12.5 stages 

 (contrast with 32 stages for a ripple-carry adder) 
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Skip with variable-width blocks 
 

b b b b.  .  .

Ripple
Skip

Carry path (1)

01t–1 t–2 Block widths

Carry path (3)

Carry path (2)

 

Fig. 7.2 Carry-skip adder with variable-size blocks and three 
sample carry paths. 

Optimal variable-width blocks 

 b  b + 1   . . .   b + t/2 – 1    b + t/2 – 1  . . .    b + 1    b 

The total number of bits in the t blocks is k: 

 2[b + (b+1) + ... + (b+t/2–1)]  =  t(b + t/4 – 1/2)  =  k      
 b  =  k/t – t/4 + 1/2 

Tvar-skip-add = 2(b – 1) + 0.5 + t – 2  =  2k/t + t/2 – 2.5 

dTvar-skip-add
dt   = –2k/t2 + 1/2 = 0    ⇒     t opt = 2 k      

Optimal number of blocks 2  times that of fixed blocks 

T
opt
var-skip-add  ≅  2 k   – 2.5 

Roughly a factor of 2  smaller than for fixed blocks 
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7.2 Multilevel carry-skip adders  

 

 S   1 

 c   out  c   in 

 S   1  S   1  S   1  S   1  

Fig. 7.3 Schematic diagram of a one-level carry-skip adder. 
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 c   out  c   in 

 S   1  S   1  S   1  S   1 

 

Fig. 7.4 Example of a two-level carry-skip adder. 

 
 c   out  c   in 
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Fig. 7.5 Two-level carry-skip adder optimized by removing 
the short-block skip circuits. 
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Example 7.1  
Each of the following operations takes one unit of time: 
generation of gi and pi, generation of level-i skip signal 
from level-(i–1) skip signals, ripple, skip, and computation 
of sum bit once the incoming carry is known 
Build the widest possible single-level carry-skip adder with 
a total delay not exceeding 8 time units 
 

c c
bbbbbbb

0
234567

8
2

inout

S1 S1 S1 S1 S1

0123456

 

Fig. 7.6 Timing constraints of a single-level carry-skip adder 
with a delay of 8 units. 

Max adder width = 1 + 2 + 3 + 4 + 4 + 3 + 1 = 18 bits 
 
Generalization of Example 7.1: 
For a single-level carry-skip adder with total latency of T, 
where T is even, the block widths are: 
 1 2 3 . . .   T/2 T/2    . . .  4 3 1 
This yields a total width of T2/4 + T/2 – 2 bits  
When T is odd, the block widths become: 
 1 2 3   . . .       (T + 1)/2     . . .   4  3  1 
This yields a total width of (T + 1)2/4 – 2  

Thus, for any T, the total width is  (T + 1)2/4  – 2 
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Example 7.2  
Each of the following operations takes one unit of time: 
generation of gi and pi, generation of level-i skip signal 
from level-(i–1) skip signals, ripple, skip, and computation 
of sum bit once the incoming carry is known 
Build the widest possible two-level carry-skip adder with a 
total delay not exceeding 8 time units 
 
First determine the number of blocks and timing 
constraints at the second level 
 
The remaining problem is to build single-level carry-skip 
adders with Tproduce = β and Tassimilate = α   
 

c c

8

0

7 6 5 34 3

b b b b b b
{8, 1} {7, 2} {6, 3} {5, 4} {4, 5} {3, 8}

inout
ABCDEF

S2 S2 S2 S2 S2

Tproduce Tassimilate

(a)
 

3457 6

2 t=0t=8
cout cin2

3

Block E Block D Block C Block B Block AF

(b)
 

Fig. 7.7 Two-level carry-skip adder with a delay of 8 units: 
(a) Initial timing constraints, (b) Final design. 
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Table 7.1 Second-level constraints Tproduce and Tassimilate, 
with associated subblock and block widths, in a 
two-level carry-skip adder with a total delay of 8 
time units (Fig. 7.7) 

–––––––––––––––––––––––––––––––––––––––––––––– 
Block Tproduce Tassimilate Number of Subblock Block  
            subblocks widths width 
        β            α min(β–1, α) (bits) (bits) 
–––––––––––––––––––––––––––––––––––––––––––––– 
   A 3 8 2 1, 3 4  
   B 4 5 3 2, 3, 3 8  
   C 5 4 4 2, 3, 2, 1 8  
   D 6 3 3 3, 2, 1 6  
   E 7 2 2 2, 1 3  
   F 8 1 1 1 1  
–––––––––––––––––––––––––––––––––––––––––––––– 
            Total width:  30 bits 
 

Inputs 

Level-h skip 

Block of b full-adder units 

I(b) 

A(b) 

G(b) 

E  (b)  h 
S  (b)  h 

 

Fig. 7.8 Generalized delay model for carry-skip adders. 
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Elaboration on Example 7.2 
Given the delay pair {β, α} for a level-2 block in Fig. 7.7a,  
the number of level-1 blocks in the corresponding  
single-level carry-skip adder will be γ = min(β – 1, α) 
This is easily verified from the following two diagrams.  

c c
bb

0123

α
inout

S1 S1 S1 S1 S1

12

– 1α – 2α
S1

b0

S1

b –1α b –2α

 

 Single-level carry-skip adder with Tassimilate = α 

c c
bb

234β

inout

S1 S1 S1 S1 S1

12

– 1β – 2β
b –3βb –2β

S1

b0

S1

1

 

 Single-level carry-skip adder with Tproduce = β 

The width of the ith level-1 block  
in the level-2 block characterized by {β, α}  
is bi = min(β – γ + i + 1, α  – i) 
So, the total width of such a block is: 

 ∑
i=0

γ–1
  min(β – γ + i + 1, α  – i) 

The only exception occurs in the rightmost level-2 block A  
for which b0 is one unit less than the value given above  
in order to accommodate the carry-in signal  
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7.3 Carry-Select Adders 

k /2-bit adder 
k/2-bit adder 

k  - 1                k /2 k  - 1                  0 

 

  0 
 
1 

k/2+1 k/2+1 k/2 

1              0 
Mux 

k/2 
c out 

c k/2 

c in 

High k /2 bits Low k /2 bits 

k /2-bit adder 

 

Fig. 7.9 Carry-select adder for k-bit numbers built from three 
k/2-bit adders. 

 Cselect-add(k) =  3Cadd(k/2) + k/2 + 1 
 Tselect-add(k) =  Tadd(k/2) + 1 
 

 

k /4-bit adder k /4-bit adder 

k/2 - 1             k/4 k/4 - 1               0 

 

  0 
 
1 

k/4+1 k/4+1 k/4 

1              0 
Mux 

k/4 

 

k /4-bit adder 

k - 1               3k/4 
  0 
 
1 

k/4+1 k/4+1 k/4 

1              0 
Mux 

k /4-bit adder 

3k /4 - 1            k/2 
  0 
 
1 

1         0      
Mux 

k/2+1 

k/4 

c k/2 

c k/4 

c out 

c in 

, High k /2 bits Middle k /4 bits Low k /4 bits  

Fig. 7.10 Two-level carry-select adder built of k/4-bit adders. 
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7.4 Conditional-Sum Adder 

Multilevel carry-select idea carried out to the extreme, until 
we arrive at single-bit blocks. 

 C(k)  ≅   2C(k/2) + k + 2  ≅   k (log2k + 2) + k C(1) 

 T(k)  =  T(k/2) + 1  =  log2k + T(1) 

where C(1) and T(1) are the cost and delay of the circuit of 
Fig. 7.11 used at the top to derive the sum and carry bits 
with a carry-in of 0 and 1 
 
The term k + 2 in the first recurrence represents an upper 
bound on the number of single-bit 2-to-1 multiplexers 
needed for combining two k/2-bit adders into a k-bit adder 
 

sc

xy

sc

ii

ii+1 i+1 i

For c  = 0iFor c  = 1i
 

Fig. 7.11 Top-level block for one bit position of a conditional-
sum adder. 
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Table 7.2 Conditional-sum addition of two 16-bit numbers. 
The width of the block for which the sum and carry 
bits are known doubles with each additional level, 
leading to an addition time that grows as the 
logarithm of the word width k. 

 
           x   0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0   
           y   0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1  
  
  
  
  
 1    0    s   0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1  
           c   0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0  
  
      1    s   1 0 0 1 0 0 1 0 0 1 0 0 1 0 0  
           c   0 1 1 0 1 1 1 1 1 1 1 1 1 1 1  
  
 2    0    s   0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1  
           c   0   0   0   1   1   0   1   0     
  
      1    s   1 0 1 1 0 0 1 0 0 1 0 0 1 0  
           c   0   0   1   1   1   1   1  
  
 4    0    s   0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1  
           c   0       1       1       1         
  
      1    s   0 1 1 1 0 0 1 0 0 1 0 0  
           c   0       1       1  
  
 8    0    s   0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1  
           c   0               1                 
  
      1    s   0 1 1 1 0 0 1 0  
           c   0  
  
16    0    s   0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1  
           c   0                                 
  
      1    s  
           c 

Block  
width 

Block  
carry-in 

Block sum and block carry-out 
 15  14   13  12   11  10    9     8     7     6    5    4     3    2     1    0 

c in 

c out 
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7.5 Hybrid Adder Designs 

Lookahead Carry Generator

Carry-Select

c

g, p

in

MuxMuxMux

cout

0

1
0

1

0

1

Block

 

Fig. 7.12 A hybrid carry-lookahead/carry-select adder. 

 
cccc

4-Bit Lookahead Carry Generator

c
12 8 4 016

16-bit Carry-Lookahead Adder

g 
p [12,15]

[12,15] g 
p [8,11]

[8,11] g 
p [4,7]

[4,7] g 
p [0,3]

[0,3]

c32c48

(with carry-out)

 

Fig. 7.13 Example 48-bit adder with hybrid ripple-carry/carry-
lookahead design. 

 
Other possibilities: hybrid carry-select/ripple-carry 
     hybrid ripple-carry/carry-select 
     . . . 
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7.6 Optimizations in Fast Adders 

 
What looks best at the block diagram or gate level may not 
be best when a circuit-level design is generated (effects of 
wire length, signal loading, ...) 
 Modern practice: optimization at the transistor level 
 
Variable-block carry-lookahead adder 
 
Optimization based on knowledge of given input timing or 
required output timing 
 

 
 
 
15 
 
 
10 
 
 
 5 
 
 
 0

Bit Position

Latency from inputs 
in XOR-gate delays

0               20               40               60
 

Fig. 7.14 Example arrival times for operand bits in the final 
fast adder of a tree multiplier [Oklo96]. 
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8 Multi-Operand Addition 

   Go to TOC 
Chapter Goals 
 Learn methods for speeding up the  
 Addition of several numbers (needed  
 for multiplication or inner-product)  
 
Chapter Highlights 
 Running total kept in redundant form 
 Current total + Next number → New total  
 Deferred carry assimilation 
 Wallace/Dadda trees and parallel counters 
 
Chapter Contents 
8.1 Using Two-Operand Adders 
8.2 Carry-Save Adders 
8.3 Wallace and Dadda Trees 
8.4 Parallel Counters 
8.5 Generalized Parallel Counters 
8.6 Adding Multiple Signed Numbers 
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8.1 Using Two-Operand Adders 

         • • • •  a  
        • • • •  x  
      ----------  
        • • • •  x a   
      • • • •    x a   
    • • • •      x a   
  • • • •        x a   
----------------  
• • • • • • • •  p 

× 

0 
1 
2 
3 

0 
1 
2 
3 

2  
2  
2  
2 

   

      • • • • • •   p   
     • • • • • •   p    
     • • • • • •   p   
     • • • • • •   p   
     • • • • • •   p    
     • • • • • •   p   
     • • • • • •   p    
-----------------  
• • • • • • • • •   s  

(0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

 

Fig. 8.1 Multioperand addition problems for multiplication or 
inner-product computation in dot notation. 

 

Adder 
x 

k bits 

k + log  n bits 
∑ x 
j=0 
i–1 

(i) 

2 (j) 

Partial sum 
register 

 

Fig. 8.2 Serial implementation of multi-operand addition 
with a single 2-operand adder. 

 Tserial-multi-add   = O(n log(k + log n))  

Because  max(k, log n) < k + log n • max(2k, 2 log n) 
we have  log(k + log n) = O(log k + log log n)  and: 

 Tserial-multi-add   = O(n log k + n log log n)  

Therefore, addition time grows superlinearly with n when k 
is fixed and logarithmically with k for a given n  
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One can pipeline the serial solution to get somewhat better 
performance.  
 

(i–10)(i–9)

Delay

Delays
Ready to 
compute s (i–12)

x(i–1)

x(i)

x    +(i) x(i–1)

x       +(i–8) x       + (i–11)x         + x  

(i–7)x       +(i–6) x         

(i–5)x       +(i–4) x       
 

Fig. 8.3 Serial multi-operand addition when each adder is a 
4-stage pipeline. 
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Adder Adder Adder

AdderAdder

Adder

k

k+1

k+2

k+3

k+2

k+1k+1

k kk kk k

 

Fig. 8.4 Adding 7 numbers in a binary tree of adders.  

 
Ttree-fast-multi-add = O(log k + log(k + 1) + . . .  

       + log(k +  log2n  – 1)) 
    = O(log n log k + log n log log n)   
 
Ttree-ripple-multi-add = O(k + log n)  
 

. . .

  . . . Level i

Level i+1

HAFA

HAFA

t

t+1

tt+1t+1

t+1

t+1

t+2

t+2 t+2

t+2

t+3
t+2t+3

 

Fig. 8.5 Ripple-carry adders at levels i and i + 1 in the tree of 
adders used for multi-operand addition. 
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8.2 Carry-Save Adders 

FA FAFA FA FAFA

FA FAFA FA FAFA

Cut

 

Fig. 8.6 A ripple-carry adder turns into a carry-save adder if 
the carries are saved (stored) rather than 
propagated. 

 

              
 

Carry-propagate adder 
 

Carry-save adder (CSA)  
or 
(3; 2)-counter  
or 
3-to-2 reduction circuit 
 

c 
 

in 
 

c 
 

out 
 

              
 

 

Fig. 8.7 Carry-propagate adder (CPA) and carry-save adder 
(CSA) functions in dot notation. 
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Half-adder 
 

              
 Full-adder 

  

Fig. 8.8 Specifying full- and half-adder blocks, with their 
inputs and outputs, in dot notation. 

A full-adder compacts 3 dots into 2 dots 
A half-adder rearranges 2 dots  
 

CSACSA

CSA

CSA

CSA

 

Fig. 8.9 Tree of carry-save adders reducing seven numbers 
to two. 

Tcarry-save-multi-add   = O(tree height + TCPA) 
      = O(log n + log k)   
 
Ccarry-save-multi-add   = (n – 2)CCSA + CCPA  
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12 FAs 
 

  
 

6 FAs 
 

6 FAs 
 

4 FAs + 1 HA 
 

7-bit adder 
 

Total cost  =  7-bit adder  +  28 FAs  +  1 HA 
 

 

Fig. 8.10 Addition of seven 6-bit numbers in dot notation. 

 8  7  6  5  4  3  2  1  0   Bit position 

       7  7  7  7  7  7  6 × 2 = 12 FAs 
     2  5  5  5  5  5  3  6 FAs 

     3  4  4  4  4  4  1  6 FAs 

      1  2  3  3  3  3  2  1  4 FAs + 1 HA  

   2  2  2  2  2  1  2  1  7-bit adder 
   ––– Carry-propagate adder ––– 
 1  1  1  1  1  1  1  1  1 

Fig. 8.11 Representing a seven-operand addition in tabular 
form. 
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k-bit CPA

k-bit  CSA k-bit CSA

k-bit CSA

k-bit CSA

0k+2

The index pair  
[i, j] means that  
bit positions  
from i up to j  
are involved.

k-bit CSA

[0, k–1]  
[0, k–1]  

[0, k–1]  
[0, k–1]  

[0, k–1]  [0, k–1]  

[0, k–1]  
[0, k–1]  

[0, k–1]  

[1, k] [1, k]

[1, k]

[1, k]

[0, k–1]  

[2, k+1]  [2, k+1]  

[2, k+1]  

[2, k+1]  [1, k–1]  

1

[1, k+1]  

 

Fig. 8.12 Adding seven k-bit numbers and the CSA/CPA 
widths required. 

 

CSA

Input

Sum register
Carry register

Output

CPA

 

Fig. 8.13 Serial carry-save addition using a single CSA. 
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8.3 Wallace and Dadda Trees 

.  .  .  
inputsn

2 outputs

levelsh

 

    h(n)   = 1 + h(2n/3 )    

    n(h)   = 3n(h – 1)/2  

    2 × 1.5h–1< n(h) ≤ 2 × 1.5h  

Table 8.1 The maximum number n(h) of inputs for an h-level 
carry-save-adder tree 

    ––––––––––––––––––––––––––––––––– 
     h   n(h)    h   n(h)   h   n(h) 
    ––––––––––––––––––––––––––––––––– 
 0 2 7 28 14 474 
 1 3 8 42 15 711 
 2 4 9 63 16 1066 
 3 6 10 94 17 1599 
 4 9 11 141 18 2398 
 5 13 12 211 19 3597 
 6 19 13 316 20 5395 
    ––––––––––––––––––––––––––––––––– 
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In a Wallace tree, we reduce the number of operands at 
the earliest possible opportunity 
 
In a Dadda tree, we reduce the number of operands at the 
latest possible opportunity that leads to no added delay 
(target the next smaller number in Table 8.1) 
 

6 FAs 
 

  
 11 FAs 

 

7 FAs 
 

4 FAs + 1 HA 
 

7-bit adder 
 

Total cost  =  7-bit adder  +  28 FAs  +  1 HA 
  

Fig. 8.14 Adding seven 6-bit numbers using Dadda’s strategy. 
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6 FAs 
 

  
 11 FAs 

 

6 FAs + 1 HA 
 

3 FAs + 2 HA 
 

7-bit adder 
 

Total cost  =  7-bit adder  +  26 FAs  +  3 HA 
  

Fig. 8.15 Adding seven 6-bit numbers by taking advantage of 
the final adder’s carry-in. 
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8.4 Parallel Counters 

Single-bit full-adder = (3; 2)-counter 
Circuit reducing 7 bits to their 3-bit sum = (7; 3)-counter 
Circuit reducing n bits to their  log2(n + 1) -bit sum  
  = (n;  log2(n + 1) )-counter 

 

0

1 0 1 0 1 0

2 1 1 0

1

0

2

13 2

3-bit 
ripple-carry 
adder

FA FA

HA

HA

FA

FAFAFA

 

Fig. 8.16 A 10-input parallel counter also known as a (10; 4)-
counter. 
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8.5 Generalized Parallel Counters 

.    .    . 
 

 

Fig. 8.17 Dot notation for a (5, 5; 4)-counter and the use of 
such counters for reducing five numbers to two 
numbers. 

 

(n; 2)-counters 

. . . i – 3 i – 2 i – 1 i 

n inputs 

To i + 1 

To i + 2 

To i + 3 

One circuit slice 

ψ   1 

ψ   2 

ψ   3 

ψ   1 

ψ   2 

ψ   3 

 
 
 n + ψ1 + ψ2 + ψ3 + ...  ≤  3 + 2ψ1 + 4ψ2 + 8ψ3 + . . . 
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8.6 Adding Multiple Signed Numbers 

   Extended positions   Sign Magnitude positions 

 xk–1 xk–1 xk–1 xk–1 xk–1  xk–1 xk–2 xk–3 xk–4 . . . 

 yk–1 yk–1 yk–1 yk–1 yk–1  yk–1  yk–2 yk–3 yk–4 . . . 

 zk–1 zk–1 zk–1 zk–1 zk–1  zk–1 zk–2 zk–3 zk–4 . . .  

         (a) 

   Extended positions   Sign Magnitude positions 

   1    1    1    1    0  xk–1 xk–2 xk–3 xk–4 . . . 

                yk–1 yk–2 yk–3 yk–4 . . . 

                zk–1 zk–2 zk–3 zk–4 . . .  

          1 

         (b) 
Fig. 8.18 Adding three 2's-complement numbers using sign 

extension (a) or by the method based on negatively 
weighted sign bits (b). 
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Part III Multiplication 

Part Goals 
 Review shift-add multiplication schemes 
 Learn about faster multipliers 
 Discuss speed/cost tradeoffs in multipliers 
 
Part Synopsis 
  Multiplication is an often-used operation 
  (arithmetic & array index calculations) 
 Division = reciprocation + multiplication 
 Multiplication speedup: high-radix, tree, ... 
 Bit-serial, modular, and array multipliers 
 
Part Contents 
Chapter 9 Basic Multiplication Schemes 
Chapter 10 High-Radix Multipliers 
Chapter 11 Tree and Array Multipliers 
Chapter 12 Variations in Multipliers      
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9 Basic Multiplication Schemes 

   Go to TOC 
Chapter Goals 
 Study shift/add or bit-at-a-time multipliers 
 and set the stage for faster methods and 
 variations to be covered in Chapters 10-12  
 
Chapter Highlights 
 Multiplication = multioperand addition 
 Hardware, firmware, software algorithms 
 Multiplying 2’s-complement numbers 
 The special case of one constant operand 
 
Chapter Contents 
9.1. Shift/Add Multiplication Algorithms 
9.2. Programmed Multiplication 
9.3. Basic Hardware Multipliers 
9.4. Multiplication of Signed Numbers 
9.5. Multiplication by Constants 
9.6. Preview of Fast Multipliers 
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❝ At least one good reason  

for studying multiplication and division is that  

there is an infinite number of ways  

of performing these operations  

and hence there is an infinite number of PhDs  

(or expenses-paid visits to conferences in the USA)  

to be won from inventing new forms of multiplier.❞  
 
  Alan Clements 
  The Principles of Computer Hardware, 1986 
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9.1 Shift/Add Multiplication Algorithms 

Notation for our discussion of multiplication algorithms: 

 a Multiplicand  ak–1ak–2 . . . a1a0    

 x Multiplier   xk–1xk–2 . . . x1x0   

 p  Product (a × x) p2k–1p2k–2 . . . p1p0   

Initially, we assume unsigned operands 
 

Product  

Partial 
products 
bit-matrix  

a 
x 

p 

2 
 

x a 
 

0 
 0 

1 x a 2 
 
1 
 x a 2 

 
2 
 2 

2 
 
3 
 3 

 

x a 
 

Multiplicand 
Multiplier × 

 
Fig. 9.1 Multiplication of two 4-bit unsigned binary numbers 

in dot notation. 

Multiplication with right shifts: top-to-bottom accumulation 
p(j+1)   = (p(j) + xj a 2k) 2–1        with p(0) = 0 and  

  |–––add–––|    p(k) = p  =  ax + p(0)2–k 
  |––shift right––| 
 
Multiplication with left shifts: bottom-to-top accumulation 
p(j+1)   = 2p(j)  + xk–j–1a        with p(0) = 0 and  

  |shift|     p(k) = p  =  ax + p(0)2k 
  |––––add––––| 
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        Right-shift algorithm          Left-shift algorithm 
======================= ==================== 
a      1  0  1  0    a                    1  0  1  0 
x      1  0  1  1    x                    1  0  1  1 
======================= ==================== 
p(0)     0  0  0  0     p(0)             0  0  0  0 
+x0a     1  0  1  0    2p(0)             0    0  0  0  0 
–––––––––––––––––––––––– +x3a                    1  0  1  0 
2p(1) 0  1  0  1  0    ––––––––––––––––––––– 
p(1)         0  1  0  1    0   p(1)              0    1  0  1  0 
+x1a     1  0  1  0    2p(1)          0  1    0  1  0  0 
–––––––––––––––––––––––– +x2a                    0  0  0  0 
2p(2) 0  1  1  1  1    0   ––––––––––––––––––––– 
p(2)         0  1  1  1    1  0  p(2)          0  1    0  1  0  0 
+x2a     0  0  0  0    2p(2)     0  1  0    1  0  0  0 
–––––––––––––––––––––––– +x1a                    1  0  1  0 
2p(3) 0  0  1  1  1    1  0  ––––––––––––––––––––– 
p(3)         0  0  1  1    1  1  0 p(3)     0  1  1    0  0  1  0 
+x3a     1  0  1  0    2p(3) 0  1  1  0    0  1  0  0 
–––––––––––––––––––––––– +x0a                    1  0  1  0 
2p(4) 0  1  1  0  1    1  1  0 ––––––––––––––––––––– 
p(4)     0  1  1  0    1  1  1  0 p(4) 0  1  1  0    1  1  1  0 
======================= ==================== 

Fig. 9.2 Examples of sequential multiplication with right and 
left shifts. 
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Programmed multiplication of k-bit numbers 
 
6k + 3   to 7k + 3  machine instructions, 

ignoring operand loads and result store 
 
k = 32 implies 200+ instructions on average 
 
This is too slow for many modern applications! 
 
Microprogrammed multiply would be somewhat better 
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9.2 Programmed Multiplication  

 

R0 Rc Counter0
Ra Rx
Rp Rq

Multiplicand Multiplier
Product, high Product, low  

 {Using right shifts, multiply unsigned m_cand and m_ier,   
 storing the resultant 2k-bit product in p_high and p_low.   
 Registers: R0 holds 0         Rc for counter 
            Ra for m_cand      Rx for m_ier 
            Rp for p_high      Rq for p_low} 
 
 {Load operands into registers Ra and Rx} 
 
     mult:  load Ra with m_cand 
            load Rx with m_ier  
 
 {Initialize partial product and counter} 
 
            copy R0 into Rp 
            copy R0 into Rq 
            load k  into Rc 
 
 {Begin multiplication loop} 
 
   m_loop:  shift    Rx right 1  {LSB moves to carry flag} 
            branch   no_add if carry = 0  
            add      Ra to Rp    {carry flag is set to cout} 
   no_add:  rotate   Rp right 1  {carry to MSB, LSB to carry} 
            rotate   Rq right 1  {carry to MSB, LSB to carry} 
            decr     Rc          {decrement counter by 1} 
            branch   m_loop if Rc ≠ 0 
 
 {Store the product} 
 
            store    Rp into p_high 
            store    Rq into p_low 
   m_done:  ... 

Fig. 9.3 Programmed multiplication (right-shift algorithm). 
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9.3 Basic Hardware Multipliers  

Multiplier x 

Mux 

Adder 

0 

out c 

0       1 

Doublewidth partial product p 

Multiplicand a 

Shift 

Shift 

(j) 

j x 

x a j 

k 

k 

k 

 

Fig. 9.4 Hardware realization of the sequential multiplication 
algorithm with additions and right shifts. 

