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A Unified Formulation of Honeycomb and
Diamond Networks

Behrooz Parhami, Fellow, IEEE, and Ding-Ming Kwai

Abstract—Honeycomb and diamond networks have been proposed as alternatives to mesh and torus architectures for parallel
processing. When wraparound links are included in honeycomb and diamond networks, the resulting structures can be viewed as
having been derived via a systematic pruning scheme applied to the links of 2D and 3D tori, respectively. The removal of links, which is
performed along a diagonal pruning direction, preserves the network’s node-symmetry and diameter, while reducing its implementation
complexity and VLSI layout area. In this paper, we prove that honeycomb and diamond networks are special subgraphs of complete
2D and 3D tori, respectively, and show this viewpoint to hold important implications for their physical layouts and routing schemes.
Because pruning reduces the node degree without increasing the network diameter, the pruned networks have an advantage when the
degree-diameter product is used as a figure of merit. Additionally, if the reduced node degree is used as an opportunity to increase the
link bandwidths to equalize the costs of pruned and unpruned networks, a gain in communication performance may result.

Index Terms—Cayley graph, k-ary n-cube, network topology, processor array, pruned torus network, VLSI layout.

1 INTRODUCTION

distributed-memory parallel architecture is character-

ized by a graph, with vertices representing processing
nodes and edges corresponding to communication links.
The chosen graph for a particular parallel machine, known
as its interconnection network (topology), is a determining
performance factor [15]. Interconnection networks are
notoriously hard to compare in abstract terms [10]; the
relative merits of various networks change with hardware
implementation technology, data routing scheme, computa-
tional workload, data/task distribution, and many other
architectural, system, or application parameters. Research-
ers in parallel processing are thus motivated to propose
new or improved interconnection networks, arguing the
benefits and offering performance evaluations in different
contexts.

Some interconnection network topologies borrow from
nature. Mesh, honeycomb, and diamond networks, for
instance, bear resemblance to atomic or molecular lattice
structures. Mesh networks are well-known and extensively
studied [9], [15]. The term “mesh” commonly refers to a
gridlike topology in which each node is connected to its
four nearest neighbors (four-neighbor mesh), although
eight-neighbor and hex or six-neighbor meshes are also of
some interest [15]. A honeycomb network (Fig. 1a, without
the wraparound links) is formed by tiling the plane with
regular hexagons and placing a degree-3 node at each
vertex in the natural way [11], [19], [20]. A diamond
network [3], [12] is a 3D lattice structure (Fig. 3, without the
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wraparound links). In the diamond network, connectivity of
a node (x, y, z) along dimensions X and Y depends on
whether x + y + z is even (connections exist in positive
direction) or odd (connections are in negative direction).
Connections along the Z dimension are as in a 3D mesh.

Interest in honeycomb, diamond, and similar networks
stems from the fact that they have smaller node degrees
than mesh or torus networks of the same dimension, thus
leading to lower implementation cost. If these simpler
networks offer the same topological properties and com-
munication performance as meshes or tori, then they would
in fact be of considerable practical importance. In some
adaptations, wraparound links have been added to elim-
inate the boundary effect, making the nodes regular in
degree and the networks symmetric in structure. In the case
of meshes, the addition of wraparound links in each
dimension results in torus networks that have been quite
popular in recent parallel machines [4], [13], [14]. The
primary advantage of honeycomb and diamond networks,
in their original forms or with wraparound links, is reduced
node degree compared to 2D and 3D mesh/torus networks,
respectively. The smaller node degree translates directly to
lower hardware implementation cost and also implies
greater cost-effectiveness under the commonly used
degree-diameter-product figure of merit.

A honeycomb network can be built in different ways,
depending on the number and positioning of the hexagons
used in its construction. A particularly attractive variant has
a rectangular exterior shape and is known as a honeycomb
rectangular mesh (HReM) or torus (HReT), depending on
the absence or presence of wraparound links [20]. One of
our contributions in this paper is to note that HReT can be
derived by systematically pruning certain links from a 2D
torus. As an example, Fig. 1 depicts the honeycomb
rectangular torus HReT(6, 3) and its redrawing as a pruned
6 x 6 torus, where dotted lines represent pruned links along
the horizontal dimension. This observation, combined with
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Fig. 1. Honeycomb rectangular torus (a) is isomorphic to pruned 2D
torus (b). The removed links of the pruned torus are shown as dotted
lines.

