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Abstract

Started 50 years ago, the field of (system-level) malfunction diagnosis has expanded immensely and continues to be a very active subfield in
both parallel processing and dependable computing research communities, with much of the new research coming from China and Taiwan in
recent years. This paper represents an attempt to organize the field of research in distributed malfunction diagnosis via an overarching,
descriptive, and consistent taxonomy that not only covers all of the past work, but also foretells of possible future research to fill gaps left by
current results and areas that are just beyond the domains already investigated. The paper is accessible to computer science and engineering
specialists who are new to the field, because it uses analogies to unveil the nature of the research problems and pertinent challenges.
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1. Introduction

In the freshman seminar “Ten Puzzling Problems in
Computer Engineering,” designed 10 years ago and taught
since by the first author [23] [24], mathematical and logical
puzzles are used to introduce advanced science/technology
topics in a manner understandable to first-year college
students. Two of the seminar’s puzzle types are relevant to
the topic of this paper. One puzzle type places you on a
remote island inhabited by members of two tribes, Truth-
tellers and Liars. Truth-tellers provide the correct answer to
any question, while Liars always give an untruthful answer.
Members of the two tribes recognize each other, but you
have no basis to judge which tribe a particular person
belongs to, except by analyzing answers to questions you
ask. A more advanced version of these puzzles postulates the
tribes Truth-tellers and Randoms (they lie or tell the truth,
completely at random). It turns out that Randoms are more
difficult to deal with, because the consistency of Liars in
providing untruthful answers is actually helpful in making

deductions. The latter version of these puzzles models
diagnosis in a distributed environment: You ask each node to
perform self-diagnosis and report the result to you. A healthy
node gives you a truthful answer about it being healthy,
whereas a malfunctioning node gives you an untrustworthy
answer. Is it possible to deduce which nodes are
malfunctioning based on the responses received? The short
answer is no, if there is no cross-checking of results.

Another puzzle asks you to imagine n people, mostly
medical doctors (MDs), but mixed with a small number of
impostors, sitting at a round table. Each person is told to
interview the person seated to his/her right and render a
judgment on whether that person is an MD or an impostor.
Let’s assume that an MD knows how to question a person to
determine with absolute certainty whether that person is
indeed an MD. The n judgments are given to you and you
must identify the impostors. Clearly, a judgment provided by
an impostor is untrustworthy, much like answers provided by
Randoms in the previous set of puzzles, not only because
s/he does not have the knowledge to judge, but also because
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s/he may actually want to deceive you in order to remain
undetected. This puzzle models the malfunction diagnosis
problem as a directed graph G = (V, E), where vertices in V
are intelligent nodes capable of testing each other and edges
in E define a testing relation, with the directed edge (u, v)
representing node u testing node v.

Five decades ago, this notion was formalized by
Preparata, Metze, and Chien [27] into what has come to be
known as the PMC model of malfunction diagnosis.
Subsequently, Maeng and Malek [19] [20] devised a
different formal model in which diagnosis is based on a
managing unit comparing responses from two other units to
which it is connected, concluding that the two responding
units are healthy if their responses match and at least one of
them malfunctioning otherwise. The model was subsequently
refined and given the name MM* or comparison-based
malfunction diagnosis model. As before, if the test manager
is itself malfunctioning, no reliable conclusion can be
reached.

An unfortunate side effect of the rapid advances in the
field of distributed malfunction diagnosis is the emergence of
a rather non-descriptive, and at times misleading,
terminology. To cite one example, the two terms t/k-
diagnosability and t/s-diagnosability mean different things,
and the distinction of k versus s is lost when the parameters
are replaced with actual numbers in a specific case; e.g., is
5/6 diagnosability of the first kind (t = 5, k = 6) or of the
second kind (t =5, s = 6)? Furthermore, the qualifiers “one-
step,” “sequential,” and “pessimistic,” applied to some kinds
of diagnosis strategies discussed are rather undescriptive.

In this paper, we propose a taxonomy of malfunction
diagnosis methods to facilitate understanding and
contributing new results to the field. As a byproduct of the
taxonomy, we expose certain areas of the field that need to
be studied or explored in greater depth. This is not intended
to be a complete survey of the field, as there have been
literally hundreds of research contributions in the area of
malfunction diagnosis over the past five decades. References
cited are meant to cover pioneering contributions that have
defined the field as a whole or its various sub domains, or
have introduced new concepts, plus a few sources that
support our contention that a new, descriptive nomenclature
and taxonomy is indeed required.