Partial product p (j) 

k 

Unused 
part of the 
multiplier x 

Adder’s  
carry-out  

Adder’s sum 

k 

k – 1 

k – 1 

To mux control To adder  

Fig. 9.5 Combining the loading and shifting of the double-
width register holding the partial product and the 
partially used multiplier.  
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Multiplier x 

Mux 

2k-bit adder 

0 

out c 

0       1 

Doublewidth partial product p 

Multiplicand a 

Shift 

Shift 

(j) 

k-j-1 x 

a 

 2k 

k k-j-1  x 

2k 

 

Fig. 9.6 Hardware realization of the sequential multiplication 
algorithm with left shifts and additions. 
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9.4 Multiplication of Signed Numbers  

  ============================= 
  a       1  0  1  1  0 
  x       0  1  0  1  1 
  ============================= 
  p(0)      0  0  0  0  0 
  +x0a      1  0  1  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(1)  1  1  0  1  1  0 
  p(1)          1  1  0  1  1    0 
  +x1a      1  0  1  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(2)  1  1  0  0  0  1    0 
  p(2)          1  1  0  0  0    1  0 
  +x2a       0  0  0  0  0 
  ––––––––––––––––––––––––––––––– 
  2p(3)  1  1  1  0  0  0    1  0 
  p(3)          1  1  1  0  0    0  1  0 
  +x3a      1  0  1  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(4)  1  1  0  0  1  0    0  1  0 
  p(4)           1  1  0  0  1   0  0  1  0 
  +x4a      0  0  0  0  0 
  ––––––––––––––––––––––––––––––– 
  2p(5)  1  1  1  0  0  1    0  0  1  0 
  p(5)      1  1  1  0  0   1  0  0  1  0 
  ============================= 
Fig. 9.7 Sequential multiplication of 2’s-complement 

numbers with right shifts (positive multiplier). 
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  ============================= 
  a       1  0  1  1  0 
  x       1  0  1  0  1 
  ============================= 
  p(0)      0  0  0  0  0 
  +x0a      1  0  1  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(1)  1  1  0  1  1  0 
  p(1)           1  1  0  1  1    0 
  +x1a       0  0  0  0  0 
  ––––––––––––––––––––––––––––––– 
  2p(2)  1  1  1  0  1  1    0 
  p(2)              1  1  1  0  1    1  0 
  +x2a          1  0  1  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(3)  1  1  0  0  1  1    1  0 
  p(3)          1  1  0  0  1    1  1  0 
  +x3a     0  0  0  0  0 
  ––––––––––––––––––––––––––––––– 
  2p(4)  1  1  1  0  0  1    1  1  0 
  p(4)           1  1  1  0  0    1  1  1  0 
  +(–x4a)     0  1  0  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(5)  0  0  0  1  1  0    1  1  1  0 
  p(5)          0  0  0  1  1    0  1  1  1  0 
  ============================= 
Fig. 9.8 Sequential multiplication of 2’s-complement 

numbers with right shifts (negative multiplier). 
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Table 9.1 Radix-2 Booth’s recoding 

 ––––––––––––––––––––––––––––––––––––– 
 xi  xi–1 yi     Explanation 
 ––––––––––––––––––––––––––––––––––––– 

  0   0    0   No string of 1s in sight 

  0   1    1   End of string of 1s in x 

  1   0   -1   Beginning of string of 1s in x 

  1   1    0   Continuation of string of 1s in x 

 ––––––––––––––––––––––––––––––––––––– 

 
Example 
 
  1  0  0  1  1  1  0  1  1  0  1  0  1  1  1  0   Operand x 

(1)    -1  0  1  0  0 -1  1  0 -1  1 -1  1  0  0 -1  0    Recoded  
                             version y  

 
Justification 

  2j + 2j–1 + . . . + 2i+1 + 2i  = 2j+1 – 2i 
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  ============================== 
  a       1  0  1  1  0 
  x       1  0  1  0  1 Multiplier 
  y      -1  1 -1  1 -1 Booth-recoded 
  ============================= 
  p(0)      0  0  0  0  0 
  +y0a      0  1  0  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(1)  0  0  1  0  1  0 
  p(1)          0  0  1  0  1    0 
  +y1a      1  0  1  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(2)  1  1  1  0  1  1    0 
  p(2)           1  1  1  0  1   1  0 
  +y2a        0  1  0  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(3)    0  0  0  1  1  1   1  0 
  p(3)          0  0  0  1  1    1  1  0 
  +y3a     1  0  1  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(4)  1  1  1  0  0  1    1  1  0 
  p(4)       1  1  1  0  0    1  1  1  0 
  +y4a      0  1  0  1  0 
  ––––––––––––––––––––––––––––––– 
  2p(5)  0  0  0  1  1  0    1  1  1  0 
  p(5)          0  0  0  1  1    0  1  1  1  0 
  ============================= 

Fig. 9.9 Sequential multiplication of 2’s-complement 
numbers with right shifts using Booth’s recoding. 
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9.5 Multiplication by Constants  

Explicit multiplications,   e.g. y : = 12 ∗  x + 1 
Implicit multiplications,   e.g.  A[i, j] := A[i, j] + B[i, j]      
 Address of A[i, j] = base + n ∗  i + j 
 
Aspects of multiplication by integer constants: 
Produce efficient code using as few registers as possible  
Find the best code by a time/space-efficient algorithm  
 
Use binary expansion  
Example: multiply R1 by 113 = (1110001)two 

 R2    ← R1  shift-left  1 

 R3    ← R2  +  R1 

 R6    ← R3  shift-left  1 

 R7    ← R6  +  R1 

 R112 ← R7  shift-left  4 

 R113 ← R112  +  R1 
 
Only two registers are required; R1 and another  
 
Shorter sequence using shift-and-add instructions 
 R3    ← R1  shift-left  1  +  R1 

 R7    ← R3  shift-left  1  +  R1 

 R113 ← R7  shift-left  4  +  R1 
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Use of subtraction (Booth’s recoding) may help 
Example:  

multiply R1 by 113 = (1110001)two = (100-10001)two 

 R8    ← R1  shift-left  3 

 R7    ← R8  –  R1 

 R112 ← R7  shift-left  4 

 R113 ← R112  +  R1 
 
Use of factoring may help  
Example: multiply R1 by 119 = 7 × 17 = (8 – 1) × (16 + 1) 

 R8    ← R1  shift-left  3 

 R7    ← R8  –  R1 

 R112 ← R7  shift-left  4 

 R119 ← R112  +  R7 
 
Shorter sequence using shift-and-add/subtract instructions 
 R7    ← R1  shift-left  3  –  R1 

 R119 ← R7  shift-left  4  +  R7 
 
Factors of the form 2b ± 1 translate directly into a shift 
followed by an add or subtract 
 
Program execution time improvement by an optimizing 
compiler using the preceding methods: 20-60% [Bern86] 
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9.6 Preview of Fast Multipliers  

 
Viewing multiplication as a multioperand addition problem,  
there are but two ways to speed it up 
 

a.  Reducing the number of operands to be added: 
  handling more than one multiplier bit at a time 
  (high-radix multipliers, Chapter 10) 

 
b.  Adding the operands faster: 
  parallel/pipelined multioperand addition 
  (tree and array multipliers, Chapter 11) 

 
In Chapter 12, we cover all remaining multiplication topics, 
 including bit-serial multipliers, multiply-add units,  
 and the special case of squaring 
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10 High-Radix Multipliers 

   Go to TOC 
Chapter Goals 
 Study techniques that allow us to handle 
 more than one multiplier bit in each cycle 
 (two bits in radix 4, three in radix 8, . . .)  
 
Chapter Highlights 
 High radix gives rise to “difficult” multiples 
 Recoding (change of digit-set) as remedy 
 Carry-save addition reduces cycle time 
 Implementation and optimization methods 
 
Chapter Contents 
10.1 Radix-4 Multiplication 
10.2 Modified Booth’s Recoding 
10.3 Using Carry-Save Adders 
10.4 Radix-8 and Radix-16 Multipliers 
10.5 Multibeat Multipliers 
10.6 VLSI Complexity Issues 
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10.1 Radix-4 Multiplication 

Radix-r versions of multiplication recurrences 
 
Multiplication with right shifts: top-to-bottom accumulation 
 
p(j+1)   = (p(j) + xj a r 

k) r–1        with p(0) = 0 and  

  |–––add–––|    p(k) = p  =  ax + p(0)r 
–k 

  |––shift right––| 
 
 
Multiplication with left shifts: bottom-to-top accumulation 
 
p(j+1)   = r p(j)  + xk–j–1a        with p(0) = 0 and  

  |shift|     p(k) = p  =  ax + p(0)r 
k 

  |––––add––––| 
 

 
        • • • •   a  
        • • • •   x  
      ----------  
    • • • • • •   (x x )   a 4  
• • • • • •       (x x )   a 4  
----------------  
• • • • • • • •   p 

× 

0 1 
2 3 two 

two 
0 
1 

 

Fig. 10.1 Radix-4, or two-bit-at-a-time, multiplication in dot 
notation. 
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0 a 2a

3a
Multiplier

To the adder

2-bit shifts

00    01    10    11
Mux

xi+1 xi

 

Fig. 10.2 The multiple generation part of a radix-4 multiplier 
with precomputation of 3a. 

 
  ================================ 
  a            0  1  1  0 
  3a     0  1  0  0  1  0 
  x            1  1  1  0 
  ================================ 
  p(0)           0  0  0  0 
  +(x1x0)twoa  0  0  1  1  0  0 
  –––––––––––––––––––––––––––––––––– 
  4p(1)    0  0  1  1  0  0 
  p(1)                0  0  1  1    0  0 
  +(x3x2)twoa  0  1  0  0  1  0 
  –––––––––––––––––––––––––––––––––– 
  4p(2)    0  1  0  1  0  1    0  0 
  p(2)                0  1  0  1    0  1  0  0 
  ================================ 

Fig. 10.3 Example of radix-4 multiplication using the 3a 
multiple. 
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0 a 2a –a

Multiplier

To the adder

+c
FF

Set if          =      = 1   
 or if           =  c  = 1c

00    01    10    11
Mux

2-bit shifts

mod 4

Carry
xi+1 xi

xi+1
xi+1

xi

 

Fig. 10.4 The multiple generation part of a radix-4 multiplier 
based on replacing 3a with 4a (carry into next 
higher radix-4 multiplier digit) and –a. 

 
xi+1 xi  c   Mux control  Set carry 
--- ---  ---   ----------------- ------------ 
0 0  0  0 0   0 
0 0  1  0 1   0 
0 1  0  0 1   0 
0 1  1  1 0   0 
1 0  0  1 0   0 
1 0  1  1 1   1 
1 1  0  1 1   1 
1 1  1  0 0   1 
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10.2 Modified Booth’s Recoding 

Table 10.1 Radix-4 Booth’s recoding yielding (zk/2 
. . . z1z0)four 

––––––––––––––––––––––––––––––––––––––––––––– 
 xi+1  xi  xi–1 yi+1  yi    zi/2  Explanation 
––––––––––––––––––––––––––––––––––––––––––––– 

  0     0     0   0   0   0  No string of 1s in sight 

  0     0     1   0   1   1  End of string of 1s 

  0     1     0   0   1   1  Isolated 1 

  0     1     1   1   0   2  End of string of 1s 

  1     0     0  -1   0  -2  Beginning of string of 1s 

  1     0     1  -1   1  -1  End a string, begin new one 

  1     1     0   0  -1  -1  Beginning of string of 1s 

  1     1     1   0   0   0  Continuation of string of 1s 

–––––––––––––––––––––––––––––––––––––––––––––– 

Example: (21 31 22 32)four 

  1  0  0  1  1  1  0  1  1  0  1  0  1  1  1  0   Operand x 
  –––  –––  –––  –––  –––  –––  –––  –––  
 (1)    -2     2     -1    2     -1    -1   0    -2    Recoded  
                             version z  

 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 139 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

  =========================== 
  a           0  1  1  0 
  x       1  0  1  0 
  z              -1     -2       Recoded version of x 
  =========================== 
  p(0)  0  0  0  0  0  0 
  +z0a  1  1  0  1  0  0 
  ––––––––––––––––––––––––––––– 
  4p(1)  1  1  0  1  0  0 
  p(1)      1  1  1  1  0  1    0  0 
  +z1a  1  1  1  0  1  0 
  ––––––––––––––––––––––––––––– 
  4p(2)  1  1  0  1  1  1    0  0 
  p(2)              1  1  0  1    1  1  0  0 
  =========================== 

Fig. 10.5 Example radix-4 multiplication with modified 
Booth’s recoding of the 2’s-complement multiplier. 
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two non0
a             2a

Enable

Select

 z     a

neg

ii+1 i–1

i/2

0           1
Mux

k+1
0, a, or 2a

To adder input
Add/subtract 
    control

x

Multiplier

xx

Recoding Logic

Multiplicand

0

k

0

2-bit shift

Init. 0

 

Fig. 10.6 The multiple generation part of a radix-4 multiplier 
based on Booth’s recoding. 
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10.3 Using Carry-Save Adders 

Mux

0 2a

0 a

Multiplier

New Cumulative Partial Product

Old Cumulative 
 Partial Product

CSA

Mux
xi+1 xi

Adder

 

Fig. 10.7 Radix-4 multiplication with a carry-save adder used 
to combine the cumulative partial product, xia, and 

2xi+1a into two numbers. 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 142 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

0

Multiplier

k

k

k-Bit CSA    

k

Partial   Product

k

Mux

k-Bit Adder

Mux

Multiplicand

Carry

Sum

 

Fig. 10.8 Radix-2 multiplication with the upper half of the 
cumulative partial product in stored-carry form. 

a 
 

Multiplier 
 

x 
 

i+1 
 

x 
 

i 
 

Adder 
 

New cumulative  
  partial product  
 

Old cumulative  
  partial product  
 

FF 
 

2-bit  
 Adder 
 

To the lower half  
  of partial product  

 Booth recoder 
and selector 

 

CSA 
 

x 
 

i-1 
 

z     a 
 i/2 

 

Extra “dot” 
 

 

Fig. 10.9 Radix-4 multiplication with a carry-save adder used 
to combine the stored-carry cumulative partial 
product and zi/2a into two numbers. 
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x                  x                 x                   x

Recoding Logic

two non0
a          2a

Enable

Select

 z     a

neg

ii+1 i–1

i/2

i–2

0           1
Mux

k+1

0, a, or 2a

k+2

Selective Complement    

0, a, –a, 2a, or –2a

 Extra "Dot" 
for Column i

xi+2

 
Fig. 10.10 Booth recoding and multiple selection logic for 

high-radix or parallel multiplication. 

Mux

0 2a

0 a

Multiplier

CSA

Mux xi+1 xi

Adder

CSA
New Cumulative 
 Partial Product

Old Cumulative 
 Partial Product

FF
2-Bit
Adder

To the Lower Half 
 of Partial Product  

Fig. 10.11 Radix-4 multiplication with two carry-save adders. 
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10.4 Radix-8 and Radix-16 Multipliers 

Multiplier

CSA CSA

CSA

CSA

Partial Product 
  (Upper Half)

Mux

0 8a

Mux

0 4a

Mux

0 2a

Mux

0 a

xi+3

xi+2

xi+1

xi

Carry

Sum

4-Bit 
Shift

FF

To the Lower Half 
 of Partial Product

3 4-Bit
Adder

4

4

 

Fig. 10.12 Radix-16 multiplication with the upper half of the 
cumulative partial product in carry-save form. 

 
Remove the mux corresponding to xi+3  
and the CSA right below it to get a radix-8 multiplier 
(the cycle time will remain the same, though) 
Must also modify the small adder at the lower right 
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Radix-16 multiplier design can become a radix-32 design 
if modified Booth’s recoding is applied first 
 

Basic 
binary

Adder

Adder

  Next 
multiple

Partial  product

...

 Several 
multiples

Adder

. . .

All multiples

Small CSA 
     tree Full CSA 

    tree

High-radix 
       or 
 partial tree

Full 
treeSpeed up Economize

Partial  product

 

Fig. 10.13 High-radix multipliers as intermediate between 
sequential radix-2 and full-tree multipliers. 
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10.5 Multibeat Multipliers 

 

Adder

CSA

Sum

Carry

CSA

Sum

Carry

FF

To the Lower Half 
 of Partial Product

6-Bit
Adder

6

65

 Pipelined 
  Radix-8 
   Booth 
  Recoder 
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3a a 3a a
4 4

Twin Multiplier 
     Registers
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  Radix-8 
   Booth 
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& Selector

 

Fig. 10.14 Twin-beat multiplier with radix-8 Booth’s recoding. 
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Next-state 
logic 

State 
flip-flops  

Inputs 
Next-state 
excitation 

Present  
state 

Next-state 
logic 

State 
latches 

Inputs 

Next-state 
logic 

Inputs 
State 
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PH1 

PH2 CLK 

(a) Sequential machine with FFs (b) Sequential machine with latches and 2-phase clock  
Fig. 10.? Conceptual view of a twin-beat multiplier. 

 

Beat-1 
 Input

Beat-3 
 Input

Beat-2 
 Input

Node 1

Node 2
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Fig. 10.15 Conceptual view of a three-beat multiplier. 
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10.6 VLSI Complexity Issues 

Radix-2b multiplication  
 bk  two-input AND gates 

 O(bk) area for the CSA tree 

 Total area: A = O(bk) 

 Latency:  T = O((k/b) log b + log k) 

 
Any VLSI circuit computing the product of two k-bit 
integers must satisfy the following constraints  
  AT grows at least as fast as k k .  
 AT2 is at least proportional to k2 

 
For the preceding implementations, we have: 

 AT = O(k2 log b + bk log k) 

 AT2 = O((k3/b) log2b) 
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Suboptimality of radix-b multipliers 
 
Low cost High speed Optimal wrt 
b constant  b = O(k) AT or AT2 

AT = O(k2)    AT = O(k2 log k)    AT  =  O(k k ) 

AT2 = O(k3)   AT2 =  O(k2 log2k)   AT2  =  O(k2)  

 
Intermediate designs do not yield better AT and AT2   
The multipliers remain asymptotically suboptimal for any b 
 
By the AT measure (indicator of cost-effectiveness)  
 slower radix-2 multipliers are better than  
 high-radix or tree multipliers 
 
When many independent multiplications are required,  
 it may be appropriate to use the available chip area  
 for a large number of slow multipliers  
 as opposed to a small number of faster units 
 
Latency of high-radix multipliers can actually be reduced  
 from O((k/b) log b + log k) to O(k/b + log k)  
 through more effective pipelining (Chapter 11) 
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11 Tree and Array Multipliers 

   Go to TOC 
Chapter Goals 
 Study the design of multipliers for highest  
 possible performance (speed, throughput) 
 
Chapter Highlights 
 Tree multiplier = reduction tree  
  + redundant-to-binary converter 
 Avoiding full sign extension in multiplying 
  signed numbers 
 Array multiplier = one-sided reduction tree  
  + ripple-carry adder 
 
Chapter Contents 
11.1 Full-Tree Multipliers 
11.2 Alternative Reduction Trees 
11.3 Tree Multipliers for Signed Numbers 
11.4 Partial-Tree Multipliers 
11.5 Array Multipliers 
11.6 Pipelined Tree and Array Multipliers 
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11.1 Full-Tree Multipliers 
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Fig. 10.13 High-radix multipliers as intermediate between 
sequential radix-2 and full-tree multipliers. 
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Fig. 11.1 General structure of a full-tree multiplier. 

 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 153 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

Adder 
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carry-save 
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. . . 

All partial products 

Product 

Adder 

Small tree of 
carry-save 

adders 

. . . 

Several partial products 

Product 

Log-
depth 

Log-
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Fig. x Schematic diagrams for full-tree and partial-tree 
multipliers. 

 
Variations in tree multipliers are distinguished by  
the designs of the following three elements: 
 multiple-forming circuits 
 partial products reduction tree 
 redundant-to-binary converter 
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   1  2  3  4  3  2  1  
         FA FA FA HA  
  --------------------  
   1  3  2  3  2  1  1  
      FA HA FA HA  
----------------------  
   2  2  2  2  1  1  1  
   4-Bit Adder  
----------------------  
1  1  1  1  1  1  1  1   

Wallace Tree  
(5 FAs + 3 HAs + 4-Bit Adder)  

      

 

   1  2  3  4  3  2  1    
         FA FA       
  --------------------  
   1  3  2  2  3  2  1    
      FA HA HA FA       
----------------------  
   2  2  2  2  1  2  1  
     6-Bit Adder  
----------------------  
1  1  1  1  1  1  1  1   

Dadda Tree  
(4 FAs + 2 HAs + 6-Bit Adder)  

 

Fig. 11.2 Two different binary 4 × 4 tree multipliers. 

 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 155 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

10-bit CPA

7-bit  CSA 7-bit CSA

7-bit CSA

10-bit CSA

2Ignore

The index pair  
[i, j] means that  
bit positions  
from i up to j  
are involved.

7-bit CSA

[0, 6]  
[1, 7]  

[2, 8]  
[6, 12]  

[3, 11]  [1,8]  

[3, 9]  
[4, 10]  

[5, 11]  

[2, 8] [5, 11]

[6, 12]

[2,12]

[3, 12]  

[4,13]  [4,12]  

[4, 13]  

[3,9]  

3

[3,12]  

[2, 8]

[3,12]

[1, 6]  

01
 

Fig. 11.3 Possible CSA tree for a 7 × 7 tree multiplier. 

 
CSA trees are generally quite irregular,  
thus causing problems in VLSI implementation 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 156 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

11.2 Alternative Reduction Trees 
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FA FA 

FA 

FA 

Inputs 

Level-1  
carries 

Level-2  
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Level-3  
carries 

Level-4  
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Fig. 11.4 A slice of a balanced-delay tree for 11 inputs. 
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4-to-2 4-to-2 

4-to-2 
4-to-2 reduction module  
implemented with two 
levels of (3; 2)-counters  

Fig. 11.5 Tree multiplier with a more regular structure based 
on 4-to-2 reduction modules. 
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Fig. 11.6 Layout of a partial-products reduction tree 

composed of 4-to-2 reduction modules. Each solid 
arrow represents two numbers. 

 
If 4-to-2 reduction is done by using two CSAs,  
 the binary tree will often have more CSA levels, 
 but regularity will improve 
 
Use of Booth’s recoding reduces the gate complexity  
 but may not prove worthwhile due to irregularity  
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11.3 Tree Multipliers for Signed Numbers 

Sign extension in multioperand addition (from Fig. 8.18) 
 

   Extended positions   Sign Magnitude positions 

 xk–1 xk–1 xk–1 xk–1 xk–1  xk–1 xk–2 xk–3 xk–4 . . . 

 yk–1 yk–1 yk–1 yk–1 yk–1  yk–1  yk–2 yk–3 yk–4 . . . 

 zk–1 zk–1 zk–1 zk–1 zk–1  zk–1 zk–2 zk–3 zk–4 . . .  

 

The difference in multiplication is the shifting sign positions 
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Five redundant copies  
removed 

Sign extensions 
Signs 

 
Fig. 11.7 Sharing of full adders to reduce the CSA width in a 

signed tree multiplier. 
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Fig. 11.8 Baugh-Wooley 2’s-complement multiplication. 

  –a4 x0  =  a4(1 – x0) – a4  =  a4x0 – a4  
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11.4 Partial-Tree Multipliers 

. . . 
 

CSA Tree 
 

h inputs 
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Lower part of   
 the cumulative  
 partial product 
 

FF 
 

h-Bit 
 Adder 
 

Sum 
 Carry 
 

Upper part of  
 the cumulative  
 partial product  
 (stored-carry) 
 

 

Fig. 11.9 General structure of a partial-tree multiplier. 

 
High-radix versus partial-tree multipliers  
 difference is quantitative rather than qualitative 
 for small h, say < 8 bits, the multiplier of Fig. 11.9  
  is viewed as a high-radix multiplier  
 when h is a significant fraction of k, say k/2 or k/4, 
  then we view it as a partial-tree multiplier 
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11.4 Array Multipliers 
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Fig. 11.10 A basic array multiplier uses a one-sided CSA tree 
and a ripple-carry adder. 
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Fig. 11.11 Details of a 5 × 5 array multiplier using FA blocks. 
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Fig. 11.12 Modifications in a 5 × 5 array multiplier to deal with 

2’s-complement inputs using the Baugh-Wooley 
method or to shorten the critical path. 

Nearly half of the hardware in array/tree multipliers is there 
to get the last bit right (1 dot = one FPGA cell) 
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Max error = 8/2 + 7/4 + 6/8 + 5/16 + 4/32 + 3/64 + 2/128 + 
1/256 = 7.004 ulp 
 
Mean error = 1.751 ulp   
 
Constant compensation    Variable compensation   
  .   o o o o o o o|   .   o o o o o o o| 
  .     o o o o o o|   .     o o o o o o| 
  .       o o o o o|   .       o o o o o| 
  .         o o o o|   .         o o o o| 
  .           o o o|   .           o o o| 
  .           1 o o|   .             o o| 
  .               o|   .             x–1o| 
  .                |   .             y–1 | 

 
 

p p p p 
p 

4 3 2 1 0 a a a a a 

4 

3 

2 

1 

0 

x 

x 

x 

x 

x 

4 

3 

2 

1 

0 

p 

p 

p 

p 

p 

9 8 7 6 
5 

 

Fig. 11.13 Design of a 5 × 5 array multiplier with two additive 
inputs and full-adder blocks that include AND gates. 
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Fig. 11.14 Conceptual view of a modified array multiplier that 
does not need a final carry-propagate adder. 
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Fig. 11.15 Carry-save addition, performed in level i, extends 
the conditionally computed bits of the final product. 
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11.6 Pipelined Tree and Array Multipliers 
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Fig. 11.9 General structure of a partial-tree multiplier. 
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Fig. 11.16 Efficiently pipelined partial-tree multiplier. 
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Fig. 11.17 Pipelined 5 × 5 array multiplier using latched FA 
blocks. The small shaded boxes are latches. 
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12 Variations in Multipliers 

   Go to TOC 
Chapter Goals 
 Learn additional methods for synthesizing  
 fast multipliers as well as other types  
 of multipliers (bit-serial, modular, etc.) 
 
Chapter Highlights 
 Building a multiplier from smaller units  
 Performing multiply-add as one operation 
 Bit-serial and (semi)systolic multipliers 
 Using a multiplier for squaring is wasteful 
 
Chapter Contents 
12.1 Divide-and-Conquer Designs 
12.2 Additive Multiply Modules 
12.3 Bit-Serial Multipliers 
12.4 Modular Multipliers 
12.5 The Special Case of Squaring 
12.6 Combined Multiply-Add Units 
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12.1 Divide-and-Conquer Designs 
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Fig. 12.1 Divide-and-conquer (recursive) strategy for 
synthesizing a 2b × 2b multiplier from b × b 
multipliers. 

 
4b × 4b 

3b × 3b 

2b × 2b 

b × b 

 

Fig. 12.2 Using b × b multipliers to synthesize 2b × 2b, 
3b × 3b, and 4b × 4b multipliers. 

 
2b × 2b  use (3; 2)-counters 
3b × 3b  use (5; 2)-counters 
4b × 4b  use (7; 2)-counters  
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Fig. 12.3 Using 4 × 4 multipliers and 4-bit adders to 
synthesize an 8 × 8 multiplier. 

 
Generalization 
 
2b × 2c use b × c multipliers and (3; 2)-counters 
2b × 4c use b × c multipliers and (5; 2)-counters 
gb × hc use b × c multipliers and (?; 2)-counters 
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12.2 Additive Multiply Modules 
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Fig. 12.4 Additive multiply module with 2 × 4 multiplier (ax) 
plus 4-bit and 2-bit additive inputs (y and z). 

 
b × c AMM 
 
 b-bit and c-bit multiplicative inputs 
 b-bit additive input 
 c-bit additive input 
 (b + c)-bit output 
  

 (2b – 1) × (2c – 1) + (2b – 1) + (2c – 1)  =  2b+c – 1 
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Fig. 12.5 An 8 × 8 multiplier built of 4 × 2 AMMs. Inputs 
marked with an asterisk carry 0s. 
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Fig. 12.6 Alternate 8 × 8 multiplier design based on 4 × 2 
AMMs. Inputs marked with an asterisk carry 0s. 
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12.3 Bit-Serial Multipliers 

Multiplicand (parallel in)

Multiplier 
(serial in)
LSB-first

Carry

Sum

FA
Product 
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

 

Fig. 12.7 Semi-systolic circuit for 4 × 4 multiplication in 8 
clock cycles. 

  
Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

 

Fig. 12.8 Example of retiming by delaying the inputs to CL 
and advancing the outputs from CL by d units. 
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Multiplicand (parallel in)

Multiplier 
(serial in)
LSB-first

Carry

FA
Product 
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Sum

Cut 1Cut 2Cut 3
 

Fig. 12.9 A retimed version of our semi-systolic multiplier. 

 
Multiplicand (parallel in)

Multiplier 
(serial in)
LSB-first

Sum

FA
Product 
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Carry

 

Fig. 12.10 Systolic circuit for 4 × 4 multiplication in 15 cycles. 
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Mux

(5; 3)-counter
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012

a x

a x

ss

c c

t t in

out in

in out

out

p

ii

ii(i–1)

 

Fig. 12.11 Building block for a latency-free bit-serial multiplier. 

   

a
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Fig. 12.12 The cellular structure of the bit-serial multiplier 
based on the cell in Fig. 12.11. 
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Fig. 12.13    Bit-serial multiplier design in dot notation. 
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12.4 Modular Multipliers 

. . .FA FAFAFAFA

 

Fig. 12.14 Modulo-(2b – 1) carry-save adder. 

 

Mod-15 CSA 

Divide by 16 

4 
 

4 
 

4 
 

4 
 

Mod-15 CSA 

4 
 

Mod-15 CPA 

 

Fig. 12.15 Design of a 4 × 4 modulo-15 multiplier. 

 

 

Fig. 12.16 One way to design of a 4 × 4 modulo-13 multiplier. 
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. . .

Table

n inputs

CSA Tree

sum mod m

  3-input 
Modulo-m 
   Adder

. 

. 

.

Address

Data

 

Fig. 12.17 A method for modular multioperand addition. 
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12.5 The Special Case of Squaring 

x 0 x 1 x 2 x 3 x 4 
x 0 x 1 x 2 x 3 x 4 

x 0 x 1 x 2 x 3 x 4 x 0 x 0 

p 0 

x 4 

x 1 

x 4 

x 0 
x 1 

x 2 
x 3 

x 4 

x 0 
x 1 

x 2 
x 3 

x 4 

x 0 

Multiply x by x 

x 1 x 2 x 3 x 4 x 0 
x 1 x 2 x 3 x 4 x 0 

x 1 x 2 x 3 x 4 x 0 
x 1 x 2 x 3 x 4 x 0 

x 1 
x 2 
x 3 

x 1 
x 2 
x 3 

x 2 
x 3 

x 4 

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 

x 1 x 2 x 3 x 4 x 0 
x 1 

x 0 

x 2 

x 0 
x 1 

x 0 
x 2 x 3 

x 4 x 0 
x 3 

x 4 

x 0 

x 1 

x 2 x 1 
x 2 

x 3 

x 3 x 4 
x 4 

p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 0 

_ 

Simplify 

 

Fig. 12.18 Design of a 5-bit squarer. 
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12.6 Combined Multiply-Add Units 

Dot matrix for the 
4   4 multiplication

• • • • • • • • • • • •  
          • • • • • • • 
(a)       • • •     •     

× 

Additive input

• • • • • • • • • • • •  
          • • • • • • • 
            • • • • • 
              • • • 
(c)             •      

• • • • • • • • • • • • 
• • • • • • • • • • •  
          • • • • • • • 
            • • • • • 
              • • • 
(d)             •      

• • • • • • • • • • • • 
• • • • • • • • • • •    
          • • • • • • • 
(b)       • • •     •     

}

}

CSA-tree output

}

}

Carry-save additive input

CSA-tree output

Additive input

Dot matrix for the 
4   4 multiplication×

Carry-save additive input

 

Fig. 12.19 Dot-notation representations of various methods for 
performing a multiply-add operation in hardware. 