a proof that the resulting pruned network is a Cayley graph,
and thus node-symmetric, allows us to derive an efficient
routing algorithm and a compact VLSI layout for a

honeycomb rectangular torus network.
Our second contribution is to note that the pruning

scheme used to derive HReT networks from 2D torus can be
generalized to 3D torus, leading to diamond networks [3],
[12]. Again, simpler routing algorithms and efficient VLSI
layouts are biproducts of this observation. Thus, honey-
comb and diamond networks are intimately related; they
belong to a family of graphs obtained by pruning tori of
various dimensions in a certain way. Other members of this
large family as yet have no specific names and have not
been studied. The unified framework provided in this
paper can be viewed as our third contribution. It allows for
the entire family of networks mentioned above to be

studied and evaluated for use in future parallel computers.
Our presentation of honeycomb and diamond networks

with wraparound links in the rest of this paper is organized
as follows. Section 2 contains Cayley graph constructions
leading to these networks, thus establishing their node-
symmetry property. Section 3 deals with the derivation of
network diameter and, in the process, presents shortest-
path routing algorithms for the two networks. Average
internode distances for the two networks are discussed in
Section 4. Section 5 is devoted to the advantages of such
pruned networks, including aspects of their VLSI layout
and cost-performance. Section 6 contains our conclusions.

2 SYMMETRY PROPERTIES

One way to prove that an interconnection network is node-
symmetric, thereby establishing that it enjoys the advan-
tages that come with this property, is to show that it is a
Cayley graph. We thus proceed to define Cayley graphs and
then prove that honeycomb and diamond networks are
Cayley graphs.

Given a (nonempty) finite group I' to be used as the node
set, we identify a subset 2 of I' that generates I' under the
group operation ®. The binary operator & is associative but
not necessarily commutative. Because we consider only
graphs with no self-loop, the identity element . does not
belong to the generator set ). In the graph, an undirected
edge connects node a to node [ whenever = a ® w for
some w € §). Lack of direction on edges implies that the
inverse of w is also in the generator set 2. By the definition
above, Cayley graphs are easily seen to be node-symmetric
with a node degree equal to the cardinality of 2 [18], [8].

Let us denote a node in an / x k torus as (x, y), where
0<z<l-1land 0 <y <k—1.Consider a pruning scheme
where for each node (x, y), the connection to (x + 1, y) is
removed if x + ¥ is odd and the connection to (z — 1,y) is
removed if x + y is even. Clearly, such a pruned / x k torus
will be regular of degree 3 only when [ is even. It is possible
to construct a proof similar to that in [6] to show that the
network defined above is a Cayley graph of cyclic groups
Z/l and Z/k (modulo-I and modulo-k integers). Here and
throughout this paper, it is understood that modulo
arithmetic applies to all node-index expressions.

Theorem 1. The honeycomb (pruned 2D torus) network is a
Cayley graph.

Proof. Consider an ! x k pruned torus. Take I'={[x y]T 1 0 <
x<1-1,0<y <k-1}and ¢ = [0 0]T. Define the group
operator as follows:

HEHE R HEH!

Then, it is easily verified that the generator set

=Ll L]

is closed under inverse, with [1 0]T being its own inverse
and the other two generators being each other’s inverse.
That the preceding Cayley graph construction produces
an [ x k honeycomb or pruned torus network is evident
from the fact that the square of the 2 x 2 matrix A used in
defining ® is the identity matrix I, causing successive
powers of A to alternate between A and Ip. When Ax+Y =
A, neighbors of [x y]T are [x-1 y]7, [x y+1]T, and [x y-1]T;
when AX+Y = I, the neighbors are [x+1 y]7T, [x y+1]T, and
[x y-1]T. Note that the operator ® defined above is
associative but not commutative; associativity is easily
verified and noncommutativity is deduced by noting
that traversing a dimension-X link followed by a
dimension-Y link does not lead to the same destination
node as traversal of links in the reverse order. O
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Fig. 2. A square torus pruned along the direction x + y is not edge-
symmetric.
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The pruned torus network is node-symmetric by
Theorem 1, but it is not edge symmetric, even for I = k.
Fig. 2 shows an example with [ = k = 4, where lack of edge-
symmetry is obvious in view of the fact that a dimension-X
link does not belong to any cycle of length four, whereas
dimension-Y links do form four-cycles.

In an m x I x k torus, with both m and [ even, alternately
removing the dimension-X and dimension-Y links along x +
y + z leads to a pruned m x [ x k torus that can similarly be
proven to be a Cayley graph of the cyclic groups Z/m, Z/1,
and Z/k (see Theorem 2 for the general nD case and its
proof). The resulting pruned 3D torus network is iso-
morphic to the diamond lattice [3], [12], with wraparound
links added to make it regular of degree 4.

