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Abstract—The purpose of this work is to study trade-offs
between efficiency and precision for the general virtual network
embedding (VNE) problem. To narrow the gap between solutions
contributed by previous heuristic schemes and the optimal
solution, and to ease the unacceptable computational burden of
optimization approaches to VNE for large-scale networks, we
propose the use of graph eigenspace notions for node mapping,
that is, for associating virtual nodes (VNs) to substrate nodes
(SNs). We also contribute an inexact algorithm which projects
all SNs to a 2D eigenspace for generating a more efficient
node mapping. There are some similarities between our method
and numerous graph-matching strategies emerging in machine
learning fields, but there are also some differences between the
two, because the VNE problem is not strictly mathematical with
respect to the mapping it seeks. Thus, we provide the relevant
theoretical evidence to guarantee the solution quality of our
scheme compared with a couple of previous VNE proposals.
Simulation results demonstrate that our schemes can reach
a better trade-off point regarding runtime (that approaches
the overhead of implementing eigendecomposition of a general
matrix) and embedding quality metrics. Besides, our inexact
algorithm using 2D projection exhibits an improvement in quality
over previous node-rank-based methods.

Index Terms—Virtual network embedding, Distance matrix,
Eigenspace decomposition.

I. INTRODUCTION

NETWORK virtualization constitutes a promising technol-

ogy that separates the traditional network-level functions

of currently encapsulated Internet architecture from Internet

service providers (ISPs), by splitting the function offered

by ISPs into parts of infrastructure and service providers.

Regardless of the business models used in network virtual-

ization, ISPs equipped with virtualization can be abstracted

as integration of infrastructure providers (InPs) in charge of

disposing the physical network resources and virtual network

providers (VNPs) to provision virtual resources from InPs in

order to respond to virtual network requests (VNR) from users.

This flexible separation allows users to share a virtualized

network environment while ignoring the concrete underlying

implementation and resource scheduling. Obviously, there

should be an intermediate module between VNP and InPs

for mapping network resources requested to physical net-

work entities such that ISPs can sufficiently utilize network
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resources to provide user-customized network services. This

module has been generally referred to as virtual network

embedding (VNE), mapping, or provisioning [1]. Figure 1

offers an intuitive view of the two-level architectural model

for virtual network embedding just described.

As a central part of network virtualization, virtual network

embedding has attracted much attention from the network

research community. The significant volume of work has led

to the emergence of a variety of representation forms. For

our purposes, we categorize current VNE approaches into two

groups: mathematical optimization-based representations(such

as those of [2], [3], [4]), and graph models favored by a

majority of heuristic strategies (e.g., [5], [6], [1], [7]). VNE

problems can be categorized as static or dynamic, according

to whether VN is configured for its lifetime. More detail can

be found in a recently published survey [1]. Table I provides

a list of key abbreviations used.

A. VNE Solutions Based on Mathematical Optimization

Optimization-based VNE proposals formulate VNE as a

problem of combinational optimization, then solve it by lin-

ear or integer programming to discover an exact solution.

Chowdhury et al. [3] propose to handle the correlation between

node and link embedding phases. They extend the substrate

network to an augmented substrate graph in which they create

a meta node for each virtual node, and each meta node

is connected to all substrate nodes in a cluster containing

the substrate nodes within some distance to the virtual node

corresponding to this meta node, by a meta edge with infinite

bandwidth. Then, the VN embedding problem is formulated as

a mixed-integer program via substrate network augmentation,

and two online VN embedding algorithms, deterministic D-

ViNE and randomized R-ViNE, are devised for solving the

linear program with relaxed integer constraints.

TABLE I
KEY ABBREVIATIONS

InP Infrastructure Provider

ISP Internet Service Provider

SN Substrate Network

VN Virtual Network

VNE Virtual Network Embedding

VNP Virtual Network Provider

VNR Virtual Network Request

Jarray [2] proposes a decomposition approach termed A-

JNLE CG to realize one-shot node and link mapping, and to

cause competition among VN users. The scheme’s main idea

is to decompose an overall VNE problem into a main problem
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with constraints on the availability of substrate resources

and a pricing problem with constraints on the embedding

of VN requests. A-JNLE CG relies on column generation

technology (CG), which appends an additional column to the

constraint matrix of the primary object. Furthermore, multiple

VN requests can be processed through iterative generation of

columns so as to reduce blocking among them. In addition,

competition is stimulated among multiple VNRs through a

periodical auction to allocate substrate resources.

The optimization objectives contained in most known VNE

schemes involve parameters of particular interest to users and

VNPs, such as maximal provider revenue and acceptance ratio,

and minimal embedding cost (see, e.g., [2], [3]). Particu-

larly, the acceptance ratio of an VNE algorithm indicates the

proportion of virtual network requests successfully accepted

by implementing that algorithm over a period T , and can

be defined by
∑T

t=0 na/
∑T

t=0 nr , where na is the number of

accepted VN requests and nr is the number of total VN

requests. There are also proposals with concerns for other

factors. For instance, a minimization model of energy-efficient

virtual node embedding was constructed and solved to yield

the minimal product of energy [4].

B. VNE Solutions Based on Topological Correspondence

Finding the optimal VNE solution via optimization methods

leads to high computational complexity, as the problem is NP-

hard. This becomes evident when a general graph embedding

with constraints is modeled as the multiway separator problem

assigning virtual nodes to the substrate nodes meeting con-

straints of the node capacities and link bandwidths. It is also

apparent when we treat VNE as seeking a p-homomorphism

between a graph H and a subgraph of other graph G. Defining

p-homomorphism formally, [8] et al. have proven that it cannot

be computed in polynomial time.

Given the NP-hardness of VNE, much research has dealt

with designing heuristic algorithms to solve it [5], [6], [1],

[7].These algorithms usually achieve a near-optimal solution,

i.e.,their results fall between approximate and optimal solu-

tions. Yu et al. [5] simplify virtual link embedding by relaxing

the problem solution space. In this approach, substrate network

splits substrate path, associating a virtual link to subpaths,

which can be periodically migrated to promote the utilization

of substrate resource and ultimately obtain a good solution.

Algorithmically, they aim for maximal resource utilization in

the substrate network. Hence the virtual nodes are greedily

mapped to the substrate nodes with the maximum amount of

substrate resources so as to minimize the use of the resources

at the nodes with less available resources. They then map

virtual links to shortest paths spanning the substrate nodes

mapped to its two incident nodes in the substrate network.

Topology-aware VNE means that topological features of VN

and SN are taken into account in discovering the correspon-

dence of nodes and links in the two networks. Cui [9] proposes

a VNE algorithm based on topology convergence degree, using

maximal topology convergence degree to ensure that proximity

in VNE is maintained when a VN is mapped to SN. Balanced

ratio on links is defined for load balancing on SN.

The correspondence between VN and SN nodes is deemed

more efficient if nodes of both networks can be ranked accord-

ing to some measure that reflects their topological features.

Cheng et al. [7] consider topological properties of SN nodes

as important VNE parameters in the node-mapping stage.

Inspired by Google’s PageRank algorithm, they rank all virtual

and substrate nodes according to their relative importance. The

relative importance α of each node is given by α = α0+αj+αf ,

where α0 is the product of node CPU cycle and the sum of

bandwidths on outgoing links, αj (jump probability) represents

the weighted importance of all reachable nodes, and αf
(forward probability) estimates the weighted importance of

out-neighbors. Then, virtual and substrate nodes are sorted

separately in decreasing order of node ranks. Consequently,

higher-ranked virtual nodes have priority for being mapped to

higher-ranked substrate nodes. Mapping of virtual links is done

by shortest-path algorithm if there is no path splitting or by

multi-commodity flow algorithm if path splitting is permitted.

Node association was added to the VNE algorithm to improve

efficiency and acceptance ratio.

Analogous to [7], but ranking nodes in different way,

Zhang and Gao [10] apply a topological potential function

to measure and rank the topology importance of SN nodes,

realized by an algorithm called locality-aware node topolog-

ical potential ranking (LNTPR). They consider the mutual

influence between a VN node and its objective nodes, and

incorporate the concept of locality awareness into LNTPR

to get an improved topology-aware VNE algorithm named

locality-influenced choice of node (LICN).

Lischka et al. [6] offer a VNE algorithm by detecting

subgraph isomorphism between topologies of VN and SN to

discover the correspondence between both nodes and links in

the same stage. Evaluations show that VNE based on subgraph

isomorphism detection is particularly efficient compared to the

two-stage approach for large VNs with high resource demands.

Another way to find the topological correspondence of

nodes and links between VN and SN is through pattern

matching. Proposals based on graph clustering rely mostly

on graph pattern matching to discover the node mapping.[11]

treats VN and SN as a constrained graph and weighted graph,

respectively, with weights on nodes and edges indicating their

capacities. A variety of VNE constraints can be described

in this model, so as to formulate VNE as an optimization

problem with a mapping cost function. Adhering to this model,

it is approximation-hard to solve the intractable optimization

problems for various mapping constraints.