 
Multiply-add versus multiply-accumulate 
Multiply-accumulate units often have wider additive inputs 
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Part IV Division 

Part Goals 
 Review shift-subtract division schemes 
 Learn about faster dividers 
 Discuss speed/cost tradeoffs in dividers 
 
Part Synopsis 
  Division is the hardest basic operation 
 Fortunately, it is also the least common 
 Division speedup: high-radix, array, ... 
 Combined multiplication/division hardware 
 Digit-recurrence vs convergence division 
 
Part Contents 
Chapter 13 Basic Division Schemes 
Chapter 14 High-Radix Dividers 
Chapter 15 Variations in Dividers 
Chapter 16 Division by Convergence 
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13 Basic Division Schemes 

   Go to TOC 
Chapter Goals 
 Study shift/subtract (bit-at-a-time) dividers 
 and set the stage for faster methods and 
 variations to be covered in Chapters 14-16  
 
Chapter Highlights 
 Shift/sub divide vs shift/add multiply 
 Hardware, firmware, software algorithms 
 Dividing 2’s-complement numbers 
 The special case of a constant divisor 
 
Chapter Contents 
13.1 Shift/Subtract Division Algorithms 
13.2 Programmed Division 
13.3 Restoring Hardware Dividers 
13.4 Nonrestoring and Signed Division 
13.5 Division by Constants 
13.6 Preview of Fast Dividers 
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13.1 Shift/Subtract Division Algorithms 

Notation for our discussion of division algorithms: 
 z Dividend    z2k–1z2k–2 . . . z1z0    

 d Divisor     dk–1dk–2 . . . d1d0   

 q Quotient    qk–1qk–2 . . . q1q0   

 s   Remainder (z – d × q)  sk–1sk–2 . . . s1s0   
 

Dividend 

Subtracted 
bit-matrix  

z 

s Remainder 

Quotient  q 
Divisor  d 

q d 2 3 
3 – 

q d 2 2 
2 – 

q d 2 1 
1 – 

q d 2 0 
0 – 

 

Fig. 13.1 Division of an 8-bit number by a 4-bit number in dot 
notation. 

 
Division is more complex than multiplication: 
 
 Need for quotient digit selection or estimation 
 
 Possibility of overflow: the high-order k bits of z  
  must be strictly less than d; this overflow check  
  also detects the divide-by-zero condition. 
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Fractional division can be reformulated as integer division 
 
 Integer division is characterized by z = d × q + s 
 multiply both sides by 2–2k to get 

 2–2kz =  (2–kd) × (2–kq) + 2–2ks       

 zfrac   =  dfrac × qfrac + 2–ksfrac           

Divide fractions like integers; adjust the final remainder 
No-overflow condition in this case is zfrac < dfrac  
 
Sequential division with left shifts 
 
s(j)   =  2s(j–1) – qk–j (2

k d) with s(0) = z and  

   | shift |     s(k) = 2k s   
   |––– subtract –––| 
 
There is no division algorithm with right shifts 
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            Integer division          Fractional division 
====================== ===================== 
z        0 1 1 1  0 1 0 1 zfrac  . 0 1 1 1  0 1 0 1 
24d       1 0 1 0   dfrac  . 1 0 1 0     
====================== ===================== 
s(0)        0 1 1 1  0 1 0 1  s(0)     . 0 1 1 1  0 1 0 1 
2s(0)  0 1 1 1 0  1 0 1  2s(0) 0 . 1 1 1 0  1 0 1 
–q3 2

4d       1 0 1 0  {q3 = 1} –q–1d  . 1 0 1 0 {q–1=1} 
––––––––––––––––––––––– –––––––––––––––––––––– 
s(1)        0 1 0 0  1 0 1  s(1)     . 0 1 0 0  1 0 1 
2s(1)  0 1 0 0 1  0 1   2s(1) 0 . 1 0 0 1  0 1 
–q2 2

4d       0 0 0 0  {q2 = 0} –q–2d  . 0 0 0 0 {q–2=0} 
––––––––––––––––––––––– –––––––––––––––––––––– 
s(2)        1 0 0 1  0 1   s(2)     . 1 0 0 1  0 1 
2s(2)  1 0 0 1 0  1    2s(2) 1 . 0 0 1 0  1 
–q1 2

4d       1 0 1 0  {q1 = 1} –q–3d  . 1 0 1 0 {q–3=1} 
––––––––––––––––––––––– –––––––––––––––––––––– 
s(3)        1 0 0 0  1    s(3)     . 1 0 0 0  1 
2s(3)  1 0 0 0 1    2s(3) 1 . 0 0 0 1 
–q0 2

4d       1 0 1 0  {q0 = 1} –q–1d  . 1 0 1 0 {q–4=1} 
––––––––––––––––––––––– –––––––––––––––––––––– 
s(4)        0 1 1 1    s(4)     . 0 1 1 1 
s       0 1 1 1  sfrac 0 . 0 0 0 0  0 1 1 1 
q          1 0 1 1 qfrac  . 1 0 1 1 
====================== ===================== 
Fig. 13.2 Examples of sequential division with integer and 

fractional operands. 
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13.2 Programmed Division 

Rs Rq

Rd

0  0   .  .  .   0  0  0  0

2   dk

Carry 
 Flag

Shifted Partial 
   Remainder

Shifted Partial 
    Quotient

Partial Remainder  
    (2k – j Bits)

Partial Quotient 
       (j Bits)

Next 
quotient 
digit 
inserted 
here 

Divisor  d

 

Fig. 13.3 Register usage for programmed division. 
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      {Using left shifts, divide unsigned 2k-bit dividend, 
 z_high|z_low, storing the k-bit quotient and remainder.   
 Registers: R0 holds 0        Rc for counter 
            Rd for divisor    Rs for z_high & remainder      
            Rq for z_low & quotient}  
 {Load operands into registers Rd, Rs, and Rq}  
       div: load    Rd with divisor 
            load    Rs with z_high 
            load    Rq with z_low  
 {Check for exceptions}   
        branch  d_by_0 if Rd = R0 
        branch  d_ovfl if Rs > Rd  
 {Initialize counter}  
            load     k  into Rc  
 {Begin division loop}  
    d_loop: shift   Rq left 1   {zero to LSB, MSB to carry} 
            rotate  Rs left 1   {carry to LSB, MSB to carry} 
            skip    if carry = 1 
            branch  no_sub if Rs < Rd  
                sub     Rd from Rs   
            incr    Rq  {set quotient digit to 1} 
    no_sub: decr    Rc          {decrement counter by 1} 
            branch  d_loop if Rc ≠ 0  
 {Store the quotient and remainder}  
            store   Rq into quotient 
            store   Rs into remainder 
    d_by_0: ... 
    d_ovfl: ... 
    d_done: ... 

 

Fig. 13.4 Programmed division using left shifts. 
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13.3 Restoring Hardware Dividers 

Division with signed operands: q and s are defined by 

 z = d × q + s  sign(s) = sign(z)  |s| < |d| 

Examples of division with signed operands 
 z = 5 d = 3 ⇒  q = 1 s = 2 
 z = 5 d = –3 ⇒  q = –1 s = 2 
 z = –5 d = 3 ⇒  q = –1 s = –2 
 z = –5 d = –3 ⇒  q = 1 s = –2 
Magnitudes of q and s are unaffected by input signs 
Signs of q and s are derivable from signs of z and d   
Will discuss direct signed division later  

 

Quotient q 

Mux 

Adder 
out c 

0      1 

Partial remainder s   (initial value z) 

Divisor d 

Shift 

Shift 

 Load 

1 
in c 

(j) 

Quotient 
digit 

selector 

q k–j 

MSB of 
2s (j–1) 

k 

k 

k 

Trial difference 

 

Fig. 13.5 Shift/subtract sequential restoring divider. 
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========================== 
z        0  1  1  1    0  1  0  1 No overflow, since: 
24d      0 1  0  1  0        (0111)two < (1010)two 
–24d  1 0  1  1  0         
========================== 
s(0)       0 0  1  1  1    0  1  0  1  
2s(0)  0 1  1  1  0    1  0  1   
+(–24d)      1 0  1  1  0   
––––––––––––––––––––––––––– 
s(1)       0 0  1  0  0    1  0  1  Positive, so set q3 = 1 
2s(1)  0 1  0  0  1    0  1   
+(–24d)      1 0  1  1  0   
––––––––––––––––––––––––––– 
s(2)       1 1  1  1  1    0  1   Negative, so set q2 = 0 
s(2)=2s(1) 0 1  0  0  1    0  1  and restore 
2s(2)  1 0  0  1  0    1    
+(–24d)      1 0  1  1  0   
––––––––––––––––––––––––––– 
s(3)       0 1  0  0  0    1   Positive, so set q1 = 1 
2s(3)  1 0  0  0  1    
+(–24d)      1 0  1  1  0   
––––––––––––––––––––––––––– 
s(4)       0 0  1  1  1    Positive, so set q0 = 1 
s               0  1  1  1  
q                  1  0  1  1 
========================== 
Fig. 13.6 Example of restoring unsigned division. 
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13.4 Nonrestoring and Signed Division 

The cycle time in restoring division must accommodate  
 shifting the registers 
 allowing signals to propagate through the adder 
 determining and storing the next quotient digit 
 storing the trial difference, if required 
Later events depend on earlier ones in the same cycle 
Such dependencies tend to lengthen the clock cycle 
 
Nonrestoring division algorithm to the rescue! 
 assume qk–j = 1 and perform a subtraction 
 store the difference as the new partial remainder  
  (the partial remainder can become incorrect, 
  hence the name “nonrestoring”)   
 
Why it is acceptable to store an incorrect value  
  in the partial-remainder register?  
 
Shifted partial remainder at start of the cycle is u  
Subtraction yields the negative result u – 2kd 
 
Option 1: restore the partial remainder to correct value u, 
 shift, and subtract to get 2u – 2kd  
Option 2: keep the incorrect partial remainder u – 2kd,  
 shift, and add to get  2(u – 2kd) + 2kd  =  2u – 2kd  
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========================== 
z        0  1  1  1    0  1  0  1 No overflow, since: 
24d      0 1  0  1  0        (0111)two < (1010)two 
–24d  1 0  1  1  0         
========================== 
s(0)       0 0  1  1  1    0  1  0  1  
2s(0)  0 1  1  1  0    1  0  1  Positive, 
+(–24d)      1 0  1  1  0     so subtract 
––––––––––––––––––––––––––– 
s(1)       0 0  1  0  0    1  0  1    
2s(1)  0 1  0  0  1    0  1   Positive, so set q3 = 1 
+(–24d)      1 0  1  1  0     and subtract 
––––––––––––––––––––––––––– 
s(2)       1 1  1  1  1    0  1    
2s(2)  1 1  1  1  0    1   Negative, so set q2 = 0 
+24d      0 1  0  1  0     and add 
––––––––––––––––––––––––––– 
s(3)       0 1  0  0  0    1     
2s(3)  1 0  0  0  1    Positive, so set q1 = 1 
+(–24d)      1 0  1  1  0     and subtract 
––––––––––––––––––––––––––– 
s(4)       0 0  1  1  1    Positive, so set q0 = 1 
s               0  1  1  1  
q                  1  0  1  1 
========================== 
Fig. 13.7 Example of nonrestoring unsigned division. 

 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 192 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

 
Example 

(0 1 1 1   0 1 0 1)two / (1 0 1 0)two 
(117)ten / (10)ten 
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(b) Nonrestoring  

Fig. 13.8 Partial remainder variations for restoring and 
nonrestoring division. 
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Restoring division 
 qk–j = 0 means no subtraction (or subtraction of 0) 
 qk–j = 1 means  subtraction of d 
Nonrestoring division 
 We always subtract or add 
 As if quotient digits are selected from the set {1, -1}  
   1 corresponds to subtraction   
  -1 corresponds to addition  
 Our goal is to end up with a remainder  
  that matches the sign of the dividend  
 
This idea of trying to match the sign of s with the sign z,  
 leads to a direct signed division algorithm 

  If sign(s) = sign(d) then qk–j = 1 else qk–j = -1 

 
Two problems must be dealt with at the end: 
1. Converting the quotient with digits 1 and -1 to binary 
2. Adjusting the results if final remainder has wrong sign   
 (correction step involves addition of ±d to remainder  
 and subtraction of ±1 from quotient) 
 
Correction might be required even in unsigned division  
 (when the final remainder is negative)  
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========================== 
z        0  0  1  0    0  0  0  1 Dividend = (33)ten  
24d      1 1  0  0  1        Divisor = (–7)ten 
–24d  0 0  1  1  1         
========================== 
s(0)       0 0  0  1  0    0  0  0  1  
2s(0)  0 0  1  0  0    0  0  1  sign(s(0)) • sign(d), 
+24d      1 1  0  0  1     so set q3 = -1 and add 
––––––––––––––––––––––––––– 
s(1)       1 1  1  0  1    0  0  1    
2s(1)  1 1  0  1  0    0  1   sign(s(1)) = sign(d), 
+(–24d)      0 0  1  1  1     so set q2 = 1 and sub 
––––––––––––––––––––––––––– 
s(2)       0 0  0  0  1    0  1    
2s(2)  0 0  0  1  0    1  sign(s(2)) • sign(d), 
+24d      1 1  0  0  1    so set q1 = -1 and add 
+(–24d)      1 0  1  1  0   
––––––––––––––––––––––––––– 
s(3)       1 1  0  1  1    1     
2s(3)  1 0  1  1  1    sign(s(3)) = sign(d), 
+(–24d)      0 0  1  1  1     so set q0 = 1 and sub 
––––––––––––––––––––––––––– 
s(4)       1 1  1  1  0    sign(s(4)) • sign(z) 
+(–24d)      0 0  1  1  1     Corrective subtraction 
––––––––––––––––––––––––––– 
s(4)       0 0  1  0  1      
s               0  1  0  1  Remainder = (5)ten 
q                -1  1 -1  1 Uncorrected BSD form 
q2’s-compl                1  1  0  0 Corrected q = (–4)ten  
========================== 
Fig. 13.9 Example of nonrestoring signed division. 
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Quotient

k

Partial   Remainder

Divisor

add/sub

k-bit adder

k

cout cin

Complement

qk–j
 
2s (j–1)
MSB of

Divisor Sign

    Complement of  
Partial Remainder Sign

 

Fig. 13.10 Shift-subtract sequential nonrestoring divider. 
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13.5 Division by Constants 

Method 1: find the reciprocal of the constant and multiply 
 
Method 2: use the property that for each odd integer d  
 there exists an odd integer m such that d × m = 2n – 1 
 
1
d  = 

m
2n – 1

    =   
m

2n (1 – 2–n)
   

 = 
m
2n  (1 + 2–n) (1 + 2–2n) (1 + 2–4n)  . . . 

 
Number of shift-adds required is proportional to log k  
 
Example: division by d = 5 with 24 bits of precision 
  m = 3, n = 4 by inspection  

z
5  = 

3z
24 – 1

  = 
3z

16(1 – 2–4)
  = 

3z
16 (1 + 2–4)(1 + 2–8)(1 + 2–16)  

 
q ←  z + z  shift-left  1 {3z computed} 
q ←  q  + q  shift-right   4 {3z (1 + 2–4)} 
q ←  q + q   shift-right   8 {3z (1 + 2–4)(1 + 2–8)} 
q ←  q  + q   shift-right  16 {3z (1 + 2–4)(1 + 2–8)(1 + 2–16)} 
q ←  q   shift-right  4 {3z (1+2–4)(1+2–8)(1+2–16)/16} 
 
This divide-by-5 algorithm uses 5 shifts and 4 adds 
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13.6 Preview of Fast Dividers 

a 
x 

p 

2 
 

x a 
 

0 
 0 

1 x a 2 
 
1 
 x a 2 

 
2 
 2 

2 
 
3 
 3 

 

x a 
 

× 

(a) k × k integer multiplication     

z 

s 

q 
Divisor  d 

q d 2 3 
3 – 

q d 2 2 
2 – 

q d 2 1 
1 – 

q d 2 0 
0 – 

(b) 2k / k integer division  
Fig. 13.11 (a) Multiplication and (b) division as multioperand 

addition problems. 

 
Like multiplication, division is multioperand addition  
Thus, there are but two ways to speed it up:  
 
 a. Reducing the number of operands  
  (high-radix dividers) 
 
 b. Adding them faster  
  (use carry-save partial remainder) 
 
There is one complication making division more difficult:  
 
 terms to be subtracted from (added to) the dividend  
 are not known a priori but become known  
 as the quotient digits are computed; 
 quotient digits in turn depend on partial remainders   
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14 High-Radix Dividers 

   Go to TOC 
Chapter Goals 
 Study techniques that allow us to obtain 
 more than one quotient bit in each cycle 
 (two bits in radix 4, three in radix 8, . . .)  
 
Chapter Highlights 
 Radix > 2 ⇒  quotient digit selection harder  
 Cure: redundant quotient representation 
 Carry-save addition reduces cycle time 
 Implementation methods and tradeoffs 
 
Chapter Contents 
14.1 Basics of High-Radix Division 
14.2 Radix-2 SRT Division 
14.3 Using Carry-Save Adders 
14.4 Choosing the Quotient Digits 
14.5 Radix-4 SRT Division 
14.6 General High-Radix Dividers 
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14.1 Basics of High-Radix Division 

Radix-r version of division recurrence of Section 13.1 

 s(j)  = r s(j–1) – qk–j (r
kd)   with   s(0) = z  and  s(k) = rks 

High-radix dividers of practical interest have r = 2b  
  (and, occasionally, r = 10)  
 

Dividend z 

s Remainder 

Quotient  q 
Divisor  d 

(q  q  ) d 4 1 
3 – 2 two 

4 0 d (q  q  ) 1 – 0 two 

 

Fig. 14.1 Radix-4 division in dot notation. 
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    Radix-4 integer division  Radix-10 fractional division 
====================== ================= 
z        0 1 2 3  1 1 2 3 zfrac  . 7  0  0  3    
44d       1 0 0 3   dfrac  . 9  9     
====================== ================= 
s(0)        0 1 2 3  1 1 2 3  s(0)     . 7  0  0  3 
4s(0)  0 1 2 3 1  1 2 3  10s(0) 7 . 0  0  3 
–q3 4

4d      0 1 2 0 3   {q3 = 1} –q–1d 6 . 9  3 {q–1 = 7} 
––––––––––––––––––––––– –––––––––––––––––– 
s(1)        0 0 2 2  1 2 3  s(1)     . 0  7  3 
4s(1)  0 0 2 2 1  2 3   10s(1) 0 . 7  3 
–q2 4

4d      0 0 0 0 0   {q2 = 0} –q–2d 0 . 0  0 {q–2 = 0} 
––––––––––––––––––––––– –––––––––––––––––– 
s(2)        0 2 2 1  2 3   s(2)     . 7  3 
4s(2)  0 2 2 1 2  3    sfrac  . 0  0  7  3 
–q1 4

4d      0 1 2 0 3   {q1 = 1} qfrac  . 7  0 
––––––––––––––––––––––– ================= 
s(3)        1 0 0 3  3     
4s(3)  1 0 0 3 3     
–q0 4

4d      0 3 0 1 2   {q0 = 2}  
–––––––––––––––––––––––  
s(4)        1 0 2 1     
s       1 0 2 1   
q          1 0 1 2  
======================  
Fig. 14.2 Examples of high-radix division with integer and 

fractional operands. 
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14.2 Radix-2 SRT Division 

Radix-2 nonrestoring division, fractional operands 

 s(j)  = 2s(j–1) – q–j d   with   s(0) = z  and  s(k) = 2ks  

–2d 
 

2d 
 

d 
 

 –d 
 

q   =–1 
 

q   =1 
 

2s 
 

(j–1) 
 

s 
 

(j) 
 

–j 
 

–j 
 

d 
 

–d 
 

 

Fig. 14.3 The new partial remainder, s(j), as a function of the 
shifted old partial remainder, 2s(j–1), in radix-2 
nonrestoring division. 

–2d 
 

2d 
 

d 
 

–d 
 

q   =–1 
 

q   =0 
 

q   =1 
 

2s 
 

(j–1) 
 

s 
 

(j) 
 

–j 
 

–j 
 

–j 
 

d 
 

–d 
 

 

Fig. 14.4 The new partial remainder s(j) as a function of 2s(j–1), 
with q–j in  {–1, 0, 1}. 
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–2d 
 

2d 
 

d 
 

 –d 
 

q   =–1 
 

q   =0 
 

q   =1 
 

2s 
 

(j–1) 
 

s 
 

(j) 
 

–j 
 

–j 
 

–j 
 

d 
 

–d 
 

–1/2 
 

  1/2 
 

 –1 
 

  1 
 

 –1/2 
 

  1/2 
 

 

Fig. 14.5 The relationship between new and old partial 
remainders in radix-2 SRT division. 

 
SRT algorithm (Sweeney, Robertson, Tocher) 

2s(j–1) ≥ +1/2 = (0.1)2’s-compl  

     ⇒   2s(j–1) = (0.1u–2u–3 
. . .)2’s-compl    

2s(j–1) < –1/2 = (1.1)2’s-compl  

     ⇒   2s(j–1) = (1.0u–2u–3 
. . .)2’s-compl  

Skipping over identical leading bits by shifting 
 
s(j–1) = 0.0000110 . . . Shift left by 4 bits and subtract;  
     append q with 0 0 0 1 
s(j–1) = 1.1110100 . . . Shift left by 3 bits and add;   
     append q with 0 0-1 
 
Average skipping distance (statistically): 2.67 bits 
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============================  
z    . 0  1  0  0    0  1  0  1 In [–1/2,1/2), so OK 
d  . 1  0  1  0 In [1/2,1), so OK  
–d 1 . 0  1  1  0  
============================  
s(0) 0 . 0  1  0  0    0  1  0  1  
2s(0) 0 . 1  0  0  0    1  0  1   ≥ 1/2, so set q–1 = 1 
+(–d) 1 . 0  1  1  0                     and subtract 
–––––––––––––––––––––––––––––  
s(1) 1 . 1  1  1  0    1  0  1   
2s(1) 1 . 1  1  0  1    0  1  In [–1/2,1/2), so q–2 = 0 
–––––––––––––––––––––––––––––  
s(2) = 2s(1) 1 . 1  1  0  1    0  1    
2s(2) 1 . 1  0  1  0    1 In [–1/2, 0), so q–3 = 0 
–––––––––––––––––––––––––––––  
s(3) = 2s(2)  1 . 1  0  1  0    1    
2s(3) 1 . 0  1  0  1 < –1/2, so q–4 = -1 
+d 0 . 1  0  1  0                     and add 
–––––––––––––––––––––––––––––  
s(4)  1 . 1  1  1  1         Negative, 
+d 0 . 1  0  1  0                so add to correct 
–––––––––––––––––––––––––––––  
s(4) 0 . 1  0  0  1           
s 0 . 0  0  0  0    1  0  0  1           
q 0 . 1  0  0 -1         Ucorrected BSD form  
q 0 . 0  1  1  0         Convert, subtract ulp  
============================  

Fig. 14.6 Example of unsigned radix-2 SRT division. 
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14.3 Using Carry-Save Adders 

–2d 2d

d

–d

q   =–1

q   =0 q   =1

2s
(j–1)

s (j)

–j

–j

–j

d–d

–1/2 0
Choose –1 Choose 0 Choose 1

–1/0 0/+1
Overlap Overlap

 

Fig. 14.7 Constant thresholds used for quotient digit 
selection in radix-2 division with qk–j in {–1, 0, 1}. 

Sum part of 2s(j–1):  u = (u1u0 .u–1u–2 . . .)2’s-compl  

Carry part of 2s(j–1):  v = (v1v0 .v–1v–2 . . .)2’s-compl  
 t  = u[–2,1] + v[–2,1]   {Add the 4 MSBs of u and v}  
 if t < –1/2  
 then q–j = –1 
 else if t • 0  
  then q–j = 1 
  else q–j = 0 
  endif 
 endif 
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Carry v 

Mux 

Adder 

0      1 

Divisor d 

k k 

Carry-save adder 

 

Select 
     q  –j 

4 bits 
Shift left 

2s 

+ulp for 
2’s compl 

Sum u 

Non0 
(enable) 

Sign 
(select) 

0, d, or d’ 

Carry Sum 

 

Fig. 14.8 Block diagram of a radix-2 divider with partial 
remainder in stored-carry form. 
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d 
 

–d 
 

   1 – d 

 –1 
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 –1/2 
 

  1/2 
 

  1 – d  

Fig. 14.9 Overlap regions in radix-2 SRT division. 
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14.4 Choosing the Quotient Digits 

 d 

p 

 

Infeasible region 
(p cannot be ≥ 2d) 

Infeasible region 
(p cannot be < −2d) 
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11.0 
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  −10.0 

 d 
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Worst-case error 
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Choose 1 
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−1 
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  1 min 
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max 

  0 max 
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O
ve

rl
a

p
 

O
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a

p
 

  0 

 

Fig. 14.10 A p-d plot for radix-2 division with d ∈  [1/2,1), partial 
remainder in [–d, d), and quotient digits in [–1, 1]. 

 
Approx. shifted partial remainder t = (t1t0.t–1t–2)2’s-compl 
        ____  
 Non0 =   t1 + t0 + t–1  = t1 t0 t–1 

 Sign =   t1 ( t0 + t–1 ) 
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14.5 Radix-4 SRT division 

–4d 4d

d

–d

4s(j–1)

–3 –2 –1 0 +1 +2 +3

s (j)

 

Fig. 14.11 New versus shifted old partial remainder in radix-4 
division with q–j in [–3, 3]. 
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Fig. 14.12 p-d plot for radix-4 SRT division with quotient digit 
set [–3, 3]. 
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–4d 4d 
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–d 

4s 
(j–1) 

–3 –2 –1 0 +1 +2 +3 

s (j) 

2d/3 

8d/3 
–2d/3 

–8d/3  

Fig. 14.13 New versus shifted old partial remainder in radix-4 
division with q–j in [–2, 2]. 
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Fig. 14.14 A p-d plot for radix-4 SRT division with quotient 
digit set [–2, 2]. 
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14.6 General High-Radix Dividers 

Carry v 

CSA tree 

Adder 

Divisor d 

k k 

 

Select 
     q  –j 

Shift left 

2s 
Sum u 

Multiple 
generation / 

selection 

Carry Sum 

q  –j 

. . . q  –j |     | d 
or its complement 

 

Fig. 14.15 Block diagram of radix-r divider with partial 
remainder in stored-carry form. 

 
Design process to determine details of the above divider: 
 
 Radix r 
 Digit set [–α, α] for q–j   
 Number of bits of p (v and u) and d to be inspected 
 Quotient digit selection table or logic 
 Multiple generation/selection scheme 
 Conversion of redundant q to 2’s complement 
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15 Variations in Dividers 

   Go to TOC 
Chapter Goals 
 Discuss practical aspects of designing 
 high-radix dividers and cover 
 other types of fast hardware dividers 
 
Chapter Highlights 
 Building and using p-d plots in practice 
 Prescaling simplifies q digit selection 
 Parallel hardware (array) dividers 
 Shared hardware in multipliers/dividers 
 Square-rooting not special case of division 
 
Chapter Contents 
15.1 Quotient-Digit Selection Revisited 
15.2 Using p-d Plots in Practice 
15.3 Division with Prescaling 
15.4 Modular Dividers and Reducers 
15.5 Array Dividers 
15.6 Combined Multiply/Divide Units 
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15.1 Quotient-Digit Selection Revisited 

–α 

r s (j–1) 

 s (j) 

  r–1 

rhd –rhd 

hd 

–hd 

 d 

 –d 

–r+1   α  –1  1  0 

rd –rd αd –αd d –d 0 

 

Fig. 15.1 The relationship between new and shifted old partial 
remainders in radix-r division with quotient digits in 
[–α, +α]. 

 
Radix-r division with quotient digit set [–α, α], α < r – 1  
 
Restrict the partial remainder range, say to [–hd, hd) 
 
From the solid rectangle in Fig. 15.1, we get  
 
 rhd – αd ≤ hd  or    h ≤ α/(r – 1)  
 
To minimize the range restriction, we choose h = α/(r – 1) 
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p  

d  

 Choose β + 1 

Choose β 

 d  min 

Overlap 
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(h + β + 1)d 

 A 

(h + β)d 

(–h + β + 1)d 

(–h + β)d 

 B 

4 bits of p 
3 bits of d 

3 bits of p 
4 bits of d 

Note: h = α / (r – 1) 

 
Fig. 15.2 A part of p-d plot showing the overlap region for 

choosing the quotient digit value β or β+1 in radix-r 
division with quotient digit set [–α, α]. 
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orδ+1δ

Origin  

Fig. 15.3 A part of p-d plot showing an overlap region and its 
staircase-like selection boundary. 
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15.2 Using p-d Plots in Practice 

∆p  

p  

d  

Choose α  

Choose α − 1 

 d  min 

Overlap 
region 

(h + α − 1)d 

(−h + α)d 

∆d  

 d  min ∆d  + 

(h + α − 1)  d  min 

(−h + α)  d  min 

 
Fig. 15.4 Establishing upper bounds on the dimensions of 

uncertainty rectangles. 