Fig. 3 depicts an example diamond lattice with
m =l =k = 4. In this pruning scheme, for each node (x, y,
z), the connections to node (x + 1, y, z) and (x, y + 1, z) are
removed if x + y + z is odd and the links to nodes (x-1, y, z)
and (x, y-1, z) are removed if x + y + z is even. All
dimension-Z links are kept intact. The node degree is
reduced from 6 in the case of 3D torus to 4 for the pruned
version. More generally, this type of pruning reduces the
node degree from 2 n to n + 1.

Based on the discussion above, generalizing honeycomb
and diamond networks to n dimensions is straightforward.
In the nD case, a kg x k1 X ... X k,_1 torus, where all
dimensions except possibly for k,_; are even, is pruned
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Fig. 3. A diamond lattice is isomorphic to pruned 3D torus when
wraparound links (shown as short line segments in the diagram to avoid
clutter) are added. The pruned 2D torus of Fig. 3 is a slice of this network
cut along dimension X or Y.
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along the diagonal direction xg + x7 + . . . + x;,_1. Links of

dimension X;_1 are kept intact, while half of the links

belonging to the other dimensions are removed.

Theorem 2. The nD torus network pruned along the diagonal
direction xg + X1 +...+ x,_1 is a Cayley graph.

Proof. Consider pruning a kg x k1 x...x k;;_1 torus. Take I' =
{lag, a1, .. 4117 1 0 <a; <k;—1,0 <i<n -1} and define ¢
=00 ...
a1...a,1]T is connected to node 3 =[by by ...b,_1]T by a

0]T as the identity element. If node a = [ag

generator w; = [wy wy ... W, — 1}T € (), their index vectors

are related by a semidirect product

b() -1 0 o 0 2 Wy agn

b1 _ 0 -1 ... 0 w1 + aj
bn—l 0 0 s 1 Wp—1 Qn—1

and the generator set can be found to be:

1 0 0 0
o= L]
0 0 1] [—1

Note that the square of the n x n matrix A used in
defining ® is the identity matrix I,;, causing successive
powers of A to alternate between A and I, as ¥a; = ag + a1
+ ... + a,_1 assumes odd and even values. Each of the
first n — 1 generators is its own inverse and the last two
generators are each other’s inverse. Because the gen-
erator set has n + 1 elements, the node degree of the
pruned network is n + 1, whereas the original nD torus
had node degree 2n. O

3 DIAMETER AND SHORTEST-PATH ROUTING

In addition to economy and ease of layout, to be discussed
in Section 5, an advantage of treating the honeycomb
network as a pruned 2D torus is that as in torus, we can
base the routing algorithm on the offsets Ax and Ay in
dimensions X and Y. The resulting algorithm is simpler
than the one suggested in [20]. The latter algorithm is based
on mapping the network to the Euclidean 3-space.

In the following, we consider only pruned square tori (I =
k or m = I = k), with the common side length k even. Results
for other cases can be derived analogously. The diameter of
the corresponding unpruned 2D or 3D torus is k or 3k/2,
respectively. In what follows, we show the diameters of the
pruned versions to be the same as the unpruned networks.
As part of the proof process, we obtain a simple shortest-
path routing algorithm for honeycomb rectangular tori.
Note that, despite a misguided tendency to dismiss the
significance of network diameter, given the widespread use
of wormhole switching whose latency is rather insensitive
to hop distance, low network diameter is still quite
important as it affects many aspects of performance when
network cost or aggregate bandwidth is normalized [17].

Theorem 3. The diameter of the pruned k x k torus is k.
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Fig. 4. Shortest paths in the pruned 16 x 16 torus.

Proof. The proof is based on constructing a shortest-path
routing scheme that never needs more than k hops.
Given the network’s node-symmetry, we can take the
source node to be one of the four nodes near the center of
the network’s drawing (the black node in Fig. 4 or Fig. 5).
The solid routing paths leading to the shaded nodes of
Fig. 4 are shortest paths in the corresponding unpruned
torus. The white nodes require extra hops, but never a
routing distance greater than k.

To see this, let (x, y) be the source node and (Ax, Ay)
be the offsets to the destination node along dimensions X
and Y, respectively, where —k/2 + 1 < Ax, Ay<k/2.
Positive and negative signs in the offsets represent
the directions. We always start the routing along
dimension X, unless the required link has been removed;
in such a case, we have to route along dimension Y so as
to gain access to the dimension-X link in that particular
direction.