2. What Is Malfunction Diagnosis?

Fault testing and fault diagnosis have been with us for
centuries in connection with gadgets and systems whose
designs are to be verified at the outset and whose correct
functioning must be ascertained in the field as they are put to
use. The term “fault” is a bit overused, as it has been applied
at various levels of a digital system hierarchy, from devices
and circuits to sizable modules incorporating hardware and
software components. Fault testing in circuit and logic entail
different methods than testing of higher-level modules. In
fact, in modern practice, we often don’t care about
diagnosing a fault (identifying its location) within a circuit,
say, a chip. Rather, we perform what is known as a go/no-go
test that merely indicates whether the circuit is usable,
replacing the entire circuit in case of a no-go result.

At the system level, by contrast, we do want to identify
which module is causing problems, so that we can isolate and

eventually repair/replace it. This requires a more elaborate
diagnostic testing, instead of the go/no-go variety. For this
reason, the term “system-level fault diagnosis” has been used
for the latter situation. In the first author’s nearly completed
book on dependable computing [25], the term “malfunction
diagnosis” is used to refer to the context above, avoiding the
overuse of the term “fault” and obviating the need for the
qualifier “system-level.” So, our “malfunction diagnosis” is
“system-level fault diagnosis” in much of the published
literature. This use of malfunction diagnosis is the first
element of our nomenclature and taxonomy.

Let us begin with the basic terminology and assumptions.
We consider a system composed of interconnected,
intelligent modules, where by intelligent we mean modules
with internal processing and decision-making abilities. This
isn’t a restrictive assumption, as modern digital systems are
composed of interconnection of processors, memory
modules, 1/O units, and the like, each having hardware
control for basic functions and software control for functions
that are not speed-critical and/or need flexibility over time.
Each module is assumed to be capable of running a
sophisticated self-test routine, when prompted, and to report
the result to other modules.

3. Reflective vs. Comparative Models

Throughout our discussions, each test is assumed to return a
yes/no value, indicating that all is good (yes =0) or
something is wrong (no=1). If there are q tests, then the
syndrome is a g-bit vector S with S[j] holding the result of
test j. The diagnosis problem is to deduce from the binary
syndrome vector S[l:q] the diagnosis vector D[1:n]
reflecting the health (0) or non-health (1) of each of the n
modules in the system.

In the reflective mode of diagnosis, known in the
literature as the PMC model [27], when a module is
connected to another module, we assume that one is capable
of testing the other one. Actually, not all links may be usable
as testing links and a sub graph of the directed graph
representing the system may be designated as the testing
graph. In fact, the connectivity of the system may be
completely different from the testing graph. It is possible, for
example, for the n nodes to be connected via a bus, so that
each node can potentially test any other one. This situation
can be represented by K, the n-node complete graph,
assuming that the single bus cannot be a source of problems
in testing; that is, it is modeled either as a malfunction-free
system core or a set of n(n - 1) independent directed
channels.

From now on, we focus on the testing graph only and
ignore the fact that there may be other links in the system
besides those used for testing or that the hardware
connectivity may in fact be less dense than the testing graph.
The nature of the test can vary, from significant interaction
of passing back and forth test patterns and test outcomes to
minimal interaction, with one module initiating the test
(perhaps by sending a key or seed value) and the target
module carrying out a self-test routine. The key or seed value
serves to ensure that the test result isn’t a constant that a
malfunctioning module may produce by accident or from a
previously stored result in memory, thus compromising
diagnostic accuracy.
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The abstract reflective testing relationship is shown in
figure 1a, where details of how a test is performed are
suppressed and only the yes/no or 0/1 conclusion from the
test is deemed relevant. The comparative testing relationship
can be abstracted as in figure 1b, where a test manager u and
two participants v and w are involved. The node u initiates
the testing and the nodes v and w respond to it by each
sending a test result to u. If the two test results are identical,
u concludes that all is well, producing the decision 0,
provided u itself is not malfunctioning. Non-matching results
lead to the 1 decision by u. If the manager u is
malfunctioning, then we make no assumption about the
decision it might produce [19] [20].