C. Other Approaches to the VNE Problem

In multi-domain or cross-domain virtual network embed-

ding (MVNE) problem, SN resources may be configured and

provisioned from multiple InPs. MVNE can be decomposed

into a set of single-domain VNEs. Esposito et al. [12]] institute

a general consensus-based auction mechanism to tackle the

distributed VNE problem. Their algorithm exchanges bids

information of substrate nodes with their neighbors to discover

the available resources. Then it iterates over bidding, and

reaches consensus when a solution is found. Distributed VNE
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policies are developing along with multi-domain approaches,

although they are not essential to the latter. Beck [13] de-

signs a distributed and parallel framework called DPVNE to

implement a VNE, in which several VNE algorithms are run

to distributively map VNs into SN, so that the single point

pressure in SN is reduced and greater efficiency is achieved.

VNE strategies minimizing energy cost are critical for InPs,

since energy consumption accounts for more than half of the

total cost of the substrate networks. Multi-objective integer

linear programming has been applied to accommodate as many

VNRs as possible simultaneously, so as to maximize the

revenue of InPs, and to consolidate VNs into the minimum

number of substrate nodes to minimize the energy consump-

tion [14]. Subsequently, VNE solution is obtained via an

algorithm based on artificial immune system.

Zhang et al. [15] contribute ORS, an opportunistic resource-

sharing scheme to deal with time-dependent VNRs. This

scheme decouples the variable section from required resources,

and expresses the time-slot assignment as an optimization

process analogous to the well-known bin packing problem.

Two solutions based on the notion of first-fit were proposed

to allocate time slot, which enables mapping the bandwidth

of virtual links to corresponding time slots so as to realize

multiple VNs while sharing substrate resources.

D. Outline of Our VNE Approach

It is known that a class of combinatorial optimization

problems, such as node ranking and pattern matching, can

be simplified with graph eigenspace techniques, on account

of calculating the eigenpairs of a graph consuming far less

time than advanced combinatorial search procedures in large

objective spaces. The motivation behind advocating eigenspace

techniques to solve graph-representation applications arises

from the fact that the magnitude and distribution of eigenvalues

and eigenvectors of a graph substantially reflect its structural

and geometric properties. The most successful application of

the graph eigenspace paradigm might be Google’s PageRank,

which exploits eigenvectors belonging to the largest eigen-

values of the adjacency matrix of the graph indicating links

between web pages returned from key search to define a

certain desirable ordering of selected web pages.

Subsequently, analogous methods were widely applied in

multiple domains to discover a hidden goal, usually expressed

as subgraphs in a given graph pattern. This approach is

known as subgraph matching [16] or network alignment [17].

Knossow [16] formulates inexact large and sparse graph

matching with decomposition and dimensionality reduction of

the graph eigenspace. Singh [17] apply network alignment for

identifying possible mappings between the nodes representing

the proteins of protein networks to understand how proteins in

the cell interact. This work assumes that two nodes should be

associated with high possibility if their respective neighbors

are well matched, with node matching possibility expressed as

the accumulation of those of its neighbors. If we treat VNE

as the problem of node assignment or matching between two

graphs, schemes emulating PageRank can be exploited for

dealing with virtual network embedding problem. This has

been implemented in [7], in a manner analogous to the node

ranking scheme of [17].

Our approach relies heavily on graph eigenspace tech-

niques to associate virtual nodes to substrate nodes. We

also contribute an inexact algorithm to rank these nodes

for more efficient mapping. There is significant difference

between our method and previously known graph matching

algorithms, because the VNE problem requires node mapping

(a correspondence between nodes), but a link in VN can be

mapped to a path in SN, this being a one-to-multiple relation

that is not strictly a mathematically defined “mapping”. A

direct application of known methods based on spectral graph

theory matching for node mapping might lead to a poor VNR

acceptance ratio. Whereas, our algorithm for inexact node

ranking resembles that of [7], our algorithm is not iterative.

This will avoid the process of random walk converging to the

stationary distribution.

Heuristic VNE algorithms (or other assignment and schedul-

ing strategies) are judged by how close they come to optimal

solutions. It is often the case for heuristic schemes that the

closeness of results to optimal solutions is known only in

a statistical sense, is established via unsatisfactorily loose

bounds, or is judged by simulation results. This is problematic,

as there may be worst-case problem instances that deviate

significantly from the expected behavior. A key advantage of

the scheme we present in this paper compared with previously

known heuristic VNE methods is that the eigenspace-based

approach can provide theoretical guarantees for the solution

quality.

II. VIRTUAL NETWORK EMBEDDING FORMULATION

For the sake of ready reference, we list the mathematical

notation used in our formulation of VNE in Table II.

TABLE II
MATHEMATICAL NOTATION

G Substrate network graph

H Virtual network graph

f (h) → g Virtual network mapping from virtual entity h
to resource entity g, entity refers to node or link.

c(v)/c(l) Constraints on network node v or link l

c(g → h) The resource in entity g mapped to h

σ( f )/r( f ) Cost/revenue of mapping f

p(u, v) Shortest path between node u and v

E(p) Set of links on path p

AX/WX Standard/weighted adjacency matrix of graph X

DX Distance matrix of graph X

λi (X)/qi (X) Eigenvalues / eigenvectors of matrix X

QX Matrix with columns being eigenvectors of X

ΛX Diagonal matrix with eigenvalues of X as diagonal
entities

X(i : j) Columns submatrix of X with subscripts ranging from
i to j

A. Substrate Network and Virtual Network Request

Substrate network and virtual networks can be abstracted as

graphs G = (V(G),E(G)) and H = (V(H),E(H)), respectively,

where V(•) denotes the set of nodes and E(•) the set of links

in the graph of interest. If the existence of r types of node
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Fig. 1. A two-level example architectural model for virtual network embed-
ding, with the correspondence between virtual edge and physical edge for InP2
omitted, numbers near circles indicate switching capacity of routing/switching
devices, and the ones near the links represent transmission bandwidth, in
Gbps. Virtual-to-physical node correspondence is marked by distinct colors,
and edge correspondence is marked by distinct dotted and dashed lines.

or link constraints is contemplated, where “constraint” refers

to resource or demand attributes, depending on whether the

described object is substrate or virtual network, respectively,

then each entity x should be identified as an r-tuple c(x) =

(c1(x), c2(x), . . ., cr(x)), where the functions ci(x) represent the

magnitude of the constraint at network entity x.

As an example, Fig.1a shows an example virtual network

consisting of nodes v1, v2, v3 and links v1v2, v1v3, which is

to be embedded to a substrate network with nodes u1,u2,u3

and links u1u2,u1u3,u1u4,u4u5 and u4u6. The physical node u1

has resource 16 and the virtual node v1 has demand 16. The

substrate resource in node u1 and the virtual demand in node

v1 can be expressed as c(u1)=16 and c(v1) = 16, respectively.

Likewise, the physical link u1u2 has bandwidth resource 2 and

the virtual link v1v2 has bandwidth demand 2. The substrate

resource on link u1u2 and the virtual demand on link v1v2 can

be denoted as c(u1u2) = 4 and c(v1v2) = 2, respectively.

B. Virtual Network Embedding

The problem of embedding H into G can be modelled as

finding a mapping f : H → G, consisting of node and link

mappings, described as:

Node Mapping: each virtual node vh ∈ V(H) is embedded

to a different node vg ∈ V(G) by f (vh) = vg which defines

the virtual node mapping from V(H) to V(G);

Link mappings: each virtual link uhvh ∈ E(H) in a virtual

network is embedded to a substrate path p( f (uh), f (vh)) by

f (uhvh) = p( f (uh), f (vh)) which defines the virtual link

mapping from E(H) to E(G).

The mapping f from H to G must satisfy the constraint

conditions: ∀h ∈ V(H) or h ∈ E(H), c(h) ≤ c( f (h)).

Fig.1b shows that a virtual network has been embedded to

a substrate network by the mapping f1 : H → G, through

which the virtual nodes v1 and v2 have been embedded to two

physical nodes u1 and u2 successfully, without violating the

constrains c(v1) = c(u1) = 16 and c(v2) = c(u2) = 4. However,

virtual nodes v3 cannot initially be embedded to physical nodes

u3 initially due to the resource mismatch c(v3) = 32 > c(u3) =

8. Therefore, another candidate node u5 has been chosen for

embedding v3 because it does satisfy the resource constraint

c(v3) = c(u5) = 32. Subsequently, link mappings have been

executed as f1(v1v2) = u1u2, f1(v1v3) = u1u4u5 successfully

due to c(v1v2) = c(u1u2) = 4 and two links u1u4, u4u5 on path

u1u4u5 have bandwidth constraints c(u1u4) = 16 and c(u4u5) =

4 that meet the bandwidth demands c(v1v3) = 4. Consequently,

node and link resources in G have been occupied partially due

to embedding of H; this can be readily observed by noting that

c(u1) = c(u2) = c(u5) = c(u4u5) = 0 and that c(u1u4) has been

reduced from 16 to 12.

A concern can be raised from the above example depicted

in Fig.1. It is quite obvious that there exist multiple potential

mappings f for embedding a virtual network H and it is not

clear which one is optimal with respect to a user’s objectives?

Such a question is what motivates an optimization formulation

for describing the VNE problem defined previously.