If Ayl > IAxl, we encounter all required dimen-
sion-X links as we move along dimension Y; in this case,
the number | Ax| + | Ayl of steps is the same as that for
the unpruned torus. For 1Ayl < [Ax| -1, extra steps
may have to be taken during routing. We consider two
cases for | Ax| and show that in each case, the number of
steps is at most k. Without loss of generality, we assume
that x + y is even. If x + y is odd, we simply switch the
two cases.

Case 1. Ax > 0 (right half of white nodes in Fig. 4). The
route from (x, y) traverses dimension X first. Since the
subsequent routing along dimension Y provides access
to Ayl of the required dimension-X links, at most
2|(Az — |Ay|)/2] extra steps are needed for gaining
access to the remaining Ax — | Ayl dimension-X links,
going back and forth along dimension Y for traversing
each dimension-X link. The total number of routing steps
is thus Az + |Ay| + 2| (Az — |Ay|)/2] < 2Az < k.

Case 2. Ax < 0 (left half of white nodes in Fig. 4).
The route from (x, y) traverses dimension Y first. Since
|Ayl-1 of the required dimension-X links become
accessible as we route along dimension Y, at most
2|(=Az — |Ay| + 1)/2| additional steps are needed. Thus,

Fig. 5. Distribution of extra steps in a pruned k x k torus.

the total number of routing steps in this case is —Ax +
Ayl + 2[(-Az —|Ay|+1)/2] < 2Az+1<k-1. O

Nodes that are diametrically opposite to a given
node (x, y) in a pruned torus can be easily found. From
the conditions Ayl > |Ax| and |Ax| + Ayl =k, we
find the node (x + k/2, y + k/2), which is the only
diametrically opposite node in the unpruned k x k torus.
Case 1 in the proof of Theorem 3 implies that all nodes (x +
k/2,y + i), with i even when k/2 is even or i odd when k/2 is
odd, are also diametrically opposite to node (x, y). From the
larger number of diametral paths in the pruned torus, it is
intuitively obvious that the average internode distance
increases as a result of pruning (see Section 4).

Routing on the pruned k x k x k torus can mimic that of
the pruned k x k torus. Let the offsets to the destination
node be (Ax, Ay, Az), where —k/2 + 1 <Ax, Ay, Az<k/2.
We start by comparing [Ax| to |Ayl. If [Axl > | Ayl, we
follow the routing on the pruned k x k torus in dimensions
X and Z, while traversing dimension-Y links when they
become accessible. Otherwise, we follow the routing on the
pruned k x k torus in dimensions Y and Z, while traversing
dimension-X links whenever possible. Based on the analysis
in the proof of Theorem 1, the number max(|Ax|, | Ayl) of
extra steps does not lead to an increase in diameter. Hence,
the diameter remains 3k/2.

4 AVERAGE INTERNODE DISTANCE

Based on the shortest-path routing algorithm described as
part of the proof of Theorem 3, we can derive the average
internode distance of the pruned k x k torus.

Theorem 4. The average internode distance of the pruned k x k
torus is 7k/12 — k=1/3.

Proof. The average internode distance is obtained by
summing the extra steps from a given node to all other
nodes, adding the result to the sum k3/2 of distances in
an unpruned torus, and dividing by the number k2 of
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Fig. 6. Diameter and average internode distance for pruned 2D and 3D
tori of side k.

nodes (we could divide by k2 — 1, but we opt for a
simpler expression). The distribution of extra steps is
depicted in Fig. 5. Because the extra steps for the right
and left halves of nodes are equal, we total the extra steps
for the nodes in one half and then double the result.
Recall that the number of extra steps is always an even
number. If k/2 is even, we have one node requiring k/2
extra steps, eight nodes requiring k/2 — 2 extra steps,
16 nodes needing k/2 — 4 extra steps, etc. Thus, the total
number of extra steps in this case can be written as:

E=2 {k:/z + 2 (k)2 — 2@)] = 1/12 — k/3.

If k/2 is odd, we have four node requiring k/2 — 1 extra
steps, 12 nodes needing k/2 — 3 extra steps, etc. Thus, the
total number of extra steps in this case is:

E= 2[251;2)/4 4(2i — 1) (k)2 — 2i + 1)} = k)12 — k/3.