In the reflective model, the tests correspond to the edges
of the testing graph, one test per edge. Thus, we have |E| = q,
the number of tests. In comparative testing, however, triples
(u, v, w) of nodes correspond to tests, with the triples used
pre-defined as part of the diagnostic scheme. Viewed in this
way, we immediately see that the 2-way and 3-way
relationships of reflective and comparative testing can
readily be generalized to higher-degree collaborative testing,
where clusters of nodes perform intra-cluster testing
according to some local schema and the overall result is
deduced from the collection of cluster-level tests. If clusters
constitute replaceable units within our system, then it does
not matter which nodes within a cluster are malfunctioning.
Those can be diagnosed off-line and the requisite repairs
performed in parallel with a new replacement cluster taking
over.

4. One-Step vs. Multi-Step Diagnosis

Conceptually, the simplest diagnostic scheme is when a
single round of g tests are performed and the resulting binary
syndrome vector S[1:q] is used to deduce which nodes are
healthy and which are malfunctioning. When the information
in the syndrome vector is always enough to do the required
diagnosis for up to t malfunctions, we say that the system is
one-step t-diagnosable. Necessary and sufficient conditions
are known for one-step diagnosability, that is, the mapping of
the syndrome vector S[1:q] into the diagnostic vector D[1:n],
which correctly identifies the health (0) or malfunctioning (1)
status of each unit. Theorem 1 represents an example of
theoretical results that are available for practical use.

Theorem 1. An n-unit system in which no two units test
one another, is 1-step t-diagnosable if and only if each unit is
tested by at least t other units.

If, on the other hand, the syndrome vector isn’t sufficient
for full diagnosis but always leads to the identification of at
least h malfunctioning units, h < m, we say that the system is

I think v is good
=

I think v is bad

(a) Reflective testing (PMC model)

multi-step t-diagnosable, because once the identified
malfunctioning units have been repaired or replaced, the
resulting system, which now has fewer malfunctioning units,
can be subjected to the same process for identifying
additional malfunctions. The extreme case where each
diagnosis step identifies a single malfunctioning unit is
referred to as “sequential diagnosis.” A system is
sequentially diagnosable if there exist a diagnosis strategy for
it that guarantees the identification of at least one
malfunctioning unit in each diagnosis step. Theorem 2
represents an example of theoretical results that are available
with regard to sequential diagnosis, in this case a sufficient
condition for sequential t-diagnosability.

Theorem 2. An n-unit system is sequentially t-
diagnosable if the condition n > 2t + 1 holds. A majority of
the n units being healthy is a sufficient condition, but it may
not be necessary.

5. Sensitivity vs. Specificity of Diagnosis

The terms “sensitivity” and “specificity” are taken from the
medical diagnosis domain. Suppose we have a population of
individuals, mostly healthy but containing some who are
afflicted with a particular disease. A medical test exists for
the disease. The test can identify people afflicted with the
disease (positive indication, or 1) and those not afflicted
(negative indication, or 0), but it has some probability of
yielding a false positive (identifying a healthy person as sick)
and a certain probability of yielding a false negative (missing
the detection of a sick person). Such a test is referred to as
“sensitive” if it has a fairly small false-negative probability,
that is, it detects nearly all sick individuals (Figure 2a). The
test is dubbed “specific” if it has a fairly small false-positive
possibility, that is, only a minute fraction of healthy
individuals will be wrongly diagnosed as having the disease
(Figure 2b).

In the context of studies on malfunction diagnosis, false
negatives have not been allowed so far. Put another way, the
diagnosis outcome can have healthy nodes marked as bad
(this is a safe situation) but no malfunctioning node is
allowed to be misidentified as healthy. However, there is no
fundamental reason for excluding false negatives, if the
system has some built-in malfunction tolerance capability
that allows it to function correctly in the presence of a very
small number of malfunctioning units. Such a system will
use a combination of malfunction masking and malfunction
diagnosis to continue correct operation in the presence of
some malfunctions, aiming to remove malfunctions that put
it over its tolerance capacity.

| think v and w are good
[ —
_
°c>
= = [
I think v or w is bad

(b) Comparative testing (MM* model)

Figure 1. Reflective and comparative testing abstractions



B. Parhami, N. Wu and S. Tao: Taxonomy and Overview of Distributed Malfunction Diagnosis ... (Regular Paper) 26

Sick
Healthy

(a) A highly sensitive test

Sick
Healthy

(b) A highly specific test

Figure 2. Diagnostic sensitivity and specificity

6. Unrestricted VS. Conditional

Malfunction Patterns

If the subset of m malfunctioning units can be arbitrary, the
diagnosis scheme is unrestricted. This is the default
assumption for any diagnosis scheme in which no restriction
is mentioned.