Smallest ∆d occurs for the overlap region of α and α – 1 

 ∆d  =  dmin  2h – 1
–h + α

  ∆p    =  dmin (2h – 1)    

 
Example: For r = 4, divisor range [0.5, 1), digit set [–2, 2], 
we have α = 2, dmin = 1/2, h = α/(r – 1) = 2/3  

 ∆d = (1/2) 
4/3 – 1

 –2/3 + 2 = 1/8 ∆p = (1/2)(4/3 – 1) = 1/6 

Because 1/8 = 2–3 and 2–3
 ≤ 1/6 < 2–2, we must inspect at 

least  3 bits of d (2, given its leading 1) and 3 bits of p  
These are lower bounds and may prove inadequate 
In fact, 3 bits of p and 4 (3) bits of d are required  
With p in carry-save form, 4 bits of each component must 
be inspected (or added to give the high-order 3 bits) 
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Theorem: Once lower bounds on precision are determined 
based on ∆d and ∆p, one more bit of precision in each 
direction is always adequate [Parh01] (Asilomar 2001) 
 
Proof: Let w be the vertical spacing of grid lines 

w ≤ ∆d/2      ⇒   v ≤ ∆p/2      ⇒   u ≥ ∆p/2 
 

u 
v  

∆p  

p  
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Choose a 

Choose a − 1 
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(a − h)d 

∆d  A  

B  
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Choose β + 1 
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 d  min 

A  

B  

 d  max 

  −β 

β + 1 

Choose −β + 1 

Choose −β 

 

Fig. 15.5 The asymmetry of quotient digit selection process. 
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Fig. 15.6 Example of p-d plot allowing larger uncertainty 
rectangles, if the 4 cases marked with asterisks are 
handled as exceptions. 
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Example: A complete p-d plot 
5d/3 

4d/3 

d 

1.000 1.001 1.010 1.011 1.100 0.100 0.101 0.110 0.111 1.000 

01.10 

01.01 

01.00 

00.11 

00.10 

00.00 

00.01 

11.11 

11.10 

11.01 

11.00 

10.11 

10.10 

2d/3 

d/3 

–d/3 

–4d/3 

–5d/3 

–2d/3 

2 1 
2 1 

2 1,2 1 

1,2 1 

2 1,2 1 

2 1,2 
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15.3 Division with Prescaling 

Overlap regions of a p-d plot are wider toward the high 
end of the divisor range 
 

p  

 d  

Choose β + 1 

Choose β 

 d  min  d  max 

Choose −β + 1 

Choose −β 

 
 

 
If we can restrict the magnitude of the divisor to an interval 
close to dmax (say 1 – ε < d < 1 + δ, when dmax = 1), 
quotient digit selection may become simpler  
 
This restriction can be achieved by performing the division 
(zm)/(dm) for a suitably chosen scale factor m (m > 1) 
 
Of course, prescaling (multiplying z and d by the scale 
factor m) should be done without real multiplications 
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15.4 Modular Dividers and Reducers 

Given a dividend z and divisor d, with d ≥ 0, a modular 
divider computes 

 q  =  z / d   and  s  =  z mod d   =  〈z〉d 

The quotient q is, by definition, an integer 
 but the inputs z and d do not have to be integers 
 
Example: 

 –3.76 / 1.23   = –4   and 〈–3.76〉1.23  =  1.16 

The modular remainder is always positive 
A modular reducer computes only the modular remainder 
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15.5 Array Dividers 

z

z

–5

–6

  s        s        s –4       –5       –6

q

q

q

–1

–2

–3

FS

Cell

z        z        z        z–1       –2       –3       –4

1   0

         d        d        d         –1       –2       –3

0

0

0

 –1 –2 –3 –4 –5 –6 
 –1 –2 –3 
 –1 –2 –3 
          –4 –5 –6

Dividend  z = .z  z  z  z  z  z 
Divisor   d = .d  d  d 
Quotient  q = .q  q  q 
Remainder s = .0  0  0  s  s  s

 

Fig. 15.7 Restoring array divider composed of controlled 
subtractor cells. 

The similarity of the array divider of Fig. 15.7 to an array 
multiplier is somewhat deceiving 
The same number of cells are involved in both designs, 
and the cells have comparable complexities  
However, the critical path in a k ×  k array multiplier 
contains O(k) cells, whereas in Fig. 15.7, the critical path 
passes through all k2 cells (borrow ripples in each row)  
Thus, an array divider is quite slow, and, given its high 
cost, not very cost-effective 
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Dividend  z = z .z  z  z  z  z  z 
Divisor   d = d .d  d  d 
Quotient  q = q .q  q  q 
Remainder s = 0 .0  0  s  s  s  s

0  –1 –2 –3 –4 –5 –6 
0  –1 –2 –3 
0  –1 –2 –3 
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d        d        d        d0        –1       –2       –3
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FA

XOR

Cell

1

 

Fig. 15.8 Nonrestoring array divider built of controlled 
add/subtract cells. 

 
Speedup method: 
Pass the partial remainder downward in carry-save form 
However, we still need to know the carry-out or borrow-out 
from each row to determine the action in the following row: 
subtract/no-change (Fig. 15.7) or subtract/add (Fig. 15.8)  
This can be done by using a carry- (borrow-) lookahead 
circuit laid out between successive rows 
Not used in practice 
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15.6 Combined Multiply/Divide Units 

Multiplier x 
or quotient q 

Mux 

Adder 
out c 

0      1 

Partial product p or 
partial remainder  s 

Multiplicand a 
or divisor d 

 Shift control  

Shift 

Enable 

in c 

q k–j 

MSB of 2s (j–1) 

k 

k 

k 

j x 

MSB of p (j+1) 

 Divisor sign 

Multiply/ 
divide 
control 

Select 

 Mul  Div 

 

Fig. 15.9 Sequential radix-2 multiply/divide unit. 
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 Multiplicand  
 or divisor 

Multiplier 

Product or remainder 

Quotient 

Mul/Div 

Additive input  
 or dividend 

 
 

Fig. 15.10 I/O specification of a universal circuit that can act as 
an array multiplier or array divider. 
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16 Division by Convergence 

   Go to TOC 
Chapter Goals 
 Show how by using multiplication as the 
 basic operation in each division step, 
 the number of iterations can be reduced 
 
Chapter Highlights 
 Digit-recurrence as convergence method 
 Convergence by Newton-Raphson iteration 
 Computing the reciprocal of a number 
 Hardware implementation and fine tuning 
 
Chapter Contents 
16.1 General Convergence Methods 
16.2 Division by Repeated Multiplications 
16.3 Division by Reciprocation 
16.4 Speedup of Convergence Division 
16.5 Hardware Implementation 
16.6 Analysis of Lookup Table Size 
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16.1 General Convergence Methods 

 u(i+1)  =  f(u(i), v(i))   u(i+1)  =  f(u(i), v(i), w(i)) 
 v(i+1)  =  g(u(i), v(i))  v(i+1)  =  g(u(i), v(i), w(i)) 
       w(i+1) =  h(u(i), v(i), w(i))     

We direct the iterations such that one value, say u,  
 converges to some constant. 
 
The value of v (and/or w) then converges to  
 the desired function(s) 
 
The complexity of this method depends on two factors: 
 
 a. Ease of evaluating f and g (and h) 
 b. Rate of convergence (no. of iterations needed) 
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16.2 Division by Repeated Multiplications 

q  = 
z
d    =  

z x(0)x(1) . . . x(m–1)

d x(0)x(1) . . . x(m–1)  
Converges to q
Made to converge to 1  

To turn the above into a division algorithm,  
we face three questions:  
 
 1. How to select the multipliers x(i)? 
 2. How many iterations (pairs of multiplications)?  
 3. How to implement in hardware? 
 
Formulate as convergence computation, for d in [1/2, 1) 

d(i+1)  =  d(i)x(i) Set d(0) = d; make d(m) converge to 1 

z(i+1)  =  z(i)x(i) Set z(0) = z; obtain z/d = q ≅  z(m) 
 
 
Q1: How to select the multipliers x(i)? 

 x(i) = 2 – d(i) 

This choice transforms the recurrence equations into: 

d(i+1) =  d(i) (2 – d(i)) Set d(0) = d; iterate until d(m) ≅  1 

z(i+1) = z(i) (2 – d(i)) Set z(0) = z; obtain z/d = q ≅  z(m) 
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Q2: How quickly does d(i) converge to 1? 

 d(i+1)  =  d(i) (2 – d(i))  =  1 – (1 – d(i))2    

 1 – d(i+1)  =  (1 – d(i))2 

Thus, 1 – d(i) ≤ ε leads to 1 – d(i+1) ≤ ε2:  
quadratic convergence  

 
In general, for k-bit operands, we need 

 2m – 1 multiplications and m  2’s complementations 

where m =  log2k  
 

Table 16.1 Quadratic convergence in computing z/d by 
repeated multiplications, where 1/2 ≤ d = 1 – y < 1 

–––––––––––––––––––––––––––––––––––––––––––––– 

i  d(i) = d(i–1)x(i–1),  with d(0) = d         x(i)= 2 – d(i)  
–––––––––––––––––––––––––––––––––––––––––––––– 

0 1 – y = (.1xxx xxxx xxxx xxxx)two ≥ 1/2             1 + y 

1 1 – y2 = (.11xx xxxx xxxx xxxx)two ≥ 3/4   1 + y2 

2 1 – y4 = (.1111 xxxx xxxx xxxx)two ≥ 15/16 1 + y4 

3 1 – y8 = (.1111 1111 xxxx xxxx)two ≥ 255/256 1 + y8 

4 1 – y16 = (.1111 1111 1111 1111)two = 1 – ulp   

–––––––––––––––––––––––––––––––––––––––––––––– 
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1 1 – ulp

d

z

q – 

Iteration i 

d

z

0 1 2 3 4 5 6

(i)

(i)

q ε

 

Fig. 16.1.  Graphical representation of convergence in division 
by repeated multiplications. 

 
Q3: How implemented in hardware? 
 
 … to be discussed later 
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16.3 Division by Reciprocation 

To find q = z/d, compute 1/d and multiply it by z  
 
Particularly efficient if several divisions byd are required 
 
Newton-Raphson iteration to determine a root of f(x) = 0  
 Start with some initial estimate x(0) for the root 
 Iteratively refine the estimate using the recurrence 

 x(i+1)  =  x(i) – f(x(i)) / f'(x(i))   

Justification:  tan α(i)  =  f'(x(i))  =  f(x(i)) / (x(i) – x(i+1)) 

f(x)

xx(i+1)x

f(x   )

Tangent at x(i)

Root α x
(i)(i+2)

(i)

(i)

 

Fig. 16.2 Convergence to a root of f(x) = 0 in the Newton-
Raphson method. 
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To compute 1/d, find the root of f(x) = 1/x – d  

f'(x) = –1/x2, leading to the recurrence: 

x(i+1)  =  x(i) (2 – x(i)d)  

 
One iteration = 2 multiplications + a 2’s complementation  
 

Let δ(i) = 1/d – x(i) be the error at the ith iteration. Then:   

δ(i+1)  = 1/d – x(i+1) =  1/d – x(i) (2 – x(i)d) 

      =  d(1/d – x(i))2   

=  d(δ(i))2 

Because d < 1, we have δ(i+1) < (δ(i))2 
 
Choosing the initial value x(0)  

0 < x(0) < 2/d   ⇒  |δ(0)| < 1/d    ⇒  guaranteed convergence 

For d in [1/2, 1):  

 simple choice x(0) = 1.5   ⇒   |δ(0)| • 0.5 

 better approx. x(0) = 4( 3  – 1) – 2d  = 2.9282 – 2d 
     max error ≅  0.1 
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16.4 Speedup of Convergence Division 

Division can be done via 2  log2k  – 1 multiplications 
This is not yet very impressive 
 64-bit numbers, 5-ns multiplier  ⇒   55-ns division  
 
Three types of speedup are possible: 
 
 Reducing the number of multiplications  
 Using narrower multiplications 
 Performing the multiplications faster 
 
Convergence is slow in the beginning 
It takes 6 multiplications to get 8 bits of convergence and 
another 5 to go from 8 bits to 64 bits   
 
 dx(0)x(1)x(2)  =  (0.1111 1111 . . .)two   
     ----------- 
       x(0+) read from table 
 
A 2w × w lookup table is necessary and sufficient for w bits 
of convergence after the first pair of multiplications  
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1 1 – ulp

d

z

q – 

Iterations

After table lookup and 1st 
pair of multiplications, 
replacing several iterations

After the 2nd pair 
of multiplications

ε

 

Fig. 16.3 Convergence in division by repeated multiplications 
with initial table lookup. 

 

1 1 ± ulp

d

z

q ±

Iterations

ε

 

Fig. 16.4 Convergence in division by repeated multiplications 
with initial table lookup and the use of truncated 
multiplicative factors. 
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1 

Approximate 
iteration 

Precise 
iteration 

B 

A 

i + 1 i  

Iteration 

 (x (i+1) 

d x (0) x (1) x (i) ... 
x (i+1) 

)   T 

d x (0) x (1) x (i) ... 

d x (0) x (1) x (i) ... 

< 2   −a 

 

Fig. 16.5 One step in convergence division with truncated 
multiplicative factors. 

 
Example (64-bit multiplication) 
 Table of size 256 × 8 = 2K bits for the lookup step 
 Then we need multiplication pairs, with the multiplier  
  being 9 bits, 17 bits, and 33 bits wide 
 The final step involves a single 64 × 64 multiplication  
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16.5 Hardware Implementation 

 
Repeated multiplications: 

z  x(i)(i)

d  x(i)(i)

x(i)z(i)
d(i+1)

d
(i+1)

x(i+1)

z  x(i)(i)

d   x(i+1)
(i+1)

z(i+1)

2's Compl
z(i+1) x(i+1)

z   x(i+1)
(i+1)

d(i+2)

d   x(i+1)
(i+1)

 

Fig. 16.6 Two multiplications fully overlapped in a 2-stage 
pipelined multiplier. 

 
Reciprocation: 
 
Can begin with a good approximation to the reciprocal by  
 consulting a large table 
  
Table lookup, along with interpolation 
 
Augmenting the multiplier tree 
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16.6 Analysis of Lookup Table Size 

Table 16.2 Sample entries in the lookup table replacing the first 
four multiplications in division by repeated 
multiplications 

 ––––––––––––––––––––––––––––––––––––––––– 
 Address     d =  0.1 xxxx  xxxx     x(0+) = 1. xxxx  xxxx 
 ––––––––––––––––––––––––––––––––––––––––– 
     55    0011 0111   1010 0101  
     64    0100 0000   1001 1001             
 ––––––––––––––––––––––––––––––––––––––––– 
 
Example: derivation of the table entry for 55   

  
311
512   ≤  d  <  

312
512  

 
For 8 bits of convergence, the table entry f must satisfy  

  
311
512  (1 + .f)  ≥ 1 – 2–8  

312
512(1 + .f)  ≤ 1 + 2–8   

 
Thus  

 
199
311  ≤ .f  ≤ 

101
156  or for the integer f = 256 × .f  

 163.81 • f • 165.74 

Two choices:   164 = (1010 0100)two  or  
165 = (1010 0101)two 
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Part V Real Arithmetic 

Part Goals 
 Review floating-point representations 
 Learn about floating-point arithmetic 
 Discuss error sources and error bounds 
 
Part Synopsis 
  Combining wide range and high precision 
 Floating-point formats and operations 
 The ANSI/IEEE standard 
 Errors: causes and consequences 
 When can we trust computation results? 
 
Part Contents 
Chapter 17 Floating-Point Representations 
Chapter 18 Floating-Point Operations 
Chapter 19 Errors and Error Control 
Chapter 20 Precise and Certifiable Arithmetic 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 236 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

17 Floating-Point Representations 

   Go to TOC 
Chapter Goals 
 Study representation method offering both 
 wide range (e.g., astronomical distances) 
 and high precision (e.g., atomic distances)  
 
Chapter Highlights 
 Floating-point formats and tradeoffs 
 Why a floating-point standard? 
 Finiteness of precision and range 
 The two extreme special cases:  
    fixed-point and logarithmic numbers 
 
Chapter Contents 
17.1 Floating-Point Numbers 
17.2 The ANSI/IEEE Floating-Point Standard 
17.3 Basic Floating-Point Algorithms 
17.4 Conversions and Exceptions 
17.5 Rounding Schemes 
17.6 Logarithmic Number Systems 
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17.1 Floating-Point Numbers 

No finite number system can represent all real numbers 
Various systems can be used for a subset of real numbers 
 
 Fixed-point ± w . f low precision and/or range 
 Rational ± p / q difficult arithmetic 
 Floating-point ± s × be most common scheme 
 Logarithmic ± logbx limiting case of floating-point 
 
Fixed-point numbers 
 x = (0000 0000 . 0000 1001)two  Small number 

 y = (1001 0000 . 0000 0000)two  Large number  

 
Floating-point numbers 

 x  =  ± s × be    or    ± significand × baseexponent    

Two signs are involved in a floating-point number.  
 
 1. The significand or number sign,  
  usually represented by a separate sign bit  
 
 2. The exponent sign, 
  usually embedded in the biased exponent  
  (when the bias is a power of 2,  
  the exponent sign is the complement of its MSB) 
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E x p o n  e n t : 
Signed integer, 
often represented 
as unsigned value 
by adding a bias   
 
Range with h bits: 
[–bias, 2  –1–bias]h

S i g n i f i c a n d : 
Represented as a fixed-point number

Usually normalized by shifting,  
so that the MSB becomes nonzero.  
In radix 2, the fixed leading 1   
can be removed to save one bit;  
this bit is known as "hidden 1".

Sign 
 
0 : + 
1 : –

± e s

 

Fig. 17.1 Typical floating-point number format. 

 

 
–∞ +∞ 0 FLP– FLP+ 

Underflow  
  Regions 

Overflow  
  Region 

Overflow  
  Region 

max min 

Denser Sparser 
Positive  
numbers 

Negative  
numbers 

–max –min 

Denser Sparser 
.  .  . .  .  . .  .  . .  .  . 

 

Fig. 17.2 Subranges and special values in floating-point 
number representations. 
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17.2 The ANSI/IEEE Floating-Point Standard 

 

Short (32-bit) format 

Long (64-bit) format 

Sign  Exponent Significand 

 8 bits, 
 bias = 127, 
 –126 to 127 

 11 bits, 
 bias = 1023, 
 –1022 to 1023 

52 bits for fractional part  
(plus hidden 1 in integer part) 

23 bits for fractional part  
(plus hidden 1 in integer part) 

 

Fig. 17.3 The ANSI/IEEE standard floating-point number 
representation formats.  
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Table 17.1 Some features of the ANSI/IEEE standard floating-
point number representation formats 

––––––––––––––––––––––––––––––––––––––––––––––––– 
Feature       Single/Short      Double/Long 
––––––––––––––––––––––––––––––––––––––––––––––––– 
Word width (bits)  32           64 

Significand bits   23 + 1 hidden     52 + 1 hidden 

Significand range  [1, 2 – 2–23]       [1, 2 – 2–52] 

Exponent bits    8            11 

Exponent bias    127           1023 

Zero (±0)      e + bias = 0, f = 0   e + bias = 0, f = 0 

Denormal      e + bias = 0, f ≠ 0   e + bias = 0, f ≠ 0  
          represents ±0.f×2–126 represents ±0.f×2–1022 

Infinity (±∞)     e + bias = 255, f = 0  e + bias = 2047, f = 0 

Not-a-number (NaN)  e + bias = 255, f ≠ 0  e + bias = 2047, f ≠ 0 

Ordinary number   e + bias ∈  [1, 254]   e + bias ∈  [1, 2046] 
         e ∈  [–126, 127]    e ∈  [–1022, 1023] 
          represents 1.f × 2e   represents 1.f × 2e 

min         2–126 ≅  1.2 × 10–38   2–1022 ≅  2.2 × 10–308 

max         ≅  2128  ≅  3.4 × 1038   ≅  21024 ≅  1.8 × 10308 
––––––––––––––––––––––––––––––––––––––––––––––––– 
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Operations on special operands: 
 Ordinary number ÷ (+∞)  =  ±0 
 (+∞) × Ordinary number  =  ±∞ 
 NaN + Ordinary number  =  NaN 
 

0 2
–126Denormals 2

–125

.     .     .    .     .     .    

min

. . .

 

Fig. 17.4 Denormals in the IEEE single-precision format. 

  
The IEEE floating-point standard also defines 
  
 The four basic arithmetic op’s (+, –, ×, ÷) and x  
  must match the results that would be obtained if  
  intermediate computations were infinitely precise 
  
 Extended formats for greater internal precision 
 
  Single-extended: ≥ 11 bits for exponent 
      ≥ 32 bits for significand 
      bias unspecified, but  
      exp range ⊇  [–1022, 1023] 
 
  Double-extended: ≥ 15 bits for exponent 
      ≥ 64 bits for significand   
      exp range ⊇  [–16 382, 16 383] 
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17.3 Basic Floating-Point Algorithms 

Addition/Subtraction 
 
Assume e1 ≥ e2; need alignment shift (preshift) if e1 > e2: 

 (± s1 × be1) + (± s2 × be2)  = (± s1 × be1) + (± s2 / be1–e2) × be1 
       = (± s1 ± s2 / be1–e1) × be1 = ± s × be   

Like signs: 1-digit normalizing right shift may be needed 
Different signs: shifting by many positions may be needed  
Overflow/underflow during addition or normalization 
 
Multiplication 
 

(± s1 × be1)  × (± s2 × be2)  =  ± (s1 × s2) × be1+e2 

Postshifting for normalization, exponent adjustment  
Overflow/underflow during multiplication or normalization 
 
Division  
 
(± s1 × be1) / (± s2 × be2)  =  ± (s1/s2) × be1–e2 
 
Square-rooting 
 
First make the exponent even, if necessary  

  √(s × be) =  s   × be/2 

In all algorithms, rounding complications are ignored here 
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17.4 Conversions and Exceptions 

Conversions from fixed- to floating-point 
 
Conversions between floating-point formats 
 
Conversion from high to lower precision: Rounding  
 
ANSI/IEEE standard includes four rounding modes: 
 
 Round to nearest even [default rounding mode] 
 Round toward zero (inward) 
 Round toward +∞ (upward) 
 Round toward –∞ (downward) 
 
Exceptions 
 
 divide by zero 
 overflow 
 underflow  
 inexact result: rounded value not same as original 
 invalid operation: examples include 
  addition   (+∞) + (–∞) 
  multiplication  0 × ∞ 
  division   0 / 0    or    ∞ / ∞ 
  square-root  operand < 0 
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17.5 Rounding Schemes 

       Round 

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l     ⇒      yk–1yk–2 . . . y1y0 . 
 
Special case: truncation or chopping  
                         
       Chop 

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l    ⇒      xk–1xk–2 . . . x1x0 . 
 

chop(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

    

chop(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

  
Fig. 17.5 Truncation or chopping of a signed-magnitude 

number (same as round toward 0). 

Fig. 17.6 Truncation or chopping of a 2’s-complement 
number (same as downward-directed rounding). 
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rtn(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

 

Fig. 17.7 Rounding of a signed-magnitude value to the 
nearest number. 

 
Ordinary rounding has a slight upward bias  
 
Assume that (xk–1xk–2 

. . . x1x0 . x–1x–2)two is to be rounded  

 to an integer (yk–1yk–2 
. . . y1y0 .)two  

 
The four possible cases, and their representation errors: 
 
 x–1x–2 = 00 round down  error =   0 
 x–1x–2 = 01 round down  error = –0.25 
 x–1x–2 = 10 round up   error =   0.5 
 x–1x–2 = 11 round up   error =   0.25 
 
Assume 4 cases are equiprobable ⇒  mean error = 0.125 
 
For certain calculations, the probability of getting a 
midpoint value can be much higher than 2–l   
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rtne(x) 
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R*(x) 
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–1 

x 
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Fig. 17.8 Rounding to the nearest even number. 

Fig. 17.9 R* rounding or rounding to the nearest odd number. 

 
jam(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 
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Fig. 17.10 Jamming or von Neumann rounding. 
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ROM rounding 

                    32×4-ROM-Round 

xk–1 . . . x4x3x2x1x0 . x–1 . . . x–l  ⇒   xk–1 . . . x4y3y2y1y0  . 
       |–––––––––––|                  |––––––| 
      ROM Address                       ROM Data 

The rounding result is the same as that of the round to 
nearest scheme in 15 of the 16 possible cases, but a 
larger error is introduced when x3 = x2 = x1 = x0 = 1 
 

ROM(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

 

Fig. 17.11 ROM rounding with an 8 × 2 table. 
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We may need result errors to be in a known direction 
 
Example: in computing upper bounds,  
 larger results are acceptable,  
 but results that are smaller than correct values  
 could invalidate the upper bound  
 
This leads to the definition of directed rounding modes 
 upward-directed rounding (round toward +∞) and  
 downward-directed rounding (round toward –∞) 
 (required features of the IEEE floating-point standard) 
 

up(x) 

–4 

–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

    

chop(x) = down(x) 
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–3 

–2 

–1 

x 
–4 –3 –2 –1 4 3 2 1 

4 

3 

2 

1 

 
Fig. 17.12 Upward-directed rounding or rounding toward +∞ 

(see Fig. 17.6 for downward-directed rounding, or 
rounding toward –∞). 

Fig. 17.6 Truncation or chopping of a 2’s-complement 
number (same as downward-directed rounding). 
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17.6 Logarithmic Number Systems 

sign-and-logarithm number system:  
   limiting case of floating-point representation 

 x  =  ±be × 1      e  =  logb |x| 

b usually called the logarithm base, not exponent base  
 

Sign

Implied radix point

e±

Fixed-point exponent

 

Fig. 17.13 Logarithmic number representation with sign and 
fixed-point exponent. 

 
The log is often represented as a 2’s-complement number 

 (Sx, Lx)  =  (sign(x ), log2|x|) 

Simple multiply and divide; harder add and subtract 

Example: 12-bit, base-2, logarithmic number system 
 

 1 1 0 1 1 0 0 0 1 0 1 1 
               ∆ 
     Sign         Radix point 

The above represents –2–9.828125 ≅  –(0.0011)ten  

number range ≅  [–216, 216], with min = 2–16   
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18 Floating-Point Operations 

   Go to TOC 
Chapter Goals 
 See how adders, multipliers, and dividers  
 are designed for floating-point operands 
 (square-rooting postponed to Chapter 21) 
 
Chapter Highlights 
 Floating-point operation = preprocessing +  
  exponent arith + significand arith +  
  postprocessing (+ exception handling) 
 Adders need preshift, postshift, rounding 
 Multipliers and dividers are easy to design 
 
Chapter Contents 
18.1 Floating-Point Adders/Subtractors 
18.2 Pre- and Postshifting 
18.3 Rounding and Exceptions 
18.4 Floating-Point Multipliers 
18.5 Floating-Point Dividers 
18.6 Logarithmic Arithmetic Unit 
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18.1 Floating-Point Adders/Subtractors 

Floating-point add/subtract algorithm 
 
Assume e1 ≥ e2; need alignment shift (preshift) if e1 > e2: 

 (± s1 × be1) + (± s2 × be2)  = (± s1 × be1) + (± s2 / be1–e2) × be1 

        = (± s1 ± s2 / be1–e1) × be1  

     = ± s × be   

Like signs: 1-digit normalizing right shift may be needed 
Different signs: shifting by many positions may be needed  
Overflow/underflow during addition or normalization 
 
 
Example floating-point addition with rounding 
 

Operands after alignment shift: 
 
x = 2   1.00101101 
y = 2   0.000111101101 

Numbers to be added: 
 
x = 2   1.00101101 
y = 2   1.11101101 

5 
1 

× 
× 

5 
5 

× 
× 

Extra bits to be  
rounded off 

Operand with  
smaller exponent  
to be preshifted 

Result of addition: 
 
s = 2   1.010010111101 
s = 2   1.01001100 

5 
5 Rounded sum 

× 
×  
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Normalize 
& round 

Add 

Align 
significands 

Possible swap  
& complement  

Unpack 
 

Control 
& sign 
logic  

Add/  
Sub 

    
Pack 

Inputs 

Output 

Significands Exponents Signs 

Significand Exponent Sign 

x y 

s 

Sub 

Add 

Mux 

 

Block diagram of a floating-point adder/subtractor 
(simple version from the encyclopedia article). 
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Normalize 

Add 

Align significands 

 

Unpack 
 

Control 
& sign 
logic 

Add/ 
Sub 

    
Pack 

Operands 

Sum/Difference 

Significands Exponents Signs 

Significand Exponent Sign 

x y 

s 

Sub 

Add 

Mux 

c out c in 

Selective complement  
and possible swap  

 
Round and 

selective complement  
 

Normalize 

 

Fig. 18.1 Block diagram of a floating-point adder/subtractor. 
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Unpacking of the operands involves: 
 

Separating sign, exponent, and significand  
Reinstating the hidden 1 
Converting the operands to the internal format 
Testing for special operands and exceptions 

 
Packing of the result involves: 
 

Combining sign, exponent, and significand  
Hiding (removing) the leading 1 
Testing for special outcomes and exceptions 

 
 [Converting internal to external representation,  
 if required, must be done at the rounding stage] 
 
Other key parts of a floating-point adder: 
 
 significand aligner or preshifter: Section 18.2 
 result normalizer or postshifter, including 
  leading 0s detector/predictor: Section 18.2 
 rounding unit: Section 18.3 
 sign logic: Problem 18.2 
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18.2 Pre- and Postshifting 

yi

xixi+2 xi+1xi+30xi+31

5
Shift amount 31 30                            2      1      0 

.   .   .