As described in previously cited VNE references [7], [3],

[1], [2], [6], [5], the VNE objective is to devise the embedding

f so as to utilize SN resources as fully as possible. Let

z denote the optimization objective, then the VNE problem

can be characterized as solving the following optimization

problem:

arg min
f
{z( f )|z( f ) =

∑

lh ∈E(H )

∑

lg ∈E( f (lh ))

z(c(lg))

+

∑

vh ∈V (H )

∑

vg ∈ f (vh )

z(c(vg → vh))}. (1)

Previous works [7], [3], [1], [2], [6], [5], using f to embed

a virtual network H to substrate network G, are driven mainly

by two optimization criteria: revenue r( f ) and embedding cost

σ( f ). These two objectives can be formulated as

r( f ) =
∑

vh ∈V (H )

c(vh) +
∑

lh ∈E(H )

c(lh), (2)

σ( f ) =
∑

vh ∈V (H )

c(vh) +
∑

lh ∈E(H )

∑

lg ∈E( f (lh ))

c(lg → lh). (3)

III. EIGENSPACE-BASED SCHEMES

We are motivated to use graph eigenspace technology to

solve the VNE problem in light of the rising interest in the

application of graph eigenspace in handling combinatorial

optimization problems. One of ways of applying eigenvalues

to combinatorial optimization is to use the eigenvalues to

transform combinatorial optimization problems to correspond-

ing continuous optimization problems. A relevant survey by

B. Mohar [19] has revealed that the graph eigenspace based

approach leads to the solution of some problems with excellent
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tradeoff in quality and efficiency, the two often-used compet-

ing criteria in combinatorial optimization. For example Finke

et al. [22] used the eigenvalue approach in the study of the

quadratic assignment and graph partition problems.

In the rest of this section, we first present a coarse-grained

optimization formula used in the eigenspace-based scheme

for embedding static and dynamic VNs. Then, we propose

a family of algorithms, involving multiple relevant distance

matrices, based on this formula. We begin by transforming

the optimization formulation for VNE problem to a form of

graph path distance matrix, and describe the process of solving

it. Then, we improve the quality of solution via the alignment

of eigenspaces of virtual and substrate networks. Finally, we

consider several generalized distance measures that lead to a

family of VNE algorithms called DMEA-X (X standing for

the distance matrix used in algorithm). Also, for computa-

tionally efficient VNE, an inexact algorithm called distance

matrix eigenspace alignment with 2D projection (DMEA-2D)

is devised.

A. Connection of the VNE Optimization Formula to the Un-

weighted Distance Matrix of Substrate Network

We first build a connection between the VNE optimization

formula and the unweighted distance matrix of substrate

network such that the VNE solutions are presented in terms

of eigenpairs of this matrix.We denote the standard adjacency

matrix of graph X as AX , and the weighted one as WX

representing the weights distribution of entities on graph X .

Both AX and WX can model the communication topology of

graph X . We also need a set of distance metrics in matrix form

deduced from AX or WX , and denote them as DX in either

case, to formulate the VNE process. The substrate network

graph G = (V(G),E(G)) with its standard adjacency matrix

AG is defined by:

if (ug, vg) ∈ E(G) then AG(ug, vg) = 1,else AG(ug, vg) = 0.

The virtual network graph H = (V(H),E(H)) is represented by

its weighted adjacency matrix WH , with entities defined by:

if (uh, vh) ∈ E(H) then WH (uh, vh) = c(uhvh), else

WH (uh, vh) = 0.

To address the VNE optimization formulation, the all-pairs

shortest distance (APSD) matrix should be computed a priori

from the standard adjacency matrix AG . Let DG denote the all-

pairs unweighted shortest path matrix. Matrix DG has nonzero

entries DG(ug, vg) if and only if there is a connected path

p(ug, vg) so that DG(ug, vg) is equal to the length of un-

weighted shortest path between ug and vg. Thus, the (ug, vg)-

entry of matrix DG is defined as:

DG(ug, vg) = |p(ug, vg)|.

Shifting attention to the generic VNE optimization formulated

in (1), we can write the optimization expression (1) as

arg minf {zv + zl},

by separating the optimization into two parts:

zv =
∑

vh ∈V (H )

∑

vg ∈ f (v)

z(c(vg → vh)), and

zl =
∑

lh ∈E(H )

∑

lg ∈E( f (lh ))

z(c(lg)).

Since vh can only be mapped to one node vg, vg must assign

minimum resource c(vh) to virtual node vh. Thus, we have

zv =
∑

vh ∈V (H ) c(vh), which means zv is independent of the

mapping f . So, the optimization objective can be formulated

as:

arg min
f
{z( f )|z( f ) =

∑

lh ∈E(H )

∑

lg ∈E( f (lh ))

z(c(lg))}. (4)

If the constraint c(lh) on a virtual link lh = (uh, vh) is afforded

by a substrate path p( f (uh), f (vh)), then each link lying on

p( f (uh), f (vh)) will contribute a resource quantity c(lh) for

occupying the virtual link lh . This means that

z( f ) =
∑

lh ∈E(H )

∑

lg ∈E( f (lh ))

z(c(lg)) =
∑

lh ∈E(H )

∑

lg ∈E( f (lh ))

c(lg → lh)

=

∑

lh ∈E(H )

| f (lh)|c(lh) =
∑

lh ∈E(H )

|E(p( f (uh), f (vh)))|c(lh),

(5)

where | f (lh)| denotes the number of links on the path f (lh).

Equation (5) can be further expressed as

z( f ) = (1/2)
∑

uh ∈V (H )

∑

vh∼uh

DG( f (uh), f (vh))c((uh, vh))

= (1/2)tr(DG( f (H), f (H))WH),

(6)

where tr(X) represents the trace of matrix X and

D( f (H), f (H)) is the submatrix of DG whose rows and

columns are indexed by f (H) defined as f (H) = { f (vh)|vh ∈

E(H)}. Without loss of generality, we assume that the per-

mutation matrix P permutes the m rows DG( f (H), :) of

DG but keeps the other rows unchanged, and it permutes

the columns likewise. Then, the virtual network mapping

f can be connected to a permutation matrix P through

DG( f (H), f (H)) = [PDGPT ]1:m,

where X1:m is the principal submatrix ranging from 1 to m of

X . Combining with (6), we obtain an optimization formula-

tion extremely close to the well-known quadratic assignment

problem (QAP) as follows:

arg min
P

{z(P)|z(P) = (1/2)tr([PDGPT ]1:mWH )}. (7)

If the eigenvalues of [PDGPT ]1..m and WH , shown in increas-

ing order are λ1(DG), ..., λm(DG) and λ1(WH), ..., λm(WH ),

respectively, the optimization above can be bounded as

tr([PDGPT ]1..mWH ) ≥
∑

1≤i≤m

λi(WH )λn−i+1(DG) (8)

given the Hoffman-Wielandt inequality, which asserts that:

tr(Y(PXPT )) ≥
∑

1≤i≤n

λi(Y )λn−i+1(X). (9)

For symmetric DG and WH , the lower bound can be realized

by P = QGQT
H

(see [18], chapter VI, pp. 152-181), where QG

and QH are matrices consisting of orthogonal eigenvectors

of DG and WH , respectively. Note that our inequality (8)

is slightly different from (9). Thus, we need the following

theorem to guarantee that there exists an analog of P = QGQT
H

as the closed-form solution of our proposed VNE optimization

described in model (7). Let X(i: j) mark a submatrix consisting
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of columns from X by selecting ascending i ≤ j/descending

i ≥ j subscripts from i to j, namely, X(i : j) = [xi, xi−1, . . . , xj ]

when i ≥ j and X(i : j) = [xi, xi+1, . . ., xj] when i ≤ j.

Theorem 1: If (λi(DG), qi(DG)) (1 ≤ i ≤ n) and (λj(WH ),

qj (WH )) (1 ≤ j ≤ m) are eigenpairs of matrices DG and

WH in increasing eigenvalues order, respectively, the VNE

optimization formulation

min
P

{tr([PDGPT ]1:mWH )} (10)

reaches the lower bound
∑

1≤i≤m λi(WH )λn−i+1(DG) when

P = [QG(n : n − m + 1)QT
H
,QG(n − m : 1)],

where QG(i : j)(i ≥ j) = [qi(DG),qi−1(DG), . . .,qi−j+1(DG)],

and QH = [q1(WH ),q2(WH ), . . .,qm(WH )].

Proof: Firstly, to apply inequality (9), we transform

optimization form (10) to the following blocked form:

tr([PDGPT ]1:mWH ) = tr

([
(PT DGP)1..m ∗12

∗21 ∗22

] [
WH 0

0 0

])

= tr

(
PT DGP

[
WH 0

0 0

] )
, (11)

where ”∗ij” means a matrix block located in position

(i, j) without regard to its actual entry values. Now, applying

inequality (9) to (11), the lower bound can be transformed to:

min
P

{
tr

(
PT DGP

[
WH 0

0 0

] )}
≥

∑

1≤i≤m

λi(WH)λn−i+1(DG).