The main kind of conditional diagnosis schemes studied
thus far is when the m malfunctions are restricted not to
include all neighbors of any node. When all neighbors of a
node are malfunctioning, that node becomes isolated from
healthy units and thus cannot be correctly diagnosed. This
isolation poses a problem for the diagnosis algorithms,
effectively restricting t to at most d -1, where d is the
minimum node degree, when no false positives are allowed.
Recently, a stronger restriction, requiring each node to have
at least g good neighbors, has been proposed. The g-good-
neighbor diagnosability schemes requires each node to have
at least g good neighbors, in which case t-diagnosability for
larger values of t can be ensured. The previously-studied
“conditional” diagnosability corresponds to the special
1-good-neighbor case of this more general scheme.

Unrestricted and conditional diagnosabilities can be
combined in many different ways. For example, it is possible
to prove that certain classes of networks are (t + a)-
diagnosable, except when the pattern of malfunctions
belongs to some undesirable class, in which case they
become t-diagnosable. In other words, the absence of the
undesirable malfunction patterns increases the diagnosability
extent by a. An example of such combining is “strong
diagnosability,” where the level of diagnosability rises from t
tot+ 1 (that is, a = 1 in the formulation above) when every
node possesses at least one healthy neighbor.

Again, more general conditions can be entertained. In a
cluster-based hierarchical network, one may postulate that
not all nodes in any given cluster be malfunctioning, that
each cluster remain connected internally, or that at least one
inter-cluster connection remain intact between any two
clusters. The possibilities are quite varied. In general, a
restriction on the malfunction pattern leads to some increase
in the diagnosability extent.

7. Analysis vs. Synthesis Considerations

Diagnosability problems to be solved are of two types:
analyzing diagnosabilities of known networks, and
synthesizing interconnection architectures with desired
diagnosability properties.

Analysis problem 1: Given a syndrome vector S[1:q],
identify a set M that includes the requisite number of

malfunctioning nodes (m, 1, or some other number,
depending on the model used and the diagnostic strategy).
Note that the suspected malfunction set M may be allowed to
include false positives or prohibited from signaling false
negatives.

In the simplest case, polynomial-time algorithms exist
that take the vector S[1:q] and the testing graph as input and
produce the set M when the set is restricted to contain all and
only the m malfunctioning units. Efficient algorithms exist
for certain other cases as well, though the space of
possibilities has not been exhausted at this writing.

Analysis problem 2: Given a testing structure (testing
graph of PMC, 3-groupings for MM*), identify the extent of
diagnosability in the case of one-step, multi-step (including
sequential), and other strategies for various unrestricted and
conditional patterns of malfunctions.

Much work has been done in this area, including the
derivation of diagnosability results for a wide array of known
and newly proposed interconnection networks. The networks
studied include meshes, tori [1], hypercubes [3] [11] [12]
[14] [26] (or its generalizations [34] [36] [38]), k-ary n-cubes
[1], numerous hypercube variants [16], cube-connected
cycles, OTIS or swapped networks (including the biswapped
variant), Cartesian product networks [1], and many other
regular [5] [6] [18] [35] and hierarchical (multi-level)
networks.

Synthesis problem: Given a desired diagnosability extent,
the number of nodes, and other physical attributes, derive a
testing graph that is optimal in some respect.

The synthesis problem is easy when only diagnosability
is of interest, but becomes very challenging (like most
combinatorial optimization problems) when other criteria are
included.

8. How the Taxonomy Is Used

Our taxonomy essentially entails the mentioning of each of
the four parameters t, T,, F,, and F, in the form of t/Ty/F,/F,-
diagnosability. These parameters also contain information
about whether the scheme is one-step or multi-step
(including sequential) and whether it is precise or
pessimistic. This method of specifying a diagnostic scheme,
including incorporation of the maximum number of false
negatives as the last of four parameters is new. Existing
diagnosis schemes do not allow false negatives (the
corresponding number is 0 in our model), but, as mentioned
in Section 5, there is no fundamental reason to exclude them
forever. In the examples that follow, F, = 0 and is thus not
discussed explicitly.