32-to-1 Mux
Enable

 

Fig. 18.2 One bit-slice of a single-stage pre-shifter. 

 

xixi+2 xi+1xi+4 xi+3xi+6 xi+5xi+8 xi+7

yiyi+2 yi+1yi+4 yi+3yi+6 yi+5yi+8 yi+7

LSB

MSB

  4-Bit 
  Shift 
Amount

 

Fig. 18.3 Four-stage combinational shifter for preshifting an 
operand by 0 to 15 bits. 
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Shift amount
Post-Shifter

Significand 
    Adder

  Adjust 
Exponent

Count 
Leading 
0s/1s

Post-Shifter

Significand 
    Adder

  Adjust 
Exponent

Predict 
Leading 
0s/1s

Shift amount

 

Fig. 18.4 Leading zeros/ones counting versus prediction. 

 
Leading zeros prediction 
Adder inputs: (0x0.x–1x–2...)2’s-compl, (1y0.y–1y–2...)2’s-compl 
How leading 0s/1s can be generated 

 p p . . . p p g a a . . . a a g . . .  
 p p . . . p p g a a . . . a a p . . .  
 p p . . . p p a g g . . . g g a . . .  
 p p . . . p p a g g . . . g g p . . .  
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18.3 Rounding and Exceptions 

Adder result =  (coutz1z0.z–1z–2...z–l G R S)2’s-compl    
G Guard bit 
R Round bit 
S Sticky bit 

 
Why only three extra bits at the right are adequate 
Amount of alignment right-shift  
 
1 bit: G holds the bit that is shifted out, no precision is lost   
 
2 bits or more:  
 
 shifted significand has a magnitude in [0, 1/2) 
 unshifted significand has a magnitude in [1, 2) 
 difference of aligned significands  
  has a magnitude in [1/2, 2) 
 normalization left-shift will be by at most one bit 
 
If a normalization left-shift actually takes place: 
 
 R = 0, round down, discarded part < ulp/2 
 R = 1, round up, discarded part ≥ ulp/2  
 
The only remaining question is establishing if the 
discarded part is exactly equal to ulp/2, as this information 
is needed in some rounding schemes 
 
Providing this information is the role of S which is set to 
the logical OR of all the bits that are right-shifted through it   
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The effect of 1-bit normalization shifts on the rightmost few 
bits of the significand adder output is as follows 
 
 Before postshifting (z) ... z–l+1 z–l | G R S 

 1-bit normalizing right-shift ... z–l+2 z–l+1 | z–l G R∨ S 

 1-bit normalizing left-shift ... z–l  G | R S 0 

 After normalization (Z) ... Z–l+1 Z–l | Z–l–1Z–l–2Z–l–3 
 
Round to nearest even: 
 
 Do nothing  if Z–l–1 = 0  or Z–l = Z–l–2 = Z–l–3 =  0  

 Add ulp = 2–l  otherwise   
 
No rounding needed in case of multibit left-shift,  
 because full precision is preserved in this case 
 
Overflow and underflow exceptions are detected by the 
exponent adjustment blocks in Fig. 18.1 
 
 Overflow can occur only for normalizing right-shift 
 Underflow is possible only with normalizing left shifts 
 
Exceptions involving NaNs and invalid operations are 
handled by the unpacking and packing blocks in Fig. 18.1 
 
Zero detection is a special case of leading 0s detection 
 
Determining when the “inexact” exception must be 
signalled is left as an exercise 
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Dual-datapath floating-point adders 
 

Near path Far path 

0 or 1 bit preshift  
Arbitrary preshift  

0 or 1 bit postshift  
Arbitrary postshift 

Add 

Add 
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18.4 Floating-Point Multipliers 

Floating-point multiplication algorithm 
 

(± s1 × be1)  × (± s2 × be2)  =  ± (s1 × s2) × be1+e2 

Postshifting for normalization, exponent adjustment  
Overflow/underflow during multiplication or normalization 
 

XOR     Add 
Exponents 

Unpack

Normalize
  Adjust 
Exponent 

Round

Normalize

Pack

  Multiply 
Significands 

Floating-point operands

Product

  Adjust 
Exponent 

 

Fig. 18.5 Block diagram of a floating-point multiplier. 
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Many multipliers produce the lower half of the product 
(rounding info) early 
 
Need for normalizing right-shift is known at or near the end 
 
Hence, rounding can be integrated in the generation of the 
upper half, by producing two versions of these bits 
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18.5 Floating-Point Dividers 

Floating-point division algorithm 
 
(± s1 × be1) / (± s2 × be2)  =  ± (s1/s2) × be1–e2 
 
Postshifting for normalization, exponent adjustment  
Overflow/underflow during division or normalization 
 

XOR  Subtract 
Exponents 

Unpack

Normalize
  Adjust 
Exponent 

Round

Normalize

Pack

   Divide 
Significands 

Floating-point operands

Quotient

  Adjust 
Exponent 

 

Fig. 18.6 Block diagram of a floating-point divider. 
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Quotient must be produced with two extra bits (G and R), 
 in case of the need for a normalizing left shift 
 
The remainder does the job of the sticky bit 
 
 
Floating-point square-rooting algorithm 
 
Make the exponent even, if necessary, by decrementing it 
and doubling the significand; significand is now in [1, 4)  

  √(s × be) =  s   × be/2 

Never overflow or underflow 
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18.6 Logarithmic Arithmetic Unit 

Add/subtract:  (Sx, Lx) ± (Sy, Ly)  =  (Sz, Lz)  
Assume x > y > 0 (other cases are similar) 
 Lz   =   log z   =   log(x ± y) =  log(x(1 ± y/x))   
       =  log x + log(1 ± y/x)  
Given ∆  = –(log x – log y), the term   
 log(1 ± y/x)  =  log(1 ± log–1∆) 

is obtained from a table (two tables φ+ and φ– needed) 
 log(x + y)  =  log x + φ+(∆)   
 log(x – y)  =  log x + φ–(∆)  

Compare

Lx

Ly

Control

Sx
Sy

Sz

ROM 
for 
φ+, φ−

Lz

Lm

Add/ 
Sub

Add/ 
Sub

Mux Mux

 

Fig. 18.7 Arithmetic unit for a logarithmic number system. 
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19 Errors and Error Control 

   Go to TOC 
Chapter Goals 
 Learn about sources of computation errors  
 consequences of inexact arithmetic  
 and methods for avoiding or limiting errors  
 
Chapter Highlights 
 Representation and computation errors 
 Absolute versus relative error 
 Worst-case versus average error 
 Why 3 × (1/3) is not necessarily 1? 
 Error analysis and bounding 
 
Chapter Contents 
19.1 Sources of Computational Errors  
19.2 Invalidated Laws of Algebra 
19.3 Worst-Case Error Accumulation 
19.4 Error Distribution and Expected Errors 
19.5 Forward Error Analysis 
19.6 Backward Error Analysis 
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19.1 Sources of Computational Errors 

FLP approximates exact computation with real numbers 
 
Two sources of errors to understand and counteract:  
 
 Representation errors 
  e.g., no machine representation for 1/3, 2 , or π  
 Arithmetic errors  
  e.g., (1 + 2–12)2 = 1 + 2–11 + 2–24  
  not representable in IEEE format 
 
We saw early in the course that errors due to finite 
precision can lead to disasters in life-critical applications 
 
Example 19.1: Compute 1/99 – 1/100  
(decimal floating-point format, 4-digit significand in [1, 10),  
single-digit signed exponent) 
precise result = 1/9900 ≅  1.010×10–4

 (error ≅  10–8
 or 0.01%) 

x  =  1/99  ≅   1.010 × 10–2  Error ≅  10–6 or 0.01%  
y  =  1/100  =  1.000 × 10–2  Error = 0 
z = x –fp y = 1.010 × 10–2 – 1.000 × 10–2 = 1.000 × 10–4   

       Error ≅  10–6 or 1% 
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Notation for floating-point system FLP(r, p, A) 
 
Radix r (assume to be the same as the exponent base b) 
Precision p in terms of radix-r digits 
Approximation scheme A ∈  {chop, round, rtne, chop(g), ...} 
 
Let x = res be an unsigned real number, normalized such 
that 1/r ≤ s < 1, and xfp be its representation in FLP(r, p, A) 
 
xfp  =  resfp  =  (1 + η)x 

A = chop  –ulp  < sfp – s ≤ 0   –r × ulp < η ≤ 0      

A = round –ulp/2 < sfp – s ≤ ulp/2  |η| ≤ r × ulp/2 
 
 
Arithmetic in FLP(r, p, A)  
 
Obtain an infinite-precision result, then chop, round, . . . 
 
Real machines approximate this process by keeping g > 0 
guard digits, thus doing arithmetic in FLP(r, p, chop(g)) 
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Error analysis for FLP(r, p, A)  
 
Consider multiplication, division, addition, and subtraction 
for positive operands xfp and yfp in FLP(r, p, A) 

Due to representation errors, xfp = (1 + σ)x , yfp = (1 + τ)y  

xfp  ×fp yfp  = (1 + η)xfpyfp  =  (1 + η)(1 + σ)(1 + τ)xy 

 = (1 + η + σ + τ + ησ + ητ  + στ + ηστ)xy 
 ≅  (1 + η + σ + τ)xy     
 
xfp  /fp  yfp = (1 + η)xfp/yfp  =  (1 + η)(1 + σ)x/[(1 + τ)y] 

 = (1 + η)(1 + σ)(1 – τ)(1 + τ2)(1 + τ4)( . . . )x/y 
 ≅  (1 + η + σ – τ)x/y    
 
xfp +fp yfp = (1 + η)(xfp + yfp)  =  (1 + η)(x + σx + y + τy) 

 = (1 + η)(1 +  
σx + τy
x + y  )(x + y) 

Since |σx + τy| ≤ max(|σ|, |τ|)(x + y), the magnitude of the 
worst-case relative error in the computed sum is roughly 
bounded by |η| + max(|σ|, |τ|) 

xfp –fp yfp  =  (1 + η)(xfp – yfp)  =  (1 + η)(x + σx – y – τy) 

            =  (1 + η)(1 +  
σx – τy
x – y  )(x – y) 

The term (σx – τy)/(x – y) can be very large if x and y are 
both large but x – y is relatively small 
 
This is known as cancellation or loss of significance  
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Fixing the problem 
 
The part of the problem that is due to η being large can be 
fixed by using guard digits 
 
Theorem 19.1: In floating-point system FLP(r, p, chop(g)) 
with g ≥ 1 and –x < y < 0 < x, we have: 

x +fp y  =  (1 + η)(x + y)    with    –r–p +1 < η < r–p–g+2    
 
Corollary: In FLP(r, p, chop(1)) 
 x +fp y  =  (1 + η)(x + y) with |η| < r–p+1     
 
So, a single guard digit is sufficient to make the relative 
arithmetic error in floating-point addition/subtraction 
comparable to the representation error with truncation   
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Example 19.2: Decimal floating-point system (r = 10)  
 with p = 6 and no guard digit 

x   =  0.100 000 000 × 103     y   = –0.999 999 456 × 102  
xfp =   .100 000 × 103        yfp =  – .999 999 × 102    

x + y =  0.544×10–4 and      xfp + yfp = 10–4,     but: 

 xfp +fp yfp  =  .100 000 × 103 –fp .099 999 × 103   

      =  .100 000 × 10–2    

Relative error = (10–3 – 0.544×10–4)/(0.544×10–4) ≅  17.38 
 (i.e., the result is 1738% larger than the correct sum!)  

With 1 guard digit, we get: 

 xfp +fp yfp  =  0.100 000 0 × 103 –fp 0.099 999 9 × 103 

     =  0.100 000 × 10–3    

Relative error = 80.5% relative to the exact sum x + y 
but the error is 0% with respect to xfp + yfp 
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19.2 Invalidated Laws of Algebra  

Many laws of algebra do not hold for floating-point 
arithmetic (some don’t even hold approximately) 
 
This can be a source of confusion and incompatibility  
 
Associative law of addition:        a + (b + c)  =  (a + b) + c 

a = 0.123 41×105   b = –0.123 40×105   c = 0.143 21×101     

a +fp (b +fp c)  

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)  

 = 0.123 41 × 105 –fp 0.123 39 × 105  

= 0.200 00 × 101     

(a +fp b) +fp c  

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101  

 = 0.100 00 × 101 +fp 0.143 21 × 101  

= 0.243 21 × 101     

The two results differ by about 20%! 
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A possible remedy: unnormalized arithmetic 

a +fp (b +fp c)  

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)  

 = 0.123 41 × 105 –fp 0.123 39 × 105 = 0.000 02 × 105     

(a +fp b) +fp c  

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101  

 = 0.000 01 × 105 +fp 0.143 21 × 101 = 0.000 02 × 105     
Not only are the two results the same but they carry with 
them a kind of warning about the extent of potential error  
 
Let’s see if using 2 guard digits helps: 

a +fp (b +fp c)  

 = 0.123 41×105 +fp (–0.123 40×105 +fp 0.143 21×101)  

 = 0.123 41×105 –fp 0.123 385 7×105 = 0.243 00 × 101     

(a +fp b) +fp c  

 = (0.123 41×105 –fp 0.123 40×105) +fp 0.143 21×101  

 = 0.100 00 × 101 +fp 0.143 21 × 101 = 0.243 21 × 101     

The difference is now about 0.1%; still too high 
 
Using more guard digits will improve the situation but does 
not change the fact that laws of algebra cannot be 
assumed to hold in floating-point arithmetic  
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Examples of other laws of algebra that do not hold: 
 Associative law of multiplication  
       a × (b × c)  =  (a × b) × c 
 Cancellation law  (for a > 0)   
       a × b = a × c  implies  b = c 
 Distributive law          
       a × (b + c) = (a × b) + (a × c) 
 Multiplication canceling division 
       a × (b / a)  =  b  
 
Before the ANSI-IEEE floating-point standard became 
available and widely adopted, these problems were 
exacerbated by the use of many incompatible formats 
 

Example 19.3: The formula x = –b ± d, with d = b2 – c , 
yielding the roots of the quadratic equation x2 + 2bx + c = 0, 
can be rewritten as x = –c / (b ± d)  
 
Example 19.4: The area of a triangle with sides a, b, and 
c (assume a ≥ b ≥ c) is given by the formula  

 A = s(s – a)(s – b)(s – c)  

where s = (a + b + c)/2. When the triangle is very flat, such 
that a ≅  b + c, Kahan’s version returns accurate results:  

 A  =  
1
4 (a + (b + c))(c – (a – b))(c + (a – b))(a + (b – c))   
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19.3 Worst-Case Error Accumulation 

In a sequence of operations, round-off errors might add up  
 
The larger the number of cascaded computation steps 
(that depend on results from previous steps), the greater 
the chance for, and the magnitude of, accumulated errors 
 
With rounding, errors of opposite signs tend to cancel 
each other out in the long run, but one cannot count on 
such cancellations 

Example: inner-product calculation  z = ∑1023
i=0  x(i)y(i) 

Max error per multiply-add step = ulp/2 + ulp/2 = ulp 
Total worst-case absolute error = 1024 ulp   
 (equivalent to losing 10 bits of precision) 
 
A possible cure: keep the double-width products in their 
entirety and add them to compute a double-width result 
which is rounded to single-width at the very last step 
 

Multiplications do not introduce any round-off error  
Max error per addition = ulp2/2 
Total worst-case error = 1024 × ulp2/2  

 
Therefore, provided that overflow is not a problem, a 
highly accurate result is obtained 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 275 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

Moral of the preceding examples: 
 
Perform intermediate computations with a higher precision 
than what is required in the final result  
 
Implement multiply-accumulate in hardware (DSP chips) 
 
Reduce the number of cascaded arithmetic operations;    
So, using computationally more efficient algorithms has 
the double benefit of reducing the execution time as well 
as accumulated errors 
 
Kahan’s summation algorithm or formula 

To compute s = ∑n–1
i=0   x(i), proceed as follows  

 s  ←  x(0) 

 c  ←  0         {c is a correction term} 

 for i = 1 to n – 1 do 

   y  ←  x(i) – c    {subtract correction term} 

   z  ←  s + y 

   c  ←  (z – s) – y  {find next correction term} 

   s  ←  z 

 endfor 
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19.4 Error Distribution and Expected Errors 

MRRE = maximum relative representation error 

 MRRE(FLP(r, p, chop))  = r–p+1  

 MRRE(FLP(r, p, round)) = r–p+1/2 

From a practical standpoint, however, the distribution of 
errors and their expected values may be more important 
 
Limiting ourselves to positive significands, we define:  

 ARRE(FLP(r, p, A)) =   
⌡


⌠

1/r

1

  
|xfp – x|

x  
dx

x ln r  

 
1/(x ln r) is a probability density function 
 

0 

1 

2 

3 

1/2 1 3/4 
Significand x 

1 / (x ln 2) 

 

Fig. 19.1 Probability density function for the distribution of 
normalized significands in FLP(r = 2, p, A). 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 277 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

19.5 Forward Error Analysis 

Consider the computation y = ax + b  
and its floating-point version:  

 yfp  =  (afp ×fp xfp) +fp bfp  =  (1 + η)y 

Can we establish any useful bound on the magnitude of 
the relative error η, given the relative errors in the input 
operands afp, bfp, and xfp?  
 

The answer is “no” 
 
Forward error analysis =  
 
 Finding out how far yfp can be from ax + b,  
 or at least from afpxfp + bfp, in the worst case  
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a. Automatic error analysis 
 
 Run selected test cases with higher precision  
 and observe the differences between the new,  
 more precise, results and the original ones  
 
b. Significance arithmetic 
 
 Roughly speaking, same as unnormalized  arithmetic, 
 although there are some fine distinctions  
 The result of the unnormalized decimal addition  

 .1234 × 105 +fp .0000 × 1010  =  .0000 × 1010 

 warns us that precision has been lost 
 
c. Noisy-mode computation 
 
 Random digits, rather than 0s, are inserted  
 during normalizing left shifts 
 If several runs of the computation in noisy mode  
 yield comparable results, then we are probably safe 
 
d. Interval arithmetic 
 
 An interval [xlo, xhi] represents x, xlo ≤ x ≤ xhi 

 With xlo, xhi, ylo, yhi > 0, to find z = x / y, we compute  

 [zlo, zhi]  =  [xlo /∇ fp yhi, xhi /∆fp ylo]  

 Intervals tend to widen after many computation steps 
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19.6 Backward Error Analysis 

Backward error analysis replaces the original question 
 
 How much does yfp deviate from the correct result y? 
 
with another question: 
 
 What input changes produce the same deviation? 
 
In other words, if the exact identity  

yfp = aaltxalt + balt  

holds for alternate parameter values aalt, balt, and xalt,  
we ask how far aalt, balt, xalt can be from afp, bfp, xfp 
 
Thus, computation errors are converted or compared to 
additional input errors 
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Example of backward error analysis 
 
yfp =  afp ×fp xfp +fp bfp   

 =  (1 + µ)[afp ×fp xfp + bfp]  with |µ| < r–p+1 = r × ulp  

  =  (1 + µ)[(1 + ν)afpxfp + bfp] with |ν| < r–p+1 = r × ulp     

 =  (1 + µ)afp (1 + ν)xfp + (1 + µ)bfp 

 =  (1 + µ)(1 + σ)a (1 + ν)(1 + δ)x + (1 + µ)(1 + γ)b 
 ≅   (1 + σ + µ)a (1 + δ + ν)x + (1 + γ + µ)b 
 
So the approximate solution of the original problem is the 
exact solution of a problem close to the original one 
 
We are, thus, assured that the effect of arithmetic errors 
on the result yfp is no more severe than that of r × ulp 
additional error in each of the inputs a, b, and x 
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20 Precise and Certifiable Arithmetic 

   Go to TOC 
Chapter Goals 
 Discuss methods for doing arithmetic 
 when results of high accuracy  
 or guranteed correctness are required 
 
Chapter Highlights 
 More precise computation via 
  multi- or variable-precision arithmetic 
 Result certification via 
  exact or error-bounded arithmetic 
 Precise/exact arithmetic with low overhead 
 
Chapter Contents 
20.1 High Precision and Certifiability 
20.2 Exact Arithmetic 
20.3 Multiprecision Arithmetic 
20.4 Variable-Precision Arithmetic 
20.5 Error-Bounding via Interval Arithmetic 
20.6 Adaptive and Lazy Arithmetic 
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20.1 High Precision and Certifiability  

There are two aspects of precision to discuss: 
 Results possessing adequate precision 
 Being able to provide assurance of the same 
 
We consider three distinct approaches  
for coping with precision issues: 
 
 1. Obtaining completely trustworthy results  
  via exact arithmetic 
 
 2. Making the arithmetic highly precise  
  in order to raise our confidence  
  in the validity of the results:  
  multi- or variable-precision arithmetic 
 
 3. Doing ordinary or high-precision calculations  
  while tracking potential error accumulation  
  (can lead to fail-safe operation)  
 
We take the hardware to be completely trustworthy 
Hardware reliability issues to be dealt with in Chapter 27 
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20.2 Exact Arithmetic  

Continued fractions 
 
Any unsigned rational number x = p/q has a unique 
continued-fraction expansion 

 

x =
p
q = a

0
+ 1

a
1
+ 1

a
2
+ 1

...
1

a
m −1

+ 1
am

 
with a0 ≥ 0, am ≥ 2, and ai ≥ 1 for 1 ≤ i ≤ m – 1 
 
Example: continued-fraction representation for 277/642  

  

277
642

= 0 + 1

2 + 1

3 + 1

6 + 1

1 + 1

3 + 1
3

= [0/2/3/6/1/3/3]

0

1/2

3/7

19/44

 
Can get approximations for finite representation by limiting 
number of “digits” in the continued-fraction representation  
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Fixed-slash number systems 
 
Numbers are represented by the ratio p/q of two integers 
 
 Rational number    if p > 0 q > 0        
 “rounded” to nearest value 
 ±0       if p = 0 q  odd  
 ±∞       if p  odd q = 0  
 NaN (not a number)   otherwise 
  

Sign
Implied 
slash 
position

± p q

Inexact

k  bits m  bits

/

 

Fig. 20.1 Example fixed-slash number representation format. 

 
The space waste due to multiple representations such as 
3/5 = 6/10 = 9/15 = . . . is no more than one bit, because: 
 

limn→∞ |{p/q  |  1 ≤ p,q ≤ n, gcd(p, q)=1}|/n2
  

= 6/π2
 = 0.608 
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Floating-slash number systems 
 

Sign
± p q

Inexact

m  bitsh  bits
m

Floating 
slash 
position

k – m  bits

/

 

Fig. 20.2 Example floating-slash representation format. 

 
Set of numbers represented: 
 

{±p/q | p,q ≥ 1, gcd(p, q)=1,  log2p  +  log2q  ≤ k – 2}  
 
Again the following mathematical result, due to Dirichlet, 
shows that the space waste is no more than one bit: 
 

limn→∞ |{p/q | pq≤n, gcd(p,q)=1}| / |{p/q | pq≤n, p,q≥1}|  
= 6/π2 = 0.608 
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20.3 Multiprecision Arithmetic 

Sign ± MSB

LSB

x

x

x

x

(3)

(2)

(1)

(0)

 

Fig. 20.3 Example quadruple-precision integer format. 

Sign ± MSB x

x

x

x

(3)

(2)

(1)

(0)

Exponent

LSB

e

Signi- 
ficand

 

Fig. 20.4 Example quadruple-precision floating-point format. 

± x x x x(3) (2) (1) (0)

y y y y(3) (2) (1) (0)

z z z z(3) (2) (1) (0)

Use to derive guard,  
round, & sticky bits?

Sign-extend ±

GRS

 

Fig. 20.5 Quadruple-precision significands aligned for the 
floating-point addition z = x +fp y. 
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20.4 Variable-Precision Arithmetic 

Same as multiprecision, but with dynamic adjustments 

Sign

±

MSB

LSBx

x

x

(0)

(1)

(w)

w  (# add'l words)

 

Fig. 20.6 Example variable-precision integer format. 

Sign ±

MSB

x

x

x

(1)

(2)

(w)

Exponent  e

LSB

Signi- 
ficand

 Width  w Flags

 

Fig. 20.7 Example variable-precision floating-point format. 

 
x x x (u) (u–h) (1) 

h words = hk bits y y (v) (1) 

y (v) y (1) Case 2 Case 1 
g = v+h–u ≥ 0 g = v+h–u < 0 

y (g+1) 
Alignment shift 

. . . 

.  .  . . . . . . . 

. . . 

. . . . . . 

 

Fig. 20.8 Variable-precision floating-point addition. 
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20.5 Error-Bounding via Interval Arithmetic 

[a, b], a ≤ b, is an interval enclosing a number x, a ≤ x ≤ b 
[a, a] represents the real number x = a  
 
The interval [a, b], a > b, represents the empty interval Φ  
Intervals can be combined and compared in a natural way 
 

[xlo, xhi]    ∩ [ylo, yhi]  = [max(xlo, ylo), min(xhi, yhi)]  

[xlo, xhi]    ∪  [ylo, yhi]  = [min(xlo, ylo), max(xhi, yhi)]   

[xlo, xhi]    ⊇  [ylo, yhi]    iff xlo ≤ ylo  and  xhi ≥ yhi   
[xlo, xhi]     =  [ylo, yhi]    iff xlo = ylo  and  xhi = yhi 
[xlo, xhi]    < [ylo, yhi]    iff xhi < ylo 

 
Interval arithmetic operations are intuitive and efficient 
 
Additive inverse –x of an interval x = [xlo, xhi]  

–[xlo, xhi]  =  [–xhi, –xlo] 
 
Multiplicative inverse of an interval x = [xlo, xhi] 

1 / [xlo, xhi]  =  [1/xhi, 1/xlo]  provided that 0 ∉  [xlo, xhi] 

when 0 ∈  [xlo, xhi], the multiplicative inverse is [–∞,+∞]  
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[xlo, xhi] + [ylo, yhi]   = [xlo + ylo, xhi + yhi] 
[xlo, xhi] – [ylo, yhi]   = [xlo – yhi, xhi – ylo] 

[xlo, xhi] × [ylo, yhi]   = [min(xloylo, xloyhi, xhiylo, xhiyhi),  
     max(xloylo, xloyhi, xhiylo, xhiyhi)] 

[xlo, xhi]  /  [ylo, yhi]   = [xlo, xhi] × [1/yhi, 1/ylo]   
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From the viewpoint of arithmetic calculations, a very 
important property of interval arithmetic is: 
 
Theorem 20.1: If f(x(1), x(2), . . . , x(n)) is a rational 
expression in the interval variables x(1), x(2), . . . , x(n), that 
is, f is a finite combination of x(1), x(2), . . . , x(n) and a finite 
number of constant intervals by means of interval 
arithmetic operations, then x(i)

 ⊃  y(i), i = 1, 2, . . . , n, implies: 
 f(x(1), x(2), . . . , x(n))   ⊃    f(y(1), y(2), . . . , y(n)) 
 
Thus, arbitrarily narrow result intervals can be obtained by 
simply performing arithmetic with sufficiently high precision  
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In particular, with reasonable assumptions about machine 
arithmetic, the following theorem holds 
 
Theorem 20.2: Consider the execution of an algorithm on 
real numbers using machine interval arithmetic with 
precision p in radix r; i.e., in FLP(r, p, ∇|∆ ). If the same 
algorithm is executed using the precision q, with q > p, the 
bounds for both the absolute error and relative error are 
reduced by the factor rq–p   
 
(the absolute or relative error itself may not be reduced by 
this factor; the guarantee applies only to the upper bound) 
 
Strategy for obtaining results with a desired error bound ε: 
 
Let wmax be the maximum width of a result interval when 
interval arithmetic is used with p radix-r digits of precision.  
If wmax ≤ ε, then we are done. Otherwise, interval 
calculations with the higher precision  
 q = p +  logrwmax – logrε  

is guaranteed to yield the desired accuracy.  
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20.6 Adaptive and Lazy Arithmetic  

Need-based incremental precision adjustment to avoid 
high-precision calculations dictated by worst-case errors 
 
Interestingly, the opposite of multi-precision arithmetic, 
which we may call fractional-precision arithmetic, is also of 
some interest. Example: Intel’s MMX  
 
Lazy evaluation is a powerful paradigm that has been and 
is being used in many different contexts. For example, in 
evaluating composite conditionals such as  
 
 if cond1 and cond2 then action 
 
evaluation of cond2 may be skipped if cond1 yields “false” 
 
More generally, lazy evaluation means  
 
 postponing all computations or actions  
 until they become irrelevant or unavoidable 
 
Opposite of lazy evaluation (speculative or aggressive 
execution) has been applied extensively 
 
Redundant number representations offer some 
advantages for lazy arithmetic 
 
Because redundant representations support MSD-first 
arithmetic, it is possible to produce a small number of 
result digits by using correspondingly less computational 
effort, until more precision is needed  
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Part VI   Function Evaluation 

Part Goals 
 Learn algorithms   
 and implementation methods   
 for evaluating useful functions 
 
Part Synopsis 
  Divisionlike square-rooting algorithms 
 Evaluating x , sin x, tanh x, ln x, ex, . . . via 
  series expansion, using +, −, ×, /  
  convergence computation 
 Tables: the ultimate in simplicity/flexibility 
 

Part Contents 

Chapter 21 Square-Rooting Methods 

Chapter 22 The CORDIC Algorithms 

Chapter 23 Variations in Function Evaluation 

Chapter 24 Arithmetic by Table Lookup 
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21 Square-Rooting Methods 

   Go to TOC 
Chapter Goals 
 Learning algorithms and implementations 
 for both digit-at-a-time and convergence  
 square-rooting 
 
Chapter Highlights 
 Square-root part of ANSI/IEEE standard  
 Digit-recurrence (divisionlike) algorithms 
 Convergence square-rooting 
 Square-root not special case of division 
 
Chapter Contents 
21.1 The Pencil-and-Paper Algorithm 
21.2 Restoring Shift/Subtract Algorithm 
21.3 Binary Nonrestoring Algorithm 
21.4 High-Radix Square-Rooting 
21.5 Square-Rooting by Convergence 
21.6 Parallel Hardware Square-Rooters 
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21.1 The Pencil-and-Paper Algorithm 

Notation for our discussion of square-rooting algorithms: 
 z Radicand   z2k–1z2k–2 . . . z1z0    

 q Square root   qk–1qk–2 . . . q1q0   

 s   Remainder (z – q2)  sksk–1sk–2 . . . s1s0   

Remainder range: 0 ≤ s ≤ 2q  k + 1 digits 
Justification: s ≥ 2q + 1 leads to z = q2 + s ≥ (q + 1)2  
   so q cannot be the correct square-root of z 
 
 

 q2   q1  q0  ← q           q(0) = 0 
 −−−−−−−−−−−−−− 

  √ 9 5 2 4 1  ← z       q2 = 3  q(1) = 3 
  9  

 −−−−−−−−−−−−−− 
  0 5 2    6q1 × q1 ≤ 52   q1 = 0  q(2) = 30 
   0 0  

 −−−−−−−−−−−−−− 
   5 2 4 1  60q0 × q0 ≤ 5241 q0 = 8  q(3) = 308 
   4 8 6 4  

 −−−−−−−−−−−−−− 
   0 3 7 7  s = (377)ten    q = (308) ten 

Fig. 21.1 Extracting the square root of a decimal integer 
using the pencil-and-paper algorithm. 
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Root digit selection 
 
The root thus far is denoted by q(i) = (qk–1qk–2 . . . qk–i)ten   

Attach next digit qk–i–1; root becomes q(i+1) = 10q(i) + qk–i–1 

The square of q(i+1) is 100(q(i))2 + 20q(i)qk–i–1 + (qk–i–1)2 

100(q(i))2 = (10q(i))2 subtracted from PR in previous steps 

Must subtract (10(2q(i)) + qk–i–1) × qk–i–1 to get the new PR 

 

In radix r, must subtract 

 (r(2q(i)) + qk–i–1) × qk–i–1 

 

In radix 2, must subtract 

 (4q(i) + qk–i–1) × qk–i–1 

  4q(i)  + 1 if qk–i–1 = 1, 0 otherwise 

 As a trial, subtract (qk–1qk–2 . . . qk–i 0 1)two 
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  q3  q2   q1  q0  ← q         q(0) = 0 
 −−−−−−−−−−−−−−−−−−−−−− 

  √ 0 1 1 1 0 1 1 0  ← z = (118) ten  q3 = 1 q(1) = 1 
  0 1  

 −−−−−−−−−−−−−−−−−−−−−− 
  0 0 1 1     ≥ 101?  No  q2 = 0 q(2) = 10 
   0 0 0  

 −−−−−−−−−−−−−−−−−−−−−− 
   0 1 1 0 1   ≥ 1001? Yes  q1 = 1 q(3) = 101 
    1 0 0 1  

 −−−−−−−−−−−−−−−−−−−−−− 
    0 1 0 0 1 0 ≥ 10101? No  q0 = 0 q(4) = 1010 
     0 0 0 0 0 

 −−−−−−−−−−−−−−−−−−−−−− 
     1 0 0 1 0  s = (18)ten    q = (1010)two = (10) ten 
 
Fig. 21.2 Extracting the square root of a binary integer using 

the pencil-and-paper algorithm. 