(12)

Instantiating the permutation matrix P as the orthogonal matrix

P = [QG(n : n−m+1)QT
H
,QG(n−m : 1)], further computation

reveals:

tr

(
PT DGP

[
WH 0

0 0

] )
= tr

([
ΛG(n : n − m + 1)ΛH 0

0 0

] )

=

∑

1≤i≤m

λi(WH )λn−i+1(DG),

where ΛG(n : n − m + 1) = diag(λn(DG), λn−1(DG), . . . ,

λn−m+1(DG)), and ΛH = diag(λ1(WH ), λ2(WH ), . . . , λm(WH)).

The second equation follows from the fact that λk(WH ) = 0

as long as m ≤ k ≤ n.

Theorem 1 asserts that once the permutation matrix P is

known by P = [QG(n : n − m + 1)QT
H , QG(n − m : 1)], the

virtual network mapping f satisfying the optimization formula

(1) comes from formula:

∀vi ∈ V(H)(1 ≤ i ≤ m), f (vi) = P[u1,u2, . . . ,un]
T [i], (13)

where [u1,u2, . . . ,un]
T (ui ∈ V(G)) is the vector of nodes in

substrate network in the same order of DG .

B. Alignment of Distance Matrix Eigenspaces

For the distance matrix DG , even if the eigenpairs ((λi(DG),

qi(DG))(1 ≤ i ≤ n) and ((λi(WH ), qi(WH )(1 ≤ i ≤ m) and the

association matrix P has been resolved, the classical Hungar-

ian method cannot be applied directly on P to discover an

optimal mapping f with regard to the embedding cost metric,

because this solution will not be acceptable once one node

pair correspondence prescribed by f violates the node and link

constraints. To guarantee that solutions derived from Theorem

1 meet the node and link constraints, the association matrix P

should qualify the node correspondence with dependency not

only on cost but on the minimum constraints. This requires

that the eigenspaces of DG and WH be further aligned.

Ideally, if there is a positive real number θ such that

λi(DG) = θλi(WH ) holds for all eigenvalues λi(WH ) of

WH , we may claim that each λi(WH ) has been aligned

to λi(DG) completely. Under this circumstance, the VNE

solution is guaranteed to not violate the link constraint.

This ideal situation requires that eigenvalues of G be dis-

tributed evenly and densely in a real interval. In a major-

ity of situations, as long as all distinct eigenvalues λi(WH )

of WH are aligned well enough to λi(DG), the link and

node demands from a VNR can still be satisfied. A well

enough alignment between two m-dimensional eigenvalues

vectors λ(WH) = [λ1(WH ), ..., λm(WH )] and λ(DG) =

[λn−m(DG), λn−m+1(DG), ..., λn(DG)] means shifting the po-

sition of λi(DG) so as to make λ(DG) and λ(WH ) as

collinear as possible. The following analysis suggests that

if P results in a complete or approximately complete align-

ment, ([PTDGP]1:m − WH )(i, j) ≥ 0 must hold, as long

as 1 ≤ i, j ≤ m. Consider that (λi(DG),qi(DG)) and

(λi(WH ),qi(WH )) are increasing eigenpairs, namely λ1(DG) ≤

λ2(DG) ≤ . . . ≤ λn(DG) and λ1(WH ) ≤ λ2(WH ) ≤

. . . ≤ λm(WH ). By the Perron-Frobenius theorem ([19], p.

167), eigenvalues of a nonnegative matrix are subject to

|λi(DG)| ≤ λn(DG) and |λi(WH )| ≤ λm(WH ).

This enables alignment of two eigenvalue vectors to be

performed in a normalized space as

−1 ≤ λi(DG)/λn(DG) ≤ 1 and −1 ≤ λi(WH )/λm(WH) ≤ 1.

For alignment of two series of eigenvalues, we select one

λi(DG) which is closest to λi(WH ) as the correspondence for

each of λi(WH). In order to guarantee that link constraints are

satisfied, the selected λi(DG) should satisfy λi(DG) ≥ λi(WH )

such that the scope of choosing λi(DG) can narrow to the

interval [λi(WH ), λn−m+i(DG)]. The existence of λi(DG) in

[λi(WH ), λn−m+i(DG)] can be ensured by the application of the

Cauchy eigenvalues interlacing theorem ([19], p.269) which

asserts that each eigenvalue λi(WH ) of a principal submatrix

of a symmetric matrix WH is bounded by eigenvalues λi(DG)

of DG through the inequality:

λi(DG) ≤ λi(WH ) ≤ λn−m+i(DG).

Hence, λi(DG) can now be located in interval (λi(WH )/λm
(WH ), λn−m+i(DG)/ λm(WH )). Select λi(DG) and write it as:

λ∗
i
(DG) = arg minλi (DG ){λi(DG) − θλi(WH )}.

Finding such a perfect λ∗
i
(DG) so that λi(WH ) = θλ

∗
i
(DG)

for each λi(WH ), implies that we can rearrange columns of QG

such that those eigenvectors q∗
i
(DG) of DG corresponding to

λ∗i (DG)(n−m+ 1 ≤ i ≤ n) are located in columns 1 to m. Let

Q∗
G
(m+1 : n) denote the submatrix consisting of the remaining

columns of QG , namely:

Q∗
G
(1 : m) = [q∗

1
(DG),q

∗
2
(DG), . . . ,q

∗
m(DG)].

Then, letting Λ∗
G
(1 : m) = diag(λ∗

1
(DG), λ

∗
2
(DG), . . . , λ

∗
m(DG))

and configuring the associated matrix P = [Q∗
G
(1 :
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m)QT
H
,Q∗

G
(m + 1 : n)] will lead to:

[PTDGP]1:m =

[
QHΛ

∗
G
(1 : m)QT

H
0

0 Λ
∗
G
(m : n)

]

1:m

= QHΛ
∗
G(1 : m)QT

H .

Thus, if we let R = ([PTDGP]1:m−WH ), then R = QH (Λ
∗
G
(1 :

m) − ΛH )Q
T
H

≈ QH (diag((θ − 1)λ(WH))Q
T
H
= (θ − 1)WH ,

which in turn leads to R(u, v) ≥ 0. Perron-Frobenius theorem

confirms that λn is bounded by the inequality

n mini a(ui) = mini ΣjDG(ui,uj) ≤ λn,

where a(ui) = (1/n)Σuj
min{c(lg)|lg ∈ E(p(ui,uj))} denotes

the average of all minimum constraints lying on the paths

p(ui,uj), as uj ranges over all SN nodes. Generally speaking,

we must have a(ui) > 0 due to the connectivity of SN. This

inequality guarantees that λn will be large enough as long as

the scale of SN, reflected in the number of nodes and links,

grows, which is a fundamental feature in the current Internet

infrastructure.

C. Eigenvector Sign Correction

On the other hand, we note that sign correction of DG can

also affect the computation of the matrix P. The need for

sign correction arises so as to make the eigenvectors qi(DG)

collinear to eigenvectors qi(WH ) to avoid ambiguity. The most

straightforward way of doing this is to take the absolute

values over all qi(DG) components, an operation that is quite

common in graph matching. However, we have experimentally

observed that this approach is unsuitable to VNE goals, due,

perhaps, to subtle differences in the two application domains.

Thus, we borrow another sign correction strategy due to Park

et al.[20], where each eigenvector qi(DG) is compared with its

counterpart qi(WH) and the signs of eigenvector qi(DG) will

be corrected as long as:

| |qi(DG) + qi(WH )| | < | |qi(DG) − qi(WH)| |

This approach implies that more components of qi(DG) have

opposite signs, so that qi(DG) and qi(WH ) form a relatively

large angle in eigenspace. In this case, qi(DG) is corrected as

−qi(DG), which is still a valid eigenvector of DG .

D. Using Generalized Distance Matrices

We applied the all-pairs shortest path distance matrix DG ,

marked as PD, as an initial step to address the VNE optimiza-

tion formulation. It is quite natural now to try to generalize

DG to other matrix forms of distance metrics, including the

Euclid distance matrix (ED), the heat kernel distance matrix

(HD), the minimum constraint distance matrix (MD), based on

the standard adjacency matrix AG . The all-pairs shortest path

distance matrix DG offers a good match to the VNE problem,

but computation of all-pairs shortest path distance from the

standard adjacency matrix AG , by means of the “funny”

matrix multiplication (described in [24]), is not convenient.

The Euclid distance matrix (ED) and the heat kernel distance

matrix (HD) can be used to avoid the computation of PD. Our

experiments illustrate both of these distance matrices produce

results that are comparable with those of PD, but at a higher

computational speed.

1) Euclid Distance Matrix (ED): Let D(x) denote a

column vector of D indexed by node x of the associated

graph. In most circumstances, distance matrix D described

here can be approximated by its Euclidean distance in

corresponding eigenspace using node coordinates under the

eigenvector basis, namely, the column indexed by u in D can

be represented as

D(u) =
∑

1≤i≤ |V | λiqi(u)qi
which implies that the column vector D(u) has

coordinates [λ1q1(u), λ2q2(u), . . . , λ |V |q |V |(u)]
T under basis

{qi |1 ≤ i ≤ |V |}. This produces the following Euclidean

distance between nodes u and v:

d2
E (u, v) = | |D(u) − D(v)| |2 =

∑
1≤i≤ |V | λ

2
i (qi(u) − qi(v))

2

When implementing the eigendecomposition for DG and WH ,

the component signs in columns of QG and QH must have

been corrected to avoid sign ambiguity.