The existing models correspond to the following scheme
with our terminology:
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(a) Precise 1-step 5-diagnosability

(b) Pessimistic 1-step 5-diagnosability, M| =t

(c) Sequential 5-diagnosability

Figure 3. Some commonly studied diagnosis strategies and outcomes

(a) Imprecise 1-step 5-diagnosability

(b) Pessimistic 5-diagnosability, |M| > t

(c) Multi-step 5-diagnosability

Figure 4. Examples of diagnosis strategies allowing false negatives and |[M| possibly going beyond t.

Precise = No false positives allowed, that is, F, = 0

Pessimistic = Up to t — m or s — m (with s > t) false
positives allowed

Example 1 (5/5/0/0-diangnosability): Up to 5
malfunctions are diagnosed with no false positives. This
essentially specifies precise one-step 5-diagnosability with
existing terminology (see figure 3a).

Example 2 (5/5/1/0-diagnosability): Up to 5 malfunctions
are diagnosed, with the malfunctioning units identified to
within a set of 5 units (up to 5 true positives and up to 1 false
positive; see figure 3b).

Example 3 (5/1/0/0-disgnosability): One malfunction is
diagnosed in each step, with no false positives. This
corresponds to sequential 5-diagnosability (Figure 3c).

Example 4 (5/2/0/0-diagnosability): Up to 5 malfunctions
are diagnosed, with the bad units identified in 3 steps (at least
2 true positives and no false negative at each step).

And here are a few examples, not yet studied, that entail
false negatives.

Example 5 (5/5/2/2-diagnosability): Up to 5 malfunctions
are allowed, with three of the malfunctioning units identified
in one step to within a set of 5 units (at least 3 true positives
and up to 2 false negatives; see figure 4a).

Example 6 (5/6/1/0-diagnosability): Up to 5 malfunctions
are diagnosed, with the malfunctioning units identified to
within a set of 6 units (up to one false positive; see
figure 4b).

Example 7 (5/2/1/0-diagnosability): Up to 5 malfunctions
are diagnosed in 3 steps, each step identifying 2 true
positives and up to 1 false positive (Figure 4c).

9. Partial Survey of Prior Work

The references at the end of our paper contain a
representative sample of work in the field of distributed
malfunction diagnosis, both early work laying the
foundations and more recent work developed within a mature
field. It would be instructive to categorize these references
with regard to our taxonomy. Tables 1 and 2 show the results
of classification for reflective (PMC) and comparative
(MM*) models of malfunction diagnosis.

Several patterns emerge from the survey of representative
work reflected in tables 1 and 2. First, the synthesis problem
has not received much attention, particularly within the
comparative diagnosis model. Second, multi-step diagnosis,
which is often a more difficult problem from a theoretical
standpoint, has not been the focus of much work. Studies on
single-step diagnosis are dominant, particularly with
comparative methods. High-specificity diagnosis has
received more attention than low-specificity versions.

It is also evident from tables 1 and 2 that the sensitivity of
diagnosis has been completely ignored (this is why our tables
do not include columns for this attribute).
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Table 1. Categorization of prior work on reflective malfunction diagnosis (PMC model)

Reference Paper’s Aim Steps Specificity Qualification
Citation Analysis / Synthesis | Single / Multiple | High/Low | Unrestricted / Conditional

[1] Araki & Shibata 2000 Analysis Single Both Unrestricted
[2] Araki & Shibata 2003 Analysis Multiple High Unrestricted
[3] Armstrong & Gray 1981 Analysis Single High Unrestricted
[4] Barsi et al. 1976 Synthesis Both High Unrestricted

[5] G. Y. Chang et al. 2005 Analysis Single Both Unrestricted
[6] G. Y. Chang 2010 Analysis Multiple High Unrestricted

[7] N. W. Chang & Hsieh 2012 Analysis Single High Conditional
[8] Hakimi & Amin 1974 Analysis Single High Unrestricted
[13] Karunathini & Friedman 1979 Analysis Both Low Unrestricted
[14] Kavianpour & Kim 1991 Analysis Single Low Unrestricted
[15] Lai et al. 2005 Analysis Single High Conditional

[16] Lin et al. 2014 Analysis Single High Conditional

[17] Lin et al. 2015 Analysis Single High Conditional

[18] Lin et al. 2016 Analysis Single Low Unrestricted

[26] Peng et al. 2012 Analysis Single High Conditional
[27] Preparata et al. 1967 Analysis Both High Unrestricted
[30] Somani et al. 1987 Synthesis Single High Unrestricted
[31] Somani et al. 1996 Analysis Single Low Unrestricted
[32] Tsai & Chen 2013 Analysis Single Both Unrestricted
[34] M. Xu et al. 2009 Analysis Single High Conditional