 

2 

0 

3 

Radicand 

Subtracted 
bit-matrix  

z 

s Remainder 

Root  q 

q 2 6 – 
q 2 4 – 
q 2 2 

1 – 
q (q     2 0 – 

(q     
(q     
(q     

(1) 

(0) 

(2) 

(3) 

0 
0 
0 
0 

2 

0 

3 q 
q 
q 1 
q 

) 
) 
) 
) 

 

Fig. 21.3 Binary square-rooting in dot notation. 
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21.2 Restoring Shift/Subtract Algorithm 

Consistent with the ANSI/IEEE floating-point standard, we 
formulate our algorithms for a radicand satisfying 1 ≤ z < 4 
(after possible 1-bit left shift to make the exponent even)  
 
Notation: 
 z Radicand in [1, 4)  z1z0 . z–1z–2 . . . z–l    

 q Square root in [1, 2)      1 . q–1q–2 . . . q–l     

 s   Scaled remainder  s1s0 . s–1s–2 . . . s–l    
 
Binary square-rooting is defined by the recurrence 
  
 s(j) = 2s(j–1)

 – q–j(2q(j–1)
 + 2–jq–j)   

    with  s(0)
 = z – 1, q(0)

 = 1, s(j)
 = s 

 
where q(j) is the root up to its (–j)th digit; thus q = q(l) 
 
To choose the next root digit q–j ∈  {0, 1},  

subtract from 2s(j–1) the value 

 2q(j–1)
 + 2–j   =  (1q

(j–1)
–1  . q

(j–1)
–2   . . . q

(j–1)
–j+1  0 1)two    

A negative trial difference means q–j = 0    
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================================  
z     0  1 . 1  1  0  1  1  0  (118/64) 
================================  
s(0) = z – 1 0  0  0 . 1  1  0  1  1  0   q0=1 1. 
2s(0) 0  0  1 . 1  0  1  1  0  0    
–[2 × (1.)+2–1]     1  0 . 1                              
–––––––––––––––––––––––––––––––––  
s(1) 1  1  1 . 0  0  1  1  0  0   q–1=0 1.0   
s(1) = 2s(0) 0  0  1 . 1  0  1  1  0  0   Restore  
2s(1)  0  1  1 . 0  1  1  0  0  0   
–[2 × (1.0)+2–2]     1  0 . 0  1       
–––––––––––––––––––––––––––––––––  
s(2) 0  0  1 . 0  0  1  0  0  0   q–2=1 1.01  
2s(2) 0  1  0 . 0  1  0  0  0  0  
–[2 × (1.01)+2–3]     1  0 . 1  0  1    
–––––––––––––––––––––––––––––––––  
s(3) 1  1  1 . 1  0  1  0  0  0   q–3=0 1.010  
s(3) = 2s(2) 0  1  0 . 0  1  0  0  0  0   Restore  
2s(3)  1  0  0 . 1  0  0  0  0  0  
–[2 × (1.010)+2–4]     1  0 . 1  0  0  1      
–––––––––––––––––––––––––––––––––  
s(4) 0  0  1 . 1  1  1  1  0  0   q–4=1 1.0101             
2s(4)  0  1  1 . 1  1  1  0  0  0  
–[2 × (1.0101)+2–5]     1  0 . 1  0  1  0  1      
–––––––––––––––––––––––––––––––––  
s(5) 0  0  1 . 0  0  1  1  1  0   q–5=1 1.01011             
2s(5)  0  1  0 . 0  1  1  1  0  0  
–[2×(1.01011)+2–6]     1  0 . 1  0  1  1  0  1      
–––––––––––––––––––––––––––––––––  
s(6)  1  1  1 . 1  0  1  1  1  1   q–6=0 1.010110 
s(6) = 2s(5) 0  1  0 . 0  1  1  1  0  0   Restore 
s (remainder = 156/64)  0 . 0  0  0  0  1  0  0  1  1  1  0  0  
q (root = 86/64)         1 . 0  1  0  1  1  0   
================================  
Fig. 21.4 Example of sequential binary square-rooting using 

the restoring algorithm. 
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Partial   Remainder

Square-Root

Load

sub

(l+2)-bit  
   adder

Trial Difference

l+2

cout cin

Complement

q–j

 
2s (j–1)
MSB of

Put z – 1 here 
 at the outset

   Select 
Root Digit

l+2

 

Fig. 21.5 Sequential shift/subtract restoring square-rooter. 

 
In fractional square-rooting, the remainder is not needed 
 
To round the result, we can produce an extra digit q–l–1   
 truncate for q–l–1 = 0, round up for q–l–1 = 1 
The midway case (q–l–1 = 1 followed by 0s), is impossible 
 
Example: in Fig. 21.4, an extra iteration produces q–7 = 1;  
So the root is rounded up to q = (1.010111)two = 87/64 
 
The rounded-up value is closer to the root than the 
truncated version 
 
 Original:  118/64 = (86/64)2 + 156/642 

 Rounded: 118/64 = (87/64)2 – 17/642 
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21.3 Binary Nonrestoring Algorithm 
================================  
z     0  1 . 1  1  0  1  1  0  (118/64) 
================================  
s(0) = z – 1 0  0  0 . 1  1  0  1  1  0   q0=1  1. 
2s(0) 0  0  1 . 1  0  1  1  0  0   q–1=1  1.1 
–[2 × (1.)+2–1]     1  0 . 1                              –––––––––––––––––––––––––––––––––  
s(1) 1  1  1 . 0  0  1  1  0  0   q–2=

-1 1.01   
2s(1)  1  1  0 . 0  1  1  0  0  0   
+[2 × (1.1)–2–2]     1  0 . 1  1       –––––––––––––––––––––––––––––––––  
s(2) 0  0  1 . 0  0  1  0  0  0   q–3=1  1.011  
2s(2) 0  1  0 . 0  1  0  0  0  0  
–[2 × (1.01)+2–3]     1  0 . 1  0  1    –––––––––––––––––––––––––––––––––  
s(3) 1  1  1 . 1  0  1  0  0  0   q–4=

-1 1.0101  
2s(3)  1  1  1 . 0  1  0  0  0  0  
+[2 × (1.011)–2–4]     1  0 . 1  0  1  1      –––––––––––––––––––––––––––––––––  
s(4) 0  0  1 . 1  1  1  1  0  0   q–5=1  1.01011             
2s(4)  0  1  1 . 1  1  1  0  0  0  
–[2 × (1.0101)+2–5]     1  0 . 1  0  1  0  1      –––––––––––––––––––––––––––––––––  
s(5) 0  0  1 . 0  0  1  1  1  0   q–6=1  1.010111 
2s(5)  0  1  0 . 0  1  1  1  0  0  
–[2×(1.01011)+2–6]     1  0 . 1  0  1  1  0  1      –––––––––––––––––––––––––––––––––  
s(6)  1  1  1 . 1  0  1  1  1  1   Negative (–17/64) 
+[2×(1.01011)+2–6]     1  0 . 1  0  1  1  0  1   Correct  –––––––––––––––––––––––––––––––––  
s(6) (corrected) 0  1  0 . 0  1  1  1  0  0     (156/64) 
s  (true remainder)         0 . 0  0  0  0  1  0  0  1  1  1  0  0  
q  (signed-digit)         1 . 1 -1  1 -1  1  1  (87/64) 
q  (corrected bin)         1 . 0  1  0  1  1  0  (86/64) 
================================  
Fig. 21.6 Example of nonrestoring binary square-rooting. 
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Details of binary nonrestoring square-rooting 
 
Root digits in {-1, 1}; on-the-fly conversion to binary 
Possible final correction  
 
The case q–j = 1 (nonnegative PR), is handled as in the 
restoring algorithm; i.e., it leads to the trial subtraction of  
 q–j[2q(j–1) + 2–jq–j]   = 2q(j–1) + 2–j   

from the PR. For q–j = -1, we must subtract  
 q–j[2q(j–1) + 2–jq–j]   = –[2q(j–1) – 2–j] 

which is equivalent to adding 2q(j–1) – 2–j  
 
2q(j–1) + 2–j = 2[q(j–1) + 2–j–1] is formed by appending 01 to 
the right end of q(j–1) and shifting  
But computing the term 2q(j–1) – 2–j is problematic  
We keep q(j–1) and q(j–1) – 2–j+1 in registers Q (partial root) 
and Q* (diminished partial root), respectively. Then:  
 q–j =  1 Subtract 2q(j–1) + 2–j formed by shifting  Q  01 

 q–j =-1 Add 2q(j–1) – 2–j formed by shifting  Q*11 
Updating rules for Q and Q* registers: 
 q–j =  1 ⇒  Q := Q  1  Q* := Q  0 

 q–j = -1 ⇒  Q := Q*1  Q* := Q*0 
Additional rule for SRT-like algorithm 
 q–j =  0 ⇒  Q := Q 0  Q* := Q*1 
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21.4 High-Radix Square-Rooting 

Basic recurrence for fractional radix-r square-rooting:  
 s(j) = rs(j–1) –  q–j(2q(j–1) + r –jq–j) 
As in radix-2 nonrestoring algorithm, we can use two 
registers Q and Q* to hold q(j–1) and q(j–1) – r–j+1, suitably 
updating them in each step.   
Example: r = 4, root digit set [–2, 2]  
Q* holds q(j–1) – 4–j+1 = q(j–1) – 2–2j+2. Then, one of the 
following values must be subtracted from, or added to, the 
shifted partial remainder rs(j–1)  
 q–j =  2 Subtract 4q(j–1) + 2–2j+2 double-shift Q 010 

 q–j =  1 Subtract 2q(j–1) + 2–2j shift Q 001 

 q–j = -1 Add 2q(j–1) – 2–2j shift Q*111 

 q–j = -2 Add 4q(j–1) – 2–2j+2 double-shift Q*110 
 
Updating rules for Q and Q* registers:  
 q–j =  2 ⇒  Q := Q  10 Q* := Q  01 
 q–j =  1 ⇒  Q := Q  01 Q* := Q  00 
 q–j =  0 ⇒  Q := Q  00 Q* := Q*11 
 q–j = -1 ⇒  Q := Q*11 Q* := Q*10 
 q–j = -2 ⇒  Q := Q*10 Q* := Q*01  
Note that the root is obtained in standard binary (no 
conversion needed!)   
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Using carry-save addition   
As in division, root digit selection can be based on a few 
bits of the partial remainder and of the partial root  
This would allow us to keep s in carry-save form  
One extra bit of each component of s (sum and carry) 
must be examined for root digit estimation  
With proper care, the same lookup table can be used for 
quotient digit selection in division and root digit selection in 
square-rooting  
To see how, compare the recurrences for radix-4 division 
and square-rooting:  
 Division:   s(j)  =  4s(j–1) –  q–j d 

 Square-rooting: s(j)  =  4s(j–1) –  q–j(2q(j–1) + 4–jq–j)  
To keep the magnitudes of the partial remainders for 
division and square-rooting comparable, thus allowing the 
use of the same tables, we can perform radix-4 square-
rooting using the digit set  

     {-1, -
1
2
 , 0, 

1
2 , 1} 

Conversion from the digit set above to the digit set [–2, 2], 
or directly to binary, is possible with no extra computation 
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21.5 Square-Rooting by Convergence 

Newton-Raphson method  
Choose f(x) = x2 – z which has a root at x = z   
 x(i+1)  = x(i) – f(x(i)) / f '(x(i))  
 x(i+1)  = 0.5(x(i) + z/x(i))  
Each iteration needs division, addition, and a one-bit shift 
Convergence is quadratic  
 
For 0.5  ≤  z  < 1, a good starting approximation is (1 + z)/2 
 This approximation needs no arithmetic  
The error is 0 at z = 1 and has a max of 6.07% at z = 0.5   
 
Table-lookup can yield a better starting estimate for z    
For example, if the initial estimate is accurate to within 2–8, 
then 3 iterations would be sufficient to increase the 
accuracy of the root to 64 bits. 
 
Example 21.1: Compute the square root of z = (2.4)ten  
 
x(0) read out from table = 1.5 accurate to 10–1 
x(1) = 0.5(x(0)

 + 2.4/x(0)) = 1.550 000 000 accurate to 10–2 
x(2) = 0.5(x(1)

 + 2.4/x(1)) = 1.549 193 548 accurate to 10–4 
x(3) = 0.5(x(2)

 + 2.4/x(2)) = 1.549 193 338 accurate to 10–8 
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Convergence square-rooting without division   
Rewrite the square-root recurrence as:  
   x(i+1) = x(i) + 0.5(1/x(i))(z – (x(i))2) = x(i) + 0.5γ(x(i))(z – (x(i))2)  
where γ(x(i)) is an approximation to 1/x(i) obtained by a 
simple circuit or read out from a table  
Because of the approximation used in lieu of the exact 
value of 1/x(i), convergence rate will be less than quadratic  
Alternative: the recurrence above, but with the reciprocal 
found iteratively; thus interlacing the two computations   
Using the function f(y) = 1/y – x to compute 1/x, we get:  
 x(i+1)   = 0.5(x(i) + z y(i)) 
 y(i+1)   = y(i)(2 – x(i)y(i))  
Convergence is less than quadratic but better than linear 
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Example 21.2: Compute the square root of z = (1.4)ten 

 x(0) = y(0)    =  1.0        

 x(1) = 0.5(x(0) + 1.4y(0)) = 1.200 000 000  

 y(1) = y(0)(2 – x(0)y(0)) = 1.000 000 000  

 x(2) = 0.5(x(1) + 1.4y(1)) = 1.300 000 000  

 y(2) = y(1)(2 – x(1)y(1)) = 0.800 000 000  

 x(3) = 0.5(x(2) + 1.4y(2)) = 1.210 000 000  

 y(3) = y(2)(2 – x(2)y(2)) = 0.768 000 000  

 x(4) = 0.5(x(3) + 1.4y(3)) = 1.142 600 000  

 y(4) = y(3)(2 – x(3)y(3)) = 0.822 312 960  

 x(5) = 0.5(x(4) + 1.4y(4)) = 1.146 919 072 

 y(5) = y(4)(2 – x(4)y(4)) = 0.872 001 394 

 x(6) = 0.5(x(5) + 1.4y(5)) = 1.183 860 512  ≅   1.4   
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Convergence square-rooting without division (cont.)   
A variant is based on computing 1/ z  and then multiplying 
the result by z  
Use the f(x) = 1/x2 – z that has a root at x = 1/ z  to get  
 x(i+1)   = 0.5x(i)(3 – z(x(i))2)  
Each iteration requires 3 multiplications and 1 addition, but 
quadratic convergence leads to only a few iterations   
The Cray-2 supercomputer uses this method 
 An initial estimate x(0) for 1/ z  is used to get x(1)  
 1.5x(0) and 0.5(x(0))3 are read out from a table  
 x(1) is accurate to within half the machine precision,  
  so, a second iteration and a multiplication by z  
  complete the process 
 
Example 21.3: Compute the square root of z = (.5678)ten  
 
Table lookup provides the starting value x(0) = 1.3 for 1/ z   
Two iterations, plus a multiplication by z, yield a fairly 
accurate result  
 x(0)  read out from table = 1.3     
 x(1) = 0.5x(0)( 3 – 0.5678(x(0))2) = 1.326 271 700  
 x(2) = 0.5x(1)( 3 – 0.5678(x(1))2) = 1.327 095 128  
 z  ≅  z × x(2)    =  0.753 524 613  



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 309 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

21.6 Parallel Hardware Square Rooters 

Array square-rooters can be derived from the dot-notation 
representation in much the same way as array dividers 

2 

0 

3 

Radicand 

Subtracted 
bit-matrix  

z 

s Remainder 

Root  q 

q 2 6 – 
q 2 4 – 
q 2 2 

1 – 
q (q     2 0 – 

(q     
(q     
(q     

(1) 

(0) 

(2) 

(3) 

0 
0 
0 
0 

2 

0 

3 
q 
q 
q 

1 
q 

) 
) 
) 
) 

 

Radicand  z = .z  z  z  z  z  z  z  z 
Root      q = .q  q  q  q 
Remainder s = .s  s  s  s  s  s  s  s

–1 –2 –3 –4 –5 –6 –7 –8 
–1 –2 –3 –4 
–1 –2 –3 –4 –5 –6 –7 –8

s       s        s       s–1      –2       –3      –4

q

q

–1

–2

q–3

FA

XOR

Cell

s       s        s       s–5      –6       –7      –8

q–4

z z–1 –2

z z–3 –4

z z–5 –6

z z–7 –8

1

1

1

10

0

0

0

1

 

Fig. 21.7 Nonrestoring array square-rooter built of controlled 
add/subtract cells. 
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22 The CORDIC Algorithms 

   Go to TOC 
Chapter Goals 
 Learning a useful convergence method  
 for evaluating trig and other functions  
 
Chapter Highlights 
 Basic CORDIC idea: rotate a vector with  
  end point at (x,y) = (1,0) by the angle z  
  to put its end point at (cos z, sin z) 
 Other functions evaluated similarly 
 Complexity comparable to division 
 
Chapter Contents 
22.1 Rotations and Pseudorotations 
22.2 Basic CORDIC Iterations 
22.3 CORDIC Hardware 
22.4 Generalized CORDIC 
22.5 Using the CORDIC Method 
22.6 An Algebraic Formulation 
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22.1 Rotations and Pseudorotations 

z 

(cos z, sin z) 

(1, 0) 

tan   y 

(1, y) 

–1 

start at (1, 0) 
rotate by z  
get cos z, sin z 

start at (1, y) 
rotate until y = 0  
rotation amount is tan  y –1 

 
Key ideas behind CORDIC 

 
If we have a computationally efficient way of rotating a 
vector, we can evaluate cos, sin, and tan–1 functions 
 
Rotation by an arbitrary angle is difficult, so we: 
 
 Perform psuedorotations 
 Use special angles to synthesize a desired angle z 
  z = α(1) + α(2) + . . . + α(m) 
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Rotate the vector OE(i) with end point at (x(i), y(i)) by α(i) 
 
 x(i+1) = x(i)cos α(i) – y(i)sin α(i)  

    = (x(i) – y(i)tan α(i))/(1 + tan2α(i))1/2          
 y(i+1) = y(i)cos α(i) + x(i)sin α(i)          [Real rotation] 
    = (y(i) + x(i)tan α(i))/(1 + tan2α(i))1/2         
 z(i+1) = z(i) – α(i)              
 
Goal: eliminate the divisions by (1 + tan2α(i))1/2 and 
choose α(i) so that  tan α(i)  is a power of 2 
 
Elimination of the divisions by (1 + tan2α(i))1/2       
 

x 

y 
Rotation 

Pseudo- 
rotation 

O 

R   (i+1) 

R   (i)  (i) α 

E  (i+1) 
E′   (i+1) 

E  (i) 

 y   (i+1) 

 x   (i+1) 

 y   (i) 

 x   (i)  

Fig. 22.1 A pseudorotation step in CORDIC. 

 
Whereas a real rotation does not change the length R(i) of 
the vector, a pseudorotation step increases its length to: 
 
 
 R(i+1)  =  R(i) (1 + tan2α(i))1/2 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 313 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

The coordinates of the new end point E′(i+1) after 
pseudorotation is derived by multiplying the coordinates of 
E(i+1) by the expansion factor 
 
 x(i+1) = x(i) – y(i) tan α(i)                               
 y(i+1) = y(i) + x(i) tan α(i)                   [Pseudorotation] 
 z(i+1) = z(i) – α(i) 
 
Assuming x(0) = x, y(0) = y, and z(0) = z, after m real 
rotations by the angles α(1), α(2), . . . , α(m), we have: 
 
 x(m) = x cos(∑α(i)) – y sin(∑α(i))      
 y(m) = y cos(∑α(i)) + x sin(∑α(i))  
 z(m) = z – (∑α(i))               
 
After m pseudorotations by the angles α(1), α(2), . . . , α(m): 
 
 x(m) = K(x cos(∑α(i)) – y sin(∑α(i)))   
 y(m) = K(y cos(∑α(i)) + x sin(∑α(i)))        [*] 
 z(m) = z – (∑α(i))  
      where K = Π(1 + tan2α(i))1/2 
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22.2 Basic CORDIC Iterations 

Pick α(i) such that tan α(i) = di 2
–i, di  ∈  {–1, 1} 

 x(i+1) = x(i) – di y
(i)2–i                               

 y(i+1) = y(i) + di x
(i)2–i                      [CORDIC iteration]            

 z(i+1) = z(i) – di  tan–1 2–i            
 
If we always pseudorotate by the same set of angles (with 
+ or – signs), then the expansion factor K is a constant 
that can be precomputed 

30.0 ≅  45.0 – 26.6 + 14.0 – 7.1 + 3.6 + 1.8 – 0.9  

+ 0.4 – 0.2 + 0.1 = 30.1 

Table 22.1 Approximate value of the function e(i) = tan–12–i, in 
degrees, for 0 ≤ i ≤ 9 

 –––––––––––– 
  i       e(i)  
 –––––––––––– 
 0 45.0 
 1 26.6 
 2 14.0 
 3 7.1 
 4 3.6 
 5 1.8 
 6 0.9 
 7 0.4 
 8 0.2 
 9 0.1 
 –––––––––––– 
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Table 22.2 Choosing the signs of the rotation angles in order to 
force z to 0 

 –––––––––––––––––––––––––––– 
 i   z(i)    –   α(i)    =     z(i+1) 
 –––––––––––––––––––––––––––– 
 0 +30.0 –  45.0   =  –15.0 
 1 –15.0 +  26.6   = +11.6 
 2 +11.6 –  14.0   =  –2.4 
 3 –2.4  +    7.1   = +4.7 
 4 +4.7  –    3.6   =  +1.1 
 5 +1.1  –    1.8   = –0.7 
 6 –0.7  +    0.9   = +0.2 
 7 +0.2  –    0.4   = –0.2 
 8 –0.2  +    0.2   = +0.0 
 9 +0.0  –    0.1   = –0.1 
 –––––––––––––––––––––––––––– 

 

y

x

x   ,y

x
–45

+26.6

–14
30

(0) (0)

(10)

x   ,y(1) (1)

x   ,y(2) (2)

x   ,y(3) (3)

 

Fig. 22.2 The first three of 10 pseudo-rotations leading from 
(x(0), y(0)) to (x(10), 0) in rotating by +30°. 
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CORDIC Rotation Mode 
 
In CORDIC terminology, the preceding selection rule for di, 
which makes z converge to 0, is known as “rotation mode”. 
 
 x(i+1) = x(i) – di (2

–iy(i)) 

 y(i+1) = y(i) + di (2
–ix(i))                     

 z(i+1) = z(i) – di e
(i)

  where e(i) = tan–1 2–i 

After m iterations in rotation mode, when z(m) ≅  0, we have 
∑α(i) = z, and the CORDIC equations [*] become: 
 
 x(m) = K(x cos z – y sin z)  
 y(m) = K(y cos z + x sin z)              [Rotation mode] 
 z(m) = 0          
 Rule:  Choose di ∈  {–1, 1} such that z → 0 
 
The constant K is K = 1.646 760 258 121 ... 
 
Start with x = 1/K = 0.607 252 935 ... and y = 0; 
as z(m) tends to 0 with CORDIC in rotation mode,  
x(m) and y(m) converge to cos z and sin z 
 
For k bits of precision in the results, k CORDIC iterations 
are needed, because tan–1 2–i ≅  2–i 
 
Convergence of z to 0 is possible since each of our angles 
is more than half of the previous angle or, equivalently, 
each is less than the sum of all the angles following it  
 
Domain of convergence is –99.7• • z • 99.7•, where 99.7• 
is the sum of all the angles (contains [–π/2, π/2] radians) 
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CORDIC Vectoring Mode 
 
Let us now make y tend to 0 by choosing di = –sign(x(i)y(i))  

After m steps in “vectoring mode,” tan(∑α(i)) = –y/x 
 
 x(m) = K(x cos(∑α(i)) – y sin(∑α(i)))  
  = K(x – y tan(∑α(i)))/(1 + tan2(∑α(i)))1/2   
        = K(x + y2/x)/(1 + y2/x2)1/2  
  = K(x2 + y2)1/2    
 
The CORDIC equations [*] thus become: 
 
 x(m) = K(x2 + y2)1/2    
 y(m) = 0        [Vectoring mode] 
 z(m) = z + tan–1(y/x)   
 Rule: Choose di ∈  {–1,1} such that y → 0    
 
Compute tan–1y  by starting with x = 1 and z = 0  
This computation always converges. However, one can 
take advantage of 
 
 tan–1(1/y ) = π/2 – tan–1y 
 
to limit the range of fixed-point numbers encountered 
 
Other trigonometric functions: 
 
tan obtained from sin and cos via division 
 
sin–1 and cos–1: later 
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22.3 CORDIC Hardware 

x

y

z

Shift

Shift

±

±

±

Lookup 
  Table

 

Fig. 22.3 Hardware elements needed for the CORDIC method. 
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22.4 Generalized CORDIC 

The basic CORDIC method of Section 22.2 can be 
generalized to provide a more powerful tool for function 
evaluation. Generalized CORDIC is defined as follows: 
 
 x(i+1) = x(i) – µdi y

(i)2–i                               

 y(i+1) = y(i) + di x
(i)2–i     [Gen. CORDIC iteration]            

 z(i+1) = z(i) – di  e
(i)           

 
µ =   1 Circular rotations (basic CORDIC) e(i) = tan–12–i  
µ =   0 Linear rotations e(i) = 2–i   
µ = –1 Hyperbolic rotations e(i) = tanh–12–i   
 

x 

y 

O 

B   A 

  F 

 E 

  C 

 D 

µ = –1 µ = 1 µ = 0 

U  V  W 

 

Fig. 24.4 Circular, linear, and hyperbolic CORDIC. 
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22.5 Using the CORDIC Method 

                         
 

For cos & sin, set x = 1/K, y = 0  
   

 tan z = sin z / cos z 
 

For tan   , set x = 1, z = 0  
 

–1 
 

For multiplication, set y = 0 
 

For division, set z = 0 
 

  
   
 

In executing the iterations for     = –1, steps 4, 13, 40, 121, . . . , j , 3j + 1, . . .  
 