2) Heat Kernel Distance Matrix (HD): One issue not yet

considered might substantially impact the quality and effi-

ciency of embedding: Namely, the consequences of embedding

multiple dynamically arriving VNRs. Models and algorithms

have yet to address this problem. In order to enable dynamical

embedding, the natural inclination is to let the distance matrix

of SN update the reachable path between all node pairs

before embedding the next VNR. Unfortunately, recalculation

of stationary distributed shortest paths among all node pairs of

SN might not be acceptable for a majority of VNRs. Hence, we

consider alternatives to the shortest distance matrix, namely,

resorting to other distance measures that capture bandwidth

and path-length information of the graph over time. A natural

alternative to use is the heat kernel distance [21]. Heat kernel is

widely known as the fundamental solution of the heat equation,

where the continuous Laplace-Beltrami operator acts on a

time-varying scalar function h : M × R+ → R on the manifold

M to formulate the rate of heat change with time by equation

∂h(x, t)

∂t
= −∆h(x, t)(x ∈ M).

Let L = I −∆−1/2D∆−1/2 be Laplacian matrix associated with

D, and φi be the eigenvectors of L, ∆ being the diagonal

matrix with (u,u) element defined by ∆(u,u) =
∑

v∼u D(u, v).

The impulse response solution ht (u, v) of the heat equation

above can be derived by exponentiating the normalized graph

Laplacian L of discretized manifold M as

ht (u, v) = e−tL(u, v) =
∑

1≤i≤ |V |

exp(−λit)φi(u)φi(v), (14)

which specifies the rate of information flow across the edges

(u, v).

To quantity the shortest path length across nodes u and

v in SN, a suitable alternative is to embed heat measured

on SN nodes to an r-dimensional vector space, where the

dimension of nodes is reduced from n to r to enhance the

efficiency at the required accuracy level. Let the embedded

vector space have basis vector {φi |φi = [φ1i, φ2i, . . ., φri]
T }.

We can rewrite equation (14) in the form of the column

vector ht (v), indexing the v node in terms of coordinates

expression under a basis of embedded vector space, namely:

ht (v) =
∑

1≤i≤ |V | exp(−λit)φiφi(v).
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The foregoing implies, as long as setting vectors

[φ1, φ2, ..., φ |V |] as a basis of Euclidean space embedded

SN, that an SN node v corresponding to the column ht (v)

has coordinates expression

ht (v) = [exp(−λ1t)φ1(v), exp(−λ2t)φ2(v), exp(−λ |V |t)φ |V |(v)]
T .

Using coordinates expressions ht (u) and ht (v) of nodes u

and v, the Euclidean distance dE (u, v) can be computed for

alternating the adjacency distance,

d2
E (u, v) = | |ht (u)−ht(v)| |2 =

∑

|1≤i≤ |V |

exp(−2λit)(φi(u)−φi(v))
2.

such that the distances between nodes and their neighbor

clouds of nodes can be associated with eigensystem alignment

of virtual and substrate nodes. By integrating equation 14

with respect to t, the commute-time kernel, interpreted as the

transition probability density between (u, v) of a random walk

of arbitrary length can be obtained:

T (u, v) =
∑

1≤i(1/λi)φi(u)φi(v).

At the same time, noting that L = I − D, we can extend

equation (14) with MacLaurin formula:

ht = e−t(I−D)
= e−t

∑
k≥1(t

k/k!)Dk .

The distance matrix D has been normalized through D∗(u, v) =

1/
√
δ(u)δ(v), where δ(u) =

∑
v∼u D(u, v) is referred to as the

weighted degree of node u.

3) The Minimum Constraint Distance Matrix (MCD):

As mentioned previously, sometimes the association matrix

P derived from PD, ED and HD fails to guarantee that

solutions meet the node and link constraints which lead to

an unsatisfactory acceptance ratio. To avoid this problem,

the distance matrix DG can be replaced by new minimum

constraint matrix (MCD) with dependency not only on cost

but on the minimum constraints, as we have done in our

simulations.

The minimum constraint distance (MCD) matrix whose

entry DG(ug, vg), representing the minimum link capacity of

links on the shortest path between node ug and vg, serves to

associate the constraints of nodes and links. The minimum

constraint matrix is still denoted as DG , without causing

confusion, because it can be also understood as a generalized

form of distance matrix between nodes. Let each virtual or

substrate link hold a weight indicating its bandwidth and

consider the constraints in two incident nodes, namely

If ug , vg then DG(ug, vg) = min{c(lg)|lg ∈ E(p(ug, vg))}

else DG(ug, vg) = c(ug).

E. A Family of VNE Algorithms Using Distance Matrices

1) DMEA-X: A Family of VNE Algorithms: The process

of solving a generic VNE problem described above may be

organized as a family of algorithmic solutions, called distance

matrix eigenspace alignment DMEA-X, to be described next.

Initially, the algorithm DMEA-PD is presented with a

form of matrix optimization using the unweighted all-pairs

shortest path distance (PD). Next, two distance forms in graph

eigenspace, the Euclid and heat kernel distance measures,

are considered in algorithms DMEA-ED and DMEA-HD, for

disposing the dynamically derived VNR. Algorithm DMEA-

HD imitates the process of heat diffusion to estimate the usage

of network resources in time slots for dealing with dynamic

VNE. Finally, for taking link and node constraint into account,

algorithm DMEA-MCD with higher accuracy than DMEA-2D

is proposed, where the (u, v) entry of the distance matrix is the

minimum constraint of links on shortest path between node

pair (u, v).

This class of algorithms, indicated by symbol DMEA-X

with distance metric X chosen as PD, ED, HD and MCD,

are explained in Table IV.

2) Computation of Unweighted Shortest Path Distance Ma-

trix (PD): The “funny” matrix multiplication (described in

[24]) generates DG as DG = AG min. +AG , where the operator

min.+ calculates the minimum path by summing all entities in

row i and ones in column j pairwise.

DG(u, v) = minx {AG(u, x) + AG(x, v)}.

The 0 entries of standard adjacency matrix AG should be

initialized as a user-defined constant number that is greater

than the path length value k, a predefined parameter used by

shortest-path-type VNE algorithms. At the same time, nodes x

lying on the path p(u, v) are recorded to trace links to prepare

for the link mapping stage:

E(p(u, v)) = arg minx {AG(u, x) + AG(x, v)}.

Algorithm 1 DMEA-X

Input: virtual network H = (V(H),E(H)) and substrate

network G = (V(G),E(G));

Output: virtual network mapping f which embeds V(H) and

E(H) onto V(G) and E(G), respectively;

1: create the distance matrix DG and the weighted adjacency

matrix WH from previous formulation;

2: implement the eigendecomposition of DG and WH as

DG = QGΛGQT
G

and WH = QHΛHQT
H

;

3: project all rows of D(G) onto its eigen subspace with

dimension equal to the dimension of WH by using m

leading eigenvectors;

4: solve the optimization problem (10) to calculate the asso-

ciation matrix P = [QG(n : n − m + 1)QT
H
,QG(n− m : 1)];

5: compute the final mapping f from P by formula (13).

3) VNE Algorithm DMEA-2D: Using 2D Approximation of

Distance Matrices: With regard to the computational effi-

ciency of algorithm DMEA-X, although the eigendecompo-

sition of the distance matrix DG is polynomially solvable,

it generally imposes an O(n3) computational overhead. Some

researchers have discovered that the Perron-Frobenius eigen-

vector of a nonnegative matrix is particularly suitable for the

node ranking problems in graphs.

This motivates us to devise an approximate algorithm

called DMEA-2D for enhancing efficiency of VNE without

a significant loss of embedding quality. In DMEA-2D, we

can rank VN and SN nodes by the weighted node degree

calculated from the distance matrix DG . This ranking can

be computed with a comparatively low overhead, because the

eigenvector corresponding to the maximal eigenvalue of the

distance matrix has a closed form solution that is the Perron

vector. We thus propose an inexact but efficient algorithm

called DMEA-2D by projecting rows of DG into its two-

dimensional eigenspace for realizing it.
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Algorithm 2 DMEA-2D

Input: virtual network H = (V(H),E(H)) and substrate

network G = (V(G),E(G));

Output: virtual network mapping f which embeds V(H) and

E(H) onto V(G) and E(G), respectively;

1: Calculate the node degree vectors δ1(G) and δ1(H) (

Perron vector) of matrices DG and WH ;

2: Calculate the eigenvectors δ2(G) and δ2(H) corresponding

to the second largest eigenvalues of matrices DG and WH ;

3: Rank nodes of G and H by values δ1(•) and δ2(•), in

descending order;

4: For each node vh in sorted VN node list, find the node

vg in sorted SN node list that meets the demand of vh,

perform node mapping f (vh) = vg;

5: For each virtual link lh = (uh, vh) ∈ E(H), for each

substrate link lg on the shortest path between f (uh) and

f (vh), perform link mapping f (lh) = lg;

F. A Simple Example Illustrating DMEA-MCD

To gain intuition on challenges facing us in previous VNE

approaches, we experiment with three representatives of ex-

isting VNE proposals, GAR-SP, RW-MM-SP and DViNE-SP,

to implement embedding between simple virtual network C3

and substrate network C4 with the aid of the open-source

framework for VNE simulation Alevin 2.2 [22]. Note that the

network generator of Alevin 2.2 commonly generates nodes

of the virtual network C3 and substrate network C4 as two

ordered sequences{v1, v3,v2} and {u1,u4,u2,u3}, respectively,

with node tags not in natural order.