In either case, the average internode distance of the
pruned k x k torus is

(BE+K/2)/K* = Tk/12 — k™1 /3 ~ 0.58k,

compared to the slightly lower average internode
distance of (k3/2)/k? = 0.5k for the unpruned k x k
torus. ad
Thus far, we have been unable to find a closed-form
expression for the average internode distance of the pruned
k x k x k torus. Curve fitting on the results of numerical
simulation with 4 < k < 64, using a computer program to
exhaustively enumerate all shortest paths, leads to a slope
of 31k/36 =~
distance of 0.75k for the unpruned k x k x k torus (Fig. 6).

0.86k, compared to the average internode
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Fig. 7. Folded layout of the pruned 2D torus (a) is more compact than its
unpruned counterpart (b). The removed links of the pruned torus are
shown as dotted lines.

5 NETWORK ADVANTAGES

One consequence of treating the honeycomb rectangular
torus as a pruned 2D torus is that its layout becomes
straightforward. Any 2D torus layout can be converted to
one for honeycomb torus by removing the redundant links
and compacting the resulting layout to the extent possible.
As is well-known for torus layouts, the long wraparound
links can be avoided and wire lengths balanced by applying
the standard technique of folding in both horizontal and
vertical directions. When a row (column) is folded, the first
half of its nodes are placed in one track and the second half
in an adjacent track, in reverse order, so that the last node
becomes adjacent to the first. Beginning with a folded
layout for 2D torus (Fig. 7b), the space left from the
removed links can be compacted to yield a smaller layout
area for the desired honeycomb network (Fig. 7a).

In practice, when all else is equal, lowering of layout area
potentially leads to superlinear gain in performance. A
tighter layout means that larger chunks of the network can
fit in a size-limited module such as a chip or a printed-
circuit board; thus, there will be fewer off-chip or off-board
connections, in turn leading to faster internode commu-
nication, given that on-chip links can be driven at higher
speeds. Fewer chips and boards also mean lower imple-
mentation cost and power dissipation.

Smaller node degree often results in lower cost, whereas
shorter diameter leads to better performance as long as the
network does not operate close to saturation [16]. The
pruned networks discussed in the preceding sections hold
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advantages over their unpruned counterparts when the
degree-diameter product is used as a figure of merit (to be
minimized). This is true because the pruning scheme
reduces the node degree from 2#n to n + 1 without increasing
the diameter. Similar advantages exist if the product of
node degree and average internode distance is used for
comparison.

The true test of a network’s superiority is of course
detailed simulation of its behavior under realistic work-
loads or accepted communication benchmarks. While we
have not done such a study for honeycomb or diamond
networks, our previous work on tori that are pruned in a
different way show that performance is in fact gained.
Specifically, when pruning is along y or z direction, as
opposed to x + y or x + y + z as done here, significant
performance gain can result under normalized implemen-
tation cost [7]. It remains to be seen if honeycomb and
diamond networks offer comparable advantages.

6 CONCLUSION

We have presented a unified formulation of honeycomb
and diamond networks with wraparound links as pruned
2D and 3D tori. Previous studies (see Section 1), focusing on
several parameters such as diameter and node degree, have
drawn the conclusion that these networks are attractive
alternatives to complete tori. The obvious increase in
routing complexity has not been dealt with.

In this paper, we have rectified what we view as
misconceptions regarding routing and symmetry of these
networks. It is often the case that the proof of one network
topology being isomorphic to another leads to better
understanding of their properties. Consolidation of algo-
rithmic methods independently developed for the two
networks is also beneficial in terms of simplification and
improved efficiency. Our results serve to unify honeycomb
and diamond networks with each other and with other
forms of pruned tori. This unification has already simplified
the layout and routing problems for such networks and
may lead to other advantages, as well.

While pruned networks have received some attention
from researchers in parallel processing [2], [5], [21] and a
type of pruned 3D torus is used in a production parallel
computer [1], more studies of the type reported in this
paper appear to be warranted. Promising directions might
include the development of new pruning schemes, applying
known schemes to new networks, and relating various
types of pruned networks to each other and to their
unpruned counterparts in terms of implementation cost
and communication performance.

That pruning of networks can lead to configurations with
simpler 2D layouts and easier packaging, as in the two
examples of this paper, is not surprising. It turns out that
such pruned architectures may also outperform their

unpruned counterparts when the costs are normalized by
making the communication channels of the pruned versions
correspondingly wider [7]. This puts pruned networks in a
unique position within the sea of interconnection networks
[15]. Developers of tomorrow’s massively parallel micro-
chips and systems should consider such pruned networks
as candidates for both on- and off-chip connectivity [16].
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