µ 
 must be repeated. These repetitions are incorporated in the constant K' below. 

 

For cosh & sinh, set x = 1/K', y = 0  
 

  
 

tanh z = sinh z / cosh z  
 exp(z) = sinh z + cosh z  
 

For tanh  , set x = 1, z = 0  
 

–1 
 

w   = exp(t ln w) 
 

t 
 

ln w = 2 tanh    |(w – 1)/(w + 1)|  
 

–1 
 

Rotation: d  = sign(z    ),    
 

 i 
 

z    → 0 
 

(i) 
 

(i) 
 

e     = 
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tanh   2 
 

–i 
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Mode → Vectoring: d  = –sign(x   y   ),    
 

 i 
 

 (i) 
 

  (i) 
 

y    → 0 
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K(x cos z – y sin z) 
 K(y cos z + x sin z) 
 0 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

x 
 
y + xz 
 0 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

x 
  0 
  z + y/x 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

K' (x cosh z – y sinh z) 
 K' (y cosh z + x sinh z) 
  0 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

                         
 

0 
 z + tan   (y/x) 
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K' √ x   – y 
 

2 
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cos   w = tan   [√1 – w  / w]  
 

2 
 

–1 
 

–1 
 

sin   w = tan   [w / √1 – w  ]  
 

 2 
 

–1 
 

–1 
 

√w = √(w + 1/4)   – (w – 1/4)  
 

2 
 

 2 
 

cosh    w = ln(w + √ 1 – w  )  
 

–1 
 

 2 
   

 
sinh    w =  ln(w + √ 1 + w  )  
 

–1 
 

 2 
 

Note → 

e   = 2 
 

    = 0 
 Linear 
 

µ 
 

(i) 
 

 –i 
 

 

 x(i+1) = x(i) – µdi (2
–iy(i))  µ ∈  {–1, 0, 1},  di ∈  {–1, 1}              

 y(i+1) = y(i) + di (2
–ix(i))   K  = 1.646 760 258 121 ...   

 z(i+1) = z(i) – di e
(i)       K'  = 0.828 159 360 960 2 ... 

Fig. 22.5 Summary of generalized CORDIC algorithms. 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 321 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

Speedup Methods for CORDIC 
 
Skipping some rotations 
 
Must keep track of the expansion factor via the recurrence: 
 
 (K(i+1))2 = (K(i))2(1 ± 2–2i) 
 
Given the additional work, variable-factor CORDIC is often 
not cost-effective compared to constant-factor CORDIC 
 
Early termination 
 
Do k/2 iterations as usual, then combine the remaining k/2 
iterations into a single step, involving multiplication: 
 
 x(k/2+1) = x(k/2) – y(k/2)z(k/2)     
 y(k/2+1) = y(k/2) + x(k/2)z(k/2)     
 z(k/2+1) = z(k/2) – z(k/2) =  0 
 
Possible because for very small z, tan–1z ≅  z ≅  tan z  
 
The expansion factor K presents no problem because for 
e(i) < 2–k/2, the contribution of the ignored terms that would 
have been multiplied by K is provably less than ulp 
 
High-radix CORDIC 
 
In a radix-4 CORDIC, di assumes values in {–2, –1, 1, 2} 
(perhaps with 0 also included) rather than in {–1, 1}  
 
The hardware required for the radix-4 version of CORDIC 
is quite similar to Fig. 22.3  



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 322 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

22.6 An Algebraic Formulation 

Because 
 
 cos z + j sin z = e j z where  j = –1  
 
cos z and sin z can be computed via evaluating the 
complex exponential function e j z    
 
This leads to an alternate derivation of CORDIC iterations 
 
Details in the text 
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23 Variations in Function Evaluation  

   Go to TOC 
Chapter Goals 
 Learning alternate computation methods  
 (convergence and otherwise) for some 
 functions computable through CORDIC  
 
Chapter Highlights 
 Reasons for needing alternate methods:  
 Achieve higher performance or precision  
 Allow speed/cost tradeoffs 
 Optimizations, fit to diverse technologies 
 
Chapter Contents 
23.1 Additive/Multiplicative Normalization 
23.2 Computing Logarithms 
23.3 Exponentiation 
23.4 Division and Square-Rooting, Again 
23.5 Use of Approximating Functions 
23.6 Merged Arithmetic 
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23.1 Additive/Multiplicative Normalization 

Convergence methods characterized by recurrences 

 u(i+1)  =  f(u(i), v(i))   u(i+1)  =  f(u(i), v(i), w(i)) 
 v(i+1)  =  g(u(i), v(i))  v(i+1)  =  g(u(i), v(i), w(i)) 
       w(i+1) = h(u(i), v(i), w(i))     

Making u converge to a constant = “normalization”  
 
Additive normalization = u normalized by adding values 
 
Multiplicative normalization = u multiplied by values 
 
Availability of cost-effective fast adders and multipliers  
 make these two classes of methods useful    
 
Multipliers are slower and more costly than adders,  
 so we avoid multiplicative normalization  
 when additive normalization would do  
 
Multiplicative methods often offer faster convergence,  
 thus making up for the slower steps   
 
Multiplicative terms 1 ± 2a are desirable (shift-add) 
 
Examples we have seen before:  
 
 Additive normalization: CORDIC 
 Multiplicative normalization: convergence division 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 325 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

23.2 Computing Logarithms 

A multiplicative normalization method using shift-add 

 x(i+1)  =  x(i)c(i)  =  x(i)(1 + di 2
–i)  di ∈  {–1, 0, 1} 

 y(i+1)  =  y(i) – ln c(i)  =  y(i) – ln(1 + di 2
–i)                

where ln(1 + di 2
–i) is read out from a table 

 
Begin with x(0) = x, y(0) = y; Choose di such that x(m) → 1 

 x(m)  =  x Πc(i)  ≅   1    ⇒   Πc(i)  ≅   1/x  
 y(m)  =  y – ∑ ln c(i)  =  y – ln Πc(i)  ≅   y + ln x  

To find ln x, start with y = 0   
 
The algorithm’s domain of convergence is easily obtained: 

 1/Π(1 + 2–i) ≤ x ≤ 1/Π(1 – 2–i)   or 0.21 ≤ x ≤ 3.45 

For large i, we have ln(1 ± 2–i) ≅  ±2–i  
 
So, we need k iterations to find ln x with k bits of precision  
 
This method can be used directly for x in [1, 2) 
 
Any x outside [1, 2) can be written as x = 2qs, 1 ≤ s < 2  

 ln x = ln(2qs) = q  ln 2 + ln s = 0.693 147 180 q + ln s 

A radix-4 version of this algorithm can be easily developed 
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A clever method based on squaring 
 
Let y = log2x be a fractional number (.y–1y–2 . . . y–l)two 

 x  =  2y  =  2(.y–1y–2y–3...y–l)two      

 x2  =  22y  =  2(y–1.y–2y–3...y–l)two  ⇒  y–1 = 1 iff x2 ≥ 2 

If y–1 = 0, we are back to the original situation 
If y–1 = 1, we divide both sides of the equation by 2 to get 

 x2/2  =  2(1.y–2y–3...y–l)two / 2  =  2(.y–2y–3...y–l)two   

Subsequent bits of y can be determined in a similar way.  
 

 

log  x 

Square
r 

Initialized to x 

value ≥2 iff  
this bit is 1 

2 

Radix Shift 
0 1 

Point 

 

Fig. 23.1 Hardware elements needed for computing log2x. 

Generalization to base-b logarithms:  y = logbx implies 
 
 x  =  by  =  b.(.y–1y–2y–3...y–l)two     

 x2  =  b2y  =  b(y–1.y–2y–3...y–l)two  ⇒  y–1 = 1 iff x2 ≥ b 
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23.3 Exponentiation 

An additive normalization method for computing ex 

 x(i+1)  =  x(i) – ln c(i)  =  x(i) – ln(1 + di 2
–i)                

 y(i+1)  =  y(i)c(i) =  y(i)(1 + di 2
–i)  di  ∈  {–1, 0, 1} 

As before, ln(1 + di 2
–i) is read out from a table  

 
Begin with x(0) = x, y(0) = y; Choose di such that x(m) → 0 

 x(m)  =  x – ∑ ln c(i)  ≅   0    ⇒   ∑ ln c(i) ≅  x  

 y(m)  =  y Πc(i)  =  y eln Πc(i)  =  y eΣ ln c(i)  ≅   y ex     

The algorithm’s domain of convergence is easily obtained: 

 ∑ ln(1 – 2–i) ≤ x ≤ ∑ ln(1 + 2–i)     or   –1.24 ≤ x ≤ 1.56 

Half of the k iterations can be eliminated by noting: 

 ln (1 + ε) = ε – ε2/2 + ε3/3 – . . .  ≅   ε  for ε2 < ulp 

So when x(j) = 0.00 . . . 00xx . . . xx, with k/2 leading zeros,  
we have ln(1 + x(j)) ≅  x(j), allowing us to terminate by 

 x(j+1)  =  x(j) – x(j)  =  0    
 y(j+1)  =  y(j)(1 + x(j))   

A radix-4 version of this ex algorithm can be developed 
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General exponentiation function xy  
 
Can be computed by combining the logarithm and 
exponential functions and a single multiplication: 

 xy  =  (eln x)y  =  ey ln x       

When y is a positive integer, exponentiation can be done 
by repeated multiplication 
 
In particular, when y is a constant, the methods used are 
reminiscent of multiplication by constants (Section 9.5)  
 
Example: 

 x25  =  ((((x)2x)2)2)2x         

which implies 4 squarings and 2 multiplications.  
 
Noting that 

 25 = (1 1 0 0 1)two  

leads us to a general procedure  
 
To raise x to the power y, where y is a positive integer: 
 
 Initialize the partial result to 1  
 Scan the binary representation of y starting at its MSB 
 If the current bit is 1, multiply the partial result by x 
 If the current bit is 0, do not change the partial result  
 Square the partial result before the next step (if any)   
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23.5 Use of Approximating Functions 

Convert the problem of evaluating the function f to that of 
evaluating a different function g that approximates f, 
perhaps with a few pre- and postprocessing operations  
 
Approximating polynomials attractive because they need 
only additions and multiplications  
 
Polynomial approximations can be obtained based on 
various schemes; e.g., Taylor-Maclaurin series expansion   
The Taylor-series expansion of f(x) about x = a is 

 f(x) =  ∑ j=0 to ∞ f 
(j)(a)(x – a)j / j!  

The error due to omitting terms of degree > m is: 

 f 
(m+1)(a + µ(x – a))(x – a)m+1/(m + 1)! 0 < µ < 1 

Setting a = 0 yields the Maclaurin-series expansion 

 f(x) =  ∑ j=0 to ∞  f 
(j)(0)x 

j / j! 

and its corresponding error bound: 

 f 
(m+1)(µx)xm+1/(m + 1)!    0 < µ < 1 

Efficiency can be gained via Horner’s method and 
incremental evaluation 
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Table 23.1 Polynomial approximations for some useful 
functions 

 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 Function  Polynomial approximation            Conditions 

 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 1/x    1 + y + y2 + y3 + . . . + yi + . . .   0 < x < 2 and y = 1 – x 

 ex    1 + 
1
1! x + 

1
2! x

2 + 
1
3! x

3 + . . . + 
1
i! x

i + . . .  

 ln x    –y – 
1
2 y2 – 

1
3 y3 – 

1
4 y4 – . . . – 

1
i  y

i – . . .     0 < x ≤ 2 and y = 1 – x  

 ln x    2[z + 
1
3 z3 +  

1
5 z5 + . . . + 

1
2i+1 z2i+1 + . . . ]       x > 0 and z = 

x–1
x+1  

 sin x    x –  
1
3! x

3 +  
1
5! x

5 –  
1
7! x

7 + . . . + (–1)i  
1

(2i+1)!
 x2i+1 + . . .  

 cos x   1 –  
1
2! x

2 +  
1
4! x

4 –  
1
6! x

6 + . . . + (–1)i 
1

(2i)!
 x2i + . . .  

 tan–1x   x – 
1
3 x3 +  

1
5 x5 –  

1
7 x7 + . . . + (–1)i 

1
2i+1 x2i+1 + . . .      –1 < x < 1 

 sinh x   x +  
1
3! x

3 +  
1
5! x

5 +  
1
7! x

7 + . . . +  
1

(2i+1)!
 x2i+1 + . . .  

 cosh x   1 +  
1
2! x

2 +  
1
4! x

4 +  
1
6! x

6 + . . . +  
1

(2i)!
 x2i + . . .  

 tanh–1x   x + 
1
3 x3 + 

1
5 x5 + 

1
7 x7 + . . . + 

1
2i+1 x2i+1 + . . .  –1 < x < 1 

 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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A divide-and-conquer strategy for function evaluation 
 
Let x in [0, 4) be the (l + 2)-bit significand of a FLP number 
or its shifted version. Divide x into two chunks xH and xL: 
 
 x  =  xH + 2–t xL   0 ≤ xH < 4         0 ≤ xL < 1 
                t + 2 bits          l – t bits 
 
The Taylor-series expansion of f(x) about x = xH is 

 f(x)  =  ∑ j=0 to ∞ f 
(j)(xH)(2–txL) j / j! 

where f(j)(x) is the jth derivative of f(x). If one takes just the 
first two terms, a linear approximation is obtained 

 f(x)  ≅   f(xH) + 2–t xL f '(xH) 

If t is not too large, f and/or f ' (and other derivatives of f, if 
needed) can be evaluated by table lookup  
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Approximation by the ratio of two polynomials  
 
Example, yielding good results for many elementary 
functions: 

 f(x) ≅  
a(5)x5 + a(4)x4 + a(3)x3 + a(2)x2 + a(1)x + a(0)

b(5)x5 + b(4)x4 + b(3)x3 + b(2)x2 + b(1)x + b(0)  

Using Horner’s method, such a “rational approximation” 
needs 10 multiplications, 10 additions, and 1 division 
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23.6 Merged Arithmetic 

Our methods thus far rely on word-level building-block 
operations such as addition, multiplication, shifting, . . .  
 
Can compute a function of interest directly without 
breaking it down into conventional operations  
 
Example: merged arithmetic for inner product computation 

 z  =  z(0) + x(1)y(1) + x(2)y(2) + x(3)y(3) 

       o o o o o o o o       z(0) 
               o o o o | 
             o o o o |   x(1)y(1)  
           o o o o | 
         o o o o | 
               o o o o   | 
             o o o o   | x(2)y(2) 
           o o o o   | 
         o o o o   | 
               o o o o | 
             o o o o |   x(3)y(3)  
           o o o o | 
         o o o o | 

Fig. 23.2 Merged-arithmetic computation of an inner product 
followed by accumulation. 

           1   4   7  10  13  10   7   4     16 FAs 

        2   4   6   8   8   6   4   2     10 FAs + 1 HA   

        3   4   4   6   6   3   3   1      9 FAs 

    1   2   3   4   4   3   2   1   1      4 FAs + 1 HA 

    1   3   2   3   3   2   1   1   1      3 FAs + 2 HAs 

    2   2   2   2   2   1   1   1   1      5-bit CPA 

Fig. 23.3 Tabular representation of the dot matrix for inner-
product computation and its reduction. 
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24 Arithmetic by Table Lookup 

   Go to TOC 
Chapter Goals 
 Learning table lookup techniques 
 for flexible and dense VLSI realization 
 of arithmetic functions  
 
Chapter Highlights 
 We have used tables to simplify or speedup 
 q digit selection, convergence methods, . . .  
 Now come tables as primary computational 
 mechanisms (as stars, not supporting cast) 
 
Chapter Contents 
24.1. Direct and Indirect Table Lookup  
24.2. Binary-to-Unary Reduction 
24.3. Tables in Bit-Serial Arithmetic 
24.4. Interpolating Memory 
24.5. Tradeoffs in Cost, Speed, and Accuracy 
24.6. Piecewise Lookup Tables 
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24.1 Direct and Indirect Table Lookup 

2   by  
table

Result(s) 
   bits

Pre- 
proces- 
sing 
logic

Post- 
processing 
logic

Smaller 
table(s)

Operand(s) 
    bitsu u v

v

Operand(s) 
    bitsu

Result(s) 
   bitsv

. 

. 

.

. . .

 

Fig. 24.1 Direct table lookup versus table-lookup with pre- 
and post-processing. 

Tables are used in two ways:  
 In supporting role, as in initial estimate for division 
 As main computing mechanism 
Boundary between two uses is fuzzy  
 

Pure logic  ------  Hybrid solutions  -----  Pure tabular  
 
Previously, we started with the goal of designing logic 
circuits for particular arithmetic computations and ended 
up using tables to facilitate or speed up certain steps  
 
Here, we aim for a tabular implementation and end up 
using peripheral logic circuits to reduce the table size  
 
Some solutions can be derived starting at either endpoint 
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24.2 Binary-to-Unary Reduction 

Can reduce the table size by using an auxiliary unary 
function to evaluate a desired binary function  

Example 1: Addition in a logarithmic number system 
 Lz =  log(x ± y)  =  log(x(1 ± y/x))  
  =  log x + log(1 ± y/x)  
  =  Lx + log(1 ± log–1∆)   (∆ = Ly – Lx) 

Example 2: Multiplication via squaring 

 xy =  (x + y)2/4 – (x – y)2/4           

Simplification 

 (x ± y)/2 =   (x ± y)/2  + ε/2  ε ∈  {0, 1} is the LSB 
 (x + y)2/4 – (x – y)2/4  
   =  [  (x + y)/2  + ε/2]2 – [  (x – y)/2  + ε/2]2   
        =   (x + y)/2 2 –  (x – y)/2 2 + εy     

Compute x + y and x – y in the preprocessing stage,  
Drop the least significant bit of each result, 
Consult squaring table(s) of size 2k × (2k – 1) 
 
Post-processing requires a carry-save adder (to reduce 
the 3 values to 2) followed by a carry-propagate adder   
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24.3 Tables in Bit-Serial Arithmetic 

a
b c

 
f op- 
code

 
g op- 
code

f(a, b, c)

g(a, b, c)

  From 
Memory

0 
1 
2 
3 
4 
5 
6 
7

Mux

0 
1 
2 
3 
4 
5 
6 
7

Mux

Flags

To Memory

 

Fig. 24.2 Bit-serial ALU with two tables implemented as 
multiplexers. 

In the bit-serial ALU of Fig. 24.2:  
 

a, b come from a 64K-bit memory (16-bit addresses)  
c comes from a 4-bit “flags” register (2-bit address)  
f output is stored as a flag bit (2-bit address)  
g output replaces the a operand in a third clock cycle  

 
Three additional bits are used to specify a flag bit and a 
value (0 or 1) for conditionalizing the operation 
 
To perform integer addition with the CM-2 ALU 
 a and b: numbers to be added 
 c: flag bit holding the carry from one position into next 
 f op code: “00010111” (majority or ab + bc + ca)  
 g op-code: “01010101” (3-input XOR)  
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Second-order digital filter example 

y(i) = a(0)x(i) + a(1)x(i–1) + a(2)x(i–2) – b(1)y(i–1) – b(2)y(i–2)      

Expand the equation for y(i) in terms of the bits in operands 
x = (x0.x–1x–2 . . . x–l)two  and  y = (y0.y–1y–2 . . . y–l)two 

y(i) = a(0)(–x0
(i) + ∑–1

j=–l  2jxj
(i))  

 + a(1)(–x0
(i–1) + ∑–1

j=–l  2jxj
(i–1)) + a(2)(–x0

(i–2) + ∑–1
j=–l  2jxj

(i–2))   

 – b(1)(–y0
(i–1) + ∑–1

j=–l  2jxj
(i–1)) – b(2)(–y0

(i–2) + ∑–1
j=–l  2jxj

(i–2)) 

Define f(s, t, u, v, w) = a(0)s + a(1)t + a(2)u – b(1)v – b(2)w  

y(i) =  ∑–1
j=–l  2j f(xj

(i), xj
(i–1), xj

(i–2), yj
(i–1), yj

(i–2))  

     – f(x0
(i), x0

(i–1), x0
(i–2), y0

(i–1), y0
(i–2)) 

 

f

x

x

x

(i)

(i–1)

(i–2)

j

j

j

y(i–1)
j

y (i–2)
j

LSB-first y(i)

±

Input

32-Entry 
  Table 
 (ROM)

 Output 
  Shift 
Register

(m+3)-Bit 
 Register

Data Out

Address In

s

Right-Shift

LSB-first
Output

Shift
Reg.

Shift
Reg.

Shift
Reg.

Shift
Reg.

Register

 

Fig. 24.3 Bit-serial tabular realization of a second-order filter. 
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24.4 Interpolating Memory 

Computing f(x), x ∈  [xlo, xhi], from f(xlo) and f(xhi): 

 f(x)  =  f(xlo) +  
(x – xlo) [f(xhi) – f(xlo)]

xhi – xlo
  

If the endpoints are consecutive multiples of a power of 2, 
the division and two of the additions trivial 
 
Example: evaluating log2x for x in [1, 2) 
f(xlo) = log21 = 0, f(xhi) = log22 = 1; thus: 

 log2x  ≅   x – 1  =  the fractional part of x 

An improved linear interpolation formula  

 log2x ≅  
ln 2 – ln(ln 2) – 1

2 ln 2   + (x – 1) = 0.043 036 + ∆x    

Add 

a 

f(x) 

Multiply 

b 

∆x 

∆x 

x lo x hi x 

f(x) 

Initial linear 
approximation 

Improved linear 
approximation 

a + b ∆x 

 

Fig. 24.4 Linear interpolation for computing f(x) and its 
hardware realization. 
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Add 

a 

f(x) 

Multiply 4∆x 

 ∆x 

x min x max x 

f(x) 

i = 0 

a   + b   ∆x 

 (i) b   /4  (i) 

4-entry tables 
2-bit address  

x 

(i) (i) 

i = 1 
i = 2 

i = 3 

 

Fig. 24.5 Linear interpolation for computing f(x) using 4 
subintervals. 

Table 24.1 Approximating log2x for x in [1, 2) using linear 
interpolation within 4 subintervals 

–––––––––––––––––––––––––––––––––––––––––––––– 
i xlo xhi a(j) b(j)/4  Max error 

–––––––––––––––––––––––––––––––––––––––––––––– 

0 1.00 1.25 0.004 487 0.321 928 ± 0.004 487 
1 1.25 1.50 0.324 924 0.263 034 ± 0.002 996 
2 1.50 1.75 0.587 105 0.222 392 ± 0.002 142 
3 1.75 2.00 0.808 962 0.192 645 ± 0.001 607 
–––––––––––––––––––––––––––––––––––––––––––––– 
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Interpolating memory with linear interpolation 
 

Add 

x 

Table 
for a  

Output 

Table 
for b  

x Input  x H L 

f(x) 

Multiply 

h bits k − h bits 

 
 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 342 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

24.5 Trade-offs in Cost, Speed, and Accuracy 

6 8 10 
−9 

W
or

st
-c

as
e 

ab
so

lu
te

 e
rr

or
 

Number of bits (h) 

Linear 

0 2 4 
10 

−6 
10 

−3 
10 

−8 
10 

−5 
10 

−2 
10 

−7 
10 

−4 
10 

−1 
10 

Second- 
order 

Third- 
order 

 
Fig. 24.6 Maximum absolute error in computing log2x as a 

function of number h of address bits for the tables 
with linear, quadratic (second-degree), and cubic 
(third-degree) interpolations [Noet89]. 
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24.6 Piecewise Lookup Tables 

Function of a short (single) IEEE floating-point number   
 
Divide the 26-bit significand x (with 2 whole and 24 
fractional bits) into four sections:   

 x  =  t + λu + λ2v + λ3w  =  t + 2–6u + 2–12v + 2–18w     

where u, v, and w are 6-bit fractions in [0, 1) and t, with up 
to 8 bits, depending on the function, is in [0, 4)  
 
Taylor polynomial for f(x): 

 f(x)  =  ∑i=0 to ∞ f(i)(t + λu) (λ2v + λ3w)i / i! 

Ignore terms smaller than λ5 = 2–30  

 f(x)  ≅   f(t + λu) + 
λ
2  [f(t + λu + λv) – f(t + λu – λv)]  

     + 
λ2

2    [f(t+λu+λw) – f(t+λu–λw)] + λ4[
v2

2  f(2)(t) – 
v3

6  f(3)(t)] 
 
With this method, computing f(x) reduces to: 
 
a. Derive the 14-bit values t+λu+λv, t+λu–λv, t+λu+λw, 
 t+λu–λw (4 additions; t+λu needs no computation) 
b. Read the five values of f from table(s) 

c. Read the last term λ4[
v2

2  f(2)(t) – 
v3

6  f(3)(t)] from a table 
d. Perform a 6-operand addition 
 
Error in this computation is provably less than ulp/2 = 2–24   
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Computing z mod p (modular reduction) 

Table 
   1

Table 
   2

v

d d

Adder

Adder

–p

Mux+  –

d-bit output

b-bit input
b–g g

d d

d+1

dd

Sign

d+1

z

z mod p

LvH

  

Fig. 24.7 Two-table modular reduction scheme based on 
divide-and-conquer. 

Table 
   2 m*

d

d-bit output

b–h h

z mod p

b-bit  
input

z

Adder

Table 
   1

v

d*

d*–h h d*

d*

 

Fig. 24.8 Modular reduction based on successive refinement. 
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Part VII  Implementation Topics 

Part Goals 
 Sample more advanced implementation  
 methods and ponder some of the 
 practical aspects of computer arithmetic 
 
Part Synopsis 
  Speed/latency is often not the only concern 
 Other attributes of interest include  
  throughput, size, power, reliability 
 Case studies: arithmetic in micros to supers 
 Lessons from the past, future outlook 
 

Part Contents 

Chapter 25 High-Throughput Arithmetic 

Chapter 26 Low-Power Arithmetic 

Chapter 27 Fault-Tolerant Arithmetic 

Chapter 28 Past, Present, and Future 
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25 High-Throughput Arithmetic 

   Go to TOC 
Chapter Goals 
 Learn how to improve the performance of 
 an arithmetic unit via higher throughput 
 rather than reduced latency  
 
Chapter Highlights 
 To improve overall performance, one has to 
  ●  look beyond individual operations 
  ●  trade off latency for throughput 
 E.g., a multiply may take 20 clock cycles, 
  but a new one can begin every cycle 
 Data availability and hazards limit the depth 
 
Chapter Contents 
25.1. Pipelining of Arithmetic Functions  
25.2. Clock Rate and Throughput 
25.3. The Earle Latch 
25.4. Parallel and Digit-Serial Pipelines 
25.5. On-Line or Digit-Pipelined Arithmetic 
25.6. Systolic Arithmetic Units 
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25.1 Pipelining of Arithmetic Functions 

Throughput = number of operations  per unit time 
 
Pipelining period = time interval between the application of 
successive input data 
 
Latency, though secondary, is still important because: 
 
a. Occasional need for doing single operations  
 
b. Dependencies may lead to bubbles or even drainage 
 
At times, a pipelined implementation may improve the 
latency of a multistep computation and also reduce its cost  
 
In such a case, pipelining is obviously preferred  
 

In Out
1 . . .