As discussed in Section I, the class of optimization VNE

approaches usually search and discover the optimal solution

globally. Although the DViNE-SP, as a representative of the

type of VNE proposed in [3], obtains the optimal solution with

near-optimal quality. Table VIII shows that DViNE-SP needs

1259.6s for embedding a VN of 58 nodes to a 100-node SN.

Generally, this is unacceptable for practical VNE deployment.

As significant alternatives, two other heuristic VNE solutions,

GAR-SP [5] and RW-MM-SP [7], were proposed to per-

form VNE through approximate topological correspondence

between VN and SN nodes. GAR-SP maps each VN node to

an SN node with the largest residual resources.

To discover the node with maximal resource, this approach

initializes the candidates of each VN node as identical ones

consisting of all SN nodes. Strictly speaking, the global

topological correspondence was taken into consideration to

some extent. Consequently, a VNR will be rejected even if

node mapping has been successful, for there may have been

virtual link demand beyond constraints on embedded SN links.

Low acceptance ratio attributed to uncoordinated

node and link mapping constitutes the most essential

challenge in our simulation verification. For observation

of this point, Fig. 2a illustrates that GAR-SP gains

the node mapping {v1 ↔ u2, v2 ↔ u3,v3 ↔ u4} for

embedding C3 to C4 after ordering the candidates of

each VN node according to their available resource

and choosing one having most resource. The candidates
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Fig. 2. Example for understanding the challenges faced in previous VNE
schemes. Small red circles denote unsuccessful link mappings.

with resource indicators are calculated and expressed as

{(u1,24073.0), (u2,46191.0),(u3,29100.0), (u4,32661.0)}.

Then all virtual nodes in order v1v3v2 greedily locate their

targets as the sequence u2u4u3, and this leads to the node

mapping {v1 ↔ u2, v2 ↔ u3,v3 ↔ u4}, by associating

the sequence v1v3v2 with sequence u2u4u3. Unfortunately,

subsequent link mapping fails to map the link v3 → v1

because v3 → v1 is first mapped to the optimal target

u4 → u1 → u2, but this violates the constraint. Subsequently,

the unique possible alternative u4 → u3 → u2 also violates

the constraint on link u4 → u3, since the link v3 → v2 has

already occupied a bandwidth 88 prior to v3 → v1.

RW-MM-SP formulates an iterative process over VN and

SN to converge a random walk to the stationary status, where

r(G) and r(H), two decreasingly sorted real-value sequences,

are derived iteratively, and nodes are ranked according to their

corresponding values in sequences r(G) or r(H).

r(G) = {(u2,0.0014),(u3,0.0013), (u1,0.0011), (u4,0.0010)};

r(H) = {(v3,0.0012),(v2,0.0011), (v1,0.0009)}.

Correspondence of r(H) with r(G) generates the node mapping

{v1 ↔ u1, v2 ↔ u3,v3 ↔ u2}. Likewise, RW-MM-SP firstly

attempts to map link v1 → v3 to u1 → u2, and v3 → v2 to

u2 → u3 by the rule of shortest path first. However, bandwidths

on both mapped links do not fulfill the virtual link demands.
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The algorithm switches the target of mapping link v1 → v3 to

the path u1 → u4 → u3 → u2, and the one of v3 → v2 to the

path u2 → u1 → u4 → u3. The first choice, mapping v1 → v3

to path u1 → u4 → u3 → u2, is successful thus it occupies a

bandwidth 68 of link u1 → u4, but this causes that latter link

mapping from v3 → v2 to the path u2 → u1 → u4 → u3 to

violate the bandwidth constraint on link u1 → u4 (see the small

red circle mark) for its residual bandwidth of 65(133− 68) is

less than the demand 88 of link v3 → v2. Finally, embedding

of C3 to C4 is unsuccessful by RW-MM-SP.

The fundamental reason, in part from conjecture but partly

validated by our experiments, behind both GAR-SP and RW-

MM-SP failing to embed C3 to C4 is in the ways they consider

the topological correlation between virtual and substrate node.

The former takes this factor into account through resource

level of nodes and links connected it, and the latter formulates

it as weights of nodes calculated from a candidate node and its

neighbors. Both are confined to local characteristic correlation,

which rarely utilizes coordination between nodes and links,

leading to failure of link mapping following successful node

mappings.

As a successful mapping example, Fig. 2c shows the result

of DViNE-SP, which searches for the optimal candidate for

each VN node, and also considers the correlation between the

links connected to nodes for optimization. The node mapping

{v1 ↔ u1, v2 ↔ u2,v3 ↔ u4}, which is the optimal one,

follows from choosing the maximal weights from candidates

v1 → max {(u1,0.9896), (u2,0.0030), (u3,0.0074)};

v3 → max {(u1,0.7129), (u4,0.2359), (u2,0.0511), (u3,0)};

v2 → max {(u1,0.0004), (u4,0), (u2,0.0.9972), (u3,0.0024)};

As already mentioned, DViNE-SP suffers from its unaccept-

able runtime when the network scales up (sizes greater than

58 for VN and 100 for SN).

The motivation behind our work is to pursue trade-off be-

tween efficiency and precision. The results of embedding C3 to

C4 demonstrate our success in reaching the near optimal solu-

tion, while also overcoming the computational intractability, so

that runtime approaches to that of approximate matrix eigende-

composition. Regarding the example above, our scheme aligns

the eigenspace of the minimum constraint distance matrix

DG for contributing a VNE solution of embedding C3 to C4

with identical quality to DViNE-SP, as depicted in Fig.2c, but

significant acceleration as seen in Table III, and further verified

in subsequent simulation.

TABLE III
EXAMPLE DETAILS FOR VNE FROM C3 TO C4

Algorithm Runtime Acceptance Node Mapping

GAR-SP 0.014s rejected {v1 ↔ u2,v2 ↔ u3,v3 ↔ u4 }

DViNE-SP 0.089s accepted {v1 ↔ u1,v2 ↔ u2,v3 ↔ u4}
RW-MM-SP 0.007s rejected {v1 ↔ u1,v2 ↔ u3,v3 ↔ u2}
DMEA-MCD 0.073s accepted {v1 ↔ u1,v2 ↔ u2,v3 ↔ u4}

The overall process is illustrated as follows. For the distance

matrix DG of C4, the matrix rows are indexed as the node

order, the matrix rows being indexed as the node order

{u1,u4,u2,u3},and DG has the form:

DG =



133 133 48 48

74 191 48 97

191 76 173 76

74 127 173 97



; Its eigenvalues matrix ΛG and

eigenvectors matrix QG are

QG =



−0.38 0.48 0.35 0.21

−0.46 −0.12 0.56 −0.44

−0.58 0.09 −0.74 −0.43

−0.56 −0.62 −0.55 1.00



; and

ΛG = diag(432.56,89.60,89.60, .− 17.77).

For the weighted adjacency matrix WH of C3, the rows of

matrix are indexed as the node order {v1,v3,v2}. The matrix

WH , its eigenvectors matrix QH and eigenvalues matrix ΛH

are

WH =



68 68 40

51 96 88

96 28 88


, QH =



−0.49 0.45 0.42

−0.67 −0.51 0.43

−0.56 −0.01 −0.80


, and

ΛH = diag(206.34,22.83,22.83), respectively.

Through the procedure of sign correction, the signs of all QG

columns remain unchanged. Thus columns 1 to m are extracted

as a submatrix QG(1 : m) whose columns constitute the basis

vectors of m-dimensional subspace that all C4 nodes should

be projected into

QG(1 : m) =



−0.38 0.48 0.35

−0.46 −0.12 0.56

−0.58 0.09 −0.74

−0.56 −0.62 −0.55



;

relaxing the permutation matrix P as an orthogonal matrix

leads to a generalized permutation matrix P with its pij com-

ponent indexed by VN node i and SN node j. The nonnegative

real number pij reflects the weight or possibility of embedding

VN node i to SN node j. Regarding the optimization objective,

we choose the SN node j maximizing pij in row i as the best

candidate of VN node i. If this SN node has been previously

chosen by another VN node, the second largest pij may dictate

the target of mapping virtual node i, and so on. Finally, we

obtain P as

P =



0.55 0.41 0.02 0.24

0.16 0.60 0.02 0.45

0.07 0.19 0.92 0.76


.

For this example, P yields the node mapping {v1 ↔ u1, v2 ↔

u2,v3 ↔ u4} between C3 to C4, the same as DViNE-SP’s result.