[35] L. Xu et al 2016 Analysis Single Both Both
[38] Zhu 2008 Analysis Single High Conditional
[39] Zhu et al. 2014 Analysis Single High Both

Table 2. Categorization of prior work on comparative malfunction diagnosis (MM* model)

Reference Paper’s Aim Steps Specificity Qualification
Citation Analysis / Synthesis | Single / Multiple | High/Low | Unrestricted / Conditional
[5] G. Y. Chang et al. 2005 Analysis Single Both Unrestricted
[10] Hong & Hsieh 2012 Analysis Single High Both
[11] Hsieh & Kao 2013 Analysis Single High Conditional
[12] Hsu et al. 2009 Analysis Single High Conditional
[17] Lin et al. 2015 Analysis Single High Conditional
[19] Maeng & Malek 1981 Analysis Single High Unrestricted
[20] Malek 1980 Analysis Single High Unrestricted
[29] Sengupta & Dabbura 1992 Analysis Single High Unrestricted
[36] Yang 2013 Analysis Single High Conditional
[39] Zhu et al. 2014 Analysis Single High Both
[40] Ziwich & Duarte 2016 Analysis Single High Unrestricted
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Other areas where there is no work yet include
hierarchical or cluster-based diagnosis.  Numerous
hierarchical or multi-level interconnection schemes have
been proposed based on hypercube [9] and its many variants
[21] [28]. There are also interesting hierarchical
interconnection architectures that are grown from arbitrary
basis topologies. A prime example is the class of swapped or
OTIS networks [22] [37], and their symmetric variants
known as biswapped networks [33], which have been the
subjects of very limited diagnosability studies [32].

10. Conclusion and Future Work

The nomenclature and taxonomy introduced in this paper
puts the field of malfunction diagnosis into a much-needed
order, allowing a uniform formulation of the problems
already explored and the exposure of additional possibilities
not yet investigated. The various diagnostic strategies are
expressed in terms of the four parameters t, T, F,, and F,
that collectively specify not only the extent of diagnosability
but also whether the scheme is 1-step, multi-step, precise, or
pessimistic in the prevailing terminology.

The idea of allowing false positives in the diagnostic
scheme isn’t new, but the explication of the number of false
positives allowed as a model parameter is helpful and
removes some of the ambiguities in the current
nomenclature. False positives aren’t as undesirable as they
once were, given that the steep reduction in hardware cost
makes system down time considerations much more
important than the loss of a healthy unit. In fact, a unit falsely
identified as malfunctioning may only be lost temporarily,
because off-line testing can verify that the unit is in fact
good, allowing it to return to the spare supply. False
negatives, on the other hand are new to our model. The
presence of some malfunctioning units may be tolerated by a
system’s built-in malfunction tolerance, which may include
replicated computation with voting or data replication with
primary and back-up nodes.

We plan to work on further refining this taxonomy as we
discover diagnostic schemes that it does not properly cover
or see the need for additional expressive power as system
complexity and diagnostic strategies evolve.

Appendix

List of Symbols

a Additional diagnosability beyond t under special
circumstances

D Diagnosis binary vector of length n

d Minimum node degree in G

E Set of edges of the testing graph, with |E| > g

Fn Number of false negatives allowed by the testing
strategy

Fp Number of false positives allowed by the testing
strategy

G The testing directed graph, G = (V, E)

g Minimum number of good neighbors for each node
assumed in some conditional models

h Minimum number of malfunctioning units (true

positives) included in M
K Complete graph of n nodes

k Bound on the number of false positives in previous
terminology (our Fy)

M Set of purportedly malfunctioning units returned by
the diagnosis algorithm; M| =T, + F,

m Actual number of malfunctioning units, m <t

n Number of nodes in the network or testing graph
(length of the binary diagnosis vector D[1:n])

q Number of tests performed in one step (length of the
binary syndrome vector S[1:q])

S Syndrome binary vector

S Bound on the size of the returned set M, with s > t

t Upper bound on the number of malfunctioning
nodes

Tp Number of true positives (correctly diagnosed
malfunctioning units) by the testing strategy

u Graph node doing the testing or coordination

\Y Set of system nodes, with [V|=n

% Graph node under test by u

w Second graph node under test by u in the

comparative model
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