Inter-stage latchesInput 
latches

Output 
latches

In Out
Non-pipelined

t/  +τ

2 σ3

σ
t + στ

t

 

Fig. 26.1 An arithmetic function unit and its σ-stage pipelined 
version. 
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Analysis of pipelining 
 
Consider an arithmetic circuit with cost g and latency t.  
Simplifying assumptions for our analysis: 
 
1. Time overhead per stage is τ (latching delay) 
 
2. Cost overhead per stage is γ (latching cost) 
 
3. Function is divisible into σ equal stages for any σ 
 
Then, for the pipelined implementation: 
 
 Latency   T = t + στ 

 Throughput   R = 
1

T/σ   =  
1

t/σ + τ  

 Cost      G = g + σγ                     
 
Throughput approaches its maximum of 1/τ for large σ      
  
In practice, however, it does not pay to reduce t/σ below a 
certain threshold; typically 4 logic gate levels  
 
Assuming a stage delay of 4δ, we have σ = t/(4δ) and: 
 

 Latency   T = t(1 + 
τ

4δ  ) 

 Throughput   R = 
1

T/σ   =  
1

4δ + τ  

 Cost      G = g(1 + 
tγ

4gδ   )             
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Cost-effectiveness 
 
If throughput isn’t the single most important factor,  
then one might try to maximize a composite figure of merit   
 
Throughput per unit cost represents cost-effectiveness: 

 E = 
R
G  = 

σ
(t + στ)(g + σγ)  

To maximize E, we compute dE/dσ:   

 
dE
dσ  = 

tg – σ2τγ
(t + στ)2(g + σγ)2      

Equating dE/dσ with 0 yields: 

 σ opt  =  
t g
τ γ  

We see that the optimal number of pipeline stages for 
maximal cost-effectiveness is  
 
 directly related to the latency and cost of the function  
  (it pays to have many pipeline stages if the 
  function implemented is very slow or complex) 
 
 inversely related to pipelining delay & cost overheads 
  (few pipeline stages are in order if the time and/or 
  cost overhead of pipelining is too high)  

All in all, not a surprising result! 
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25.2 Clock Rate and Throughput 

Consider a σ-stage pipeline with stage delay tstage  
 
One set of inputs are applied to the pipeline at time t1  
 
At t1 + tstage + τ, results are safely stored in latches  
 
Apply the next set of inputs at time t2 satisfying  

 t2 ≥ t1 + tstage + τ  

Clock period  =  ∆t   =  t2 – t1  ≥  tstage + τ    

Pipeline throughput is the inverse of the clock period: 

 Throughput  =   
1

Clock period    ≤   
1

 tstage + τ      

Implicit assumptions:  
one clock signal is distributed to all circuit elements 
all latches are clocked at precisely the same time  

 
Uncontrolled or random clock skew causes the clock 
signal to arrive at point B before/after its arrival at point A  
 
With proper design of the clock distribution network, we 
can place an upper bound ±ε on the uncontrolled clock 
skew at the input and output latches of a pipeline stage  
 
Then, the clock period is lower bounded as: 

     clock period  =  ∆t   =  t2 – t1  ≥  tstage + τ  + 2ε 
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Wave Pipelining 
 
Note that the stage delay tstage is really not a constant but 
varies from tmin to tmax  

 tmin represents fast paths (with fewer or faster gates)  
 tmax represents slow paths  

Suppose that one set of inputs is applied at time t1  
 
At t1 + tmax + τ, the results are safely stored in latches  
 
If that the next inputs are applied at time t2, we must have: 

 t2 + tmin ≥  t1 + tmax + τ      

This places a lower bound on the clock period:   

 clock period  =  ∆t   =  t2 – t1  ≥  tmax – tmin + τ    

Thus, we can approach the maximum possible throughput 
of 1/τ without necessarily requiring very small stage delay  
 
All we need is a very small delay variance tmax – tmin   
 
Hence, there are two distinct strategies for increasing the 
throughput of a pipelined function unit:  

 (1) the traditional method of reducing tmax, and   
 (2) the counterintuitive method of increasing tmin  
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Fig. 25.2 Wave pipelining allows multiple computational 

wavefronts to coexist in a single pipeline stage. 
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Fig. 25.3 An alternate view of the throughput advantage of 

wave pipelining (b) over ordinary pipelining (a). 
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Wave pipelining is routinely used in high-speed LANs 
 
Data adapted (rounded figures) from Myrinet [Bode95] 
 

Sender Receiver 

Gb/s link (cable) 

30 m 

10 b 

 
 
Gb/s throughput → Clock rate = 108 → clock cycle = 10 ns 
 
In 10 ns, signals travel 1-1.5 m (speed of light = 0.3 m/ns) 
 
For a 30 m cable, 20-30 characters will be in flight 
 
At the circuit and logic level (µm-mm distances, not m), 
there are still problems that are being worked out 
 
For example, delay equalization to reduce tmax – tmin is 
nearly impossible in CMOS 
 
2-input NAND delay varies by factor of 2 based on inputs 
 
Biased CMOS (pseudo-CMOS) can solve this problem but 
has power consumption penalties 
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Controlled clock skew 
 
 clock period  =  ∆t   =  t2 – t1  ≥  tmax – tmin + τ    

tmax – tmin = 0  →  ∆t ≥ τ  
 
A new input enters the pipeline stage every ∆t time units  
 and the stage latency is tmax + τ  
 
Clock application at the output latch must be skewed by 
(tmax + τ) mod ∆t to ensure proper sampling of the results  
 
Example: tmax + τ = 12 ns and ∆t = 5 ns 
A clock skew of +2 ns is required at the stage output 
latches relative to the input latches 
 
Generally tmax – tmin > 0; perhaps different for each stage  

 ∆t   ≥  maxσ
i=1 [tmax

(i) – tmax
(i) + τ] 

The controlled clock skew at the output of stage i will be: 

 S(i)  =  ∑i
j=1 [tmax

(i) – tmin
(i) + τ] mod ∆t      
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Random clock skew in wave pipelining 
 
 clock period  =  ∆t  =  t2 – t1  ≥  tmax – tmin + τ + 4ε 
 
Reason for including the term 4ε:  
 
 The clocking of the first input set may lag by ε, while 
 that of the second set leads by ε (net difference = 2ε)  
 The reverse condition may exist at the output  
 
Uncontrolled skew has a larger effect on wave pipelining 
than on standard pipelining, especially in relative terms 
 
Graphical justification of the term 4ε  
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25.3 The Earle Latch 

d
C

z

w

x

y

_
C

 

Fig. 25.4 Two-level AND-OR realization of the Earl latch. 

We derived constraints on the maximum clock rate 1/∆t  
 
Clock period ∆t  has two parts: clock high, and clock low   
 
 ∆t = Chigh + Clow 
 
Consider a pipeline stage between Earle latches  
 
Chigh, must satisfy the inequalities 
 
 3δmax – δmin + Smax(C↑, C↓)  ≤  Chigh  ≤  2δmin + tmin    

  

 Clock must go low  
before the fastest  
signals from the  
next input data set  
can affect the input  
z of the latch 

The clock pulse must be  
wide enough to ensure  
that valid data is stored in  
the output latch and to  
avoid logic hazard should  
C        slightly lead C 

_ 

 
δmax and δmin are maximum and minimum gate delays;  

Smax(C↑, C↓) ≥ 0 is max skew between C↑ and C↓ 
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Merged logic and latch 
 
A key property of the Earle latch is that it can be merged 
with the 2-level AND-OR logic that precedes it  
 
Example: to latch  

 d = vw + xy 

we substitute for d in the equation for the Earle latch 

 z = dC + dz + Cz 

to get a “logic+latch” circuit implementing z = vw + xy 

 z = (vw + xy)C + (vw + xy)z + Cz  
  = vwC + xyC + vwz + xyz + Cz 
 

C

C

z

v
w

x
y

_

 

Fig. 25.5 Two-level AND-OR latched realization of the 
function z = vw + xy. 
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25.4 Parallel and Digit-Serial Pipelines 
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Fig. 25.6 Flow-graph representation of an arithmetic 
expression and timing diagram for its evaluation 
with digit-parallel computation. 

Bit-serial addition and multiplication can be done LSB-first,   
but division and square-rooting are MSB-first operations  
 
Besides, division can’t be done in pipelined bit-serial 
fashion, because the MSB of the quotient q in general 
depends on all the bits of the dividend and divisor  
 
Example: consider the decimal division .1234/.2469  

 
.1xxx
.2xxx   = .?xxx 

.12xx

.24xx  = .?xxx 
.123x
.246x  = .?xxx 

 
Solution: redundant number representation! 
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25.5 On-Line or Digit-Pipelined Arithmetic 
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Fig. 25.7 Digit-parallel versus digit-pipelined computation. 

 

Decimal example:

.1 8  

.4 2  
---------------- 
.5 

Shaded boxes show the 
"unseen" or unprocessed 
parts of the operands and 
unknown part of the sum
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Fig. 25.8 Digit-pipelined MSD-first carry-free addition. 
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BSD example:

.1 0 1 

.0 1 1  
---------------- 
.1 

Shaded boxes show the 
"unseen" or unprocessed 
parts of the operands and 
unknown part of the sum
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Fig. 25.9 Digit-pipelined MSD-first limited-carry addition. 
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Fig. 25.10 Digit-pipelined MSD-first multiplication process. 
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Fig. 25.11 Digit-pipelined MSD-first BSD multiplier. 

Table 25.1 Example of digit-pipelined division showing that 
three cycles of delay are necessary before quotient 
digits can be output (radix = 4, digit set = [–2, 2]) 

–––––––––––––––––––––––––––––––––––––––––––––– 
Cycle Dividend Divisor q Range q–1 Range 

–––––––––––––––––––––––––––––––––––––––––––––– 

 1 (.0 ...)four (.1...)four (–2/3, 2/3) [–2, 2] 

 2 (.0 0...)four (.1-2...)four (–2/4, 2/4) [–2, 2] 

 3 (.0 0 1...)four (.1-2-2...)four (1/16, 5/16) [0, 1] 

 4 (.0 0 1 0...)four (.1-2-2-2...)four (10/64, 14/64) 1 
–––––––––––––––––––––––––––––––––––––––––––––– 
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Table 25.2 Examples of digit-pipelined square-root computa-
tion showing that 1-2 cycles of delay are necessary 
before root digits can be output (radix = 10, digit set 
= [–6, 6], and radix = 2, digit set = [–1, 1]). 

––––––––––––––––––––––––––––––––––––––––––– 
Cycle Radicand q Range q–1 Range 
––––––––––––––––––––––––––––––––––––––––––– 

 1 (.3 ...)ten ( 7/30 , 11/30 ) [5, 6] 

 2 (.3 4 ...)ten ( 1/3 , 26/75 ) 6 
––––––––––––––––––––––––––––––––––––––––––– 

 1 (.0 ...)two (0, 1/2 ) [0, 1] 

 2 (.0 1 ...)two (0, 1/2 ) [0, 1] 

 3 (.0 1 1 ...)two (1/2, 1/2 ) 1 
––––––––––––––––––––––––––––––––––––––––––– 

 
 

a

x–i

–i . . .
. . .

. . .p–i+1

Head 
Cell

 

Fig. 25.12 High-level design of a systolic radix-4 digit-
pipelined multiplier. 
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26 Low-Power Arithmetic 

   Go to TOC 
Chapter Goals 
 Learn how to improve the power efficiency 
 of arithmetic circuits by means of 
 algorithmic and logic design strategies  
 
Chapter Highlights 
 Reduced power dissipation needed due to 
  ●  limited source (portable, embedded) 
  ●  difficulty of heat disposal 
 Algorithm & logic-level methods: discussed 
 Technology & circuit methods: ignored here 
 
Chapter Contents 
26.1. The Need for Low-Power Design  
26.2. Sources of Power Consumption 
26.3. Reduction of Power Waste 
26.4. Reduction of Activity 
26.5. Transformations and Tradeoffs 
26.6. Some Emerging Methods 
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26.1 The Need for Low-Power Design 

Portable and wearable electronic devices  
 
Nickel-cadmium batteries: 40-50 W-hr per kg of weight 
 
Practical battery weight < 1 kg (<0.1 kg if wearable device) 
 
Total power ≅  3-5 W for a day’s work between recharges 
 
Modern high-performance mircoprocessors use 10s Watts  
 
 Power is proportional to die area × clock frequency 
 Cooling of micros not yet a problem; but for MPPs . . . 
 
New battery technologies cannot keep pace with demand  
 
Demand for more speed & functionality (multimedia, etc.) 
 

1980 1990 2000
10–4

10–3

10–2

10–1

1

 

Fig. 26.1 Power consumption trend in DSPs [Raba98]. 
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26.2 Sources of Power Consumption 

Both average and peak power are important 
 
Peak power impacts power distribution and signal integrity 
 
Typically, low-power design aims at reducing both 
 
Power dissipation in CMOS digital circuits 
 
 Static: leakage current in imperfect switches (< 10%) 
 Dynamic: due to (dis)charging of parasitic capacitance 
 Pavg ≅  αfCV2     

   f: data rate (clock frequency)    α: “activity” 
 
Example: A 32-bit off-chip bus operates at 5 V & 100 MHz 
and drives a capacitance of 30 pF per bit. If random values 
were put on the bus in every cycle, we would have α = 0.5. 
To account for data correlation and idle bus cycles, 
assume α = 0.2. Then: 
 

 Pavg ≅  αfCV2 = 0.2 × 108
 × (32 × 30 × 10–12) × 52

 = 0.48 W 

 
Once we fix the data rate f, there are but three ways to 
reduce the power requirements: 
 
 1. Using a lower supply voltageV 
 2. Reducing the parasitic capacitance C 
 3. Lowering the switching activity α 
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26.3 Reduction of Power Waste 
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Fig. 26.2 Saving power through clock gating. 
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Fig. 26.3 Saving power via guarded evaluation. 
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Fig. 26.4 Example of glitching in a ripple-carry adder. 
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Fig. 26.5 An array multiplier with gated FA cells. 
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26.4 Reduction of Activity 

Arithmetic 
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n inputs
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Fig. 26.6 Reduction of activity by precomputation. 
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Fig. 26.7 Reduction of activity via Shannon expansion. 
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26.5 Transformations and Tradeoffs 
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Fig. 26.8 Reduction of power via parallelism or pipelining. 
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Fig. 26.9 Direct realization of a first-order IIR filter. 

Fig. 26.10 Realization of a first-order filter, unrolled once. 
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Fig. 26.11 Possible realization of a fourth-order FIR filter. 

Fig. 26.12 Realization of the retimed fourth-order FIR filter. 
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26.6 Some Emerging Methods 
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Fig. 26.13 Part of an asynchronous chain of computations. 
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Fig. for problem 26.5 
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27 Fault-Tolerant Arithmetic  

   Go to TOC 
Chapter Goals 
 Learn about errors due to hardware faults 
 or hostile environmental conditions, 
 and how to deal with or circumvent them  
 
Chapter Highlights 
 Modern components are very robust, but ... 
  put millions/billions of them together 
  and something is bound to go wrong 
 Can arithmetic be protected via encoding? 
 Reliable circuits and robust algorithms 
 
Chapter Contents 
27.1 Faults, Errors, and Error Codes  
27.2 Arithmetic Error-Detecting Codes 
27.3 Arithmetic Error-Correcting Codes 
27.4 Self-Checking Function Units 
27.5 Algorithm-Based Fault Tolerance 
27.6 Fault-Tolerant RNS Arithmetic 
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27.1 Faults, Errors, and Error Codes 
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Fig. 27.1 A common way of applying information coding 
techniques. 
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Fig. 27.2 Arithmetic fault detection or fault tolerance 
(masking) with replicated units. 

 

 Unsigned addition     0010 0111 0010 0001 
                                     + 0101 1000 1101 0011 
               ––––––––––––––––– 
 Correct sum        0111 1111 1111 0100 
 Erroneous sum      1000 0000 0000 0100 
                                                ↑ 
                    Stage generating an 
                    erroneous carry of 1 

Fig. 27.3 How a single carry error can produce an arbitrary 
number of bit-errors (inversions). 
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The arithmetic weight of an error 
 
Minimum number of signed powers of 2 that must be 
added to the correct value in order to produce the 
erroneous result (or vice versa).  
 
Examples: 
Correct   0111 1111 1111 0100   1101 1111 1111 0100 
 
Erroneous  1000 0000 0000 0100   0110 0000 0000 0100 
 
Difference      16 = 24           –32752 = –215 + 24   
(error) 
 
Error    0000 0000 0001 0000    -1000 0000 0001 0000 
(min-weight  
BSD) 
 
Arithmetic         1                 2 
weight of error 
 
Error type     Single, positive     Double, negative 
  



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 376 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

27.2 Arithmetic Error-Detecting Codes 

Arithmetic error-detecting codes: 
 
 1. Are characterized by arithmetic weights of  
  detectable errors 
 
 2. Allow direct arithmetic on coded operands 
 
a. Product codes or AN codes 
 
Represent N by the product AN       (A = check modulus)  
 
For odd A, all weight-1 arithmetic errors are detected  
 
Arithmetic errors of weight ≥ 2 may go undetected  
 e.g., the error 32736 = 215 – 25  
 undetectable with A = 3, 11, or 31 
 
Error detection: check divisibility by A  
 
Encoding/decoding: multiply/divide by A  
 
Arithmetic also requires multiplication and division by A  
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Low-cost product codes: A = 2a – 1    
 
 Multiplication by A = 2a – 1: done by shift-subtract 
 
 Division by A = 2a – 1: done a bits at a time as follows  
 Given y = (2a – 1)x, find x by computing 2ax – y  
 . . . xxxx 0000   –   . . . xxxx xxxx   =    . . . xxxx xxxx 
   Unknown 2ax   Known (2a – 1)x        Unknown x 
 
Theorem 27.1: Any unidirectional error with arithmetic 
weight not exceeding a – 1 is detectable by a low-cost 
product code using the check modulus A = 2a – 1 
 
Product codes are nonseparate (nonseparable) codes 
 Data and redundant check info are intermixed 
 
Arithmetic on AN-coded operands 
 
Add/subtract is done directly:  Ax ± Ay = A(x ± y) 
 
Direct multiplication results in:  Aa × Ax = A2ax 

The result must be corrected through division by A  
 
For division, if z = qd + s, we have:  Az = q(Ad) + As   
 Thus, q is unprotected 
 Possible cure: premultiply the dividend Az by A  
 The result will need correction 
 
Square rooting leads to a problem similar to division  

  A2x    =   A x     which is not the same as  A   x    
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b. Residue codes 
 
Represent N by the pair (N, C(N)), where C(N) = N mod A 
 
Residue codes are separate (separable) codes  
 Separate data and check parts make decoding trivial 
 
Encoding: given N, compute C(N) = N mod A  
 
Low-cost residue codes use A = 2a – 1 
 
Arithmetic on residue-coded operands 
Add/subtract: data and check parts are handled separately 

 (x, C(x)) ± (y, C(y))  =  (x ± y, (C(x) ± C(y)) mod A) 

Multiply  

 (a, C(a)) × (x, C(x))  =  (a × x, (C(a)×C(x)) mod A) 

Divide/square-root: difficult 
 

    Main 
Arithmetic 
Processor

   Check 
Processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error 
Indicator

A

 

Fig. 27.4 Arithmetic processor with residue checking. 
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Example: residue-checked adder 
 

Add 

x, x mod A 

Add mod A  

Compare 
Find 
mod A 

y, y mod A 

s, s mod A Error 

 Not 
 equal 
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27.3 Arithmetic Error-Correcting Codes 

Table 27.1 Error syndromes for weight-1 arithmetic errors in 
the (7, 15) biresidue code 

–––––––––––––––––––––––––––––––––––––––––––––– 
Positive  Error syndrome   Negative  Error syndrome  
error mod 7     mod 15 error mod 7     mod 15 
–––––––––––––––––––––––––––––––––––––––––––––– 
 1 1 1 –1 6 14 
 2 2 2 –2 5 13 
 4 4 4 –4 3 11 
 8 1 8 –8 6 7 

 16 2 1 –16 5 14 
 32 4 2 –32 3 13 
 64 1 4 –64 6 11 
 128 2 8 –128 5 7 

 256 4 1 –256 3 14 
 512 1 2 –512 6 13 
 1024 2 4 –1024 5 11 
 2048 4 8 –2048 3 7 
–––––––––––––––––––––––––––––––––––––––––––––– 
 4096 1 1 –4096 6 14 
 8192 2 2 –8192 5 13 
 16384 4 4 –16384 3 11 
 32768 1 8 –32768 6 7 
–––––––––––––––––––––––––––––––––––––––––––––– 
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Properties of biresidue codes 
 
Biresidue code with relatively prime low-cost check moduli 
A = 2a – 1 and B = 2b – 1 supports a × b bits of data for 
weight-1 error correction  
 
Representational redundancy = (a + b)/(ab) = 1/a + 1/b  
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27.4 Self-Checking Function Units 

Self-checking (SC) unit: any fault from a prescribed set  
 does not affect the correct output (masked)   
 or leads to a noncodeword output (detected)  
 
An invalid result is  
 detected immediately by a code checker or  
 propagated downstream by the next self-checking unit 
 
To build SC units, we need SC code checkers that never 
validate a noncodeword, even when they are faulty  
 
Example: SC checker for inverse residue code (N, C' (N))  
N mod A should be the bitwise complement of C' (N)  
Verifying that signal pairs (xi, yi) are all (1, 0) or (0, 1)  
 = finding the AND of Boolean values encoded as 
  1: (1, 0) or (0, 1)  0: (0, 0) or (1, 1) 
  

x

yi

i

x

yj

j

  

Fig. 27.5 Two-input AND circuit, with 2-bit inputs (xi, yi) and 
(xj, yj), for use in a self-checking code checker. 
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27.5 Algorithm-Based Fault Tolerance 

Alternative to error detection at each basic operation: 
Accept that operations may yield incorrect results  
Detect/correct errors at data-structure or application level 

Example: multiplication of matrices X and Y yielding  P  
Row, column, and full checksum matrices (mod 8) 
 

  M =  






 2 1 6
 5 3 4
 3 2 7

     Mr =  






 2 1 6 1
 5 3 4 4
 3 2 7 4

  

  Mc =  







 2 1 6
 5 3 4
 3 2 7
 2 6 1

     Mf =  







 2 1 6 1
 5 3 4 4
 3 2 7 4
 2 6 1 1

  

Fig. 27.6 A 3×3 matrix M with its row, column, and full 
checksum matrices Mr, Mc, and Mf. 

Theorem 27.3: If P = X × Y , we have Pf = Xc × Yr 
With floating-point values, the equalities are approximate 

Theorem 27.4: In a full-checksum matrix, any single 
erroneous element can be corrected and any three errors 
can be detected 
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27.6 Fault-Tolerant RNS Arithmetic 

Residue number systems allow very elegant and effective 
error detection and correction schemes by means of 
redundant residues (extra moduli)   
 
Example: RNS(8 | 7 | 5 | 3), Dynamic range M = 8×7×5×3 
= 840; redundant modulus: 11. Any error confined to a 
single residue is detectable   
 
The redundant modulus must be the largest one, say m  
 
Error detection scheme:  
 
 (1) Use other residues to compute the residue of the 
number mod m (this process is known as base extension) 
 
 (2) Compare the computed and actual mod-m residues 
 
The beauty of this method is that arithmetic algorithms are 
totally unaffected; error detection is made possible by 
simply extending the dynamic range of the RNS  
  
Example: RNS(8 | 7 | 5 | 3),  redundant moduli: 13, 11 
 
25 = (12, 3, 1, 4, 0, 1),  erroneous version = (12, 3, 1, 6, 0, 1) 
 
Transform (–,–,1,6,0,1) to (5,1,1,6,0,1) via base extension 
 
The difference between the first two components of the 
corrupted and reconstructed numbers is (+7, +2) which is 
the error syndrome 
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28 Past, Present, and Future 

   Go to TOC 
Chapter Goals 
 Wrap things up, provide perspective, and 
 examine arithmetic in a few key systems 
 
Chapter Highlights 
 One must look at arithmetic in context of 
  ●  computational requirements 
  ●  technological constraints 
  ●  overall system design goals 
  ●  past and future developments 
 Current trends and research directions? 
 
Chapter Contents 
28.1 Historical Perspective        
28.2 An Early High-Performance Machine 
28.3 A Modern Vector Supercomputer 
28.4 Digital Signal Processors 
28.5 A Widely Used Microprocessor 
28.6 Trends and Future Outlook 
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28.1 Historical Perspective 

1940s 
 
Machine arithmetic was crucial in proving the feasibility of 
computing with stored-program electronic devices  
 
Hardware for addition, use of complement representation, 
and shift-add multiplication and division algorithms were 
developed and fine-tuned  
 
A seminal report by A.W. Burkes, H.H. Goldstein, and J. 
von Neumann contained ideas on choice of number radix, 
carry propagation chains, fast multiplication via carry-save 
addition, and restoring division  
 
State of computer arithmetic circa 1950:  

overview paper by R.F. Shaw [Shaw50] 
 



Computer Arithmetic: Algorithms and Hardware Designs Instructor’s Manual, Vol. 2, Page 387 

  Fall 2001, Oxford University Press Behrooz Parhami, UC Santa Barbara 

1950s 
 
The focus shifted from feasibility to algorithmic speedup 
methods and cost-effective hardware realizations  
 
By the end of the decade, virtually all important fast-adder 
designs had already been published or were in the final 
phases of development  
 
Rresidue arithmetic, SRT division, CORDIC algorithms 
were proposed and implemented  
 
Snapshot of the field circa 1960:  

overview paper by O.L. MacSorley [MacS61]  
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1960s 
 
Tree multipliers, array multipliers, high-radix dividers, 
convergence division, redundant signed-digit arithmetic 
were introduced 
 
Implementation of floating-point arithmetic operations in 
hardware or firmware (in microprogram) became prevalent  
 
Many innovative ideas originated from the design of early 
supercomputers, when the demand for high performance, 
along with the still high cost of hardware, led designers to 
novel and cost-effective solutions.  
 
Examples: IBM System/360 Model 91 [Ande67]  
   CDC 6600 [Thor70] 
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1970s 
 
Advent of microprocessors and vector supercomputers  
 
Early LSI chips were quite limited in the number of 
transistors or logic gates that they could accommodate  
 
Microprogrammed control (with just a hardware adder) 
was a natural choice for single-chip processors which 
were not yet expected to offer high performance  
 
For high end machines, pipelining methods were perfected 
to allow the throughput of arithmetic units to keep up with 
computational demand in vector supercomputers  
 
Example: Cray 1 supercomputer and its successors 
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1980s 
 
Spread of VLSI triggered a reconsideration of all arithmetic 
designs in light of interconnection cost and pin limitations  
 
For example, carry-lookahead adders, that appeared to be 
ill-suited to VLSI, were shown to be efficiently realizable 
after suitable modifications. Similar ideas were applied to 
more efficient VLSI tree and array multipliers  
 
Bit-serial and on-line arithmetic were advanced to deal 
with severe pin limitations in VLSI packages  
 
Arithmetic-intensive signal processing functions became 
driving forces for low-cost and/or high-performance 
embedded hardware: DSP chips 
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1990s 
 
No breakthrough design concept  
 
Demand for performance led to fine-tuning of arithmetic 
algorithms and implementations (many hybrid designs) 
 
Increasing use of table lookup and tight integration of 
arithmetic unit and other parts of the processor for 
maximum performance  
 
Clock speeds reached and surpassed 100, 200, 300, 400, 
and 500 MHz in rapid succession; pipelining used to 
ensure smooth flow of data through the system 
 
Example: Intel’s Pentium Pro (P6) → Pentium II 
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28.2 An Early High-Performance Machine 
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Fig. 28.1 Overall structure of the IBM System/360 Model 91 
floating-point execution unit. 
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28.3 A Modern Vector Supercomputer 
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Fig. 28.2 The vector section of one of the processors in the 
Cray X-MP/Model 24 supercomputer. 

Pipeline setup and shutdown overheads 
 
Vector unit not efficient for short vectors (break-even point) 
 
Pipeline chaining 
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28.4 Digital Signal Processors 
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Fig. 28.3 Block diagram of the data ALU in Motorola’s 
DSP56002 (fixed-point) processor. 
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Example DSP instructions 

 ADD  A, B       { A + B → B } 

 SUB  X, A       { A – X → A } 

 MPY  ±X1, X0, B   { ±X1 × X0 → B } 

 MAC ±Y1, X1, A   { A ± Y1 × X1 → A } 

 AND  X1, A      { A AND X1 → A } 

 

I/O Format Converter

X Bus
Y Bus

32 32

Register File
10   96-bit, 
or 10   64-bit,  
or 30   32-bit

Add/ 
Subtract 
Unit

Multiply 
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Fig. 28.4 Block diagram of the data ALU in Motorola’s 
DSP96002 (floating-point) processor. 
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28.5 A Widely Used Microprocessor 

Performance trends in Intel micros 
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Fig. 28.5 Key parts of the CPU in the Intel Pentium Pro (P6) 
microprocessor. 
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28.6 Trends and Future Outlook 

Present focus areas 

Design: Shift of attention from algorithms to optimizations 
at the level of transistors and wires 

This explains the proliferation of hybrid designs 

Technology: Predominantly CMOS, with a phenomenol 
rate of improvement in size/speed 

 New technologies cannot compete 

Applications: Shift from high-speed or high-throughput 
designs in mainframes to embedded systems requiring 

 low cost 

 low power 
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Trends and ongoing debates 

Renewed interest in bit- and digit-serial arithmetic as 
mechanisms to reduce the VLSI area and to improve 
packageability and testability  

Synchronous versus asynchronous design (asynchrony 
has some overhead, but an equivalent overhead is being 
paid for clock distribution and/or systolization) 

New design paradigms may alter the way in which we view 
or design arithmetic circuits  
 
 Neuronlike computational elements 
 
 Optical computing (redundant representations)  
 
 Multivalued logic (match to high-radix arithmetic) 
 
 Configurable logic 

Arithmetic complexity theory  
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THE END! 
 
 “You’re up to date. Take my advice and try to keep it 
that way. It’ll be tough to do; make no mistake about it. 
The phone will ring and it’ll be the administrator –– talking 
about budgets. The doctors will come in, and they’ll want 
this bit of information and that. Then you’ll get the 
salesman. Until at the end of the day you’ll wonder what 
happened to it and what you’ve accomplished; what 
you’ve achieved.  
 “That’s the way the next day can go, and the next, 
and the one after that. Until you find a year has slipped by, 
and another, and another. And then suddenly, one day, 
you’ll find everything you knew is out of date. That’s when 
it’s too late to change.  
 “Listen to an old man who’s been through it all, who 
made the mistake of falling behind. Don’t let it happen to 
you! Lock yourself in a closet if you have to! Get away 
from the phone and the files and paper, and read and 
learn and listen and keep up to date. Then they can never 
touch you, never say, ‘He’s finished, all washed up; he 
belongs to yesterday.’ ”  
     Arthur Hailey, The Final Diagnosis 
 
How to keep up to date: 
 
IEEE Trans. Computers 
Symp. Computer Arithmetic, aka ARITH-n, in odd years 
 
Go to TOC 