IV. EXPERIMENTAL RESULTS

In this section, we experimentally verify the efficiency and

quality of our scheme in terms of various VNE metrics, involv-

ing runtime, VNR acceptance ratio (AR), cost/revenue ratio

(C/R), and node utilization ratio (NUR). The experimental

platform uses the software IDE Eclipse Neon under the 32-

bit Windows 7 operating system, and hardware CPU Intel(R)

Core(TM) i7 5600-U @2.6 GHz with 8.0 GB RAM. All

simulations generate the results under the VNE simulation

environment Alevin with recently updated software package

version 2.2, developed by Beck et al. [1], that has been

recognized as a prime simulation framework for examining

virtual network embedding algorithms.

We encoded algorithms based on graph eigensystem using

Java programming language to implement all simulations

under multiple experimental settings. We investigated three
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schemes based on eigenspace to demonstrate their perfor-

mance and accuracy, measured by runtime and acceptance

ratio, respectively. Five variants of our VNE scheme of align-

ing eigenspace, called DMEA-2D, DMEA-PD, DMEA-ED,

DMEA-HD, DMEA-MCD, were analyzed and compared, with

different behaviors due to aligning nodes of SN and VN with

distinct distance metrics. Table IV shows the relevant details.

The process of each experiment can be decomposed into

network generation, algorithm configuration and execution,

and algorithm evaluation, with various experimental config-

urations. The experimental steps and corresponding configu-

rations are further detailed in Table V. Next, the family of

eigensystem alignment VNE approaches are compared with

a couple of representative VNE algorithms, that have been

cited as the focus of considerable VNE research, in terms of

runtime, VNR acceptance ratio, cost/revenue ratio, and node

utilization ratio, factors that have been recognized as effective

means of assessing VNE algorithms. Finally, the results of

comparison have been plotted to reveal the effect of varied

scale of VN and SN on VNE performance and quality.

TABLE IV
A FAMILY OF DISTANCE MATRICES FOR EIGENSPACE ALIGNMENT

Algorithm Characteristics

DMEA-2D Project SN and VN node to the 2 dimensional (2D)
subspace spanning by two leading eigenvectors of the
distance matrix.

DMEA-PD using the unweighted shortest path distance (PD) matrix

DMEA-ED using the Euclid distance (ED) of graph eigenspace

DMEA-HD using the heat kernel distance (HD) of graph Laplace
matrix

DMEA-
MCD

using the minimum constraint distance matrix of weighted
adjacency

A. Scenario Generation

The step of network generation goes through establishing

network topology, adding resources to SN, as well as adding

demands to VN. The SN is modeled as random network,

a property recognized as a significant characteristic of the

Internet as it has evolved. Random topologies are generated

with a probability 0.5 of connecting a pair of nodes. The

numbers n and m of SN and VN nodes increase linearly with

the iteration k of experiment n = a(k + 1) and m = b(k + 1),

where a and b are constant factors controlling the growth of

SN and VN, respectively. For configurations here, they hold

values a = 10 and b = 5. The configuration parameters of

network generation are listed in Table V.

B. Algorithm Configuration

Algorithms chosen for our experimental evaluation involve

three representative VNE algorithms, which have been pro-

posed in [3], [5], [7], and briefly described in Table VI.

These algorithms along with our proposed family of VNE

eigensystem aligning approaches are executed on identical

scenarios and parameter configurations. All algorithms chosen

for evaluation were run 10 times under identical scenario set-

ups, but increasing size of SN and VN, as shown in Table V.

In the node mapping stage, CPU node weights are set to 1, and

the candidates of a VN node are limited within a distance of

20 hops away from it. The situation of node overload has not

yet been considered. In the link mapping stage, the parameter

k of mapping a VN link to a length-k shortest path is set

to k = 2, and the weights on link bandwidth conform to the

uniform distribution in interval [min,max] (see Table V).

TABLE V
EXPERIMENTAL PARAMETERS OF NETWORK GENERATION, a AND b

BEING CONSTANT FACTORS

Value SN Size VN Size VNs Num. Demand Resource

Min 10 5 5 10 10

Max 100 58 5 1000 1000

k-term a(k + 1) b(k + 1) 5 [10,1000] [10,1000]

TABLE VI
REPRESENTATIVE VNE APPROACHES CHOSEN FOR EVALUATION, THE

CITATION TIMES UPDATED ON JULY/08/2017

Algorithm Reference Brief description

DViNE-
SP

Chowdhury
et al. [3]

VNE with coordinated strategy in two stages
where node mapping is implemented by mixed
integer programming (MIP) and link mapping
with k-shortest paths. Google Scholar [23]
citations: 415

GAR-SP Yu et al.
[5]

VNE preferentially using available resources
for node mapping and k-shortest paths for link
mapping. Google Scholar [23] citations: 998

RW-MM-
SP

Cheng et
al. [7]

VNE ranking nodes with topology properties
for node mapping and k-shortest paths for link
mapping. Google Scholar [23] citations: 346

C. Evaluation Results

The simulation proceeds with varying the network scale

with time (see Table V). Our evaluation focuses on a collection

of well-recognized VNE metrics (runtime, VNR acceptance

ratio, cost/revenue ratio, and node utilization ratio) for as-

sessing the competitiveness of our proposal. All variants of

eigensystem aligning are expected to perform better than

counterparts, at least with respect to runtime, without degra-

dation in other metrics. We are particularly interested in

efficiency of DMEA-2D and in trade-off of efficiency and

embedding quality of DMEA-X. The results of performing

all algorithms confirm that our strategy yields the expected

runtime improvement. Likewise, it generates a high-quality

approximate solution in terms of other evaluation metrics. This

means that eigensystem-based algorithms improve efficiency,

without a cost in quality degradation. Because we are primarily

interested shortest-path class VNE approaches, experiments

with various kinds of path splitting have not yet been per-

formed.

The results of comparisons with other algorithms in multiple

metrics listed above are depicted in Figs.3-4. We address

the evaluation of DMEA-X in three domains: embedding

efficiency, embedding quality, and scalability.

Metric 1. Embedding efficiency Our simulation indicates

that the optimization-based scheme DViNE-SP encounters

efficiency problems when a task of embedding randomly gen-

erated SN with 100 nodes to VN with 58 nodes is attempted in

the 10th iteration on random graphs, as shown in Fig.3a. The
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problem is due to timeout caused by the optimization package

GLPK 4.7 in searching for solutions.

TABLE VII
COMPARISON OF THE AVERAGE VALUES OF THE EVALUATION METRICS

FROM 10 TEST ITERATIONS EXECUTED ON RANDOMLY GENERATED VN
AND SN

Algorithm Runtime Acceptance C/R NU

GAR-SP 1.1987 98% 1.3807 20.7342

DViNE-SP 134.9734 100% 1.4521 21.4261

RW-MM-SP 2.7386 96% 1.3485 21.8244

DMEA-2D 1.1925 100% 1.2868 23.6131

DMEA-ED 1.1454 100% 1.3737 20.4356

DMEA-HD 1.1975 100% 1.3680 20.5497

DMEA-PD 1.1038 100% 1.3961 20.3806

DMEA-MCD 1.1682 100% 1.3799 20.8616

With respect to runtime, eigenspace-based schemes exhibit

improvement over DViNE-SP and RW-MM-SP, and come

extremely close to GAR-SP, with DMEA-PD(see Fig.3a) and

DMEA-2D (see Fig.4a). The eigenspace alignment algorithms

using other distance metrics demonstrate runtimes close to

DMEA-PD but more than DMEA-2D (see Fig.5a). The ex-

periments leading to Figs.3-5 were conducted on a pair of

randomly generated VN and SN. Through a 10-iteration test,

DMEA-X embedded 100 percent of virtual network requests

(VNR acceptance ratio) within nearly equal average runtime

1.1s, which is less than GAR-SP’s 1.1987. Notably, the other

two tested algorithms, DViNE-SP and RW-MM-SP, exhibited

poor efficiency with average runtimes of 134.97 and 2.74, as

seen in Fig.3a and Fig.4a.

Metric 2. Embedding quality

The acceptance ratio, defined as the ratio between the

number of accepted VNRs and the total number of VNRs,

reflects the fraction of VNRs successfully embedded as vir-

tual networks. The cost/revenue ratio, defined as the sum of

the substrate resources allocated to the VNR, represents the

amount of resources used by an embedding. The revenue sums

the revenue of the VNRs that were successfully mapped and

the revenue of those that were not mapped. The cost/revenue

ratio measures the proportion of cost spent in the substrate net-

work, taking into account the revenue that has been mapped,

the lower the cost/revenue ratio, the better the mapping quality.

The node utilization of SN is calculated as the ratio of used

CPU cycles to the number of nodes in it. It reflects the

proportion of resources being utilized to meet the currently

accepted VNRs.

On randomly generated SNs, DMEA-X generates an aver-

age VNR acceptance ratio 100%, average cost/revenue ratio

around 1.36, and the node utilization ratio around 21, slightly

lower than those of DViNE-SP but rather close to the other

two algorithms, as seen in Table VII. In more details, Figs.3

and 4 demonstrate that DMEA-X produces more competitive

values with regard to the runtime metric than the other three

approaches, while maintaining the expected quality. On the

other hand, we also notice that sometimes the experimental

results yield low node utilization ratio around 20%. This issue

is also s problem in the other three compared schemes. The

main reason for the lower node utilization ratio is that the

node and link constraints for VN are configured as lower value
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Fig. 3. Performance and quality comparisons of DMEA-PD with three
representative VNE schemes for embedding a random VN into a random
SN..
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relative to those of SN. Overall, our scheme is more capable

of trading off performance and quality than other approaches.

Metric 3. Scalability

In order to evaluate the scalability of our proposal, we

experiment with increasing sizes of VN and SN, with a more

extensive VN range, varying from 5 to 58. It can be observed

from Figs.3 and 4 (also from Table VIII) that the advantages of

our approach grow for larger network sizes, that is, it exhibits

a lower runtime growth with increasing VN and SN sizes. In

the 10th iteration of our experiment, when the VN and SN

networks reach the maximal sizes of 100 and 58, DMEA-X’s

runtime is around 5, compared with around 5.5, 10.7, and

1260 for its counterparts GAR-SP, RW-MM-SP, and DViNE-

SP, respectively, with a nearly equal mapping quality.

TABLE VIII
A COMPARISON IN PERFORMANCE AND QUALITY OF VNE ALGORITHMS

WHEN THE VN AND SN NETWORKS ARE ENLARGED TO MAXIMAL SIZES

OF 100 AND 58 (REACHED IN THE 10TH ITERATION OF OUR

EXPERIMENT), RESPECTIVELY, TO DEMONSTRATE THE SCALABILITY OF

OUR STRATEGY

Algorithm Runtime Acceptance C/R NU

GAR-SP 5.5073 100% 1.3984 14.1883

DViNE-SP 1259.6000 100% 1.4256 14.1883

RW-MM-SP 10.7190 100% 1.4222 14.0622

DMEA-2D 4.8531 100% 1.3333 16.8298

DMEA-ED 5.1177 100% 1.4571 13.6379

DMEA-HD 5.2387 100% 1.4131 14.5806

DMEA-PD 4.8080 100% 1.4432 13.9383

DMEA-MCD 4.9380 100% 1.3951 14.7850

As stated earlier, achieving optimal or nearly optimal so-

lution for addressing a general VNE problem is extremely

challenging. In fact, a higher VNR acceptance ratio only

reflects to what extent a VNR can be technically fulfilled. A

holistic concept termed ”acceptance” may be required to gauge

the extent to which users and providers achieve an agreement,

regardless of technical or business factors. In this regard, on

the precondition of nearly equal quality, efficiency plays a

most essential role to affect user’s decision in the current user-

centered environment.

V. CONCLUSION

Virtual network embedding is a fairly substantial component

in network virtualization technology, and the latter has been

identified as a promising approach to overcoming the ossi-

fication problem arising in future network architectures. The

computational intractability of optimization-based approaches

and the uncertain quality of heuristic algorithms have triggered

vast amounts of research.

Our work facilitates the process of virtual network embed-

ding with graph eigenspace alignment. We have conducted

a theoretical analysis and a series of simulation studies on

multiple scenarios to validate that our scheme based on graph

eigenspace alignment can shorten the algorithm’s runtime,

while maintaining high quality for a general VNE task.

An important observation arising from our experimental

work is that our scheme does not lead to a radically improved

node and link utilization ratios. Theoretically, we are also

interested in exploring hierarchical network topologies to
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Fig. 4. Comparisons in performance and quality of DMEA-2D with three
representative VNE schemes for embedding a random VN into a random SN.
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Fig. 5. Comparisons in performance and quality of approaches with five
distinct distance matrices for embedding a random VN into a random SN

handle VNE tasks in extremely large-scale networks, both VN

and SN. Our future research will cover these two problems.

ACKNOWLEDGMENT

Chenggui Zhao’s work was supported by the National

Science Foundation of China, Grant No. 61562089.

REFERENCES

[1] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys

& Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[2] A. Jarray and A. Karmouch, “Decomposition approaches for virtual
network embedding with one-shot node and link mapping,” IEEE/ACM

Transactions on Networking (TON), vol. 23, no. 3, pp. 1012–1025, 2015.

[3] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking (TON), vol. 20, no. 1, pp. 206–
219, 2012.

[4] X. Chen, C. Li, and Y. Jiang, “Optimization model and algorithm for
energy efficient virtual node embedding,” IEEE Communications Letters,
vol. 19, no. 8, pp. 1327–1330, 2015.

[5] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” Acm
Sigcomm Computer Communication Review, vol. 38, no. 2, pp. 17–29,
2008.

[6] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in Proceedings of the 1st ACM work-
shop on Virtualized infrastructure systems and architectures. ACM,
2009, pp. 81–88.

[7] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 2, pp.
38–47, 2011.

[8] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu, “Graph homomorphism
revisited for graph matching,” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 1161–1172, 2010.

[9] H. Cui, S. Tang, X. Huang, J. Chen, and Y. Liu, “A novel method of
virtual network embedding based on topology convergence-degree,” in
Communications Workshops (ICC), 2013 IEEE International Conference

on. IEEE, 2013, pp. 246–250.
[10] D. Zhang and L. Gao, “Virtual network mapping through locality-aware

topological potential and influence node ranking,” Chinese Journal of

Electronics, vol. 23, no. 1, pp. 61–64, 2014.
[11] Y. Cao, W. Fan, and S. Ma, “Virtual network mapping: A graph pattern

matching approach,” in British International Conference on Databases.
Springer, 2015, pp. 49–61.

[12] F. Esposito, D. Di Paola, and I. Matta, “On distributed virtual network
embedding with guarantees,” IEEE/ACM Transactions on Networking,
vol. 24, no. 1, pp. 569–582, 2016.

[13] M. T. Beck, A. Fischer, J. F. Botero, C. Linnhoff-Popien, and H. D.
Meer, “Distributed and scalable embedding of virtual networks,” Journal

of Network & Computer Applications, vol. 56, no. C, pp. 124–136, 2015.
[14] Z. Zhang, S. Su, Y. Lin, X. Cheng, K. Shuang, and P. Xu, “Adaptive

multi-objective artificial immune system based virtual network embed-
ding,” Journal of Network and Computer Applications, vol. 53, pp. 140–
155, 2015.

[15] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network
embedding with opportunistic resource sharing,” IEEE Transactions on

Parallel and Distributed Systems, vol. 25, no. 3, pp. 816–827, 2014.
[16] D. Knossow, A. Sharma, D. Mateus, and R. Horaud, “Inexact matching

of large and sparse graphs using laplacian eigenvectors.” GbRPR, vol. 9,
pp. 144–153, 2009.

[17] R. Singh, J. Xu, and B. Berger, “Pairwise global alignment of protein
interaction networks by matching neighborhood topology,” in Research

in computational molecular biology. Springer, 2007, pp. 16–31.
[18] R. Bhatia, Matrix analysis. Springer Science & Business Media, 2013,

vol. 169.
[19] F. Zhang, Matrix theory: basic results and techniques. Springer Science

& Business Media, 2011.
[20] S. H. Park, K. M. Lee, and S. U. Lee, “A line feature matching

technique based on an eigenvector approach,” Computer Vision and

Image Understanding, vol. 77, no. 3, pp. 263–283, 2000.
[21] X. Bai and E. R. Hancock, “Heat kernels, manifolds and graph embed-

ding,” in Structural, Syntactic, & Statistical Pattern Recognition, Joint

Iapr International Workshops, Sspr & Spr, Lisbon, Portugal, August,
2004.

[22] M. T. Beck, C. Linnhoff-Popien, A. Fischer, F. Kokot, and H. De Meer,
“A simulation framework for virtual network embedding algorithms,” in
Telecommunications Network Strategy and Planning Symposium (Net-

works), 2014 16th International. IEEE, 2014, pp. 1–6.
[23] google, “On-line data from https://scholar.google.com.”



1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2895354, IEEE
Transactions on Network and Service Management

zhao and parhami: VIRTUAL NETWORK EMBEDDING THROUGH GRAPH EIGENSPACE ALIGNMENT 15

Chenggui Zhao received his bachelor’s degree in
mathematics and master’s degree in computer sci-
ence from Yunnan Normal University, China, in
1999 and 2003, respectively. He obtained the PhD
degree in computer science from South China Uni-
versity of Technology, China, in 2007. He is cur-
rently a full professor at School of Information, Yun-
nan University of Finance and Economics, China.
His research focuses mainly on communication net-
work and computer system architecture, studied via
the application of algebra, graph and probability

theories. He is also involved in the areas of data and social network analysis.

Behrooz Parhami (M’76–SM’81–F’87) is Professor
of Electrical and Computer Engineering, and former
Associate Dean for Academic Personnel, College
of Engineering, at University of California, Santa
Barbara, where he teaches and studies computer
hardware architecture. A Life Fellow of IEEE, a
Fellow of IET and British Computer Society, and
recipient of several other awards (including a most-
cited paper award from J. Parallel & Distributed
Computing), he has written six textbooks and more
than 300 peer-reviewed technical papers. Profession-

ally, he serves on journal editorial boards (currently serving on two IEEE
Transactions) and conference program committees and is also active in
technical consulting.


